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Abstract

Given any observed finite sequence of prices, wealth and demand choices, we characterize

the relation between its underlying Slutsky matrix norm (SMN) and some popular discrete

revealed preference (RP) measures of departures from rationality, such as the Afriat index.

We show that testing rationality in the SMN aproach with finite data is equivalent to

testing it under the RP approach. We propose a way to “summarize” the departures from

rationality in a systematic fashion in finite datasets. Finally, these ideas are extended to

an observed demand with noise due to measurement error; we formulate an appropriate

modification of the SMN approach in this case and derive closed-form asymptotic results

under standard regularity conditions.

JEL classification numbers: C60, D10.

Keywords: consumer theory; rationality; Slutsky matrix function; revealed preference ap-

proach; bounded rationality.

1 Introduction

The generalized axiom of revealed preference (GARP) completely characterizes whether a finite

set of prices and demand choices can be rationalized. However, this binary approach is unsatis-

fying in the sense that we do not know by how much one departs from rationality. This problem

has been the motivation of an important body of literature that has focused on how to mea-

sure the size of the violations of rationality. The revealed preference approach is the preferred

method to test the rationality hypothesis in consumer behavior due to its nonparametric nature.

However, in the words of Varian (1983):

“...the revealed preference approach does have some drawbacks. In certain cases, the tests

involved may be computationally infeasible for large data sets. Also, the techniques do not typi-

cally summarize the data in a useful way. Furthermore it may be rather difficult to incorporate

stochastic considerations in a satisfactory manner.”

This cite serves as a strong motivation for the current work. Indeed, here we propose a

methodology that may help overcome the last two of these drawbacks (i.e., a useful decomposition

of bounded rationality, and a suitable extension to situations with noise). In a previous effort,

Aguiar and Serrano (2014) answer the question of how far is a given behavior (demand function)
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from rationality using the observed Slutsky matrix function distance to its closest rational Slutsky

matrix function. We refer to this as the Slutsky matrix norm (SMN) approach, which provides a

way to measure the “size” of the departures from rationality, whatever those might be. Moreover,

it yields a closed-form solution when the demand function is observed and provides a useful

classification of the types of violations to the classical axioms of revealed demand. This measure

can be monetized and provides a way to measure the failures in comparative statics analysis

(prediction) when we assume (possibly incorrectly) that the underlying behavior is rational, so

it is a “positive” index of bounded rationality. In addition, the smooth nature of the approach is

particularly suited to be transported to stochastic environments. Its main limitation, however, is

that it requires functional data. In this paper, we attempt to provide a complementary approach

to the RP methodology that stems from the tradition of Antonelli (1886), Slutsky (1915) and

Hurwicz and Uzawa (1971) by using the Slutsky matrix norm approach to test the empirical

implications of consumer behavior in a finite dataset environment.

In contrast, the “revealed preference approach” (RP) born in the seminal contributions of

Afriat (1973) and Varian (1983), is specifically designed to deal with finite datasets. Some of

the most used and accepted measures include indices such as the Money Pump, the H-M index

and the Afriat efficiency index, this is due to its implementation simplicity for small datasets

(very common) and its nonparametric nature. However, the Afriat index and the Money Pump

indices acquire meaning only if one maintains the assumption that the true behavior is rational

but consumer fails to optimize, which makes them “normative” indices. In addition, these

measures can be modified in the presence of measurement error, but we are not aware of any

result that has a closed form for the asymptotic behavior of their tests. Also, it is not clear how

these measures could be transported to an infinite dataset framework.1

Here we are interested in exploring the connections of these widely used discrete measures of

departures from rationality (RP) and the Slutsky matrix norm approach (SMN). Clearly, there

are tradeoffs; both measures offer advantages and disadvantages and here we are interested in

their complementarities. Efforts like the current paper are meant to unify these approaches

in order to improve our ability to understand how to quantify the violations of the classical

assumption of rationality and how to classify them. In particular,

• (i) Is testing rationality in the SMN aproach with finite data equivalent to testing it under

the RP approach?

• (ii) How can we “summarize” the departures of rationality in a systematic fashion?

• (iii) Given that we observe a demand that has noise, what is the appropriate modification

of the SMN approach in this case and what is the asymptotic behavior of this measure?

The aim of this paper is to provide an answer to these three questions, and in doing so, to

take steps towards answering the fundamental question of what is the best way to measure and

classify departures from rationality in consumer decision making settings.

Our main results show that testing rationality in the RP and SMN approaches with finite

data is equivalent. Non rational behavior will be accounted for as a positive Slutsky norm for

any extension of the dataset. Conversely, if a dataset can be rationalized in the sense of Afriat

1This is a theoretical question of interest since this is needed to understand the connection of the Afriat
approach with the Richter environment (and the α and β axioms) as Nishimura et al. (2013) makes clear in their
recent work
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(1973), there exists an extension thereof that offers a rationalization in the sense of Hurwicz and

Uzawa (1971), and also in our Slutsky norm sense. This sheds light on the interesting related

results of de Clippel and Rozen (2014) and how their insights can be transported to the stan-

dard consumer theory environment.2 All this is shown by connecting the properties of revealed

demand cycles to properties of classic axioms of consumer theory, such as the Ville axiom and

the weak axiom of revealed preference (WARP). Furthermore, the decomposition of the Slutsky

norm into the different violations of rationality, as proposed in Aguiar and Serrano (2014), is

also shown to apply to finite datasets. We extend our coverage to demand correspondences,

which founds our analysis of noisy data. For this case, a smooth test is proposed, whose exact

closed-form asymptotic distribution is known, as a function of the estimator of demand (Mon-

tecarlo simulations for finite samples support our asymptotic results). Finally, our results shed

light on the interesting experimental data of Ahn et al. (2014): the different kinds of violations

of rationality appear to correlate with one another, and failures of symmetry (Ville axiom) are

more prevalent than violations of the weak axiom.

This is the paper’s outline. Section 2 presents the primitives of our analysis and the model.

Section 3 presents the main equivalence result between the RP and the SMN approaches. Section

4 expands the previous analysis and presents a convergence result between the Afriat efficiency

index and a function of the Slutsky error matrix. Section 5 extends our previous analysis to

nondeterministic environments, in particular, it provides new results regarding the stochastic

variant of the SMN approach. Section 6 develops and application using experimental data and

the tools developed in the paper. Finally, we present a brief literature review in Section 7 and

conclude in Section 8.

2 The Model: Testing Rationality with Limited Datasets

Our primitive is a finite array of prices, wealth levels, and demand choicesOK = {(pk, wk), xk}Kk=1

for an individual or decision unit. The observation xk ∈ RL+ is a L dimensional vector of

quantities that we observed being chosen by the consumer at the price-wealth pair (pk, wk) ∈
RL++ × R++. We allow that the consumer may or may not be rational in her choices.

The consumption set is RL+, so the finiteness of the observed data does not mean that the

consumer chooses from finitely-many options. Rather, our problem is that, as analysts, we

can observe only a finite number of price-wealth pairs with their corresponding choices. There

might be, in addition, instances of measurement error, so that x ∈ RL×K is the result of a data

generating process as described in section (5).

Consider a demand function x : P ×W 7→ RL+, going from Z = P ×W , a compact space

of price-wealth pairs (p, w), P ⊆ RL++, W ⊆ R++, to the consumption set. This demand is

a deterministic choice rule that represents the behavior of a consumer at a given price-wealth

pair. The demand functions considered can be thought (without loss of generality) to belong to

a closed and bounded set of demand functions X (Z) ⊂ C1(Z,RL). Indeed, we also assume that

this is a compact set.

Definition 1. Data Generating Demand Function (DGDF). We say that a demand function

x ∈ X is a DGDF of OK = {pk, wk, xk}Kk=1 if xk = x(pk, wk) for all k ∈ {1, · · · ,K}.
2In fact the set of extensions in our work is the same as the set of predicitions in theirs.
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We say that x ∈ X is the “true” DGDF if for any dataset OK or “sample” of individual

choices for a given price-wealth situation (pk, wk) ∈ P ×W , it is the case that x ∈ X is the

unique function x : P × W → RL+ such that xk = x(pk, wk) for all k ∈ {1, · · · ,K} for all

OK . For example, a true DGDF does not exists if we observe two different choices for the same

price-wealth situation, hence excluding the case of choice correspondences at present (it will be

allowed in our stochastic extension in the sequel). In addition, we are limiting the first part of

our analysis to cases where OK is such that there is no pkxk = pmxm for any k,m ∈ {1, · · · ,K}.
We also assume that Walras’ law holds throughout, for all OK such that pkxk = wk and all

x ∈ X (i.e., px(p, w) = w for all (p, w) ∈ P ×W ). Behaviorally, when we face deterministic

choice that fulfills Walras’ law, we are concerned with testing whether OK can be rationalized

by a locally non satiated strictly convex preference relation.

In addition, we need a second ingredient, that of the extensions of a finite dataset OK . Every

finite dataset OK has an associated set of functions that describe all possible extensions, which

are also elements of X (Z).

Definition 2. Extensions of a consumer’s dataset. We say that a subset of demand functions

XK(Z) ⊆ X (Z) is the set of extensions of a dataset OK when XK(Z) = {x ∈ X (Z)|xk =

x(pk, wk) and (pk, wk) ∈ Z ∀{pk, wk, xk} ∈ OK}.

The set of extensions is nonempty for all OK for K finite when the sampling scheme from Z
is done without repetition. The true DGDF of OK , x ∈ XK(Z) belongs to the set of extensions

for all K > 0.

2.1 RP and SMN Approaches to Test Rationality

The RP (revealed preference) approach to testing and measuring rationality started with the

ground-breaking work of Afriat (1973), which consists of two steps: expressing the utility maxi-

mization procedure subject to a budget constraint (a set of linear inequalities), and using quan-

tifier reduction techniques to obtain acyclicity conditions over a dataset OK . If a dataset OK

is compatible with the system of inequalities, we say that the dataset can be rationalized. Oth-

erwise, the hypothesis of rational decision making is rejected for the given sample of observed

choices. This is a binary procedure. However, when attempting to evaluate by how much a

dataset OK departs from being rationalizable, many paths can be followed. In fact, there is a

large literature of measuring departures from rationality in finite datasets. We refer to all those

that share the common feature that their measures are a function of the revealed demand cycles

CD,T for T ≥ 2, defined next, as RP measures of rationality.

