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Abstract

Given any observed demand behavior by means of a demand function,

we quantify by how much it departs from rationality. Using a recent elab-

oration of the “almost implies near” principle, the measure of the gap is

the smallest norm of the correcting matrix that would yield a Slutsky ma-

trix with its standard rationality properties (symmetry, singularity, and

negative semidefiniteness). A useful classification of departures from ra-

tionality is suggested as a result. Variants, examples, and applications are

discussed, and illustrations are provided using several bounded rationality

models.
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1 Introduction

The rational consumer model has been at the heart of most theoretical and

applied work in economics. In the standard theory of the consumer, this model

has a unique prediction in the form of a symmetric, singular, and negative

semidefinite Slutsky matrix. In fact, any demand system that has a Slutsky

matrix with these properties can be viewed as being generated as the result of

a process of maximization of some rational preference relation. Nevertheless,

empirical evidence often derives demand systems that conflict with the ratio-

nality paradigm. In such cases, those hypotheses (e.g., symmetry of the Slutsky
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matrix) are rejected. These important findings have given rise to a growing

literature of behavioral models that attempt to better fit the data.

At this juncture three related questions can be posed in this setting:

• (i) How can one measure the distance of an observed demand behavior

–demand function– from rationality?

• (ii) How can one compare and classify two behavioral models as departures

from a closest rational approximation?

• (iii) Given an observed demand function, what is the best rational approx-

imation model?

The aim of this paper is to provide a tool to answer these three questions in the

form of a Slutsky matrix norm, which allows to measure departures from ra-

tionality in either observed Slutsky matrices or demand functions. The answer,

provided for the class of demand functions that are continuously differentiable,

sheds light on the size and type of bounded rationality that each observed be-

havior exhibits.

Our primitive is an observed demand function. To measure the gap between

that demand function and the set of rational behaviors, one can use the “least”

distance and try to identify the closest rational demand function. This approach

presents serious difficulties, though. Leaving aside compactness issues, which

under some regularity assumptions can be addressed, the solution would require

solving a challenging system of partial differential equations. Lacking symmetry

of this system, an exact solution may not exist, and one needs to resort to

approximation or computational techniques, but those are still quite demanding.

We take an alternative approach, based on the calculation of the Slutsky

matrix of the observed demand. We pose a matrix nearness problem in a con-

vex optimization framework, which permits both a better computational im-

plementability and the derivation of extremum solutions. Indeed, we attempt

to find the smallest correcting additive perturbation to the observed Slutsky

matrix that will yield a matrix with all the rational properties (symmetry, sin-

gularity with the price vector on its null space, and negative semidefiniteness).

We use the Frobenius norm to measure the size of such additive factor. Using

Anderson (1986) “almost implies near” (AN) principle and its recent elabora-

tion, developed by Boualem and Brouzet (2012), we establish that for every

approximation of rational behavior (i.e., the observed demand function being

“almost” rational), there exists a rational demand function such that the two

Slutsky matrices are also close (“near” symmetry, singularity, and NSD). This

result allows us to use the Frobenius norm of the correcting factor added to the

Slutsky matrix as the “size” of the observed departure from rationality.
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We provide a closed-form solution to the matrix nearness problem just de-

scribed. Interestingly, the solution can be decomposed into three separate terms,

whose intuition we provide next. Given an observed Slutsky matrix,

• (a) the norm of its anti-symmetric or skew symmetric part measures the

“size” of the violation of symmetry;

• (b) the norm of the smallest additive matrix that will make the symmetric

part of the Slutsky matrix singular measures the “size” of the violation of

singularity; and

• (c) the norm of the positive semidefinite part of the resulting corrected

matrix measures the “size” of the violation of negative semidefiniteness.

Our main result shows that the “size” of bounded rationality, measured by the

Slutsky matrix norm, is simply the sum of these three effects. In particular,

following any observed behavior, we can classify the instances of bounded ra-

tionality as violations of the Ville axiom of revealed preference –VARP– if only

symmetry fails, violations of homogeneity of degree zero or other money illusion

phenomena if only singularity fails, violations of the weak axiom of revealed

preference –WARP– by a symmetric consumer if only negative semidefiniteness

fails, or combinations thereof in more complex failures, by adding up the nonzero

components of the norm.

The size of bounded rationality provided by the Slutsky norm depends on

the units in which the consumption goods are expressed. It is therefore desirable

to provide unit-independent measures, and we do so following two approaches.

The first is a normalization method, through dividing the norm of the additive

correcting matrix by the norm of the Slutsky matrix of the observed demand.

The second translates the first norm into dollars, providing a monetary measure.

The rest of this paper is organized as follows. Section 2 presents the model.

Section 3 goes over the “almost implies near” principle and applies it to our

problem. Section 4 deals with the matrix nearness problem, and finds its solu-

tion, emphasizing its additive decomposition. Section 5 provides interpretations

of the matrix nearness problem in terms of the axioms behind revealed pref-

erence and in terms of wealth compensations, and presents unit-independent

measures. Section 6 presents several examples and applications of the result,

including hyperbolic discounting and the sparse consumer model. Section 7 is

a brief review of the literature, and Section 8 concludes. Some of the proofs of

the more technical results are collected in an appendix.

3



2 The Model

Let τ ∈ T be an element of the set of theories of behavior. For instance, the class

of rational consumer models (R) is a subset of T , and so is the class of models

satisfying the weak axiom of revealed preference (S). Thus, R ⊂ S ⊂ T . As a

very particular illustration of a theory of consumer behavior, one can think of

behavior derived by a certain Cobb-Douglas utility function, which is an element

of R.

Let C1(Z) be the complete metric space of vector valued functions f :

Z 7→ RL, continuously differentiable, uniformly bounded with compact domain

Z ⊂ RL+1
++ , equipped with the norm ||f ||C1 = max({||fl||C1,1}l=1,...,L), with

||fl||C1,1 = max(||fl||∞,1, ||∇fl||∞,L+1) where f(z) = {fl(z)}l=1,...,L.1

Consider a demand function xτ : P ×W 7→ X, where P ×W is the space of

price-wealth pairs (p, w), P ⊆ RL++, W ⊆ R++, and X ≡ RL is the consumption

set. This demand system is a generic function that maps price and wealth to

consumption bundles under a particular τ .

Moreover, assume that xτ (p, w) is continuously differentiable and satisfies

Walras’ law. That is for p � 0 and w > 0 p′xτ (p, w) = w. Let the set

of functions that satisfy these characteristics be X ⊂ C1. Hence, define also

X (Z) ⊂ C1(Z), with Z an arbitrary compact subset of P ×W .2

Let R(Z) ⊂ X (Z) be the set of rational demand functions R(Z) = {xr ⊂
X (Z)|xr(z) = xr(p, w) � x subject to p′x ≤ w} for some complete and

transitive relation �: X ×X 7→ X. Equivalently, R(Z) ≡ {xτ ∈ X (Z)|τ ∈ R}.

Definition 1. Define for any τ ∈ T , the distance from xτ ∈ X to the set of

rational demands R = {xr(p, w)|r ∈ R} ⊂ X by the “least” distance from an

element to a set: d(xτ ,R) = inf{dX (xτ , xr)|xr ∈ R}.

We shall refer to this problem of trying to find the closest rational demand

to a given demand as the “behavioral nearness” problem. Observe that the be-

havioral nearness problem at this level of generality presents several difficulties.

First, the constraint set R(Z), or the set of rational demand functions is not

convex. In addition, the Lagrangian depends not only upon xr but also on its

partial derivatives. The typical curse of dimensionality of calculus of variations

applies here with full force, in the case of a large number of commodities. In-

deed, the Euler-Lagrange equations in this case do not offer much information

about the problem and give rise to a large partial differential equations sys-

tem. To calculate analytically the solution to this program is computationally

challenging.

1We use also the related normed space of real-valued functions with the norm || · ||∞,m =
supz∈Z |g(z)| for g : Z 7→ Rm, for finite m ≥ 1 and | · | the absolute value.

2This compactness assumption can be dispensed with to some extent. For example, one
could assume that the demand functions are surjective, as discussed later.
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Having noted these difficulties with the “behavioral nearness” problem, our

next goal is to talk about Slutsky norms. Let M(Z) be the complete metric

space of matrix-valued functions, F : Z 7→ RL × RL, equipped with the inner

product 〈F,G〉 =
´
z∈Z Tr(F (z)′G(z))dz. This vector space has a Frobenius

norm ||F ||2 =
´
z∈Z Tr(F (z)′F (z))dz. Let us define the Slutsky substitution

matrix function.

Definition 2. Let Z ⊂ P ×W be given, and denote by z = (p, w) an arbitrary

price-wealth pair in Z.3 Consider the price change dp and a compensated wealth

change dw = dp′xτ (p, w). Then the Slutsky matrix function Sτ ∈ M(Z) is:

Sτ (z) = Dpx
τ (z) + Dwx

τ (z)xτ (z)′ ∈ RL×L, with entry sτl,k(p, w) =
∂xτl (p,w)
∂pk

+
∂xτl (p,w)

∂w xτk(p, w).

The Slutsky matrix is well defined for all f ∈ C1(Z). Restricted to the

set of rational behaviors, the Slutsky matrix satisfies a number of regularity

conditions. Specifically, when a matrix function Sτ ∈ M(Z) is symmetric,

negative semidefinite (NSD), and singular with p in its null space for all z ∈ Z,

we shall say that the matrix satisfies property R, for short. The one-to-one

relation between matrices satisfying R and theories of behavior in the set R will

be exploited to define a metric that represents d(xτ ,R(Z)) for every z ∈ Z.

Definition 3. For any Slutsky matrix function Sτ ∈M(Z), let its Slutsky norm

be defined as follows: d(Sτ ) = min{||E|| : Sτ +E ∈M(Z) having property R}.

The use of the minimum operator is justified. Indeed, it will be proved that

the set of Slutsky matrix functions satisfying R is a compact and convex set.

Then, under the metric induced by the Frobenius norm, the minimum will be

attained in M(Z). We shall refer to the minimization problem implied in the

Slutsky norm as the “matrix nearness” problem.

3 The “Almost Implies Near” Principle

Intuitively, there should be a close relationship between the “least” distance to

the set of rational demand functions (the behavioral nearness problem) and the

Slutsky matrix nearness problem just defined. In order to make this relationship

explicit, we will make extensive use of Anderson (1986) “almost implies near”

(AN) principle and its recent elaboration, developed by Boualem and Brouzet

(2012).

We begin by establishing a technical claim, whose proof can be found in the

appendix.

3Since Z is closed, we use the definition of differential of Graves (1956) that is defined non
only in the interior but also on the accumulation points of Z.
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Claim 1. The set X (Z) is a compact subset of C1(Z).

The “almost implies near” (AN) principle allows us to assert that for all

ε > 0 there exists δ > 0 such that for all xτ ∈ X (Z) with R being δ− (almost)

satisfied by Sτ , and one can find xr ∈ X (Z) such that both dX (Z)(x
τ , xr) < ε

and Sr ∈ M(Z) having property R are true. In the name of the principle, the

“almost” part refers toδ > 0 (matrix nearness), and the “near” part to ε > 0

(behavioral nearness).4

The matrix nearness problem allows us to represent property R by a function

a with the AN property, as defined next.

Definition 4. [ [Boualem and Brouzet (2012)] ] A function a : X (Z) 7→ M(Z)

(with X (Z) and M(Z) metric spaces) satisfies the “almost implies near” (AN)

property at C ∈ M(Z), if for all ε > 0, there exists a δ > 0 such that for

every xτ ∈ X (Z), the inequality dM(Z)(a(xτ ), C) < δ implies the existence of

an element xr0 ∈ X (Z) satisfying a(xr0) = C and dX (Z)(x
r
0, x

τ ) < ε.

The mapping a : X (Z) 7→ M(Z), with X (Z) and M(Z) as defined above,

represents property R when:

a(xτ ) = E = 0,

where 0 represents the zero matrix function of L×L dimension in the metric

spaceM(Z), and E = Sr−Sτ denotes a solution of the program in the definition

of the Slutsky norm. The analytical expression of the (unique) solution to such

a problem, as well as its properties, will be derived in the sequel (Proposition

3).

We state a result that applies the “almost implies near” principle to our

problem.

Proposition 1. 5 For all ε > 0, there exists a δ > 0 such that for all xτ ∈ X (Z),

the inequality dM(Z)(a(xτ ), 0) = ||E|| < δ implies the existence of an element

xr0 ∈ R(Z) satisfying a(xr0) = 0 and dX (Z)(x
r
0, x

τ ) = ||e||C1 < ε. Moreover if

d(Sτ ) ≤ δ, then we have the bound

ε(δ) = minxro:Sro=Sr ||x
τ − xro||C1

Proof. The proof uses that the solution to the matrix nearness problem is E =

Sτ − Sr, as shown in Proposition 3. We want to show that a(xτ ) = Sτ − Sr

4Instead of relying on nonstandard analysis, Boualem & Brouzet (2012) use functions be-
tween metric spaces to represent a property in Anderson’s language, and a metric to represent
his formulas. This treatment is also useful because it allows us to adapt our results in order
to derive an explicit expression for ε(δ) for an arbitrary Z ⊂ P ×W .

5As suggested by Jerison & Jerison (1993), the proof is a special case of Anderson (1986),
itself reworked in Boualem & Brouzet (2012), as already discussed.
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is AN at 0 ∈ M(Z). By Claim 7, found in the Appendix, a : X (Z) 7→ M(Z)

is continuous. Additionally, the set X (Z) is compact under the differentiability

assumption, by Claim 1.

Then we conclude (applying Proposition 3.1 in Boualem & Brouzet (2012))

that a is (AN) everywhere, i.e., a(xτ ) = Sτ − Sr = C has the AN property for

all C ∈M(Z). In particular, a is AN at 0 ∈M(Z).

Moreover, it follows that limδ→0ε(δ) = 0 (applying Proposition 2.6 in Boualem

& Brouzet (2012)), which implies the bound ε(δ) = minxro:Sro=Sr ||x
τ−xro||C1.

We underscore the fact that the AN property is stated for everyε > 0, not

necessarily arbitrarily small, and therefore, we are able to account for violations

of rationality of any “size”, where the size of the violation is made precise using

the ε(δ) function.6

A somewhat surprising, but direct consequence of Proposition 1 is presented

below. That is, to make the definition of behavioral nearness operational we

will focus on a compact subset Z ⊂ P ×W . Then the function dX (Z)(x
τ , xr)

is a distance between any two demand functions, induced by the norm of the

complete metric space C1(Z). Observe that for any arbitrary compact subset

Z ⊂ P ×W , C1(Z) and M(Z) are compact valued sets, as they are the images

through continuous mappings of a compact set. By Proposition 2, we are able

to guarantee that the minimum is attained in X (Z) assuming only that the

elements of X (Z) and their first-order derivatives are continuous. Therefore, we

have a local metric for xτ ∈ X (Z) defined for each z ∈ Z and R(Z) as ||e||C1 =

d(xτ ,R(Z)) = min{dX (Z)(x
τ , xr)|xr ∈ R(Z)}, where xr(z) = xτ (z) + e(z) with

p′e(z) = 0 by Walras’ law.

Formally, we have:

Proposition 2. The infimum is attained in the distance from a behavioral de-

mand xτ ∈ X (Z) to the set of rational demands R(Z). Equivalently, the “least”

distance can be defined as d(xτ ,R(Z)) = min{dX (Z)(x
τ , xr)|xr ∈ R(Z)}.

Proof. Note that X (Z) ⊂ C1(Z), and that C1(Z) is a metric space with norm

|| · ||C1,L = || · ||C1. Note also thatM(Z) is a metric space with Frobenius

norm || · ||. Furthermore, X (Z) is compact, by Claim 1, and property R can be

6We can be now more specific on the importance of compactness of X (Z). Note that one can
avoid requiring compactness and replace it with the condition that a is onto. More precisely,
we need to solve the partial differential equation system Sr(z) = Dpxr(z) + Dwxr(z)xr(z)′.
The condition that the map a is surjective amounts then to guaranteeing existence of a solution
of the PDE system. If a is onto, then it follows that limδ→0ε(δ) = 0. In fact, if δ → 0 and a
is onto, then Sr(z) → Sτ (z), and it follows that xτ (z) = xro(z), the minimizer of ε(δ) in the
feasible set {xro : d(a(xro), 0) ≤ δ, δ → 0}. That is xτ (z) ∈ R(Z) and Sτ (z) has property R,
leading to the desired limδ→0 ε(δ) = 0. Then, applying Proposition 2.6 in Boualem & Brouzet
(2012), we conclude thata is (AN) at 0.
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expressed with a continuous function a : X (Z) 7→ M(Z) by Proposition 1. This

allows us to apply Anderson’s almost-near principle.

Consider the two programs:

Program (I), the behavior nearness problem:

||e||C1,L = minxr ||xτ − xr||C1,L

subject to

xr ∈ R(Z).

Program (II), the matrix nearness problem:

||E||2 = minSr∈MR(Z)

´
z∈Z Tr([S

τ (z)− Sr(z)]′[Sτ (z)− Sr(z)])dz
subject to

Sr having property R.

Here, as already noted, property R stands for:

Sr(z) ≤ 0

Sr(z) = Sr(z)′

Sr(z)p = 0.

Recall that Sr ∈M(Z) has property R if and only if xr ∈ R(Z).

Applying Proposition 1, we can conclude that the behavioral nearness prob-

lem has at least one solution such that ||e||C1,L < ε(δ) and ||E|| < δ.

Remark 1. The strength of this approach is to provide and existence result

for the behavioral nearness problem and to provide bounds for the rationality

norm, while avoiding the significant difficulties of Program I. In fact, by using

the related Program II, in the next section we are able to obtain a unique and

analytical solution for the matrix nearness problem that allows us to bound the

solutions of ||e||C1,L explicitly. The almost-near theorem of Anderson thus gives

us an existence result for the solution of the associated non linear second order

partial differential equation generated by Program II from which one obtains

xr ∈ R(Z) that is ε-close to rationality. It also provides a formal connection be-

tween the rationality norm and the matrix nearness problem that is ε, δ related.

Of course, the bound is not explicit and up to this point is of not practical use.

4 The Matrix Nearness Problem: Measuring the

Size of Violations of the Slutsky Conditions

Having established the formal link between the solutions to the behavioral near-

ness and matrix nearness problems, we turn to the latter, our main result. In

this section we provide the exact solution of the matrix nearness problem, which

allows us to quantify the distance from rationality by measuring the size of the

violations of the Slutsky matrix conditions.

We begin by reviewing some definitions.
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It will be useful to denote the three regularity conditions of any Slutsky

matrix function with shorthands. We shall use σ for symmetry, π for singularity

with p in its null space (p−singularity) and ν for negative semidefiniteness.

Given any square matrix-valued function S ∈M(Z), let Ssym = 1
2 [S+S′] be

its symmetric part, if S = Sτ (i.e., a Slutsky matrix function), then Sσ = Ssym.

Equivalently, Sσ is the projection of the function Sτ on the closed subspace of

symmetric matrix-valued functions, using the inner product defined for M(Z).

Every square matrix function S ∈M(Z) can be written as S(z) = Ssym(z)+

Sskew(z) for z ∈ Z, also written as S = Sσ + Eσ, where Sσ = Ssym is its

symmetric part and Eσ = Sskew = 1
2 [S − S′] is its anti-symmetric or skew-

symmetric part.

Any symmetric matrix-valued function Ssym ∈ M(Z) can be pointwise

decomposed into the sum of its positive semidefinite and negative semidefi-

nite parts. Indeed, we can always write Sσ(z) = Sσ(z)+ + Sσ(z)− , with

Sσ(z)+S
σ(z)− = 0 for z ∈ Z, Eν = Sσ(z)+ being positive semidefinite (PSD)

and Sσ,ν = Sσ− negative semidefinite (NSD) for all z ∈ Z. Thus, one can write

Sσ = Sσ+ + Sσ− = Eν + Sσ,ν . Moreover, for any square matrix-valued func-

tion S(z), its projection on the cone of NSD matrix-valued functions under the

Frobenius norm is Sσ,ν = Sσ−.

In general, a square matrix function may not admit diagonalization. How-

ever, we know thanks to Kadison (1984) that every symmetric matrix-valued

function in the set M(Z) is diagonalizable.7 In particular, Sσ can be diago-

nalized: Sσ(z) = Q(z)Λ(z)Q(z)′.8 Here, Λ(z) = Diag[{λl(z)}l=1,...,L], where

Λ(z) ∈M(Z), with λl : Z 7→ R a real-valued function with norm || · ||s (a norm

in C1(R)), and λ1 ≤ λ2 ≤ . . . ≤ λL with the order derived from the metric

induced by the || · ||s norm. Let Q(z) = [q1(z) . . . qL(z)], where Q ∈ M(Z) and

its columns ql ∈ C1(Z) are the eigenvector functions such that for l = 1, . . . , L:

Sσ(z)ql(z) = λl(z)ql(z) for z ∈ Z. The matrix function Q(z)Q(z)′ = IL, i.e.

Q(z) is orthogonal for all z ∈ Z.

Any real-valued function can be written as λ(z) = λ(z)+ + λ(z)−, with

λ(z)+ = max{λ(z), 0} and λ(z)− = min{λ(z), 0}. This decomposition allows us

to write Sσ,ν(z) = Sσ(z)− = Q(z)Λ(z)−Q(z)′ for Λ(z)− = Diag[{λl(z)−}l=1,···L]

with λl(z)− the negative part function for the λl(z) function. We can write also

Eν = Sσ(z)+ = Sσ(z)− Sσ(z)− for z ∈ Z, or Eν = Sσ(z)+ = Q(z)Λ(z)+Q(z)′

with Λ(z)+ defined analogously to Λ(z)−. Finally, any matrix function that is

7In fact, Kadison (1984) has shown that any matrix function ML(U) with U a von Neumann
algebra is diagonalizable. Let U be L∞(Z), and notice that Z is a separable Hilbert space.
Let Z be σ−finite measurable, a subset of a Borel algebra generated by closed rectangles in
RL+1
++ , then L∞(Z) is a von Neumann algebra and all F ∈ M(C1(Z)) ⊂ ML(L∞(Z)) are

diagonalizable. Observe that C1(Z) ⊂ L∞(Z), with the supremum norm.
8As is standard, Λ represents the diagonal matrix of eigenvalues, and Q is an orthogonal

matrix that lists each eigenvector as a column.
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singular with p in its null space will be denoted Sπ, that is, Sπp = 0.

We are ready to state the main result of this section:

Proposition 3. Given a Slutsky matrix Sτ (z), the solution to the matrix near-

ness problem is Sr(z) = Sσ,π,ν(z), the negative semidefinite part of Sσ,π(z)

defined by:

Sσ,π(z) = Sσ(z) + Eπ,

where Sσ(z) = 1
2 [Sτ (z)+Sτ (z)′] and Eπ = − 1

p′p [Sσ(z)pp′+pp′Sσ(z)− [Sσ(z)p]′p
p′p pp′].

We elaborate at length on the different components of this solution right

after the proof of the proposition.

Proof. We first establish that the matrix nearness problem has a solution, and

that it is unique. This is done in Claim 2. Its proof is in the appendix.

Claim 2. A solution to the matrix nearness problem exists, and it is unique.

The rest of the proof of the proposition is done in two parts. Lemma 1 gives

the solution imposing only the singularity with p in its null space and symmetry

restrictions. After that, Lemma 2 rewrites the problem slightly, and the solution

is provided by adding the NSD restriction.

Lemma 1. The solution to minA||Sτ −A|| subject to A(z)p = 0, A(z) = A(z)′

is Sσ,π.

Proof. The Lagrangian for the subproblem with symmetry and singularity re-

strictions is:

L =
´
z∈Z Tr([S

τ (z)−A(z)]′[Sτ (z)−A(z)])dz+
´
z∈Z λ

′A(z)pdz+
´
z∈Z vec(U)′vec[A(z)−

A(z)′],

with λ ∈ RL and U ∈ RL × RL. Using that the singularity restriction term

is scalar (λ′Sσ,π(z)p ∈ R), as well as the identity Tr(A′B) = vec(A)′vec(B) for

all A,B ∈M(Z),9

one can rewrite the Lagrangian as:

L =
´
z∈Z [Tr([Sτ (z)−A(z)]′[Sτ (z)−A(z)]) + Tr(A(z)pλ′) + Tr(U ′[A(z)−

A(z)′])]dz

Using the linearity of the trace, and the fact that this calculus of variations

problem does not depend on z or on the derivatives of the solution Sσ,π, the

pointwise first-order necessary and sufficient conditions in this convex problem

(Euler Lagrange Equation) is:

Sσ,π(z) = 1
2 [Sτ (z) + Sτ (z)′ + λp′ − U + U ′];

9The vec(A) symbol stands for the vectorization of a matrix A of dimension L × L in a
vector a = vec(A) of dimension L2 where the columns of A are stacked to form a. Observe that
the symmetry restriction can be expressed in a sigma notation (entry-wise) but this matrix
algebra notation help us to make more clear the use of the trace operator in the objective
function.
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Sσ,π(z)p = 0;

Sσ,π(z) = Sσ,π(z)′.

With some manipulation, one gets:

Sσ,π(z)p = Sσ(z)p+ 1
2λp

′p− 1
2Up+ 1

2U
′p.

Using the restriction Sσ,π(z)p = 0 we have:

Sσ(z)p+ 1
2λp

′p− 1
2Up+ 1

2U
′p = 0.

Then:
1
2λ = 1

p′p [−Sσ(z)p+ 1
2Up−

1
2U
′p].

This result reduces the system of first order conditions to:

Sσ,π(z) = Sσ(z)− 1
p′pS

σ(z)pp′ + 1
p′p

1
2 [U − U ′]pp′ − 1

2 [U − U ′];
Sσ,π(z) = Sσ,π(z)′.

Let Eπ(z) = − 1
p′pS

σ(z)pp′ + 1
p′p

1
2 [U − U ′]pp′ − 1

2 [U − U ′].
By imposing the symmetry restriction on Sσ,π(z), it follows that Eπ(z) must

be symmetric.

Therefore,

Eπ(z) = − 1
p′ppp

′Sσ(z) + 1
p′p

1
2pp
′[U ′ − U ]− 1

2 [U ′ − U ]

Postulating that

U − U ′ = 2
p′ppp

′Sσ(z),

we get
1
p′p

1
2 [U−U ′]pp′ = 1

p′p
1
2 [ 2
p′ppp

′Sσ(z)]pp′ = 1
p′p [p[p

′Sσ(z)p]p′

p′p ] = 1
p′p [p

′Sσ(z)p
p′p pp′]

since p′Sσ(z)p is a scalar.

Then, Sσ,π(z) = Sσ(z) + Eπ(z), where

Eπ(z) = − 1

p′p
[Sσ(z)pp′ + pp′Sσ(z)− [Sσ(z)p]′p

p′p
pp′],

along with the implied multipliers λ and U , satisfies all the first-order conditions

of the problem. Since we can use arguments identical to those in Claim 2 –

only not imposing NSD–, we know that the solution is unique. Hence, this

expression describes the solution to the posed calculus of variations problem

with the symmetry and singularity restrictions. The proof is complete.

If Sσ,π ≤ 0 then we are done, since it has property R and minimizes ||E||2

(by Lemma 3. Otherwise, the general solution is provided after the following

lemma, which rewrites the problem slightly.