Definition 3. (Revealed demand cycle) A Revealed demand cycle CD,T is a pair of sequences

{pt, xt}Tt=0 where {xt}Tt=0 is a sequence of choices and {pt}Tt=0 is a sequence of prices such that

x0 = xT and pt[xt − xt−1] > 0 for all t ∈ {1, · · · , T}.3

Thus, if we can find a revealed demand cycle CD,T for T ≥ 2, then we have a violation of

the strong axiom of revealed preference (SARP). Namely, we define the relation R as follows:

xtRxt−1 whenever ptxt > ptxt−1, which is read as xt being “directly and strictly revealed

preferred” to xt−1. Also, define the relation R as follows: xtRxs whenever one can find a

3We sometimes write x(t) = xt and p(t) = pt for all t ∈ {0, · · · , T} and T ∈ N+. Recall also that we assume
Walras’ law: ptxt = wt for all t.
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sequence xtRx1Rx2R · · ·xnRxs, which we read as xt being “strictly revealed preferred” to xs.

It is clear that, in CD,T , we have xTRxT−1RxT−2 · · ·x1Rx0, which implies that xTRx1, but

since x0 = xT , we also have x1RxT , thus violating SARP (i.e., SARP means that if xkRxm then

it cannot be the case that xmRxk for all (pk, xk), (pm, xm) ∈ OK).

The most well-known measure in the RP approach is the Afriat index:

Definition 4. (Afriat’s index) The Afriat efficiency index of a dataset OK , with at least one

CD,T with T ≥ 2 is:

G = supCD,T {mint∈{0,··· ,T}{pt[xt − xt−1]/[ptxt]}|(pt, xt) ∈ CD,T },

and zero otherwise.

Afriat’s index is such that G ∈ [0, 1] and measures the “loss of efficiency” or distance from

a rational behavior benchmark: the larger it is, the larger gap between actual expenditure and

expenditure on a nonchosen bundle that becomes chosen for different prices, suggesting strong

swings of (irrational) behavior. For a fixed cycle CD,T we call mint∈{0,··· ,T}{pt[xt−xt−1]/[ptxt]}
(pt, xt) ∈ CD,T the slope of the cycle.

A more recent measure of rationality is the Money Pump Index (henceforth, MPI). It was

formulated by Echenique et al. (2011).

Definition 5. (MPI Index) The MPI is defined as

MPI = maxCD,T {
T∑
t=1

pt[xt − xt−1]/

T∑
t=1

ptxt|(pt, xt) ∈ CD,T }.

The MPI also yields values in [0, 1] and it builds on Afriat’s “inefficiencies” to estimate the

money pump required by the consumer in order to avoid instances of irrationality.

The SMN (Slutsky matrix norm) approach, developed in Aguiar and Serrano (2014), consists

of measuring the departures from rationality by computing a norm of the smallest perturbing

error matrix function E such that S + E is a rational Slutsky matrix. This approach requires

functional data (i.e., the knowledge of the true DGDF). This makes the approach suited for

studying the structure of bounded rationality models from a theoretical point of view. However,

as will be detailed in the sequel, the approach is flexible enough to allow simple extensions to

be applied in cases where we have access to a finite dataset.

Definition 6. (SMN approach) The measure of bounded rationality for a given Slutsky matrix

function S is

d(S) = min{||E|| : S + E satisfies the Slutsky regularity conditions}.

An earlier approach, also based on the Slutsky matrix, is proposed in the work of Jerison

and Jerison (2012), where a local measure of departures from rationality is proposed in the form

of a family of indices.

Definition 7. (JJ-Index) The Jerison and Jerison index is defined as

ι({vt}Tt=0, S(p, w)) =
1

T

T∑
t=1

vt′S(p, w)[vt − vt−1],
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where S(p, w) is the Slutsky matrix evaluated at a reference point (p, w) ∈ P ×W and {vt}Tt=0

is a collection of vt ∈ RL vectors such that v0 = vT .

This index provides a direct connection between the Slutsky matrix and the revealed pref-

erence cycles. It measures violations of the Slutsky properties at a price-wealth reference point

and a neighborhood thereof.

2.2 Ville Cycles and Revealed Demand Cycles

One central question that we tackle is how the RP approach measures of departures from ratio-

nality fare in comparison with the SMN of a demand function. The key to do this is to draw

a connection between the revealed demand cycles from finite data and the Ville cycles and the

Weak WARP defined for infinite data.

Roughly, recall that the symmetry of the Slutsky matrix function is equivalent to the Ville

Axiom of Revealed Preference (VARP) (Hurwicz and Richter (1979) or HR henceforth). To

state this axiom, we need to define a real income path.

Definition 8. (Real income path). A real income path consists of both a wealth path w :

[0, b] 7→ W , and a price path p : [0, b] 7→ P , having that (w(τ), p(τ)) is a piecewise continuously

differentiable path in Z.

Thus, we are allowing for continuity of the derivative to fail at a countable subset of points.

Jerison and Jerison (1992) define a rising real income path whenever (∂w∂τ (τ), ∂p∂τ (τ)) exist, lead-

ing to ∂w
∂τ (τ) > ∂p

∂τ (τ)′xi(p(τ), w(τ)). A Ville cycle is a rising real income path such that

(w(0), p(0)) = (w(b), p(b)).

We define a Ville Cycle as follows:

Definition 9. (Ville cycle) A Ville Cycle CV (S),b is a pair of functions (p(τ), x(τ)) for τ ∈ [0, b]

for some b > 0 where x is a S continuously differentiable commodity path x : [0, b] → RL+
such that x(0) = x(b) and x ∈ CS([0, b];RL+) for S ≥ 1 and p(τ)∂x(τ)∂τ > 0 almost everywhere

inτ ∈ [0, b], for any piecewise continuous price path p : [0, b]→ RL++ such that p(τ)x(τ) = w(τ).

Observe that if there is a rising real income situation ∂w
∂τ (τ) > ∂p

∂τ (τ)x(p(τ), w(τ)), and the

price-wealth path forms a cycle (p(0), w(0)) = (p(b), w(b)) then this situation is equivalent (al-

most everywhere) to p(τ)∂x(τ)∂τ > 0 for all τ ∈ [0, b] since ∂w
∂τ (τ) = p(τ)∂x(τ)∂τ + ∂p

∂τ (τ)x(p(τ), w(τ)).

Axiom 1. Ville Axiom of revealed preference (VARP). A demand function x ∈ X is said to

satisfy VARP if it does not have a Ville cycle CV (S),b for all S ≥ 1 and b > 0.

Next, we state the weak version of WARP, which is equivalent to the NSD of the Slutsky

matrix.

Axiom 2. Weak version of the weak axiom of revealed preference (Weak WARP).4 We say that

a demand function x ∈ X satisfies Weak WARP if when we have px(p, w) ≤ w then it follows

that px(p, w) ≥ w.

Observe that when we assume that a DGDF exists (i.e., we rule out nondeterministic choice)

and with the restrictions of the type we have made on OK then Weak WARP is simplified. In

4The strict version of the weak axiom of revealed preference says that ptxt ≥ ptxs then psxt > psxs.
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fact, for our purposes, we take Weak WARP to require this: if px(p, w) < w then px(p, w) > w

when (p, w) 6= (p, w).

The Wald Axiom works on a special kind of dataset where Walras’ law is imposed upon the

consumer. One can force Walras’ law by forcing the experimental subject to choose from the

budget hyperplane with the requirement that wealth remains fixed across trials. One example

of an OK to test the Wald axiom is such pkxk = w for all k ∈ {1, · · · ,K}. We state the Wald

Axiom as follows: pkx(pl, w) < w implies x(pl, w) > w.

3 Connecting the SMN and RP Approaches

We are ready to make the connection between the finite data case and the infinite data case.

The integrability conditions provided by the Frobenius theorem are of a global nature in the

sense that they work for any region of the price-wealth space Z ⊆ P ×W . Aguiar and Serrano

(2014) prove that with functional data (i.e., if we observe the actual DGDF), we can measure the

size of bounded rationality by means of the norm of a perturbation that converts any behavioral

Slutsky matrix into a rational Slutsky matrix. It follows that a global connection between the

RP and the SMN approaches must rely on how to extend a dataset OK = {pk, wk, xk}Kk=0 to the

whole region Z. Again we can allow that an element of the set of possible extensions of the choice

function or walrasian demand goes through the data while fulfilling the minimal conditions of

continuous differentiability and Walras’ law. The set of extensions can be very large, in fact it

will generally be infinite. So our first interest is to know if a dataset that violates SARP, when

extended, produces a Slutsky matrix function that is nonrational. Also, we are interested in

the question of whether a demand function with a nonrational Slutsky matrix will be able to

generate a dataset that violates SARP. The answer in the affirmative will be provided by our

main result in this section.

Furthermore, since evidence shows that GARP is routinely violated by a significant fraction

of subjects in experimental studies, there is an increasing need to classify experimental datasets

about consumer behavior in a useful way in order to understand how rationality is being violated.

The SMN approach provides a natural way to do this since it can be decomposed additively in

terms of the intensity of violations of the Slutsky regularity conditions (i.e., symmetry, singularity

in prices, and negative semidefiniteness). As pointed out in Aguiar and Serrano (2014),

• (i) If WARP holds then ||Eπ|| = 0 and ||Eν || = 0.

• (ii) If the Ville Axiom holds then ||Eσ|| = 0.

• (iii) If no money illusion (homogeneity of degree zero) holds then ||Eπ|| = 0.

• (iv) If the Wald axiom holds then ||Eν || = 0.

In this section we also establish that this decomposition remains meaningful in finite datasets.

The approach we take is to establish the relationship between the presence of revealed demand

cycles and the behavioral axioms on the data generating demand function (DGDF). As a con-

sequence, we can establish the connection with the SMN for the true DGDF (i.e., through the

norm ||E||).
This is the main result of this section:
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Theorem 1. Testing rationality of a limited dataset OK is equivalent in the SMN and the RP

approaches.

Moreover, in the decomposition of the Slutsky matrix norm for the true DGDF, ||E||2 =

||Eσ||2 > 0 if there are CD,T for T ≥ 3 and no CD,T for T = 2; and ||E||2 = ||Eπ||2+ ||Eν ||2 > 0

if there are CD,T for T = 2 and no CD,T for T ≥ 3.5

The structure of the proof is as follows. First, we connect revealed demand cycles with

axioms of consumer theory. This is done in Lemma 1 and Proposition 1, both stated and proved

below. After that connection is established, Proposition 2 links types of revealed demand cycles

to properties of the Slutsky matrix norm. All these results, which are the building blocks for

Theorem 1, are presented in the rest of the current section.

Indeed, our first lemma concerns Weak WARP:

Lemma 1. A given dataset OK with K ≥ 2 has at least a revealed demand cycle of order T = 2

if and only if all elements x ∈ XK(Z) of the set of extensions of the dataset violate Weak WARP.