Lemma 2. The matrix nearness problem can be rewritten as minA||Sσ,π−A||2

subject to A ∈M(Z) having property R.

Proof. Recall the matrix nearness problem: minA∈M(Z)||Sτ − A||2 subject to

A(z) satisfying singularity, symmetry, and NSD. This is equivalent, by manipu-

lating the objective function to: minA∈M(Z)||Eσ−Eπ+Sσ,π−A||2. Writing out
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the norm as a function of the traces, and using the fact that Eσ is skew symmet-

ric, while the rest of the expression is symmetric, we get that this amounts to

writing: minA∈M(Z)||Eσ||2 + ||−Eπ +Sσ,π−A||2 subject to A having property

R. This is in turn equivalent to: minA∈M(Z)||Eσ||2 + ||Eπ||2 − 2〈Eπ, [Sσ,π −
A]〉 + ||Sσ,π − A||2 subject to A having property R. Then, exploiting the fact

that Eπ and S+ = Sσ,π −A are orthogonal (as proved in Lemma 6), we obtain

that the problem is equivalent to minA∈M(Z)||Eσ||2 + ||Eπ||2 + ||Eν ||2 subject

to A having property R.

Hence, since the objective function of the matrix nearness problem ||E||2 =

||Eσ||2 + ||Eπ||2 + ||Sσ,π − A||2, solving the program minA∈M(Z)||E||2 subject

to A having property R is equivalent to solving minA∈M(Z)||Sσ,π−A||2 subject

to the same constraints.

Now, the best NSD matrix approximation of the symmetric valued func-

tion Sσ,π is Sr = Sσ,π,ν . Then, the candidate solution to our problem is

A(z) = Sr(z) for all z ∈ Z. Notice that Sr(z) is symmetric and singular with p

in its null space by construction. Indeed, recall that Sσ,π(z) = Q(z)Λ(z)Q(z)′

and Sr = Sσ,π,ν(z) = Q(z)Λ(z)−Q(z)′. Then it follows that Sr(z) is symmet-

ric. Moreover, by definition λl(z)− = min(0, λl(z)) for l = 1, . . . , L. Since

Sσ,π(z)p = 0, it follows that λL(z) = 0 is the eigenvalue function associated

with qL(z) = p eigenvector. Then we have that λL(z)− = 0 is also associated

to the eigenvector p, and we can conclude that Sr(z)p = 0.

As just argued, Sr(z) has property R, i.e., Sr(z) is in the constraint set of the

matrix nearness problem or Program II. We conclude that it is its solution.

The importance of Proposition 3 is to provide a precise quantification of the

size of the departures from rationality by a given behavior, as well as a reveal-

ing decomposition thereof. Indeed, as was evident in the previous proof, the

objective function of the matrix nearness problem can be expressed as follows:

||E||2 = ||Eσ||2 + ||Eπ||2 + ||Eν ||2.

We should think of the three terms in this decomposition as the size of the

violation of symmetry, the size of the violation of singularity, and the size of

the violation of negative semidefiniteness of a given Slutsky matrix, respectively.

The three terms are the antisymmetric part of the Slutsky matrix, the correcting

matrix needed to make the symmetric part of the Slutsky matrix p-singular, and

the PSD part of the resulting corrected matrix. Note that if one is considering a

rational consumer, the three terms are zero. Indeed, if Sτ (z) satisfies property

R, Sτ (z) = Sσ(z) and Eσ(z) = 0, Sσ,π(z) = Sσ(z) and Eπ(z) = 0, and

Sr(z) = Sσ,π,ν(z) = Sσ,π(z) and Eν = 0. If exactly two out of the three terms

12



are zero, the nonzero term allows us roughly to quantify violations of the Ville

axiom of revealed preference –VARP–, violations of homogeneity of degree 0,

or violations of the compensated law of demand (the latter being equivalent to

the weak axiom of revealed preference –WARP–), respectively. We elaborate on

these connections with the axioms of consumer theory in Subsection 5.1 below.

The violations of the property R have traditionally been treated separately.

For instance, Russell (1997), using a different approach (outer calculus), deals

with violations of the symmetry condition only. In this case, ||E||2 = ||Eσ||2.

Another application of our result connects with Jerison and Jerison (1993),

who study the case of violations of symmetry and negative semidefiniteness

independently. They prove that the maximum eigenvalue of Sσ(z) can be

used to bound ||e||2C1 locally when NSD is violated and Eσ(z) can be used

to bound ||e(z)||2 when symmetry is violated. Indeed, this is consistent with

our solution to Program II. In this case ||E||2 = ||Eσ||2 + ||Sσ+||2, where

max({λ̃l(z)+}l=1,...,L) ≤ ||Sσ+||2 ≤ d·max({λ̃l(z)+}l=1,··· ,L), with d = Rank(Sσ(z)+)

(by the norm equivalence of the maximum eigenvalue and the Frobenius norm).

Remark 2. The strict convexity of the objective functional of Program II and

the convexity of the constraint set suggest that the solution to Program II can

be found by the alternating projection algorithm. Indeed, one can first project

Sτ (z) on the set of symmetric matrices, then project the result on the set of

singular matrices with p in their null space, and finally project this second result

on the set of negative semidefinite functions. The alternating projection algo-

rithm can only guarantee that Sr(z) has property R, but it may not necessarily

be the solution to the problem. However, in our case, this specific sequence

of projections yields the solution because the procedure results in the additive

decomposition of ||E||2 provided in Lemma 2.

Remark 3. Using Lemma 3, one can deduce the analytic expression of Eπ(z)

as a projection on a convex set. The lemma says thatSσ,π(z) = Sσ(z) + Eπ(z)

is also the nearest matrix function with p in the null space of Sσ(z). Thus

Eπ(z) must be the minimal matrix additive adjustment in the Frobenius norm

such that [Sσ(z) + Eπ(z)]p = 0. Then, for any fixed z ∈ Z this problem is

analogous to the matrix nearness problem of finding the nearest linear sym-

metric system. Defining the feedback error r(z) = −Sσ(z)p, it follows that

Eπ(z) = r(z)p′+pr(z)′

p′p − (rT (z)p)pp′

(p′p)2 (Dennis & Schnabel, 1979; Higham, 1989).

The resulting matrix function Sσ,π(z) is the projection of Sσ(z) on the set of

symmetric matrix functions with p in its null space as made precise in Claim 6.

We underscore that the compactness ofMR(Z) is inherited from the mild

assumptions of continuity of the demand system and its derivatives if we limit

ourselves to a compact set Z. Furthermore, with the supremum norm we guar-
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antee that Sr(z) is continuous. Indeed, the following is a property of the solution

to our problem:

Claim 3. Sr(z) is continuous.

Proof. This follows from the Theorem of the Maximum. Specifically, let F :

M(Z) 7→ M(Z) be such that F (M(Z)) has property R. This is a compact-

valued correspondence with a closed graph. Also, F is continuous and the

Frobenius norm || · || is a continuous functional. It follows that Sr is continuous.

Alternatively, Sr is the result of three projections on closed subspaces applied to

the convex set of constraints. Such projections are continuous mappings under

the conditions that we have imposed, and then Sr is continuous by construction

in all z ∈ Z.

5 Behavioral Interpretations of the Slutsky Ma-

trix Nearness Norm

5.1 Connecting with Axioms of Revealed Preference

The Slutsky regularity conditions are implied by utility maximization, but they

can also be derived from the axioms behind revealed preference. Roughly, each

of the conditions can be related to an axiom. Some of these relations have been

used by Jerison and Jerison (1992) in order to provide a behavioral interpreta-

tion to the Slutsky matrix distance from symmetry. Our aim is to generalize

this link while providing a behavioral interpretation of the matrix nearness norm

decomposition.

We briefly review connections between the different axioms. Since Houthakker

(1950) it is known that, for the class of continuous demand functions, the strong

axiom of revealed preference –SARP– implies that a demand can be rational-

ized. Hence, the Slutsky conditions are satisfied. Nonetheless, it is also known

that SARP is indeed strong in the sense that it implies symmetry of the Slutsky

matrix and also implies WARP and therefore NSD of the Slutsky matrix. A

weaker axiom implies only the Slutsky matrix symmetry condition: the Ville

axiom of revealed preference –VARP– is equivalent to the symmetry condition

and therefore to integrability of the demand system (Hurwicz & Richter, 1979).

VARP postulates the nonexistence of a Ville cycle in the income path of a

demand function. WARP implies that the Slutsky matrix is NSD, and further-

more, the NSD and singularity in prices are equivalent to a weak version of the

WARP (Kihlstrom et al., 1976). VARP is a differential axiom and does not im-

ply SARP or WARP (Hurwicz & Richter, 1979). WARP does not imply VARP

or SARP for dimensions greater than two.
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A continuously differentiable demand function is said to be rationalizable if

it fulfills SARP. However, we can also impose other weaker axioms to have the

same result while making connections to the additive components of our Slut-

sky norm. In particular, VARP and WARP imply that a demand function is

rationalizable. Finally, we can impose the Wald Axiom, homogeneity of degree

zero and VARP, which also imply a rationalizable demand. Moreover, to appre-

ciate our decomposition, the Slutsky symmetry condition is related to VARP,

the singularity in prices is related to homogeneity of degree zero and the NSD

is related to the Wald axiom.

Before stating the main result of this subsection, for completeness, it is useful

to posit the axioms that we employ and their relevant implications for the class

of demand functions that we are considering and for the associated Slutsky

matrix functions. Our primitive is a member of the set of demand functions

X (Z) ≡ {xτ ∈ C1(Z)|p′xτ (z) ≤ w} with Z a compact set.

The first Slutsky condition (price is its left eigenvector) is given by the

balance axiom or Walras’ law.

Axiom 1. (Walras’ law) The first axiom requires that p′xτ (p, w) = w.

We have that xτ ∈ X (Z) satisfies Walras’ law if and only if its Slutsky matrix

Sτ ∈M(Z) has the following property: p′Sτ (z) = 0 for z ∈ Z.

The second Slutsky condition (price is its right eigenvector or singularity in

prices) is given by “no money illusion”.

Axiom 2. (Homogeneity of degree zero -HD0-) xτ (αz) = xτ (z) for all z ∈ Z
and α > 0.

It is easy to prove that xτ ∈ X (Z) satisfies HD0 if and only if Sτ (z)p = 0

for z ∈ Z.

The symmetry of the Slutsky matrix is given by VARP.10 To state this

axiom we need to define an income path as y : [0, b] 7→ W (t 7→ w) and a price

path ρ : [0, b] 7→ P . Let (y(t), p(t)) be a piecewise continuously differentiable

path in Z. Jerison and Jerison (1992) define a rising real income situation

as whenever (∂y∂t (t), ∂p∂t (t)) exists, leading to ∂y
∂t (t) > ∂p

∂t (t)
′xτ (ρ(t), y(t)). A

Ville cycle is a path such that: (i) (y(0), p(0)) = (y(b), p(b)); and (ii) ∂y
∂t (t) >

∂p
∂t (t)

′xτ (ρ(t), y(t)) for t ∈ [0, b].

Axiom 3. (Ville axiom of revealed preference -VARP-) There are no Ville

cycles.

10We present the axiomatization due to Ville as reinterpreted by Hurwicz and Richter
(1979) and Jerison and Jerison (1992). There are alternative discrete axioms due to Jerison
and Jerison (1996), that also do the job and are potentially testable.
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Hurwicz and Richter (1979) proved that xτ ∈ X (Z) satisfies VARP if and

only if Sτ is symmetric.

The negative semidefiniteness condition of the Slutsky matrix is given by

the Wald axiom. The Wald axiom itself is imposed on the conditional demand

for a given level of wealth. Following John (1995) a demand function is said to

fulfill the Wald axiom when so do the whole parametrized family (for w ∈ W )

of conditional demands. Formally, a demand function can be expressed as the

parametrized family of conditional demands. That is: xτ (p, w) = {xτ,w(p)}w∈W
where xτ,w : P 7→ X such that p′xτ,w(p) = w for all p ∈ P .

Axiom 4. (Wald axiom) xτ ∈ X (Z) is such that for every w ∈ W and for all

p and p, p′xτ,w(p) ≤ w =⇒ p′xτ,w(p) ≥ w.

The Wald axiom implies that Sτ ≤ 0 (John, 1995).

The Slutsky singularity in prices and the NSD conditions are equivalent to

the following version of WARP.

Axiom 5. (Weak axiom of revealed preference -WARP-) If for any z = (p, w)

z = (p, w): p′xτ (p, w) ≤ w =⇒ p′xτ (p, w) ≥ w.

This is the weak version of WARP, as in Kihlstrom et al. (1976). We

follow John (1995), who proves that for continuously differentiable demands

(that satisfy Walras’ law) WARP is equivalent to the Wald Axiom and HD0.

Kihlstrom et al. (1976) and John (1995) prove that xτ ∈ X (Z) satisfies WARP

if and only if Sτ ≤ 0 and Sτ (z)p = 0.

These axioms interact in interesting ways with direct consequences on the

properties of the Slutsky matrix. VARP and Walras’ law imply homogeneity of

degree zero. WARP and Walras’ law imply homogeneity of degree zero and the

Wald Axiom. Ultimately, VARP, Walras’ law and the Wald Axiom implies a

rationalizable demand.

The relations to our three Slutsky components can be summarized as fol-

lows: If VARP holds then Eσ = 0, if the Wald Axiom holds then Eν = 0,

if homogeneity of degree zero and Walras’ law hold then Eπ = 0. Finally, if

WARP and Walras’ law hold then Eπ = 0 and Eν = 0.

We are ready to summarize the main point of this section in the following

remark.

Remark 4. The square matrix nearness norm ||E||2 will be equal to zero if and

only if xτ satisfies VARP, is homogeneous of degree zero in prices and wealth,

and satisfies the Wald Axiom.