Proof. First, we prove that if we observe a revealed demand cycle of size 2, CD,2, then we

have a violation of Weak WARP in the data generating demand function. Indeed, suppose we

can find a cycle CD,2 in a dataset OK for K ≥ 2. Then we observe that p2x2 > p2x1 and

p1x1 > p1x0. Since x0 = x2, we have p2x2 > p2x1 and p1x1 > p1x2 at the same time. Although

we do not know the true data generating demand function, it must be an element of the set of

extensions X T = {x ∈ X |xt = x(pt, ptxt),∀t ∈ {0, 1, 2}}. Then, it follows from Walras’ law that

ptxt = ptx(pt, wt) = wt for t = 0, 1, 2. It is straightforward to see that we have p2x(p1, w1) < w2

and p1x(p2, x2) < w1, which is a violation of Weak WARP. Thus the DGDF violates weak

WARP.

Conversely, if all elements x ∈ XK(Z) of the set of extensions of the dataset violate the Weak

WARP, then we can build a revealed demand cycle CD,2. To prove this, take the contrapositive,

if there is no CD,2 in OK then by Kihlstrom et al. (1976) there is a demand function x that

generates the data and satisfies Weak WARP, thus implying that not all x ∈ XK(Z) violate the

aforementioned axiom.

Corollary 1. A necessary and sufficient condition to observe a revealed demand cycle of order

T = 2 in some OK K ≥ 2 is that the generating demand function (DGDF) x ∈ X violates Weak

WARP.

Proof. If there is CD,2 then by the lemma (1) it follows that the true DGDF x ∈ X violates

Weak WARP because it has to be an element of the set of extensions XK(Z).

If the data generating demand function violates weak WARP, we can generate a set of

observations OK = {pk, wk, x(pk, wk)}Kk=1 for K ≥ 2 , where xk = x(pk, wk). By the violation

of weak WARP, there is a set OK K ≥ 2 such that if we have pkxk > pkxr and prxk < prxr

simultaneously for some pair (pk, xk), (pr, xr) ∈ OK , then we can build a revealed demand cycle

CD,2. First, note that we have ruled out the case pkxk = prxr in OK (i.e., we assume that

there exists a DGDF). Then we relabel the observation k as t = 0 and t = 2 and we let r be

t = 1, hence building the cycle CD,2 = {pt, xt}2t=0 that is a revealed demand cycle of size T = 2:

prxk < prxr leads to p1x0 < p1x1, and pkxk > pkxr leads to p2x2 > p2x1.

5If we observe also wealth, Walras’ law can be relaxed. Then we can separate violations of WARP into
violations of Homogeneity of degree zero from violations of the Wald Axiom, resulting in each matrix (Eσ , Eπ ,
and Eν) in the decomposition having potentially a nonzero norm when the other two have a zero norm.
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Next, Proposition 1 asserts that a necessary and sufficient condition to observe a revealed

demand cycle of size T ≥ 3 is that the data generating demand function contains at least one

Ville cycle CV,bS S ≥ 1.

Proposition 1. A given dataset OK with no cycle of order T = 2 with K ≥ 3 has at least

a revealed demand cycle CD,T of order T ≥ 3 only if all elements x ∈ XK(Z) of the set of

extensions of the dataset have a Ville Cycle CV (S),b for S ≥ 1 and b > 0. Furthermore, some

x ∈ x ∈ XK(Z) satisfy Weak WARP.

Let the DGDF satisfy weak WARP. Then, a sufficient condition to observe a revealed demand

cycle of order T ≥ 3 in some OK of size K ≥ 3 is that the generating demand function (DGDF)

x ∈ X has a Ville Cycle CV (S),b for S ≥ 1 and b > 0.

Proof. First, we prove necessity. Say we observe a finite dataset OK K ≥ 3, and we find a

revealed demand cycle CD,T = {pt, xt}Tt=0, for T ≥ 3. Consider X T ⊆ X to be the subset of

demand functions that are consistent with the observed decisions:

X T = {x ∈ X ([0, b]) : xt = x(pt, ptxt) = x(τt) ∀t ∈ {0, · · · , T} τt ∈ [0, b]}.

We know that the DGDF must be an element of X T by Walras’ law since ptxt = wt, so we

must prove that all elements of X T have at least one Ville Cycle CV (S),b for S ≥ 1. Assume to

the contrary that there is at least one x ∈ X T that satisfies the Ville axiom. In particular, this

implies that such a function can generate the dataset OK and at the same time exhibit no Ville

cycles.

The absence of Ville cycles CV (S),b for S ≥ 1 implies by HR that there is an integrating

factor λ(x(τ)) that is positive for all τ ∈ [0, b] and a function z : x([0, b]) → R such that
∂z(τ)
∂τ = λ(τ)p(τ)′ ∂x(τ)∂τ , with λ(τ)p(τ) = ∇xz(x(τ)) and with the property that x(0) = x0, x(1) =

x1, · · · , x(T ) = xT and x(0) = x(T ) and similarly p(τ) goes through all observed prices. Let the

distance between observations in the revealed demand cycle define the length of the intervals of

the grid τt+1 − τt = ||xt+1 − xt||RLand fix τ0 = 0 and define recursively τt for t ≥ 1 (i.e., define

b =
∑T−1
t=0 ||xt+1 − xt||RL).

Integrating along the path, we have
´ τT
0

∂z(τ)
∂τ dτ =

´ τT
0

λ(τ)[p(τ)∂x(τ)∂τ ]dτ = z(x(T ))−z(x(0)) =

0 by the observation that xT = x0. However, by linearity of the integral over an interval, we

have´ τT
0

∂z(τ)
∂τ dτ =

´ τ1
0

∂z(τ)
∂τ dτ +

´ τ2
τ1

∂z(τ)
∂τ dτ + · · ·+

´ τT
τT−1

∂z(τ)
∂τ dτ = 0.

Recall that by definition,
´ τt
τt−1

∂z(τ)
∂τ dτ = z(xt)− z(xt−1). Now, since we have ptxt > ptxt−1

for all t ∈ {0, · · · , T} and T ≥ 3 and by assumption there are no cycles CD,2 (T = 2). Then there

is a concave utility function z (in fact, strictly concave since we ruled out revealed indifference)

such that ptxt > ptxt−1 ⇐⇒ z(xt) − z(xt−1) > 0 which implies that
∑T−1
t=0

´ τt+1

τt

∂z(τ)
∂τ dτ =∑T−1

t=0 [z(xt+1) − z(xt)] > 0. This contradicts the result that
´ τT
0

∂z(τ)
∂τ dτ = z(xT ) − z(x0) = 0

since both quantities are numerically equivalent. Therefore, each x ∈ X T violates the Ville

axiom so the DGDF must have at least one Ville cycle CV,bS for S ≥ 1 and some b > 0. That at

least an extension x satisfies Weak WARP follows from Lemma 1, given the absence of demand

cycles of size 2.

If all elements x ∈ XK of the set of extensions violate the Ville Axiom and there is a x∗ ∈ XK

that satisfies Weak WARP, then there is at least a CD,T for T ≥ 3 and no CD,T with T = 2. The

latter follows from Lemma 1. To prove the former, we argue by contradiction. That is, suppose

9



there is no CD,T for T ≥ 2. Then we conclude by Chiappori & Rochet (1987) that if there is no

cycle then there is at least one x ∈ X T that satisfies the Ville Axiom and Weak WARP.

A related result follows, linking the previous proposition (Proposition 1) to the DGDF.

Corollary 2. Let the DGDF satisfy weak WARP. Then, a necessary and sufficient condition to

observe a revealed demand cycle of order T ≥ 3 in some OK of size K ≥ 3 is that the generating

demand function (DGDF) x ∈ X has a Ville Cycle CV (S),b for S ≥ 1 and b > 0.

Proof. First, we prove sufficiency. If the DGDF has a Ville Cycle CV (S),b for S ≥ 1, then we

have p(τ)∂x(τ)∂τ > 0 for τ ∈ [0, b] almost everywhere. Partition the interval [0, b] into T+1 equally

spaced knots such that 0 = τ0 < τ1 < τ2 < · · · < τT−1 < τT = b. Denote a sequence of wealth

levels by w(τt) = wt and a corresponding sequence of prices p(τt) = pt, with τt = τt−1 + h for

h > 0. By the existence of the Ville cycle, (p(0), w(0)) = (pT , wT ) and (p(b), w(b)) = (p0, w0)

with (pT , wT ) = (p0, w0).

Take the first order approximation of the derivative ∂x(τ)
∂τ |τ=τT = [xT−xT−1]

h + 1·o(h) for

1 = (1, · · · 1)′ ∈ RL.

Then we have pT ′ [x
T−xT−1]

h + o(h) > 0, and we can do the same for τT−s for s ∈ {1, · · ·T}
and multiply by h > 0 so that

ptxt + o(h2) > ptxt−1 for t ∈ {1, · · ·T}.
Since we fix h, we can makeo(h2) to be small enough so that we have:

ptxt > ptxt−1 for t ∈ {1, · · ·T} which gives rise to the cycle, by defining

ptxt > ptxt−1 ⇐⇒ xtRxt−1. Furthermore, by noticing that xT = x0 by assumption, we

conclude that there is a revealed demand cycle of size T (CD,T ):

xTRxT−1RxT−2 · · ·x2Rx1RxT , which means that the generated data set {pt, xt}Tt=0 violates

SARP. From Lemma 1, if the DGDF satisfies weak WARP then T ≥ 3.

Sufficiency follows from Proposition 1.

The necessity part of this result uses a smooth version of Nishimura et al. (2013) decision

making environments when we are focusing on a set of choice functions that are identified with

a particular subset of the set of Walrasian demand functions (X ). It is also worth recalling that

by HR we know that the absence of Ville cycles does not imply weak WARP nor does weak

WARP imply the Ville axiom. But our result shows that when there is a Ville cycle, it can only

guarantee cycles of size T ≥ 3 if WARP holds and we can generate cycles of T = 2 when WARP

does not hold.

We proceed to draw connections between revealed demand cycles and properties of the Slut-

sky matrix norm:

Proposition 2. Any given dataset OK = {pk, wk, xk}Kk=1 for K ≥ 2 contains at least one

revealed demand cycle if and only if all elements x ∈ XK in the set of extensions have an

associated Slutsky matrix norm error that is non zero.

Proof. Suppose that all elements x ∈ XK in the set of extensions have an associated Slutsky

matrix norm error that is non zero. Then the associated dataset OK contains at least one

cycle. To show this we use the contrapositive. When there are no revealed demand cycles CD,T

contained in OK , then OK satisfies SARP. By Chiappori & Rochet (1987) and Lee & Wong

(2005), we conclude that there is at least one extension x ∈ XK that can be generated by utility

maximization and thus has a SMN that is zero.
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For the converse, if we observe a dataset of K ≥ 3 observations we define the set of walrasian

demands passing through each of the observations, a subset of the set X (Z):

XK(Z) = {x ∈ X (Z)|xk = x(pk, wk) ∀k ∈ {1, · · · ,K}}

This set is nonempty when the dataset contains no repeated points or when two observations

do not have simultaneously pkxk = pmxm when wk 6= wm, so there is no revealed indifference.