Moreover,

(i) ||E||2 = ||Eσ||2 only if VARP fails while either of the following two

situations happens: (i) Walras’ law or HD0 and the Wald Axiom hold. (ii)

Warp holds.
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(ii) ||E||2 = ||Eπ||2 only if HD0 and Walras’ law fail while VARP and the

Wald Axiom hold.

(iii) ||E||2 = ||Eν ||2 only if the Wald axiom fails while either of the following

two situations happens: (i) Walras’ law and VARP hold. (ii) HD0 and VARP

hold.

We can also observe ||E||2 = ||Eν ||2 only if WARP fails while Walras’ law

and VARP hold, but as we saw we do not need the failure of WARP to be

stronger than the Wald axiom in order to have this case. The first part of the

remark follows from the Frobenius’ theorem and from the equivalence of the

Ville axiom, WARP and Walras’ law or VARP, Wald Axiom and HD0 to the

Slutsky conditions. Indeed if xτ satisfies any of two groups of axioms, then it

can be seen as rational and ||E||2 = 0. Conversely, if ||E||2 = 0 it follows that

Sτ fulfills the Slutsky regularity conditions and that xτ satisfies the axioms.

The second part of the remark can be explained as follows. If xτ satisfies

Walras’ law and WARP, it follows that Eπ(z) = 0 and Eν(z) = 0, leading to

||E||2 = ||Eσ||2. Then, thanks to Jerison and Jerison (1992; 1996; 1993) we

know that the degree of asymmetry of the skew-symmetric part of a Slutsky

matrix grows with the rate of real income growth along the worst (“steepest”)

Ville cycle. Along the same lines, due to Russell (1997), we know that the

size of the skew-symmetric matrix is exactly the distance from integrability of

xτ . If xτ satisfies the Ville axiom and homogeneity of degree zero, then it

follows that ||E||2 = ||Eν ||2, which corresponds to the PSD part of Sτ (z) =

Sτ−(z) + Sτ+(z) = Sν(z) + Eν(z). Then it follows that the size of ||E||2 grows

exactly according to the degree of violations of the differential form of WARP

(or the Wald Axiom in this case). Finally, if xτ satisfies the Ville axiom and the

Wald Axiom but both the HD0 and Walras’ law fail then Sτ (z) +Eπ(z) ≤ 0, it

follows that ||E||2 = ||Eπ||2; in this case, Eπ(z)p = −Sτ (z)p, which shows that

the size of Eπ(z) grows in the same direction as the degree of violations of the

differential version of the homogeneity of degree zero condition (or Walras’ law

due to symmetry of Sτ ). In fact, by construction ||Eπ|| measures how far Sτ

is from having the price vector in its null space (as its eigenvector associated

to the null eigenvalue).11 There are partial converse implications to those just

presented: If ||Eσ|| = 0 then VARP holds. If ||Eπ|| = 0 then Walras’ law or

HD0 hold. If ||Eν || = 0 and ||Eπ|| = 0 then WARP holds.

11 The idea of measuring violations of axioms by translating their consequences to a metric
space was done for decision making under uncertainty and expected utility in Russell (2003).
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5.2 Slutsky Wealth Compensations

We now describe ways to obtain related quantifications, in wealth terms, of

departures of rationality. This builds upon the ideas of Russell (1997). First,

we define the set Bp = {q ∈ RL++|q′xτ (p, w) = w} that is, all the price vec-

tors that belong to the budget hyperplane for a fixed wealth w and bundle

xτ (p, w) = xτ,w(p). We also define a directional derivative for any function

f ∈ C1(Z) with respect to prices in the direction of a vector v ∈ RL as

Dp,vf(z) = Dpf(z)v. Observe that q ∈ Bp, can be expressed as a function

of q : P × {w} 7→ Bp, and the following identity holds for any q ∈ Bp and any

xτ ∈ X (Z): [Dpq(p, w)′xτ (p, w)] + q′Dpx
τ (p, w) = 0. This identity is obtained

under Walras’ law and uses the definition of the set Bp (i.e. we differentiate

q(p, w)′xτ (p, w) = w with respect to p). We define the conditional Slutsky ma-

trix: Sτ,w(p) = Dpx
τ,w(p) − 1

wDpx
τ,w(p)pxτ,w(p)′. It can be shown that all

the results of the Slutsky matrix norms carry over to this conditional Slutsky

matrix (to see this, note that our derivations do not depend on the parameters

p, w but only on the structure of the matrix).

Russell (1997) defines for price vectors q, r ∈ Bp, |q′Eσ(z)r| = m1, where

m1 is twice the wealth compensation required by an agent (who fulfills homo-

geneity of degree zero and the weak axiom but not necessarily the Ville axiom

–symmetry–) in order to move from r to q on the budget hyperplane instead

of moving from q to r. This quantity is zero for the rational consumer. Our

result builds upon this finding and extends it to the case of the three possible

violations of the Slutsky regularity conditions.

Before stating the main result of this section, we need some intermediate

definitions. For a given observed demand xτ ∈ X (Z) consider the following

three associated demand functions in X (Z) (that satisfy Walras law) that have

special properties, linked to the Ville Axiom, homogeneity of degree zero, and

the weak axiom. (i) Let xs ∈ X (Z) be a demand that satisfies the Ville axiom,

with Slutsky matrix equal to Sσ ∈ M(Z) (i.e., the symmetric part of the Sτ ∈
M(Z)). (ii) Define xh ∈ X (Z) as the demand function that satisfies the Ville

axiom, homogeneity of degree zero in prices and wealth, and its Slutsky matrix

is equal to Sσ,π ∈ M(Z) (i.e., the projection of Sτ on the subset of matrix

functions that are symmetric and have p in its null space). (iii) Finally, we have

xr ∈ X(Z), the rational demand function that has its Slutsky matrix equal to

Sr ∈M(Z) (i.e., the projection of Sτ ∈M(Z) on the subset of rational Slutsky

matrix functions). The existence of a function that satisfies (iii) is guaranteed

by the result proved in proposition 1. In the same spirit, we can guarantee

the existence of xs, xh ∈ X (Z) by suitable straightforward modifications of

the AN principle. The proof is direct when we notice that the properties of a
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demand function satisfying the Ville axiom or homogeneity of degree zero can

be expressed in an analogous way as the rational case.12 Then, we can conclude

that there exists an xj ∈ X (Z) for j = s, h, r such that we can write xτ+ej = xj ,

where ej ∈ C1(Z) is a residual function that has the property: p′ej(p, w) = 0

and ||ej ||C1 = ε(δj).

Proposition 4. For any triple of vectors p, q, r ∈ Bp, define:

• (i) |p′Eσ(p, w)r| = 1
2m1 if only symmetry is violated;

• (ii) |q′Eπ(z)p| = m2 if only singularity is violated;

• (iii) |q′Eν(p, w)r| = m3 if only NSD is violated.

Then,

• (i) m1 ∈ R is the wealth compensation that a non rational consumer with

wealth w will have to be given in order for her to accept a price change

from r in direction q instead of a change from q in direction r.

• (ii) The quantity m2 ∈ R corresponds to the compensation that a consumer

that satisfies the Ville axiom but that does not fulfill homogeneity of degree

zero must receive to accept a price change from q in direction p.

• (iii) And m3 ∈ R is the difference in wealth compensations that must

be paid in order to accept a movement from q in direction r between the

ε−closest rational consumer and that of a consumer that satisfies the Ville

axiom, homogeneity of degree zero but that does not necessarily fulfill the

Wald axiom (or the WARP).

Proof. We proceed to prove the three different parts:

(i) For fixed wealth w:

|q′Eσ(p, w)r| = | 12 [q′Sτ (p, w)r − q′Sτ (p, w)′r]|.
|q′Eσ(p, w)r| = | 12 [q′Dpx

τ,w(p)r−q′Dpx
τ,w(p)p−q′Dpx

τ,w(p)′r+p′Dpx
τ,w(p)′r]

Since p, r ∈ Bp it follows that

|q′Eσ(p, w)r| = | 12 [[xτ,w(p)′Dpq(p)r+xτ,w(p)′Dpq(p)p]− [xτ,w(p)′Dpr(p)q+

xτ,w(p)′Dpr(p)p]]|.
Observe that Dpr(p, w)q = Dpr(p)q is the directional derivative of r with

respect to prices along that direction and with the magnitude of q ∈ Bp. Then

the quantity m1roughly measures the difference between the compensation in

wealth from a price movement r in the direction q rather than the reverse.

12We note that the Ville Axiom and homogeneity of degree zero can be expressed using
a continuous map aj : X (Z) 7→ M(Z), and by finding an appropriate δj ≥ 0 for j = s, h
such that ||Sσ || < δs and ||Eπ || < δh. Also note the closedness of the symmetric and the
singular in p matrix function sets in M(Z) (in this setting this is sufficient to guarantee the
compactness of these sets).
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For parts (ii) and (iii), we need an intermediate result, that takes into ac-

count the fact that q′xτ + q′ej = w + q′ej for j = s, h, r as defined above.

That is, q, r ∈ Bp may no longer fulfill Walras’ law for ε−closest demands

that satisfies certain axioms. However, for any q ∈ Bp this identity is sat-

isfied: q′xj = w + q′ej . This in turn implies that: q(p, w)′Dpx
j(p, w) =

q(p, w)′Dpe
j(p, w) − [Dpq(p, w)′xτ (p, w)]′ or equivalently q′Dpx

j = Dp(q
′ej) −

[Dpq
′xj ]′ for j = s, h, r. Here, Dp(q

′ej) = [Dpq
′ej ]′ + q′Dpe

j .

(ii) |q′Eπ(p, w)p| = | − q′ 1
p′p [Sσ(p, w)pp′+ pp′Sσ(p, w)− [Sσ(p,w)p]′p

p′p pp′]p|. It

is proved in the appendix that if Walras’ law holds then |q′Eπ(p, w)p| = 0. We

also know, that for singularity to be the only failure of the Slutsky conditions,

Walras’ law and homogeneity of degree zero must fail together. In this case,

|q′Eπ(p, w)r| ≥ 0. To see a wealth interpretation of this quantity, we will choose

q = p and r = p:

Then, |p′Eπ(p, w)p| = |p′Sσ(p, w)p|. Moreover if the failure of Walras’ law

is independent of the level of prices p′xτ (p, w) = c < w for c ∈ R++, then it

follows that |p′Eπ(p, w)p| = |w− xs,w(p)′p| = m2. Where m2 = |w− c|, that is,

m2 is exactly the absolute size of the violation of Walras’ law.

Then m2, quantifies the wealth extraction that this non rational consumer

accepts at prices p. Also, we can derive the following measure (modifying the

proof in the appendix accordingly): |q′Eπ(p, w)p| = | q
′Dpx

s,w(p)p
w [w−p′xs,w(p)]| ∝

|w − c|.
To complete this part of the proof we show the existence of xs ∈ X (Z). It

suffices to recall that the AN principle can be appropriately modified by letting

||E|| = ||Eσ|| ≤ δ and by noticing that the cone of symmetric matrix functions

is closed, and it is contained in the compact set M(Z). Then, there exists an

ε−closest demand function xs ∈ X (Z) with the desired characteristics.

(iii) |q′Eν(p, w)r| = |q′Sσ,π(z)r − q′Sr(z)r| since Sσ,π(z) = Sσ,π,ν(z) +

Eν(z) = Sσ,π+ (z) + Sσ,π− (z) by the direct sum decomposition of the space of

symmetric matrix functions. For fixed w :

|q′Eν(p, w)r| = |q′Sσ(p, w)r−q′Sr(p, w)r| = |[q′Dpx
s(p, w)r−q′Dpx

r(p, w)r]|.
We know that q′Eπr = 0. Then it follows that:

|q′Eν(p, w)r| = [q′Dpx
s,w(p)r − q′Dpx

r,w(p)r] + [q′ 1wDpx
r,w(p)pxr,w(p)′r −

q′ 1wDpx
s,w(p)pxs,w(p)′r]

Notice that, Dpx
r,w(p)p = Dpx

s,w(p)p+Dpe
r,w(p)p. Note that Sr = [Dpx

s+

Dwx
sxs

′
] + [Dpe

r +Dwe
rer
′
+Dwx

ser
′
] = Sσ + Eν .

Since, Eνp = 0 it follows that Dpe
r,wp = 0 because Dpe

r,wp+Dwe
r,wer,w

′
p+

Dwx
ser,w

′
p = 0 and er,w

′
p = 0 by construction.

Then, |q′Eν(p, w)r| = |q′Dpx
s,w(p)r− q′Dpx

r,w(p)r| = |q′Dpe
r,w(p)r| = m3.

Finally, by using the identity for q, r ∈ Bp, and the fact that xs = xh when

Walras’ law hold we obtain the desired result:
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|q′Eν(p, w)r| = |[xr(p, w)′[Dpq(p, w)r]−xh(p, w)′[Dpq(p, w)r]]−[q(p, w)′Dp(q
′er(·))r−

q(p, w)′Dp(q(·)′eh(·))r]|, that is, the difference between the wealth compensa-

tion that has to be made for the consumer to accept a change from q with

respect to prices in the direction r when she is rational versus when she sat-

isfies the Ville axiom and homogeneity of degree zero but not necessarily the

weak axiom. To this quantity, a correction term is subtracted that measures

the difference between the product of q times the marginal change of q′ej =

w − xτ for j = h, r with respect to prices in the direction of r for both

kinds of consumers (rational and Ville Axiom plus homogeneity of degree zero).

Equivalently, |q′Eν(p, w)r| = |[q(p, w)′Dpe
h(p, w)r−q(p, w)′Dpe

r(p, w)r]| = m3.

That is, a measure of the difference between the marginal change of the cor-

rection term ej in the direction r when initial prices are q between the two

types of consumers. In particular, when xh(p, w) = xτ (p, w) this simplifies to

|q′Eν(p, w)r| = | − q(p, w)′Dpe
r(p, w)r| = m3.