We argue by contradiction. Assume that the dataset contains a revealed demand cycle, yet all

x ∈ XL(Z) have a Slutsky matrix norm ||E|| = 0. Then, pick any of the x ∈ XL(Z) with ||E|| = 0.

Then, by Hurwicz and Uzawa (1971), we know there exists a locally nonsatiated continuous

utility function defined on the region x(Z) ⊆ X,u : X(Z) 7→ R such that x(z) for z ∈ Z, x ∈ XL is

the unique maximizer of u subject to the budget constraint {px(p, w) ≤ w|(p, w) ∈ Z ⊆ P ×W}.
By Kim and Richter (1986) and Mas-Colell (1974), this implies that there is a strictly concave

locally non satiated utility function such that u(xt−1) < u(xt) + Du(xt)[xt−1 − xt]. Since the

demand x ∈ XL(Z) is the maximizer of the utility function u, we have Du(xt) = λtpt for

λt > 0 by local non satiation for all t ∈ T . This implies u(xt−1) < u(xt) + λtpt[xt−1 − xt].
Since we have a revealed demand cycle, we have that pt[xt−1 − xt] < 0 for all t, which implies

u(xt) > u(xt−1) for t ∈ {1, · · · , T}. However, the presence of the cycle in the data set also

implies that u(xT ) = u(x0), given that xT = x0, which is a contradiction. Therefore, every

element x ∈ XL(Z) must have a positive Slutsky matrix norm ||E|| > 0.

If we have a dataset with K = 2 observations, again we argue by contradiction. We have

a revealed demand cycle of size T = 2, CD,2 and ||E|| = 0, then Eν = 0 which implies that

weak WARP must hold by Kihlstrom et al. (1976). This is a contradiction, since we have that

p2x2 > p2x1 and p1x1 > p1x0 with (p0, x0) = (p2, x2), implying a violation of Weak WARP.

Corollary 3. A necessary and sufficient condition for some dataset OK = {pk, wk, xk}Kk=1 for

K ≥ 2 observations to contain at least one revealed demand cycle is that the true DGDF x has

an associated Slutsky matrix norm error that is non zero.

Proof. Suppose a demand function x ∈ X (Z) has a Slutsky matrix function with an associated

Slutsky matrix norm ||E|| > 0. Following Aguiar and Serrano (2014) , the norm of E can be

decomposed into the sum of three effects, corresponding to the violations of symmetry (Eσ),

singularity (Eπ), and negative semidefiniteness (Eν). Then, it follows that at least one of the

norms of Eσ, Eπ, Eν is not zero. If ||Eσ|| > 0, by Darboux theorem, we can build a Ville cycle

(details can be found in HR). Then, we can discretize the cycle to obtain a revealed demand cycle

by proposition 1. If ||Eπ|| > 0 or ||Eν || > 0, the Slutsky matrix is not negative semidefinite.

Then, by Kihlstrom et al. (1976) this is equivalent to a violation of Weak WARP, which implies

a revealed demand cycle of size T = 2.

The converse follows from Proposition 2.

Our argument in the previous proof applies the reasoning of Afriat’s and Varian’s theorems in

a slightly different manner by showing that there cannot exists a Walrasian demand completion

x ∈ XK(Z) that at the same time can be rationalized by a utility function and made compatible

with a dataset that contains a revealed demand cycle.

This result implies that, when there is a dataset that can be rationalized in the sense of

Afriat then we can find at least one demand function completion that can be rationalized in the
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sense of Hurwicz and Uzawa (1971).

In fact, for this rational Walrasian demand function completion of the data, we know that

there cannot be revealed demand cycles in the region Z ⊆ P ×W of any size.

Remark 1. This result uses Hurwicz and Uzawa (1971) integrability theorem to define a utility

function for an arbitrary compact set Z ⊆ P ×W instead of locally relying on a specific cycle.

In other words, for the case of a dataset that can be rationalized, there is at least one element

x ∈ XK(Z) that has ||E|| = 0. Therefore, we can identify such an element x ∈ XK(Z)

as the outcome of maximizing a unique concave utility function. Hence, we can think of an

injection between the set of rational extensions RK = {x ∈ XK(Z)| ||E|| = 0} and U(Z) where

Z = ∪x∈RLx(Z) a set of utility functions defined on the union of ranges of all demands that can

be rationalized. This connects the problem of completing a choice function with the problem

of finding a multiple-utility representation when there is an observed incomplete order that is

transitive.

The global connection between the revealed preference and the Slutsky norm approaches

stated in Theorem 1 says that testing SARP and checking that ||E|| = 0 boils down to the same

thing. In fact, suppose we design a binary test that gives 1 as its output if a dataset satisfies

SARP and 0 otherwise, and another binary test that gives 1 as its output when at least one of

the elements x ∈ XL(Z) has a Slutsky matrix norm ||E|| = 0 and 0 otherwise. Then, both tests

are equivalent for the same dataset, and an output of 1 signifies that the dataset OK can be

rationalized.

The actual way of testing rationality in this setting is captured by the following result.

Corollary 4. A SMN test for rationality in limited datasets corresponds to the solution to the

optimization problem γ = minx∈XK(Z)||Ex||2, where γ∗ = 0 means that the dataset can be

rationalized and otherwise it cannot, with γ∗ = ||Eσ||2 + ||Eπ||2 + ||Eν ||2 > 0 the lower bound

of the true value of ||E||2 for the underlying DGDF. Moreover, γ∗ = ||Eσ||2 > 0 when there is a

CD,T for T ≥ 3 and no CD,T with T = 2, and γ∗ = ||Eπ||2 + ||Eν ||2 > 0 when there is a CD,T

for T = 2 and no CD,T ≥ 3.

Proof. Observe that the set of extensions XK(Z) = {x ∈ X (Z)|xk = x(pk, wk) ∀k ∈ {1, · · · ,K}}
is compact and the objective function is continuous. Then, there is at least one solution to

the optimization problem. By Theorem 1, if OK is generated by a rational DGDF, then

Ex
r

= 0 for some rational demand xr ∈ XK(Z) and since ||Ex|| ≥ 0 for all x ∈ XK(Z),

then xr = argminx∈XK(Z)||Ex||2 . When OK is not generated by a rational DGDF, then all

x ∈ XK(Z) have ||E|| > 0 and by construction the value γ∗ > 0 is the lower bound of the true

value of the Slutsky error norm, still part of the set, by compactness. The “moreover” statement

dealing with the decomposition of the norm in the different effects follows from Lemma 1 and

Proposition 1.

A second conclusion of the proof of Proposition 2 is that there may be infinitely-many ways

of extending a finite dataset. Therefore, the analyst needs a set of criteria to choose a reasonable

measure of departures from rationality from the many that are available. This problem can be

addressed transparently in the framework of the Slutsky matrix norm since all possible extensions

of the data are members of the same set X . Therefore we can state a set of axioms for the analysts

that will serve to choose a reasonable measure of bounded rationality with finite data. In the case
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of the previous corollary, we have chosen the measure that minimizes the measured violations

of rationality. Note that for each infinite dataset (i.e., each demand function), there is only one

Slutsky matrix norm associated with the observations.

Finally, with an observed revealed demand cycle, by Proposition 1 we know that there exists

at least one CV (S),b Ville Cycle for S ≥ 1 in the DGDF. Now, we show that we can construct a

CV (1),b Ville cycle from a revealed demand cycle by means of an extension of the dataset using

a quadratic spline. In fact, this is the shortest smooth Ville Cycle that does the job.

Corollary 5. There is at least one CV (1),b cycle for a quadratic spline extension x ∈ XL where

OK has a CD,T for T ≥ 3.

Proof. See the appendix (8)

4 Further Specifics on the Uncovered Connections

This section details an approximate method to calculate the Slutsky matrix norm in finite

datasets, relates the approach with the Varian supporting sets and with the work of Jerison-

Jerison , and establishes a convergence result as the dataset size goes to infinity.

4.1 An Approximate Value of the Slutsky Matrix Norm

The previous results have the strong implication that, if the true DGDF violates one of the

axioms of revealed preference, then all of the extensions of OK for any K have a positive value

for the corresponding Slutsky matrix norm. Clearly, the actual value of the decomposition may

be also of interest, especially when this measure is monetized as in Aguiar and Serrano (2014).

In this case, we provide an upper bound (possibly not the sharpest one) that helps to compute

the error of the Slutsky matrix norm inherited from the error of the extension of a dataset.

Notice that these extensions are deterministic and they pass through all observed points, the

error is with respect to the true DGDF in a domain of interest assuming that the true DGDF is

sufficiently smooth.

Following Aguiar and Serrano (2014), we denote by a(x) = E the map that assigns to each

demand function the smallest (in the Frobenius norm sense) matrix that would make its Slutsky

matrix function inherit all the regularity properties. Also, the Gateaux derivative for the map

a(x) = E, is a linear operator, such that a′ = a′(x) = % ◦ s′ where s′(x, v) = Dpv + Dw[xv′],

along direction v ∈ C1(Z).

Proposition 3. For every OK , with x its true DGDF and xK ∈ XK(Z) with ||x − xK || ≤ ε.

Then ||a(x)− a(xK)|| ≤ ||a′|| · εK .

Proof. The intermediate value theorem for the Gateaux derivative between Banach spaces says

that ||a(x)− a(x̂)|| ≤ ||a′s|| · ||x− x̂||.
Let ||a(x)− a(x̂)|| = η, then η ≤ ||a′|| · ε, with

||a′|| ≤ ||%|| · ||s′||.

Remark 2. We note that a sharp upper bound for the norm of the map a can be estimated.

Notice that % is a projection map. Then by definition ||%|| ≤ 1 and ||s′|| =
||Dpv+Dw[xv′]||

||v|| ≤
||Dpv||
||v|| + ||Dw[xv′]||

||v|| . With the norm of differential operators under the norm chosen, then
||Dpv||
||v|| =
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1, ||Dw[xv′]||
||v|| ≤ κ. Where κ = ||x|| + ||Dw[x]||, because ||Dw[xv′]||

||v|| ≤ ||Dw[v]||·||x||
||v|| + ||Dw[x]||·||v||

||v|| =

||x||+ ||Dw[x]||. Observe that κ can be estimated using the interpolator x̂.

With this result in hand, we can generically know the upper an lower bounds for any extension

of a dataset OK and consequently a workable upper bound for the Slutsky matrix norm. The

idea here is to choose the fastest interpolator of a dataset OK . It follows directly that if the

interpolator is convergent when K →∞ then ||a(x)− a(xK)|| → 0.

4.2 The Jerison-Jerison Modified Slutsky Matrix Index, the Slutsky

Matrix Norm, and the Afriat Index

An important question is how the Slutsky matrix norm relates numerically to Afriat’s index.

The connection is established through the Jerison-Jerison Slutsky index.

Jerison and Jerison (2012) establish a remarkable conection between Afriat’s inefficiency cost

measure of irrationality and a “Slutsky index” (for us JJ index). Both coincide in a local ball

around some price and wealth reference point. This means that in principle one can unify two

traditions of testing rationality and mesuring the extent of the violations, namely the Afriat

approach and the statistical approach of testing the Slutsky conditions.

Here we revisit this result and show that their measure can be seen as a quadratic form

associated with the minimal correcting matrix that perturbs any observed Slutsky matrix and

makes it rational (as proved in Jerison and Jerison (1992), and in Aguiar and Serrano (2014)

for the general case). Our intent in this subsection is to establish the relation of the SMN norm

and by extension of the work of Jerison and Jerison (2012) with the Afriat index.

Ideally, we want a measure of violations of rationality that depends only on the departures

of rationality and on nothing else (i.e. on the matrix E and not on the matrix S). This is indeed

the case for the JJ index. We next prove a nice feature of the discrete JJ index that has not

been previously pointed out.

Lemma 2. The JJ index is equal to

ι({vt}Tt=1, S(p, w)) =
1

T

T∑
t=0

v′tS(p, w)[vt − vt−1] =
1

T

T∑
t=0

v′tE(p, w)[vt − vt−1],

where E is defined as the minimal perturbation matrix function that yields a rational Slutsky

matrix function.

Proof. Aguiar and Serrano (2014) prove that we can decompose any observed Slutsky matrix

in two components S = Sr + E. Then we can write ι({vt}Tt=1, S) = ι({vt}Tt=1, S
r(p, w) +

E(p, w)) at point (p, w). Then we observe that this index is linearly separable so we can write

ι({vt}Tt=1, S
r(p, w) +E(p, w)) = ι({vt}Tt=1, S

r(p, w)) + ι({vt}Tt=1, E(p, w)). Finally, we apply the

JJ index property that a rational Slutsky matrix has a zero index value. We conclude that

ι({vt}Tt=1, S(p, w)) = ι({vt}Tt=1, E(p, w)).

That is, this result shows that the JJ index is just a quadratic form associated with the

correction matrix E. Then we can see more clearly that the JJ index is directly related to

the Slutsky matrix norm approach. More importantly, this simple proof makes the connection

between the perturbation matrix E and Afriat’s cost inefficiency transparent.
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Furthermore, it allows us to write a useful decomposition of the JJ index, exploiting the

fact that the rational Slutsky matrix function is equal to Sr = S + E, where S is the observed

Slutsky matrix and E = Eσ + Eπ + Eν is the smallest (under the Frobenius norm) correcting

perturbation matrix function.6

Remark 3. The JJ index of any matrix S(p, w) can be decomposed as: ι({vt}Tt=1, E(p, w)) =

ι({vt}Tt=1, E
σ(p, w)) + ι({vt}Tt=1, E

π(p, w)) + ι({vt}Tt=1, E
ν(p, w)). Moreover, each component is

associated with cycles of different type and size. For instance, the Eσ(p, w) part is associated

with cycles of size T ≥ 3 while Eπ,ν(p, w) is associated with cycles of T = 2. Finally, if we

observe also wealth, then we can separate violations of WARP in violations of Homogeneity of

degree zero from the Wald Axiom.

4.3 Convergence Results

We now look at the case of continuous time or infinite datasets. We begin with a local result,

and then we provide a global connection as well.

Jerison and Jerison connect the JJ index with the Afriat index. Here we establish the

connection with the SMN using our previous result.

We define V T (εp) as the set of sequences of the type {vt}Tt=0 where vt ∈ V ⊂ RL, V is a

compact set, v0 = vT and T ≥ 1 is fixed. Additionally, defining pt = p+vt and |vt| = |p−pt| ≤ εp
for all t ∈ {0, · · · , T}, we require that the related cycle CD,T = {pt, wt, x(pt, wt)}Tt=0 is a revealed

demand cycle. Moreover, we are going to assume that |wt − w| ≤ εpη where η > max{v ∈
V | |vTx(p, w)|}. Let V

T (εp,η)
w be the set of cycles of the type {vt, ut}Tt=0 where ut = wt − w

such that |ut| ≤ εpη. Using this notation, we can rewrite the Afriat index of an RP cycle

as G((p, w) + V
T (εp,η)
w ) = sup{vt,ut}Tt=0∈V

T (εp,η){mint∈{0,··· ,T}{pt[xt − xt−1]/[ptxt]}|(p + vt, w +

utxt) = CD,T |(vt, ut) ∈ {vt, ut}Tt=0)} (i.e., the supremum over the Afriat inneficiency index if we

are allowed to sample price and wealth at will).

Proposition 4. Given a set of cycles V T (εp) and V
T (εp,η)
w then for a fixed T ≥ 1

limεp→0ε
−2
p G((p, w) + V T (εp,η)

w ) = sup{ι(v, E(p, w))/w : {vt}Tt=0 ∈ V T (εp)}.

Proof. It follows trivially from Jerison and Jerison (2012), due to lemma (2).

The result requires that the analyst be able to sample at will from prices and wealth and that

the Slutsky matrix be known at the reference point, which requires infinite data. In contrast, we

have been assuming in this paper that we are given a dataset OK so the sampling process is given.

Hence, this proposition should be seen mainly as a way to connect theoretically the traditional

RP Afriat inefficiency measure of rationality and the SMN approach in arbitrarily large datasets.

In words, it says that when the ratio εp → 0, the Afriat inefficiency index converges to zero at

the rate of ε−2p , in proportion to the supremum of the JJ index in the set of cycles considered.

The key assumption is that wealth across the path is such that |wt − w| ≤ εpη.

Another popular index of bounded rationality in finite datasets environments is the Money

Pump Index (MPI). Although we spare the reader with details here (included in a section of

6As detailed in Aguiar and Serrano (2014), this perturbation matrix can be written additively since we can
define recursively the corrected Slutsky matrices with symmetry Sσ = S+Eσ , symmetry and singularity in prices
Sσ,π = Sσ +Eπ and all the Slutsky regularity conditions Sr = Sσ,π,ν = Sσ,π +Eν where we add to the previous
requirements, negative semidefiniteness of the Slutsky matrix.
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the appendix – 8), it can be shown that locally both the MPI and the JJ index coincide. Also,

by Lemma 2, we immediately get a connection between the MPI index and the Slutsky Matrix

norm.

We close the subsection by going back to a global approach. Observe that XK ⊇ XK+1 for

any K,K + 1 with strict inclusion relation when the new observation K + 1 is not redundant.

Observe that if the sampling scheme is done over some region of interest Z with a probabilistic

measure with µ(E) > 0 for all E ∈ B(Z) the parts of the sigma-algebra of Z, then we have

that when K → ∞ then since x∗ ∈ XK(Z) then x∗ ∈ ∩KXK . Finally, if x ∈ ∩KXK then

x ∈ XK for all K, and by the sampling scheme it means that x∗(p, w) = x for all (p, w, x) ∈ OK

for some K. This implies that any two x, y ∈ ∩KXK are essentially equivalent: we say that

x∗ ≡ limK→∞XK is the unique limit of the sequence of extensions.

In sum, we have argued that:

Lemma 3. limK→∞XK → x∗, the true DGDF.

For each set there is a bracket of SMN values formed by γKmin = minx∈XK(Z)||Ex||2 and

γKmax = maxx∈XK(Z)||Ex||2. By the observation that {XK} is a decreasing sequence of sets, we

conclude that [γKmin, γ
K
max] ⊇ [γK+1

min , γ
K+1
max ], and by the previous lemma, limK→∞[γKmin, γ

K
max] =

γ∗, the true measure of bounded rationality.

5 The Size of Bounded Rationality with Limited Datasets

and Noise

The extension of the RP approach to datasets that allow for indifferences (with data generating

demand correspondences –DGDC) instead of functions is straightforward. However, the theory

does not extend well when there is measurement error in the observations. Even in the simplest

applications, the asymptotic theory is not known and practitioners use simulation techniques

under the assumption of asymptotic consistency of tests of rationality. Partial identification is

necessary in any case. The main reason is that the RP approach is a system of inequalities that

is not easily portable when dealing with stochastic environments.

In this section we propose a smoother approach to this problem. It is an extension of the

SMN approach for the deterministic case proposed in Aguiar and Serrano (2014). Let F be a

closed and bounded set of demand correspondences.

Definition 10. (Data Generating Demand Correspondence -DGDC-). A demand correspon-

dence X ∈ F is a DGDC of OK = {pk, wk, xk}Kk=1 if xk ∈ x(pk, wk) for all k ∈ {1, · · · ,K}.

We say that X ∈ F is the true DGDC if for any dataset OK or “sample” of individual

choices for a given price-wealth situation (pk, wk) ∈ P ×W , it is the case that X ∈ F is the

Walrasian demand X : Z → 2R
L
+/∅ such that xk ∈ X(pk, wk) for all k ∈ {1, · · · ,K} for all

OK . A true DGDC always exists. Of course, we have to impose some restrictions to have a

workable method of measuring rationality. We assume henceforth, that the DGDC is upper

hemicontinuous, convex-valued, compact-valued, and fulfills Walras’ law. Thanks to Kim and

Richter (1986) and Mas-Colell (1974), this implies that X ∈ Xcan be generated by maximizing

a strict order �∈ RL+ × RL+ that is convex, monotone, and upper hemicontinuous. In practice,
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this restriction is very weak in the case of finite data (i.e., to reject the assumption that X is

compact-valued will require to observe all possible choices).

5.1 A Smooth Test of Rationality for Correspondences

Mas-Colell (1974) and Grodal (1974) prove the density of smooth rational demand functions in

the set of rational demand correspondences, and this result is relevant for the class considered

here.7 Thus, we know that rational demand correspondences admit a smooth rational demand

function approximation. Formally, a demand correspondence can be generated by a convex and

monotone rational preference relation if and only if for every η > 0 there exists a smooth demand

function that can be rationalized by a strictly convex, strictly monotone and smooth preference

relation such that dX(xr,X) < η. The norm used in Mas-Colell (1974) is the Hausdorff distance

defined on the set of graphs of the correspondences (dX : X×X→ R+). Moreover, when dealing

with the subset of demand functions, this metric is equivalent to the sup metric with associated

norm || · ||∞.8

It turns out that the density of smooth demands in the set of the demand correspondences

that we consider is preserved in the bounded rationality case. In fact, we first point out that we

can approximate X ∈ X with a smooth demand function x ∈ X ∩ C∞ arbitrarily closely.