Of course, the existence of xr ∈ X (Z) follows from our result in Propo-

sition 2. By an analogous argument to part (ii) of this proof we modify the

E = −[Eσ(z) − Eπ(z)] = −[Sτ (z) − Sσ,π(z)] (||E|| ≤ δ) and note that the

intersection of the cone of symmetric matrix functions with the set of matrix

functions with p in its null space is closed and thus compact under our assump-

tions. Furthermore, the AN principle guarantees under these conditions that

there exists an ε−closest demand xr ∈ X (Z) with the required properties.

Remark 5. The extension of Russell’s (1997) idea for using a Slutsky residual

matrix to our case, which covers all three possible violations, makes heavy use of

the AN principle, modified appropriately in each case to guarantee the existence

of a “corrected” demand system that fulfills certain axioms. This extension

comes at a cost. Indeed, the wealth compensation measure does not depend

only on the primitive xτ ∈ X (Z), but it must incorporate corrections for price

changes that may not belong to the budget hyperplane of the relevant demands.

In geometric terms, one can think of the correction term as measuring the

change in the cosine of the angle between the price vector q and the residual

ej with respect to prices in the direction r times the initial vector of prices

q. This measure is converted in wealth (i.e., for fixed p = p and w, q′e =

cos(θq,e)||q|| · ||e|| and Dp(q
′e) = Dp(cos(θq,e)||q|| · ||e||) with the euclidean norm

in RL++).

The proposition serves mainly as a blueprint on how to compute measures

to the size of bounded rationality that are expressed in wealth terms. These

measures have the advantage of having an intuitive interpretation, in the sense

that a rational consumer should have always for all p, q, r ∈ Bp a measure of

q′E(z)r = 0 where r may be equal to p, since E(z) = 0. The measures are
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imperfect, though: observe that there is a family of measures for each q, r ∈ Bp
and for each w that must be fixed for a particular application. In addition, this

measure of the size of bounded rationality does not induce a metric, as nothing

prevents that there exists a q, r ∈ Bp such that q′E(z)p = 0 when E(z) 6= 0.

Remark 6. Consider two consumers with demands xτ1(p, w) and xτ2(p, w) sat-

isfying Walras’ law and exhibiting identical violations of the Wald Axiom and

homogeneity of degree zero (or violations of WARP). Suppose further that the

first consumer violates the Ville axiom, but the second satisfies it. We write

xτ1(p, w)+es1(p, w) = xs1(p, w) and xτ2(p, w) = xs2(p, w). When forced to sat-

isfy the Ville axiom, both have the same first order behavior for compensated

wealth changes. In that case, for prices q, p ∈ B1
p ∪ B2

p , assuming there is a q

vector in the budget line of both consumers different from p,we have:

2|q′Eσ1(p, w)p| + |q′Eπ1(p, w)p| > |q′Eπ2(p, w)p|. That is, |mτ1
1 | + |mτ1

2 | >
|mτ2

2 | since mτ1
2 = q′Sσ(p, w)p = mτ2

2 because both consumers fulfill Walras’

law, and in that case q′Eπ1(p, w)p = q′Eπ2(p, w)p = q′Sσ(p, w)p as shown in

proposition 4. Also observe that |mτ2
1 | = 0 by construction.

In other words, the wealth measure of bounded rationality is larger for xτ1

than for xτ2. Observe that this can be concluded only when assuming the

equality in first order compensated behavior of the “corrected” (Ville axiom)

demand xs1 and xτ2. But this assumption can be justified in an interesting way

when we think of xτ2 as a “minimally perturbed” version of xτ1 (with Slutsky

matrix Sσ), such that xτ2 is the demand of the first consumer when forced to

satisfy the Ville axiom.

5.3 Normalizations and Relative Matrix Nearness

The norm of bounded rationality that we have built so far is an absolute mea-

sure. Therefore, for a specific consumer, this distance quantifies by how far that

individual’s behavior is from being rational. Furthermore, one also can compute

how far two or more consumers within a certain class are from rationality, and

induce an order of who is closer in behavior to a rational consumer. However,

we are limited to the case where the setting of the decision making process is

fixed in the sense that the decision problem faced by each of the individuals is

presented in the same way. This implies that the measure is unit dependent,

being stated in the same units (the units in which the consumption goods are

expressed).

Therefore, we next propose a relative matrix nearness norm that, while keep-

ing most of the features of the absolute measure of bounded rationality, is unit-

free.

Definition 5. For any non null Slutsky matrix function Sτ ∈ M(Z), let its
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relative Slutsky norm be defined as follows: ρ(Sτ ) = d(Sτ )
||Sτ || , where d(Sτ ) = ||E||

is the absolute matrix nearness distance to rationality.

Observe that we have excluded from the definition the case of null Slutsky

matrix functions (i.e., Sτ = 0 ∈ M(Z)). This, however, is just a technicality

since the null Sτ satisfies property R, and hence, one can postulate ρ(0) = 0.

Claim 4. The ρ :M(Z) 7→ R++relative error is positive, unit-free, and has the

following componentwise bounds:

Let Eσ 6= 0, Eπ 6= 0, Eν 6= 0. Then, ||E
σ||

||Sτ || ≤ 1, ||E
π||

||Sτ || ≤ 1, and ||E
ν ||

||Sτ || ≤ 2,

leading to

ρ(Sτ ) ≤
√

6.

The proof of this claim can be found in the appendix. The following equation,

used in it, is of importance: ρ(Sτ )2 = ||Eσ||2
||Sτ ||2 + ||Eπ||2

||Sτ ||2 + ||Eν ||2
||Sτ ||2 .

The bounds established in the claim can sometimes be made tighter. For

instance, if E = Eν ,

ρ(Sτ ) =
||Eν ||
||Sτ ||

=
||Sτ+||
||Sτ ||

≤ max{||λ+||s}
max{||λ||s}

≤ 1.

This is because Sτ+ shares the same non negative eigenvalue functions as Sτ ,

and then ||Sτ+|| < ||Sτ ||.
This claim shows that all violations of rationality in the consumer choice

setting are indeed bounded above and we have computed the exact upper bound

for the relative matrix nearness error: ρ(·) ≤
√

6.

However, it is interesting to think of ρ(Sτ ) = 1 as being an important

threshold for bounded rationality, in the sense that it is the upper bound for

violations of VARP alone and WARP alone. It is also interesting to note that

the violations of WARP have a higher upper bound for the relative measure

than the other two axioms.

Another useful approach to deal with the unit dependence of the Slutsky

matrix norm that we have built is to consider a normalized Slutsky matrix that

is expressed in dollars.13

Definition 6. For any Slutsky matrix function Sτ ∈M(Z), let its normalized

Slutsky matrix be S
τ

= Diag(p)SτDiag(p) = ΛpS
τΛp or element-wise S

τ

ij =

Sτijpipj .

Observe that this normalized Slutsky matrix is expressed in dollar terms, and

that its Frobenius norm is ||Sτ (z)||2 =
´
z∈Z Tr(S

τ
(z)′S

τ
(z)) =

´
z∈Z

∑
i,j [S

τ
ij(z)pipj ]

2dz.

We can reformulate our matrix nearness problem using a dollar-norm for any

13We thank Xavier Gabaix for suggesting the use of this norm and pointing out its impor-
tance.
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Slutsky matrix defined as ||Sτ ||$ = ||Sτ (z)||. Under this new norm choice we

have maxA||Sτ −A||$ where A has property R.

We state a technical remark that underscores how the main results carry to

this modified problem.

Remark 7. 14

A∗ = Sσ when only the VARP is violated but ||E||$ = ||ΛpEσΛp||. Also,

one has the same Sσ,π = Sσ + Eπ, but the negative semidefinite matrix near-

ness solution is no longer analytically tractable in the general case and is not

necessarily the same as in the Frobenius norm. The solution is given implicitly

by:

Sr = argminA≤0||Λp[Sσ,π−A]Λp||2−2〈ΛpEπΛp,Λp[S
σ,π−A]Λp〉, where Sr

has property R and has an associated rational demand that is ε- close to the

observed demand by the almost implies near principle.

To solve this problem numerically, the interested reader should use the al-

ternating projection algorithm or semidefinite programming.

It is also important to observe that the objective function using the dollar-

norm is bounded above by ||Sτ −A||$ ≤ ||Λ2
p|| · ||Sτ −A||, so we know that the

bounds that we have established for the relative norm carry over to this case.

6 Examples and Applications

The rationality assumption has long been seen as an approximation of actual

consumer behavior. Nonetheless, to judge whether this approximation is rea-

sonable, one should be able to compare any alternative behavior with its best

rational approximation. Our results may be helpful in this regard, as the next

examples illustrate.

6.1 The Sparse-Max Consumer Model of (Gabaix, 2012)

This model generates analytically tractable behavioral demand functions and

Slutsky matrices. In this example, we compare the matrix nearness distance

to the “underlying rational” Slutsky matrix proposed by Gabaix and compare

it to the one proposed here. This example shows that there exists a rational

demand function that is behaviorally closer to the sparse max consumer demand

proposed by Gabaix than the “underlying rational” model of his framework.

Consider a Cobb-Douglas model xCD(p, w) such that:

xCDi = αiw
pi

for i = 1, 2.

xCDi,pi = −αiw
p2i

14The proof of this technical remark is in the appendix.
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xCDi,w = αi
pi

sCDi,i = −αiw
p2i

+ αi
pi
αiw
pi

= −αi(1−αi)w
p2i

sCDi,j = αi
pi

αjw
pj

.

The Slutsky matrix is:

SCD(p, w) =

[
−α1α2w

p21

α1

p1
α2w
p2

α1

p1
α2w
p2

−α1α2w
p22

]
.

Let us denote Gabaix’s theory of behavior of the Sparse-max consumer by

G. Then the demand system under G is:

xGi = αi
pGi

w∑
j αj

pj

pG
j

for i = 1, 2.

This demand system fulfills Walras’ law. This function has an additional

parameter with respect to xCD(p, w), the perceived price pGi (m) = mipi + (1−
mi)p

d
i . The vector of attention to price changes m, weights the actual price pi

and the default price pdi .

Consider the following matrix of attention for the sparse-max consumer:

M =

[
1 0

0 0

]
That is, the consumer does not pay any attention to price changes in p2, but

perceives price changes perfectly for p1. One of Gabaix’s elegant results relates

the Slutsky matrix of xG, to the Cobb-Douglas benchmark. The behavioral

Slutsky matrix evaluated at default prices (in all this example p = pd) is:

SG(p, w) = SCD(p, w)M

SG(p, w) =

[
−α1α2w

p21
0

α1

p1
α2w
p2

0

]
.

This matrix is not NSD, nor singular with p in its null space. Applying

Proposition 3, the nearest Slutsky matrix when p = pd is:

Sr(p, w) =
p22

p21+p
2
2

[
−α1α2w

p21

α1

p1
α2w
p2

α1

p1
α2w
p2

−α1α2w
p22

]
Also, one has

E(p, w) = Sτ (p, w)− Sr(p, w)

E(p, w) =

[
[1− b(p)][−α1α2w

p21
] b(p)(−α1

p1
α2w
p2

)

[1− b(p)][−α1

p1
α2w
p2

] b(p)(α1α2w
p22

)

]
with

b(p) =
p22

p21+p
2
2
.

Now, we compute a useful quantity:

Tr(E′E) =
w2α2

2α2
1

p21p
2
2

.

It is convenient to compute the contributions of the violations of symmetry

and singularity in p separately.

Tr(E′E) = Tr(Eσ
′
Eσ) + Tr(Eπ

′
Eπ) = 1

2
w2α2

2α2
1

p21p
2
2

+ 1
2
w2α2

2α2
1

p21p
2
2

. In this case,

regardless of the values that w takes, the contribution of each kind of violation is

equal and amounts to exactly half of the total distance. In fact, we have: ||E||2 =
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1
2

´ w
w
Tr(Eσ(w)′Eσ(w))dw+ 1

2

´ w
w
Tr(Eπ(w)′Eπ(w))dw =

(
w3−w3

3

)
α2

2α2
1

p21p
2
2

, with

p = pd.

Note, however, that in this example the third component of the violations,

the one stemming from NSD, is zero only because the prices are evaluated at the

default. Otherwise, the behavioral model proposed by Gabaix does not satisfy

WARP and its Slutsky matrix violates NSD. Our approach can also be used in

the general case. We compute the previous quantities at any p, and any pd with

m = [1, 0]′.

Tr(E′E) =
w2α2

2α2
1

p21

[pd2 ]
2

[p2+[pd2−p2]α1]4
, with Tr(Eσ

′
Eσ) = Tr(Eπ

′
Eπ) and Eν =

0.

The expression above has a positive derivative with respect to pd2 for α1 +

α2 = 1, this indicates that ∂
∂pd2

δ(·) > 0 for any p. A sparse consumer that does

not pay attention to p2 will be further from rationality when the default price

pd2 is high. Furthermore, the power of our approach lies in the decomposition

of ||E||2 = ||Eσ||2 + ||Eπ||2. In this case, the decomposition suggests that the

violation of WARP can be seen as a byproduct of the violations of symmetry

and singularity stemming from the “lack of attention” to price changes of good

2 and the “nominal illusion” or lack of homogeneity of degree zero in prices and

wealth in such a demand system.

By Proposition 1, we can automatically conclude that there exists a xr ∈
X (Z) with Slutsky matrix Sr ∈ MR(Z) such that ||E|| < δ and ||xG − xr|| <
ε(δ), i.e., there is a rational demand system xr ∈ R(Z) that is ε-close in the

behavioral sense to xG ∈ X (Z) that is different from the underlying Cobb-

Douglas model. It must be underlined that the Cobb-Douglas model and xr are

related to xG in different ways. The first one is a distortion of a rational model

using the sparse max operator, while the second is ε−closest behaviorally, as

defined here. Our approach helps to complement the understanding of how much

this particular bounded rationality model differs from the standard rational one.