Claim 1. For every η > 0 and X ∈ X there exists a smooth demand function x ∈ X ∩ C∞ such

that dX(x,X) ≤ η.

Proof. First, we observe that:

(i) Thanks to De Blasi and Myjak (1986), we know that for every υ1 > 0 and X ∈ X, there

exists a continuous demand function x such that dX(x,X) < υ1 .

(ii) Thanks to Azagra and Cepedello(2004), we know that for every υ2 > 0 and x ∈ X (Z),

there exists a x∗ ∈ X ∩ C∞ such that ||x− x∗||∞ ≤ υ2.

Now, we observe that for X (Z) ⊂ X, the metric dX and the metric induced by || · ||∞ in

X (Z) are equivalent. Then, for every η > 0 and X ∈ X, there exists x ∈ X (Z) such that

dX(X, x) ≤ η/2 and x∗ ∈ X ∩ C∞ such that dX(x∗, x) ≤ η/2. By the triangle inequality, we

conclude that dX(x∗,X) ≤ dX(x∗, x) + dX(x,X) = η.

As seen in the previous proof, this result follows directly from known results in the literature,

but together with the surprising result of Mas-Colell (1974) and Grodal (1974), it provides the

technical basis to formulate a smooth test of rationality when a dataset OK has a DGDC.

In finite data, we define the empirical metric from the set of observations OK to the graph of

a demand correspondence, so we let X be the DGDC and observe that Gr(X(ZK)) = OK , so we

define the distance between two correspondences evaluated at a finite domain ZK = {pk, wk}Kk=1,

so the distance between the dataset OK generated by X and the dataset generated by U ∈ X is

dX(X(ZK),U(ZK)) = dH(OK , Gr(A(ZK))).

In particular, dX(X(ZK), y(ZK)) = maxk∈{1,··· ,K}||xk − y(pk, wk)||R < η when OK =

Gr(X(ZK)) admits a DGDF and y ∈ X is a demand function.

7Mas-Colell (1974) proves this under the closed convergence topology and using a norm defined on the set of
graphs of the correspondences.

8In our case, since we are interested in a finite data environment, we note that the (empirical) graph
of the DGDC is OK = {zk, xk}Kk=1, we let zk ∈ Z = P × W and xk ∈ A = RL+, with the norm

ρ((zk, ak), (zm, am)) = max{dZ(zk, zm), dA(ak, am)} in Z×A, and the distance defined as the Hausdorff metric
dX(X,Y ) = max{supa∈(X−1(A)×X(Z))infb∈(Y−1(A),Y (Z))ρ(a, b); supb∈(Z,Y (Z))infa∈(Z×X(Z))ρ(a, b)}.
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Lemma 4. A dataset OK has a rational DGDC X ∈ X if and only if for every η > 0 there is a

smooth demand x ∈ X ∩ C∞ such that dX(X(ZK), x(ZK)) < η and x can be rationalized.

Proof. If a dataset OK has a rational DGDC, then as a corollary from the Mas-Colell (1974) and

Grodal (1974) theorem stated above, there is at least one smooth demand x whose dX(X, x) < η.

So, by definition, dX(X(ZK), x(ZK)) < η since xk ∈ X(pk, wk).

Suppose now that for every η > 0 there is a smooth demand x ∈ X ∩ C∞ such that

dX(X(ZK), x(ZK)) < η and that x can be rationalized. Then, for a fixed η, there is a set

of smooth functions Xη = {x ∈ X ∩ C∞| dX(X(ZK), x(ZK)) < η}. Let Rη ⊆ Xη be the

subset of demands that can be rationalized (this subset is such that its closure cl(Rη) ⊆ R,

by Mas-Colell (1974) and Grodal (1974)). We have obtained a subset of the set of demand

correspondences that can be rationalized by a monotone and convex preference relation. By

definition, when η → 0, there is an element Xη ∈ cl(Rη) such that dX(X(ZK),Xη(ZK)) → 0.

Then, Xη → X0 (in the closed convergence topology sense) and X0 is a DGDC of OK that can

be rationalized.

Recalling the mapping a(x) = E for x ∈ X (Z), we are now ready to state the main theorem

of this subsection:

Theorem 2. OK can be rationalized if and only if for every η > 0, γ∗η = 0, where γ∗η =

minx∈Xη ||a(x)||2.

Proof. We first establish that for every η > 0, γ∗η = 0 if and only if there is an x ∈ Xη that can

be rationalized. In fact, if x can be rationalized, then a(x) = 0 and since ||a(x)|| ≥ 0 for all

x ∈ Xη, it follows that γ∗η = 0.

Conversely, if γ∗n = 0 then a(x) = 0. This implies that the Slutsky matrix of x fulfills the

regularity conditions, and by Hurwickz and Uzawa (1971), we conclude that x can be rationalized.

Then we use Lemma 4 to conclude that OK can be rationalized if and only if for every η > 0,

γ∗η = 0.

The practical advantage of the test proposed here is that it is smooth and that it does not

require to deal with correspondences. Moreover, there are also theoretical insights stemming

from the previous results. In particular, the approximation results for demand correspondences

using smooth demand functions provide a characterization of the role of revealed indifference in

the RP approach. In fact, in the setting we consider, the DGDC’s are of limited interest since

they can be approximated arbitrarily closely by smooth DGDF’s.

Indeed, for every η > 0, consider a dataset OX,K = {pk, wk,X(pk, wk)}Kk=1 generated by

X ∈ X. Then there is a dataset Ox,K = {pk, wk, x(pk, wk)}Kk=1, where x ∈ X ∩ C∞ and

dH(OX,K , Ox,K) ≤ η. In this sense, all the datasets OK that have a DGDC have a η−DGDF,

that is, all datasets generated by sampling a DGDC have an arbitrarily close dataset generated

by sampling a DGDF.

In sum, OX,K = {pk, wk,X(pk, wk)}Kk=1 almost admits a DGDF, or equivalently, it is almost

deterministic. Moreover, the results of Mas-Colell (1974) and Grodal (1974) say that if we can

find a rational demand correspondence that generates a dataset, there is an arbitrarily close

smooth rational demand function to the rational DGDC. This feature will become critical in

extending our theory to the noisy observations setting.
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However, a major drawback in the theory just presented is that it does not provide a practical

way of testing rationality, since the test is actually a family of tests indexed by η > 0. If a dataset

fails any of them, it cannot be rationalized, but to ensure that the dataset can be rationalized, it

must be the case that the test is passed for all η > 0. We will see in the sequel that this imposes

no additional complications in the case where the dataset is measured with error.

5.2 A Smooth Test with Noisy Observations

Consider a sampling procedure of Z = P ×W and a measurement device of the choices made

by the consumer in RL, which is subject to error. Notice we relax the positive restriction on

consumption: negative consumption means short sales of a good. This is done in order to simplify

the asymptotic theory (with some additional work, one can derive the asymptotic results for the

case of choice in a truncated space). We assume that there exists a joint probability density

function of choices and price-wealth situations: µ : RL ×Z → [0, 1]. We also assume that there

are two random variables that are square integrable, distributed according to µ, (X,Z) ∈ L2.

Definition 11. DGDP. We say that a random variable (X,Z), or alternatively a probability

distribution function µ, is a data generating demand process if O∗,K = {zk, xk}Kk=1 is the result

of stacking K independent draws from the pdf µ.

We will make some assumptions regarding the DGDP that allows us to link it to the definition

of DGDF. The key assumption is that the observed choices that are realizations of the CDF

associated with µ have the true DGDF as their mean.

Assumption 1. (A1) Mean-centered measurement error. E[X|Z] = x(Z) where x ∈ X (Z).

In particular, this assumption says that the random variable can be decomposed as X =

x(Z) +U with Z ⊥ U so xk = x(zk) +uk. In this sense, we can say that O∗,K has an underlying

DGDF since the observed choices are the sum of the images of a deterministic DGDF, evaluated

at the realized values of prices and wealth z ∈ Z plus the realizations of the random variable U

that correspond to the noise generated by the measuring device.

Remark 4. We do not consider the case where there is a DGDC X ∈ X such that xk = xk + uk

where xk ∈ X(xk) since in that case, given the results in the previous subsection, for every η > 0,

there is a smooth DGDF such that xk ≤ x(zk) + η + uk. Since η > 0 can be made arbitrarily

small and uk can be arbitrarily large then xk ' x(zk) + uk. Moreover, when dealing with finite

data, it is impossible to distinguish between the case of a DGDC with noise and the smooth

DGDF with noise, since we can as well write xk = x(zk) +uk with uk = ηk +uk for some ηk > 0

for all k ∈ {1, · · · ,K} where ||uk − uk||∞ ≤ η. This says that, given a finite dataset O∗,K ,

in order to test rationality, in the presence of mean-centered measurement error, we can limit

ourselves to test the existence of an underlying smooth DGDF.

The additional complexity of the dataset now considered, O∗,K , comes at a price. In par-

ticular, even if we observe all the realizations of the true DGDP µ we will not be able to say

for sure that the dataset can be rationalized. Rather, we will be able to assert, µ almost surely,

that the dataset has an underlying DGDF that can be rationalized. This is true for both the

RP and the SMN approaches.

In finite datasets, however, we will not be able to make either “sure” or “almost sure” state-

ments about the existence of a rational demand function. In fact, in finite data environments,
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we have to make a compromise, that takes the form of a rule that rejects or not rejects the

rationality hypothesis at a fixed confidence level. In other words, we are no longer able to decide

whether a dataset O∗,K can be rationalized or not but we can say that a α confidence level with

a certain statistical power (1− β) we can reject the null hypothesis that the underlying DGDF

x ∈ X ∩ C∞ can be rationalized. This is the well known statistical hypothesis testing. In what

follows, we are explicit about the connection of the statistical methodology to the notions of

system decidability used in the RP approach.

An estimator of x given a dataset O∗,K is called xK ∈ X to denote its dependence on the

number of draws.

Assumption 2. (A2) We assume that there exists a demand function xK ∈ X that is a uni-

formly consistent estimator of x. Formally, ||xK − x||∞ → 0.

Let γK = ||a(xK)||2. It is also relevant to describe the shape of the distribution of the

hypothesis test of rationality.

Assumption 3. (A3) The regularity conditions in Newey (1994) (Linearization, Stochastic

Equicontinuity and Mean-Square continuity) hold for (γK)1/2.

Lemma 5. Under Assumptions A1-A3, and under the null hypothesis that γ = 0, then
√
K
√
γK →d

|N (0, τ2)| a half-normal distribution as K →∞.

Proof. See Newey (1994) combined with the non-negativity of γ ≥ 0.

Equivalently, τ−2KγK →d χ2(1) where τ2 is the variance of the half-normal distribution

from the previous lemma.

We arrive at the main result of this subsection:

Theorem 3. Testing rationality of a limited dataset O∗,K with measurement error is equivalent

in the SMN and the RP approaches as K →∞. Moreover, its asymptotic distribution is known

under assumptions A1-A3. It is a Normal with mean zero and variance τ2, known up to a choice

of an estimator of the DGDF.

Proof. The first part of the statement follows trivially from Proposition 5 below and Theorem

(1). The second part follows from Lemma 5.

Again, recall that ||E|| = ||a(x)|| and the derivative of ||a(x)||2 in the direction of v evaluated

at x is Lx(v) = Dpv +Dw[xv′] (Aguiar & Serrano (2014)).

Proposition 5. Suppose A1 and A2 hold. Then, a dataset O∗,K can be rationalized almost

surely if and only if, when K → ∞, γK →p 0, where p denotes convergence with respect to the

true probability measure over DGDP µ, and the estimator xK converges uniformly to x.

Proof. First, observe that we know from Aguiar and Serrano (2014) that a is a closed map and

we have computed its derivative that we called Lv. Second, A1 allows us to ensure the existence

of a DGDF such that E[X|Z] = x(Z). If O∗,K can be rationalized, or equivalently when there

is an underlying DGDF x ∈ X that can be rationalized, by A2 we know that xK is a uniformly

consistent estimator of x and we can write xK = x+ eK , where eK ∈ C1 and eK → 0 uniformly.

This allows us to bound ||γK || ≤ ||Lv|| · ||eK ||, where Lv is the Gateaux derivative of a in the
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direction of v ∈ C1. Then, we conclude that, as K → ∞, ||γK || →p 0 (in probability). Since

||γ|| = γ is just the absolute value and γK ≥ 0 for all K then this implies that γK →p 0.

If when K → ∞ it follows that γK →p 0 then ||a(xK)|| →p 0. By the definition of the

Frobenius norm, this implies that a(xK)→p 0. Now, using the closedness of a and Assumption

A2, we conclude that since xK → x uniformly then a(x) = 0 so x can be rationalized by Hurwicz

and Uzawa (1971). Finally by Assumption A1, O∗,K can be generated by drawing samples from

Z evaluating in x and adding noise such that E[X|Z] = x(Z).

Remark. This way to test rationality has several advantages over the traditional RP approach,

namely: (i) first the alternative hypothesis is being not rational, the typical approach in RP is

to specify the alternative as the randomly uniform consumer of Becker. (ii) As we will see in a

second the asymptotic power is one and in general the rate of convergence is similar or faster to

a semiparametric estimator.

To help in the computation of the actual rationality test of the estimator in a finite dataset

environment and appreciate the advantage of the Slutsky Matrix norm approach in the presence

of measurement error, we establish both first and second order asymptotic analyses of the esti-

mator that serves as a blueprint, using as sufficient conditions different convergence rates of the

estimators of demand.

Lemma 6. If ||xK − x|| = O(K−1/4) and E[Σ(X)|Z] = Σ(Z), and if Assumption A2 holds

when K → ∞, then
√
K[γK − γ]/τ →d N (0, 1) as K → ∞, where τ depends on Σ and on Lv.

Moreover, when γ = 0,
√
K[γK − γ] → δ0 a degenerate Dirac’s delta distribution with all the

mass concentrated on 0.

Proof. First, take the functional Taylor expansion of the estimate xK at the true x

||a(xK)||2 = ||a(x)||2 + 2〈a(x), % ◦ s′(xK − x)〉+O(||x− xK ||2)

Then pre-multiply by
√
K to get√

K[γK − γ] = 2
√
K〈a(x), % ◦ s′(xK − x)〉+

√
KO(||x− xK ||2).

By assumption, we have that ||xK − x|| = O(K−1/4), then
√
KO(||x− x||2) = O(1) and we

conclude that:
√
K[γK − γ] = 2

√
K〈a(x), % ◦ s′(xK − x)〉+O(1).

By Assumption A2,
√
K||[xK − x]|| → N (0,Λ), by the functional delta method we observe

that√
K[γK − γ] →d N (0, τ2), since

√
K[γK − γ] = LxK (

√
K[xK − x]) + O(1). The constant√

K enters inside the argument of the derivative due to the bilinearity of the inner product√
K〈a(x), % ◦ s′(xK − x)〉 = 〈a(x), % ◦ s′(

√
K[xK − x])〉 and the linearity of % and s′. Then τ

depends solely on Σ and on Lv. The derivative Lv is a closed map since it is the composition of a

closed map a and other continuous maps. Then, by Proposition 5, we know that a(xK)→p a(x),

and by assumption,
√
K||[xK − x]|| →d N (0,Σ). We conclude that

√
K[γK − γ] →d N (0, τ2)

with τ2(p, w) the variance of the random variable Lx[ξ] where ξ(p, w) ∼ N (0,Σ(p, w)).

When γ = 0, then
√
K||a(xK)||2 =

√
K||a(x)||2+2

√
K〈a(x), %◦s′(xK−x)〉+

√
KO(||x−x||2)

simplifies to
√
KγK →d O(1) under the assumption of ||xK − x|| = O(K−1/4).

As we can see from the previous result, the SMN approach is a semiparametric estimator and,

as such, it shares the nice efficiency properties of estimators of its type. In particular, integrating

in a region of prices and wealth averages out noise and allows for a faster convergence.
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We see next how, under the null hypothesis of rationality, the linear order terms of the

functional expansion of the estimator vanish, thus allowing for an even faster rate of convergence

and a chi square like test that has an asymptotic power of one. This is in fact a second order

asymptotic result that, as far as we know, is a novel rationality test of consumer behavior. We

say that D E F if and only if the distribution of the random variable F first order stochastically

dominates D.

Lemma 7. If ||xK − x|| = O(K−1/3) and E[ΣX |Z] = ρ(Z)I, and if the regularity condi-

tion in Assumption A2 holds for ||xK − x||2 when K → ∞, then the rationality test statistic

σ−2K[γK ] →d D E σ−2||
√
K[xK − x]||2 with σ−2K||[xK − x]||2 → χ2(L), where D is given

implicitly and σ2 = ||% ◦ s′||2 · ρ2. Moreover, testing rationality with the SMN approach has an

asymptotic power of one.

Proof. First, take the functional Taylor expansion of the true DGDF at the estimate xK :

||a(xK)||2 = ||a(x)||2+2〈a(x), %◦s′(xK−x)〉+ 1
2 [2〈%◦s′(xK−x), %◦s′(xK−x)〉+〈a(x), %(Dw([xK−

x][xK − x]′))] +O(||xK − x||3)

Under the null hypothesis, a(x) = 0:

||a(xK)||2 = 〈% ◦ s′(xK − x), % ◦ s′(xK − x)〉+O(||xK − x||3).

There is a scale K and σ2, and under the assumption O(||xK − x||3) = O(K−1)

σ−2K||a(xK)||2 = σ−2K〈% ◦ s′(xK − x), % ◦ s′(xK − x)〉+ σ−2KO(K−1);

σ−2K||a(xK)||2 = σ−2K〈% ◦ s′(xK − x), % ◦ s′(xK − x)〉+O(1).

Notice that σ−2K||a(xK)||2 = B(% ◦ s′(xK − x), % ◦ s′(xK − x)) with B the bilinear operator

just defined, or abusing notation σ−2K||a(xK)||2 = B(% ◦ s′(xK − x)).

Continuity of the bilinear operator allows us to say

||B ◦ % ◦ s′(xK − x)||2 ≤ ||B|| · ||% ◦ s′||2 · ||(xK − x)||2.

The norm of the bilinear operator is:

||B|| = sup||V ||≤1B(V, V ) ≤ 1 because 〈V, V 〉 = ||V ||2.

We conclude:

K〈% ◦ s′(xK − x), % ◦ s′(xK − x)〉 ≤ ||% ◦ s′||2||
√
K[xK − x]||2.

We let σ2 = ||% ◦ s′||2 · ρ2 with ρ2 the variance of associated
√
K||[xK − x]|| → |N (0, ρ2)| the

half-normal distribution, due to Assumption A2, and the positivity constraint of the estimator.

Thus, σ−2||
√
K[xK − x]||2 → χ2(L).

Finally, the term K〈a(x), % ◦ s′(xK − x)〉 when a(x) 6= 0 or under the alternative hypothesis

goes to infinity as K →∞, thus proving consistency of the test or asymptotic power of 1.

Since Lv is known analytically, we can compute ρ2 when we have a specific estimator of x.

This is a key advantage in the SMN approach with respect to the RP approach, since we can

actually write a closed form for the asymptotic distribution of the size of bounded rationality.

Remark 5. The actual distribution depends on the choice of the estimator, but it can be readily

estimated or simulated using the closed form

K||a(xK)||2 = 〈%◦s′(
√
K[xK−x]), %◦s′(

√
K[xK−x])〉+O(1) and the pointwise distribution

of xK(z) − x for a given estimator. However, rationality can be rejected (conservatively) when

the test statistic surpasses a critical value (cα(χ2(L))) given by the quantile 1− α of the χ2(L)

distribution where α is the chosen significance level. This provides a conservative test of ratio-

nality that holds for all estimators of demand that fulfill the conditions stated in the previous

result. The ρ2 can be estimated from the statistic γK and a polynomial estimator by using
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the results in Ackerberg et al. (2012), which permits to ignore the nonparametric nature of the

first step and still obtain an asymptotically convergent estimator of the quantity. The rejection

region is given by {γK : σ−2KγK ≥ cα(χ2(L))}. Finally, we can use the bootstrap procedure

proposed in Haag et al. (2009), since our SMN is a generalization of their work.

We state an immediate, but quite interesting, corollary of the previous results.

Corollary 6. When K →∞, the decomposition γK →p ||EK,σ||2 if and only if there are CD,T

for T ≥ 3 and γK →p ||Eπ||2+||Eν ||2 if and only if there are CD,T for T = 2 in the deterministic

dataset generated by x ∈ X ∩ C∞ with E[X|Z] = x.

Proof. This follows trivially from Proposition 5 and Proposition 1.

5.3 Montecarlo Study of Finite Samples

In order to complement our first- and second-order asymptotic results for large enough datasets

with mean-centered measurement errors, the current subsection provides some Montecarlo stud-

ies of fixed finite samples. The results are encouraging. They exhibit fast convergence, and for

a given demand curve fit to a noisy dataset, the associated Slutsky matrix norm can be taken

as a “good” asymptotic approximation.

We study a boundedly rational model proposed by Shaffer (1977):

• x1(p, w) = w(p1+(1−c)p2)
2p1(p1+p2)

,

• x2(p, w) = w(p1+(1−c)p2)
2p2(p1+p2)

,

• x3(p, w) = wcp2
p3(p1+p2)

.