Indeed, fixing p = pd, one can compare the Tr(E′E) to the trace of the

residual matrix of the distance between SG and SCD from the Cobb-Douglas

consumer:

Tr(E′CDECD) =
p21+p

2
2

p22

w2α2
2α2

1

p21p
2
2

, with ECD = SG − SCD or

Tr(E′CDECD) = 1
b(p)Tr(E

′E), notice that 0 < b(p) < 1 for p >> 0. Then,

as expected due to our theoretical results, the Sr(p, w) obtained using Propo-

sition 3 is uniformly closer (under the Frobenius norm) to SG(p, w) than the

Cobb-Douglas matrix in any compact space Z of pairs z = (p, w) where ||E||
and ||EG|| are defined. This result says that both ||E||2 = 1

b(p) ||ECD||
2 are

proportional for any segment of wealth [w,w] due to linearity of the definite

integral operator.

To finish this example, we will study a very simple region Z, with the aim
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Figure 1: Level curves sparse-max consumer example . The figure plots α ∈ [0, 1]
on its vertical axis and pd2 ∈ [1, 2] on its horizontal axis.

of illustrating how one can learn from the effect of a behavioral parameter such

as α1 and pd2. Let Z = {w, p1 = 1, p2 ∈ [1, 2]}, then δ(α1, p
d
2) = 1

3 (α1 −
1)α1

2[pd2]2
(

1
(α1(pd2−2)+2)3

− 1
(α1(pd2−1)+1)3

)
. One can now visualize this δ in the

α, pd2 space, that is at pd2 ∈ [1, 2] and α1 ∈ [0, 1] (figure 1). We can observe that

α1 has a non-linear effect on δ, and the distance toward the rational matrix goes

to zero when either α1 → 0 or α1 → 1 for all pd2 ∈ [1, 2].

6.2 Hyperbolic Discounting

The literature on self-control and hyperbolic discounting has flourished in macroe-

conomics and development economics. In this example, we study a three-period

model that allows us to illustrate the use of our methodology. Our aim is to mea-

sure the violations of property R by naive and sophisticated quasi-hyperbolic

discounters.

The optimization problem for a consumer that can pre-commit is:

max{xpi }i=1,2,3.
u(xp1) + βθu(xp2) + βθ2u(xp3)

subject to the budget constraint∑3
i=1 pix

p
i = w.
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The first order conditions are:

u′(xp1) = λp1

βθu′(xp2) = λp2

βθ2u′(xp3) = λp3

With CRRA utility with relative risk aversion σ:

u′(xpi ) = [xpi ]
−σ

xp2 = [βθ p1p2 ]
1
σ xp1

xp3 = [βθ2 p1p3 ]
1
σ xp1

Then, imposing the budget constraint:

p1x
p
1 + p2[βθ p1p2 ]

1
σ xp1 + p3[βθ2 p1p3 ]

1
σ xp1 = w,

which gives the demand system:

xp1 = [p1 + p2[βθ p1p2 ]
1
σ + p3[βθ2 p1p3 ]

1
σ ]−1w

xp2 = [βθ p1p2 ]
1
σ xp1

xp3 = [βθ2 p1p3 ]
1
σ xp1.

The naive quasi-hyperbolic discounter will have the following demand sys-

tem:

In the first period, the consumer assumes she will stick to his commitment

in the second period and consumes the same amount as in the pre-commitment

case:

xh1 = [p1 + p2[βθ p1p2 ]
1
σ + p3[βθ2 p1p3 ]

1
σ ]−1w.

However, when period two arrives, she re-optimizes taking as given the re-

maining wealth w − p1xh1 .

xh2 =
w−p1xh1

p2+p3[βθ
p2
p3

]
1
σ

xh3 = [βθ p2p3 ]
1
σ xh2 .

The analytical result for the matrix nearness norm has a nice expression:

Tr(E′E) =

(σ − 1)2w2
(
p21 + p22 + p23

)((
βθ2p1
p3

) 1
σ −

(
βθp1
p2

) 1
σ
(
βθp

2

p3

) 1
σ

)2

2σ2

(
p3

(
βθp

2

p3

) 1
σ

+ p2

)2(
p2

(
βθp1
p2

) 1
σ

+ p3

(
βθ2p1
p3

) 1
σ

+ p1

)4 ,

which readily gives us that: (i) when σ = 1 then Tr(E′E) = 0 and δ = 0, that

is the demand is rational, (ii) when β = 1 then Tr(E′E) = 0, (iii) finally when

β → 0, θ → 0, then δ → 0. In these three cases by the previous results ε → 0.

In fact, in the limit cases the hyperbolic demand system is rational. Take for

instance case (iii), because the agent consumes everything in the first period

and gives no weight to the other time periods then it is trivially rational, with

Sr → 0 and xh1 → w
p1 and xh2 , x

h
3 → 0. In case (i), the logarithmic utility case,

the hyperbolic discounter manages to keep his commitment and therefore her
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Figure 2: Level curves hyperbolic discounter example . The figure plots β ∈ [0, 1]
on its horizontal axis and θ ∈ [0, 1] on its vertical axis.

consumption is time consistent and ||E|| = 0.

To illustrate further the use of the tools developed here, we find an explicit

value for δ in terms of the behavioral parameters β, θ, for an arbitrary rectangle

Z of prices and wealth. Consider the region Z = {p1, p2, p3 = 1, w ∈ [1, 2]} ,

with σ = 1
2 we compute δ(β, θ), which can be represented graphically in the box

β ∈ [0, 1], θ ∈ [0, 1]. The analytical expression for δ2 =
7β4(β2−1)

2
θ8

2(β2θ2+1)2(β2(θ4+θ2)+1)4
.

The level curves (figure 2) show that the hyperbolic discounter is very close

to the rational consumer, in the matrix nearness sense, for very low values of

β, θ and for values of θ ≤ 1
2 . This makes intuitive sense as a lower θ means

heavier discount on the future and lower consumption of goods of time 2 and 3

that are the ones affected by self-control.

The analytical expression for δ is messy. When evaluated at β = 0.7 and

θ = 0.9, then δ = 0.074, where the parameters are taken from the empirical

literature.

Another observation that we can draw from this example is that for any

arbitrary compact region Z of prices and wealth analyzed ||E||2 = ||Eσ||2.

That is, only the asymmetric part plays a role in the violation of property R. In

other words, under this numerical conditions the hyperbolic discounter violates
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symmetry but it satisfies singularity in prices and negative semidefiniteness.

The hyperbolic discounter fulfills WARP.

Finally, one can also use this example to identify pairs (β, θ) that are “equidis-

tant” from rationality, capturing an interesting tradeoff between the short-run

and the long-run discount factors and its effects on the violations of the Slutsky

conditions.

6.3 Sophisticated Quasi-Hyperbolic Discounting

The sophisticated quasi-hyperbolic discounter is intuitively closer to rationality.

However, the Slutsky norm helps appreciate some of the subtleties and assess

which conditions of rationality are fulfilled by this type of consumer. We build

this example as a followup to the naive quasi-hyperbolic consumer. In this case,

the consumer knows that in t = 2 she will not be able to keep her commit-

ment and therefore will adjust her consumption at t = 1. Then the consumer

maximizes

maxxsh1 u(xsh1 ) + βθu(xh2 ) + βθ2u(xh3 )

where xh2 , x
h
3 are known to her in t = 1 and depend on period 1 consumption.

However, she can control only how much she consumes in the first period. Taking

first order conditions and keeping the assumption of the naive quasi-hyperbolic

case, the first order conditions are:

u′(xsh1 ) + βθu′(xh2 )
∂xh2
∂xsh1

+ βθ2u′(xh3 )
∂xh3
∂xsh1

= 0

Under the parametric assumptions made in the previous example, the new

demand system of the sophisticated hyperbolic discounter is:

u′(xpi ) = [xpi ]
−σ

[xsh1 ]−σ + βθ[xh2 ]−σ
∂xh2
∂xsh1

+ βθ2[xh3 ]−σ
∂xh3
∂xsh1

= 0

xh2 =
w−p1xh1

p2+p3[βθ
p2
p3

]
1
σ

xh3 = [βθ p2p3 ]
1
σ xh2 .

∂xh2
∂xsh1

= p1

p2+p3[
p2βθ
p3

]
1
σ

∂xh3
∂xsh1

= −
p1[

p2βθ
p3

]
1
σ

p2+p3[
p2βθ
p3

]
1
σ

.

Then the first period consumption under the sophisticated hyperbolic dis-

counting is:
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xsh1 =


p1βθ + p1βθ

2[βθ p2p3 ]
1−σ
σ[

p2 + p3[βθ p2p3 ]
1
σ

]1−σ


1
σ

+ p1


−1

w

The argument in the integral of the expression for δ for a generic Z is given

by the quantity:

Tr(E′E) =

(β − 1)2(σ − 1)2w2θ4/σ
(
p21 + p22 + p23

)(
βp2 + p3

(
βθp2
p3

) 1
σ

) 2
σ−2

 βp1

p3

(
p3
(
βθp2
p3

) 1
σ +p2

)
2/σ

2σ4


 θp1

(
p3
(
βθp2
p3

) 1
σ +p2

)σ−1(
βp2+p3

(
βθp2
p3

) 1
σ

)
p2


1
σ

+ p1


4

As expected, this implies that: (i) when σ = 1, δ = 0 for any Z; (ii) when

β = 1, δ = 0; and (iii) when β = 0, δ = 0. Thus, in all these cases, ε = 0. Also,

the decomposition of ||E||2 = ||Eσ||2, which means that only the symmetry

property is violated, while the weak axiom and the homogeneity of degree zero

in prices and wealth are preserved.

Finally, we want also to compare this quantity with the case of the naive

hyperbolic discounter. The ratio of r =
Tr(E′shEsh)
Tr(E′hEh)

< 1 means that the so-

phisticated hyperbolic consumer has a lower δ for any Z and any parameter

configuration. To simplify expressions, we let pi = 1 for i = 1, 2, 3. The first

finding is that the relation between the naive and the sophisticated discounter

δ’s depends crucially on the parameter σ. For σ = 1, they are equal to zero: this

is a knife-edge case, in which the marginal rates of substitution yield optimal

consumptions equal to the commitment baseline. For σ = 1
2 , the sophisticated

hyperbolic discounter has a uniformly lower δ. However, for σ = 2, the naive

hyperbolic discounter has a uniformly lower δ. Although this may seem coun-

terintuitive, it tells us that the closest rational type (which need not be the

commitment baseline) is closer for the naive than it is for the sophisticated

consumer. More precisely, in light of the interpretation of the matrix nearness

norm, the slope of the steepest Ville cycle changes with the amount of wealth

remaining after the first period. Consequently, if there is a larger amount of re-

maining wealth for “re-optimization” in the second period, the Ville cycle slope

is greater. This is the case when σ < 1, which increases the consumption in

period 1 of the sophisticated hyperbolic discounter leaving less residual wealth
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Figure 3: Level curves hyperbolic discounter example . The figure plots β ∈ [0, 1]
on its horizontal axis and θ ∈ [0, 1] on its vertical axis.

and thus a limited rate of growth of the real income path along the Ville cycle.

Furthermore, to enhance the comparison for the case of σ = 1
2 , we compute

explicitly the expression for δ in the same region Z = {p1, p2, p3 = 1, w ∈ [1, 2]}
as in the previous example for the naive discounter.

δ2(β, θ) =
14(β − 1)2β6θ8

(
βθ2 + 1

)2
(β2θ2 (βθ2 (βθ2 + 2) + 2) + 1)

4

The level curves of this δ expression are very similar to the naive case, but

it is even closer to rationality everywhere. Evaluated at the typical values of

β = 0.7 and θ = 0.9, one gets the value δ = 0.0703847, which is slightly lower

than the δ of the naive hyperbolic case for the same σ = 1
2 .

6.4 Demand System Estimation

The analytical solution to the closest rational Slutsky matrix can also be used

in demand system estimation. Take, for instance, the Slutsky matrix of the

AIDS (almost ideal demand system) model when normalized to αo = 0, and

when evaluated at w = 1 and p = ι the unit vector. Then the entry i, j of the

Slutsky matrix of xa in the AIDS system is saij = γij − αiδij − αjαi. Then, the

restrictions on the model can be written as:

(i) ||Eσ|| = 0 that is fulfilled for all Z, when Tr(Eσ
′
Eσ) = 1

2 (γ12−γ21)2 = 0,
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which gives the restriction of γij = γji known from the AIDS literature.

(ii) Srp = 0, which is fulfilled when (i) holds and when
∑
i αi = 0,

∑
j γij = 0

and
∑
i γij = 0, again the well-known AIDS restriction.

(iii) Sr ≤ 0 that can be imposed using the restriction on the eigenvalues to

be non positive.

The traditional approach has an advantage because it is based on linear

combinations of parameters, but it does not guarantee that Sa is NSD.

The results obtained here allow us to write the two following constraints:

(I) Sa − Sr = 0

(II) Λ− Λ− = 0.

This guarantees that Sa has property R.

To better illustrate the nature of this restrictions, we write the conditions

explicitly for the case of L = 2:

(I) Imposes the quasilinear constraint, corresponding to 3 conditions due to

symmetry:(
1
4

(
3γ1,1 + γ1,2 + γ2,1 − γ2,2 + 4α2

2 − 4α1 (α1 + 1)
)

1
4 (γ1,1 + 3γ1,2 − γ2,1 + γ2,2 − 4α2 (α1 + α2))

1
4 (γ1,1 − γ1,2 + 3γ2,1 + γ2,2 − 4α2 (α1 + α2)) 1

4 (−γ1,1 + γ1,2 + γ2,1 + 3γ2,2 − 4α2)

)
=

0

(II) Requires that both eigen values of Sr be nonpositive, which results in a

quasilinear condition due to the singularity of Sr:

λ =
{

1
2

(
γ1,1 − γ1,2 − γ2,1 + γ2,2 − 4α2

2

)
, 0
}

λ1 = 1
2

(
γ1,1 − γ1,2 − γ2,1 + γ2,2 − 4α2

2

)
≤ 0

These four conditions guarantee that the estimated demand system xa be-

longs to R, furthermore this guarantees that xa is in the pre-image of a−1(E),

where E is the optimal matrix nearness norm. The main disadvantage is the

loss of linearity in the constraints. However, this approach adds the NSD

constraint to the AIDS estimation in a unified manner. Also, we are able

to compute bounds for the distance to rationality when we do not impose

any of the three constraints by using the decomposition of the norm ||E||2 =

||Eσ||2 + ||Eπ||2 + ||Eν ||2.

In fact, if we do not impose the negative semidefiniteness restriction, as is

usual in this literature, we get ||E||2 = ||Eν ||2, that gives us δ that can be used

to bound the distance from xa to rationality.

7 Literature Review

The canonical treatment of measuring deviations from rational consumer behav-

ior was establish by Afriat (1973) with its critical cost-efficiency index. Afriat’s

index measures the amount by which budget constraints have to be adjusted

so as to eliminate violations of the Generalized Axiom of Revealed Preference
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(GARP). Varian (1990) refines Afriat’s measure by focusing on the minimum

adjustment of the budget constraint needed to eliminate violations of GARP.

Houtman and Maks (1985) measure deviations from GARP through identifying

the largest subset of choices that is consistent with maximizing behavior.

The closest treatment of the problem to our work is the approximately ra-

tional consumer demand proposed by Jerison and Jerison (1993) These authors

are able to relate the violations of negative semi-definiteness and symmetry of

the Slutsky matrix to the smallest distance between an observe smooth de-

mand system and a rational demand. Russell (1997) proposes a measure of

quasi-rationality. Russell’s measure corresponds to Slutsky matrix symmetry

violations. He uses exterior calculus and obtains a measure of non integrability

that corresponds to the residual of a symmetric decomposition of the Slutsky

matrix.

Our work gives a different methodological approach to this problem and

generalizes the results to the case of violations of singularity of the Slutsky

matrix. More importantly, this new approach allows to treat the three kinds of

violations of the Slutsky conditions simultaneously. For instance, new behavioral

models like the sparse-max consumer (Gabaix, 2012) suggest the presence of a

money illusion such that prices are not in the null space of the Slutsky matrix.

More recently, Echenique, Lee and Shum(2011), give a new measure of viola-

tions of revealed preference behavior called the “money pump index” . Also Jeri-

son and Jerison (2001) propose a way to bound Afriat’s index of cost-efficiency

using an index of violations of the symmetry and negative semidefiniteness Slut-

sky conditions. It would be interesting to compare our Slutsky matrix norm with

these other approaches.

8 Conclusion

By redefining the problem of finding the closest rational demand to an arbitrary

observed behavior in terms of matrix nearness, we are able to pose the problem

in a convex optimization framework that permits both a better computational

implementability and the derivation of extremum estimator and tests. We define

a metric in the space of smooth demand functions and finally propose a way to

recover the best Slutsky approximation matrix under a Frobenius norm. Our

approach gives a geometric interpretation in terms of transformations of the

Slutsky matrix or first order behavior of demand functions. As a result, a

classification of the different kinds of violations of rationality is also provided.
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Appendix

Proof of Claim 1:

Proof. First, we show thatX (Z) is closed. Take any sequence {xn}n∈N of de-

mand functions with xn ∈ X (Z). For any n ∈ N, we have p′xn(z) = w by

assumption. Let the arbitrary convergent sequence be such that xn(z) →
x(z) to some function x ∈ C1(Z). Then we want to show that, for xn(z) =

[xn1 (z) · · ·xnL(z)], if xnl (z) → xl(z) then p′x(z) = w. By Walras’ law, we have

p′xn(z) = w. Define the function gn(z) = p′xn(z)−w, taking limits on this new

function limn→∞g
n(z) = limn→∞[

∑L
l=1 plx

n
l (z)− w] it follows that gn(z)→ 0

and since z = (p, w) and z ∈ RL+1
++ is given we can conclude that p′x(z) = w.

This implies that x ∈ X (Z).

We also show thatX (Z) is uniformly bounded. Since xτ ∈ X (Z) is continu-

ously differentiable and Z is compact, then every xτ (z) is compact-valued, and

so is∇xτ (z). Then, there exists a bound Mxτ > 0 such that ||xτl ||C1,1 ≤Mxτ for

l = 1, . . . , L. Then let M = max{Mxτ }xτ∈X (Z). It follows that ||xτl ||C1,1 ≤ M

for l = 1, . . . , L, for all z ∈ Z, and for all xτ ∈ X (Z).
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Finally, we demonstrate that X (Z) is equicontinuous. This is a direct

consequence of the assumption of continuous differentiability and the com-

pactness of Z. In fact, under the assumptions of continuity of Dxτ (z) =

[Dpx
τ (z) Dwx

τ (z)], then set {∇xτl (z) ∈ C(Z)} is uniformly bounded in Z

(by the same uniform boundedness argument of X (Z)). Also, by the multi-

variate mean value theorem applied to each function xτl (z), it follows that for

l = 1, . . . , L, for every u > 0 there exists a vl > 0 (vl = M | such that for

z ∈ [z1, z2]: ||∇xτl (z)||∞,L+1 < M), depending only on u, such that for a pair

z1, z2 ∈ Z: d(z1, z2) < vl =⇒ ||xτl (z1) − xτl (z2)||C1,1 < u for all entries of the

functions xτ ∈ X (Z). Under the ||·||C1 norm for X (Z), it follows that ||xτ (z1)−
xτ (z2)||C1 < u.15 Finally we choose l = argmax

l
{||xτl (z1) − xτl (z2)||C1,1} and

we fix v = vl. Then we can conclude that for every u > 0 there exists a v > 0

which depends only on u (since all vl depend only on u), such that for a pair

z1, z2 ∈ Z: d(z1, z2) < v =⇒ ||xτ (z1)− xτ (z2)||C1 < u ∀ xτ ∈ X (Z).

To conclude, we apply the Ascoli-Arzelà theorem to the family of functions

xτ ∈ X (Z). Since X (Z) is closed, uniformly bounded and equicontinuous, it is

a compact subset of C1(Z).

Claim 5

The following claim is an auxiliary result to be used in the sequel.

Claim 5. The map s : X (Z) 7→ M(Z) defined as s(xτ ) = Sτ is continuous.

Proof. First, we will prove thatDp : X (Z) 7→ M(Z) andDw : X (Z) 7→ C(Z,RL)

are not only closed linear operators, but are also continuous maps. In general,

differential operators are closed but not continuous. However, in this specific

domain, Dp, Dw are defined everywhere by assumption, additionally Dp and

Dw are closed operators, and finally X (Z),M(Z) are Banach spaces with the

norms || · ||C1 and || · || respectively, and so is C(Z,RL), the space of continuous

functions f : Z 7→ RL with supremum norm || · ||∞,L. Then, by the closed graph

theorem, we can conclude that Dp and Dw are continuous maps.

Second, take a convergent sequence in X (Z), {xτn}n∈N → xτ . To finish

the proof we want to show that limn→∞s(x
τ
n) = s(xτ ). By continuity of

Dp, Dw and by the properties of the limit of a product of vectors it follows

that limn→∞s(x
τ
n) = limn→∞Dpx

τ
n + limn→∞Dwx

τ
n[limn→∞x

τ ]′ = Sτ , where

s(xτ ) = Sτ , thus proving continuity of s.

15Three different norms are used in this proof. The partial derivatives of xτl are not required
to be differentiable hence the norm in this space is the supremum norm || · ||∞. By contrast,
xτl is continuously differentiable and has norm || · ||C1,1. For a fixed z = z, ||xτ (z)||C1,1 =
max(||xτ (z)||∞,1, ||∇xτ (z)||∞,L+1). Finally, the norm in X (Z) is || · ||C1 as defined in Section
2.
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Proof of Claim 2

Proof. The problem is minSr ||Sτ − Sr|| subject to Sr(z) ≤ 0, Sr(z) = Sr(z)′,

Sr(z)p = 0 for z ∈ Z.

Under the Frobenius norm, the minimization problem amounts to finding

the solution to

minSr
´
z∈Z Tr([S

τ (z)− Sr(z)]′[Sτ (z)− Sr(z)])dz
subject to

Sr(z) ≤ 0

Sr(z) = Sr(z)′

Sr(z)p = 0

The objective function is strictly convex, because of the use of the Frobenius

norm. This norm is also a continuous functional.

The constraint setMR(Z) is convex and closed. In fact, the cone of negative

semi-definite matrices is a closed and convex set. Also, the set of symmetric

matrices is closed and convex, and finally the set of matrices with eigenvalue

λ = 0 associated with eigenvector p is convex. To see the last statement, let

A(z)p = 0, B(z)p = 0, and let C(z) = αA(z) + (1 − α)B(z) for α ∈ (0, 1). It

follows that C(z)p = 0. Then MR(Z) is the intersection of three convex sets

and is therefore convex itself. It is also useful to note that all three constraint

sets are subspaces of M(Z) and the intersection MR(Z) is itself a subspace of

M(Z).

Now we prove that not only the symmetric and the NSD constraints sets are

closed but all MR(Z) is closed. Any matrix function in the constraint set is a

symmetric NSD matrix with p in its null space. Therefore, every sequence of

matrix functions in the constraint set has the form Dn(z) = Qn(z)Λn(z)Qn(z)′,

where Λn(z) = Diag[λni (z)]i∈1,...L with ascending ordered eigenvalues functions.

It follows that the eigenvalue function in position L,L is the null eigenvalue λL =

0, or the null scalar function. That is, imposing an increasing order the position

1, 1 is then held by λn1 (z) ≤ λn2 (z) ≤ . . . ≤ 0 where the order is induced by the

distance to the null function using the euclidean distance for scalar functions

defined over Z. The matrix function Qn(z) = [qn1 · · · p] is the orthogonal matrix

with eigenvectors functions as columns. For all Dn(z) ∈ MR(Z), λnL = 0 is

associated with the price vector qnL = p always, to guarantee that p is in its null

space. The eigenvectors are defined implicitly by the condition Dn(z)qni (z) =

λn(z)qni (z) with pointwise matrix and vector multiplication and qni ⊥ p or <

qni , p >= 0 using the inner product for C1(Z) for i = 1, . . . , L− 1 and for all n ∈
N. Take any sequence of {Dn(z)}n∈N with Dn(z) ∈MR(Z) for each z ∈ Z, with

limit limn→∞D
n(z) = D(z). We want to show that D(z) ∈ MR(Z). It should

be clear that any Dn(z)→ D(z) converges to a symmetric matrix function (the
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symmetric matrix subspace is an orthogonal complement of a subspace ofM(Z)

(the subspace of skew symmetric matrix functions) and therefore, it is always

closed in any metric space). It is also clear that D(z)p = 0 since λnL = 0 for all

n and certainly λnL → 0 with the associated eigenvector qnL = p for all n and

qnL → p. This condition, along with symmetry, guarantees that qni6=L → q ⊥ p.

Finally, the set of negative scalar functions is closed. Then, λni 6=L → λ(z)− with

λi6=L(z)− = min(0, λi 6=L(z)). This is a negative scalar function by construction,

since if λi 6=L(z) > 0 then λi 6=L(z)− = 0. Then MR(Z) is closed.

Let MS(Z) ⊂ M(Z) be the subset of Slutsky matrix functions, defined as

the image of the Slutsky map defined over X (Z). Let s : X (Z) 7→ M(Z), be a

matrix map defined by s(xτ ) = Dpx
τ + Dwx

τ [xτ ]′, i.e s(X (Z)) ≡ MS(Z). By

Claim (1), X (Z) is compact and by continuity of the s map (proven in Claim

5), it follows that MS(Z) is a compact set. Since MR(Z) ⊂ MS(Z), and

given that MR(Z) is a closed subspace of a compact set, then MR(Z) is also

compact.

Note also that the image of the feasible set satisfying the constraints is closed

(because all constraint sets images are pointwise subspaces of euclidean metric

spaces of finite dimension and therefore are closed) and convex because it is the

intersection of three convex sets. Under the assumption of z ∈ Z for Z compact,

then it follows that the constraint set is pointwise compact. To see why the

previous statement is true observe that the set of images ofM(Z) for a fixed z,

Imz(M(Z)) consists of real-valued L×L matrices that forms a vector space that

is isomorphic to the euclidean space RL2

. Then letMR(Z) be the set of matrix

functions that have property R. It follows that Imz(MR(Z)) ⊂ Imz(M(Z)),

is compact if and only if it is closed and bounded. Observe first thatMR(Z) is

closed since it is in the intersection of three closed sets. The entries of a matrix

S ∈ R are not necessarily bounded for all (p, w) ∈ RL+1, but Imz(MR(Z)) is

bounded. Then MR(z) is pointwise compact.

In conclusion, since the Frobenius norm inM(Z) is a continuous and strictly

convex functional and the constraint set is compact and convex the minimum

is attained and it is unique.

Proof of Claim 4

Proof. First, we establish the basic properties of this new measure:

Positive: ρ(Sτ ) ≥ 0 by construction (if Sτ ∈M(Z)).

Unit-free: ρ(cSτ ) = ρ(Sτ ) (if Sτ ∈M(Z) and c ∈ R).

ρ(cSτ ) = |c|d(Sτ )
|c|||Sτ || = ρ(Sτ )

Let Eσ 6= 0, Eπ 6= 0 and Eν 6= 0. Next, we establish each of the componen-

twise bounds.
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We write
||Eσ||
||Sτ ||

=
|| 12 [Sτ − Sτ ′ ]||
||Sτ ||

≤
| 12 |2||S

τ ||
||Sτ ||

= 1.

Next, since

Eπ(z) = − 1
p′p [Sσ(z)pp′ + pp′Sσ(z)− [Sσ(z)p]′p

p′p pp′],

By Walras’ law:

Eπ(z) = − 1
p′p [Sσ(z)pp′ + pp′Sσ(z)],

then

||Eπ|| ≤ 1
p′p [||Sσ(z)|| · ||pp′||].

Note that ||pp′|| = p′p then

||Eπ|| ≤ ||Sσ(z)||
and
||Eπ||
||Sτ || ≤

||Sσ(z)||
||Sτ || ≤ 1.

Next, since Sσ,π = Sσ + Eπ = 1
2 [Sτ + Sτ

′
] + Eπ

then ||Sσ,π|| ≤ 2||Sσ||
and

||Sσ,π|| ≤ 2||Sτ ||.
It follows that:
||Eν ||
||Sτ || ≤ 2 ||E

ν ||
||Sσ,π|| ≤ 2.

Finally, recall that

ρ(Sτ ) = ||E||
||Sτ ||

and

ρ(Sτ )2 = ||Eσ||2+||Eπ||2+||Eν ||2
||Sτ ||2 = ||Eσ||2

||Sτ ||2 + ||Eπ||2
||Sτ ||2 + ||Eν ||2

||Sτ ||2 .

Using the componentwise bounds afor established yields the overall bound

of
√

6.

Lemma 3

Lemma 3. The solution to minA||Sτ − A|| subject to A(z)p = 0 and A(z)

symmetric is the nearest matrix function with this characteristics for Sσ(z).

Proof. Using the symmetric, skew symmetric matrix decomposition of Sτ we

can write:

||Sτ −A||2 = ||Sσ +−A(z) +Eσ||2 = ||Sσ−A||2 + ||Eσ||2 + 2〈Sσ +−N,Eσ〉
Since Sσ(z)−A(z) is symmetric, it follows that 〈Sσ +−N,Eσ〉 = 0, because

Tr([Sσ(z)+−A(z)]′Eσ(z)) = 0, for z ∈ Z. In fact, the trace of the product of a

symmetric matrix-valued function and skew symmetric valued function is zero

for any z ∈ Z.

This implies that the proposed program can be written as:

maxA||Sσ + Eσ −A(z)||2 = ||Sσ −A(z)||2 + ||Eσ||2
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with A(z) = A(z)′ and A(z)p = 0.

With the solution A(z)∗ = Sσ(z) + Eπ(z), with Eπ(z) the nearest matrix

function under the Frobenius norm that makes [Sσ(z) + Eπ(z)]p = 0.

Thus, A(z)∗ = Sσ,π(z).

Lemma 4

Lemma 4. The solution to the problem with only the symmetric restriction

active is Sσ(z) = 1
2 [Sτ (z) + Sτ (z)′]

Proof. Consider the reduced problem with only the symmetry restriction active:

minSr
´
z∈Z Tr([S

τ (z)− Sr(z)]′[Sτ (z)− Sr(z)])dz
subject to

Sr(z) = Sr(z)′.

This is equivalent to minimize

Sσ(z) = argminSr∈R
´
z∈Z [Tr(Sτ (z)′Sτ (z))−Tr(Sr(z)Sτ (z))−Tr(Sτ (z)′Sr(z))+

Tr(Sr(z)Sr(z))]dz

The optimization solution when only the symmetry restriction is active is

obtained using the strong Euler-Equation. The objective function expansion is

obtained using the linearity of trace operator. We also use the property that

∂Tr(AX ′)/∂X = A. Note that the Lagrangian only depends on the function

Sr(z) and not on z or its derivatives. Therefore the first order pointwise condi-

tions give:

−Sτ (z)− Sτ (z)′ + 2Sr(z) = 0, for z ∈ Z
which yields

Sσ(z) = 1
2 [Sτ (z) + Sτ (z)′].

It is useful to note that this corresponds to the symmetric decomposition of

a square matrix function.

Lemma 5

Lemma 5. The negative semi-definite nearest matrix function to Sσ(z) is also

the NSD nearest matrix function to Sr(z).

Proof. It is a known fact that the nearest NSD matrix to Sσ(z) is the projection

of this function on the NSD cone (Higham, 1989). That is, it is the negative

semidefinite part of the matrix Sσ(z).

To obtain it, let Sσ(z) = Q(z)Λ(z)Q(z)′, where Λ(z) is the diagonal matrix

of eigenvalues, (with ordered entries), of Sσ(z) and Q(z) is an orthogonal matrix

whose columns are the eigenvectors associated with Λ(z). Every real, symmetric

matrix has such decomposition.
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Also note that one can decompose the symmetric matrix Sσ(z) into its PSD

part and NSD part: Sσ(z) = Sσ+(z) + Sσ−(z). Here, Sσ+ =
∑
λi>0 λiqiq

′
i and

Sσ− =
∑
λi<0 λiqiq

′
i. We abuse notation and let λi < 0 denote λ−i = min(0, λi)

and λi > 0 represent λ+i = max(0, λi).

In other words, Sσ(z)− = Q(z)[Λ(z)−]Q′, with Λ−(z) = diag(min(λi, 0))i∈1···L.

We want to solve

maxN ||Sτ −N ||
subject to N(z) ≤ 0, that is negative semidefinite.

Notice that, Sτ (z) = Sσ(z) + Eσ(z), can always be decomposed in the sum

of its symmetric and skew-symmetric part.

Then the objective functional can be written as

||Sτ −N || = ||Sσ + Eσ −N ||
Then:

||Sτ −N ||2 = ||Sσ +−N + Eσ||2 = ||Sσ −N ||2 + ||Eσ||2

Because Sσ(z)−N(z) is symmetric it follows that 〈Sσ(z)+−N(z), Eσ(z)〉 =

0, since Tr([Sσ(z)+−N(z)]′Eσ(z)) = 0, for any z. That is the trace of the prod-

uct of a symmetric matrix-valued function and skew symmetric valued function

is zero for any z ∈ Z.

This implies N∗(z) = Sσ(z)−. The solution is the negative semidefinite part

of Sσ(z).

Claim 6

Claim 6. The matrix Eπ(z) is pointwise orthogonal to S(z)+. That is Tr(Eπ(z)′S(z)+) =

0.

Proof. By definition Sσ,π(z) = Sσ(z) + Eπ(z), with Eπ(z) a symmetric matrix

such that Eπ(z)p 6= 0 when Sσ(p)p 6= 0 and Eπ(z) = 0 when Sσ(p)p = 0. Thus,

Eπ(z) is always singular.

One can then write the direct sum decomposition of the set A(z) of sym-

metric singular matrix functions with the property that p′A(z)p = 0 as follows:

A(z) = P(z)⊕N (z) for all z ∈ Z, where

P(z) = {Eπ(z) : Tr(Eπ(z)pp′) = 0 and Eπ(z)p 6= 0 for Eπ(z) 6= 0}

and

N (z) = {N(z) : Tr(N(z)pp′) = 0, N(z)p = 0}.

To see that this is a direct sum decomposition, first observe that P(z)∩N (z) =

{0}, with 0 denoting the zero matrix function, by construction. Furthermore,

any A(z) ∈ A(z) can be written as a sum of A(z) = Eπ(z) + N(z) since

A(z)p = 0 or (exclusive) A(z)p 6= 0, for A(z) 6= 0. Furthermore, p′A(z)p =
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p′Eπ(z)p + p′N(z)p = 0 for any Eπ(z), N(z). Then the decomposition is pre-

cisely A(z) = Eπ(z) when A(z)p 6= 0 and A(z) = N(z) when A(z)p = 0. Since

every direct sum decomposition represents the sum of a subspace and its or-

thogonal complement, andN (z) is a subspace in the space of symmetric matrix-

valued functions, it follows that P(z) is its orthogonal complement. In particu-

lar, since S(z)+p = 0 and Tr(S(z)+pp
′) = 0, it follows that Tr(Eπ(z)S(z)+) =

0, for z ∈ Z.

Claim 7

Claim 7. The map a : X (Z) 7→ M(Z) defined element-wise as a(xτ ) = Sr −Sτ

is continuous.

Proof. The continuity of the map a follows directly from the continuity of the

Slutsky map s and the continuity of the projections maps that generates Sr.

By Claim 5, we know that s : X (Z) 7→ M(Z) is continuous. It remains to be

shown that the projection maps are indeed continuous. For this we need that the

range of the projection map is a closed subspace under the metric induced by the

norm ofM(Z). The first projection is p1 : s(X (Z)) 7→ Sym(M(Z)) with range

equal to the closed subspace of symmetric matrix-valued functions on M(Z),

therefore p1 is continuous. The second projection is p2 : Sym(M(Z)) 7→ P(Z)

with P(Z) defined as in Claim 6. The closedness of P(Z) is not trivial and

is proved now. Take a sequence of matrices {Eπ,n}n∈N in P(Z), now consider

the definition of this space and it must be the case that Tr(Eπ,npp′) = 0 with

Eπ,n(z)p 6= 0 for Eπ,n(z) 6= 0. Taking limits in the three conditions (one

equality and two inequalities), it follows that limn→∞E
π,n(z) = Eπ ∈ P(Z),

therefore P(Z) is closed and p2 is a continuous map. Finally, the third projection

p3 : Sym(M(Z))⊕P(Z) 7→ Sym(M(Z))− that is with range equal to the closed

cone of negative semidefinite matrix-valued functions is also a continuous map.

It follows that a is continuous.

Proof of Remark

If Walras’ law hold then |q′Eπr| = 0 for any q, r ∈ Bp.
In particular for a fixed w:

|q′Eπ(p, w)r| = | − q′ 1
p′p [Sσ(p, w)pp′ + pp′Sσ(p, w)− [Sσ(p,w)p]′p

p′p pp′]r| = 0

The proof is separated in three parts:

(i) First component:

Eπ,1 = −q′ 1
p′pS

σ(p, w)pp′r = q′[Dpx
s,w(p)− 1

wDpx
s,w(p)pxs,w(p)′]p p

′r
p′p

Since xs,w(p)′p = w then Eπ,1 = [q′Dpx
s,w(p)p− q′Dpx

s,w(p)p] p
′r
p′p = 0.

(ii) Second component:
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Eπ,2 = q′ 1
p′ppp

′Sσ(p, w)r = q′p
p′pp

′[Dpx
s,w(p)− 1

wDpx
s,w(p)pxs,w(p)′]r

Deriving p′xs,w(p, w) = w with respect to prices, it follows that p′Dpx
s,w(p) =

−xs,w(p)′.

Eπ,2 = q′p
p′p [−xs,w(p)′r + xs,w(p)′r] = 0

(iii) Third component:

Eπ,3 = q′ 1
p′p

[Sσ(p,w)p]′p
p′p pp′r = 1

p′p [q′[Sσ(p, w)p]′pp] p
′r
p′p

By definition of the conditional Slutsky matrix for a fixed w:

Eπ,3 = 1
p′p [q′[p′Dpx

s,w(p)′p− 1
wp
′xs,w(p)p′Dpx

s,w(p)′p]p] p
′r
p′p

Eπ,3 = 1
p′p [q′[w − 1

wp
′xs,w(p)w]p] p

′r
p′p

Eπ,3 = q′p
p′p

p′r
p′p [w − p′xs,w(p)] = 0 when Walras law hold.

Proof of Remark 7

maxA||Sτ −A||$ with A satisfying R.

Then notice that ||Sτ −A||$ = ||Sτ −A||
||Sτ −A||2 = ||Λp[Sτ −A]Λp||2 = ||Λp[Sσ −A+ Eσ]Λp||2

= ||Λp[Sσ −A]Λp||2 + ||ΛpEσΛp||2.

Observe that if A is symmetric then ΛpAΛp is symmetric, if A is skew-

symmetric then ΛpBΛp is also skew-symmetric. This means that 〈ΛpEσΛp,Λp[S
σ−

A]Λp〉 = 0.

Similarly, for the general case:

||Λp[Sτ−A]Λp||2 = ||Λp[Sσ,π−A+Eσ−Eπ]Λp||2 = ||ΛpEσΛp||2+||Λp[−Eπ+

Sσ,π −A]Λp||2

Where the inner decomposition of Sτ comes from the following Lagrangian:

L =
´
z∈Z Tr([ΛpS

τ (z)Λp−ΛpA(z)Λp]
′[ΛpS

τ (z)Λp−ΛpA(z)Λp])dz+
´
z∈Z λ

′A(z)pdz+´
z∈Z vec(U)′vec[A(z)−A(z)′].

Equivalently,

L =
´
z∈Z [Tr([S

τ
(z)−A(z)]′[S

τ
(z)−A(z)]) + Tr(A(z)pλ′) + Tr(U ′[A(z)−

A(z)′])]dz

FOC:

Sσ,π(z) = 1
2 [Sτ (z) + Sτ (z)′] + Λ−2p [λp′ − U + U ′]Λ−2p ;

Sσ,π(z)p = 0

Sσ,π(z) = Sσ,π(z)′

Postulate that Λ−2p [λp′−U +U ′]Λ−2p = Eπ. This proposed solution satisfies

the FOC an by uniqueness of the solution due to the nature of the objective

functional one has that Sσ,π(z) = Sσ(z) +Eπ under the dollar norm and ||Sτ −
Sσ,π||$ = ||Eσ−Eπ||$. Therefore the general matrix nearness problem with the

dollar-norm is equivalent to computing:

Sr = argminA≤0||Λp[Sσ,π−A]Λp||2−2〈ΛpEπΛp,Λp[S
σ,π−A]Λp〉, where Sr

has property R.
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