The parameter c ∈ R controls the violations of rationality. When c = 0, this demand system

corresponds to a rational Cobb-Douglas consumer with symmetric preferences over the first two

goods and no interest in consuming the third one. Homogeneity of degree 0 and Walras’ law

hold for all values of c. For 0 < c < 1, the only property of the Slutsky matrix being violated is

symmetry (σ). For c > 1, both symmetry (σ) and NSD (ν) fail.

We impose that w = 1, and consider the budget share version of the SMN, adding a zero-

centered random measurement error. We have:

• (i) b∗1(p) = p1+(1−c)p2
2(p1+p2)

+ ε1 with ε1 ∼ N(0, 0.13).

• (ii) b∗2(p) = p1+(1−c)p2
2(p1+p2)

+ ε2 with ε2 ∼ N(0, 0.13).

• (iii) b∗3(p) = 1− b∗1(p)− b∗2(p).

The effects of sample size and the size of bounded rationality on power: The number

of simulations is fixed at 100, let s ∈ {1, · · · , 100} and the dataset O∗100s is generated with

K ∈ {100, 500, 1000, 2000} i.i.d. draws from ln(pl) ∼ N(ln(2), 1) for l ∈ {1, 2, 3} and from

εl ∼ N(0, .13) for l ∈ {1, 2}, such that we obtain: O∗Ks = {ps,k, bs,∗(ps,k)}Kk=1 for each value of

K.

The key parameter c is fixed at three different values c ∈ {0, 32 , 3}, to generate different

intensities of both types of violations (i.e., of σ and ν). We estimate the Budget Share Slutsky

matrix, Ŝu(p, w) = [Dln(p)b̂(p, w)]−[Dln(p)b̂(p, w)1b̂(p, w)′] where Dln(p)b̂(p, w) = Dln(p)b̂(p, w)−
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Null hypothesis Sample
Proportion null is rejected.

c = 0
(||E||2u = 0)

c = 3/2
(||E||2u = 0.15)

c = 3
(||E||2u = 11.09)

H0 :||Ê||2u = 0

K = 100 0.01 0.11 0.88
K = 500 0.00 0.53 1.00
K = 1000 0.00 0.83 1.00
K = 2000 0.00 0.97 1.00

Table 1: Montecarlo simulation for ns = 100, proportion of cases where the null is rejected.

Diag(b̂(p, w). Notice that Ŝu(p, w) = 1
wDiag(p)S(p, w)Diag(p) is the unit-free Slutsky matrix

budget share from (Aguiar & Serrano, 2014). We use a non parametric kernel estimator of

the conditional expectation of b∗(p), b̂(p) = E[b∗|P = p]. The estimator is the Nadaraya-

Watson estimator (Li & Racine (2011)) that has a pointwise convergence upper bound rate of

O(K−2/7) ' O(K−1/3).9 The bandwidth is chosen by cross-validation at the first iteration

and kept the same for all others. The Slutsky matrix norm is computed for each s finite set

of observations: ||E||2u,s = 1
K

∑K
k=1 ||Es,u(ps,k, w)||2R3×3 for K ∈ {100, 500, 1000, 2000}. The

estimator is denoted ||Ê||2u,s and the mean of the ns = 100 simulations is denoted ||Ê||2u =

1
100

∑100
s=1 ||Ê||2u,s. The hypothesis test is done by computing the statistic

K·||Ê||2u
se2 ≥ crα=0.05

where crα is given as the 95% percentile of a χ2(K) and se2 is the standard error of ||Ê||2u (a

naive estimator of the variance). The results of the simulation are provided in Table 1 and show

that even for small K = 100 the size of the test is appropriate, but the power increases strongly

with the sample size, with a power near 1 at K = 2000 for the case of c = 3
2 . In general, for all

considered K, the size is appropriate (less than 5% error of type I cases) and the power depends

strongly on the sample size and on the intensity of the rationality violations with acceptable

power for the moderate case at K = 1000 with a power of 0.83.

We must underline that the Naradaya-Watson estimator is biased and the absolute error

contains that effect too. Our theoretical discussion was done under the assumption of an unbiased

estimator, but this bias is typically small.

The effects of sample size on the decomposition of violations: A key feature of our

methodology is the decomposition of the size of bounded rationality in its components (σ, ν),

by construction the same hypothesis test can be applied to each type of violation since the

violations are additive and orthogonal. The power and the size of the hypothesis test specialized

for violations of symmetry (σ) and NSD (ν) will depend on its intensity and sample size in the

same way that the overall measure of bounded rationality did. The Montecarlo analysis for the

analysis for the decomposition of the SMN are given in the appendix (8).

The precision of the estimate in finite sample: Let s ∈ {1, · · · , 1000} dataset O∗100s is

generated with K = 100 i.i.d. draws from ln(pl) ∼ N(ln(2), 1) for l ∈ {1, 2, 3} and from εl ∼
N(0, 1

10·l ) for l ∈ {1, 2}, such that we obtain: O∗100s = {ps,k, bs,∗(ps,k)}100k=1.The key parameter

c is fixed at c = 3
2 , to generate both types of violations (i.e., of σ and ν). The results of

the simulation are provided in table (2) and show that even for small K = 100 we can get

small absolute errors when estimating the SMN using standard non parametric estimators of the

conditional expectation. In any case the results of these simulations are encouraging in terms of

their speed of convergence of an out-of-the-box estimator of the SMN to its true value.

9Its uniform convergence is slower O(
ln(K)
K

)
2
7 for 3 continuous regressors -denominator q + 4 with q = 3.
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Variables Estimated Actual Abs.Err.

||Ê||2uvs.||E||2u 0.109 0.145 0.035

||Êσ||2u vs. ||Eσ||2u 0.029 0.031 0.002

||Êν ||2u vs. ||Eν ||2u 0.080 0.114 0.033

Table 2: Montecarlo simulation for ns = 1000 experiments for K = 100.

6 Application

We use in this section an experimental dataset gathered by Ahn et al. (2014), to which we refer

the reader for the experimental design and details of the dataset. Here, we provide only the

necessary information for this section to be self-contained. The dataset is the outcome of 154

subject solving 50 independent portfolio choice problems. Ahn et al. (2014), present the subjects

with three states of the world l ∈ {1, 2, 3}. For each state, the subjects can buy an Arrow security

that pays 1 token in state l and nothing in other states. The probability of state 2 occurs with

π2 = 1
3 and the other states occur with unknown probabilities that add up to π1+π3 = 2

3 . Let xl

be the demand for each state contingent Arrow security and pl its price. The budget constraint

can be written as p · x = 1. The subject must choose any x ≥ 0 that satisfies Walras’ law.

The subject’s task is to pick a point on the budget hyperplane, which is represented graphically,

using a mouse. The subjects receive a payment according to the probability of each state at each

round. The effective choice set X = R3
+ and the budget hyperplanes are drawn with uniform

probability. Any given individual produces a sequence of observations: O50 = {pk, xk}50k=1 (where

we omit the index i for each individual). The wealth is fixed at pkxk = 1, in that case we have

to consider the conditional Slutsky matrix as in John (1995), but all our results go through.

Due to the experimental set-up we can only observe violations of the symmetry and Negative

semidefiniteness conditions. Alternatively, rationality here amounts to the Ville Axiom and the

Wald Axiom (which is equivalent to WARP in this setup). The main objective of this section is

to measure the Slutsky matrix norm (in its unit-free version, as described in Aguiar and Serrano

(2014)) for each individual that does not satisfy GARP, in order to measure the average error

of making comparative statics analysis under the assumption of rationality given the data.

Using Theorem 1, all extensions of the data OK (XK) when rationality is rejected have a

positive SMN, and its decomposition ||E||2 = ||Eσ||2 + ||Eν ||2 is related to revealed demand

cycles of different lengths and to the underlying Ville axiom and WARP. For this reason, we

investigate only the subsample of subjects that fail the GARP test and are boundedly rational.

We know by Proposition 3 that any extension of the data will have these properties and will

approximate the true value (up to some error) with accuracy increasing in K. We show that

the distribution of such errors associated with symmetry first-order stochastically dominates the

distribution of errors associated with the NSD property. If we aim to improve our predictions, this

provides evidence in favor of models that maintain only the NSD restriction, allowing violations

of symmetry, which seem uniformly more likely. We also show that both types of violations

are dependent in a monotonic way (the rank they induce is highly correlated), suggesting that

violations of the two SMN conditions have a common cause. In addition, the SMN measure

is moderately related (rank correlation) with the Afriat index, even when using an arbitrary

interpolator. We compute the Budget Share Slutsky matrix, let bl(p, w) = plxl(p, w)/w for l =

{1, 2, 3} such that
∑3
l=1 bl(p, w) = 1, Su(p, w) = [Dln(p)b(p, w)]− [Dln(p)b(p, w)1b(p, w)′] where
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Variables Desc. Spearman -order- corr. Pearson corr.

||E||2uvs.G SMN vs. Afriat’s −0.602 −0.499
||Eσ||2u vs. G SMN symmetry vs. Afriat’s −0.532 −0.455
||Eν ||2u vs. G SMN NSD vs. Afriat’s −0.594 −0.411

||Eσ||2u vs. ||Eν ||2u SMN symmetry vs. NSD 0.587 0.460

Table 3: Order -Spearman- correlation and Pearson Correlation of the Slutsky Matrix Norm
estimates.

Dln(p)b(p, w) = Dln(p)b(p, w) −Diag(b(p, w). Notice that Su(p, w) = 1
wDiag(p)S(p, w)Diag(p)

is the unit-free Slutsky matrix budget share from (Aguiar & Serrano, 2014). The Slutsky matrix

norm is computed only for the finite set of observations so ||E||2u = 1
50

∑50
k=1 ||Eu(pk, w)||2R3×3 .

The estimator of ||Eu(pk, w)||2R3×3 is computed using a Hermite polynomial of order one, that

uses polygonal hypersurfaces to connect the data. This is done in order to obtain an approximate

lower bound of the Slutsky matrix norm.10 We use commercial software algorithms of automatic

differentiation to construct a fast algorithm to approximate the quantity of interest. The main

difference of this approach with the traditional work of Haag et al. (2009) is that in the Ahn et al.

(2014) dataset, there is no measurement error and so we use interpolators of the dataset instead

of approximating functions. Any departure from rationality in this setup is the combination of an

error of approximation of the derivative and the behavior of the subjects. Due to the moderately

large sample, the SMN is taken as a good estimate of the true deviations from rationality (error

estimates are provided in the appendix using a leave one out scheme).

The Empirical Relation of Afriat’s Index with SMN Measures: Using this framework,

we provide initial evidence of the relationship between violations of symmetry and violations

of NSD. The distribution of both types of errors has a high ordinal correlation (Spearman

ρ correlation) and a moderate Pearson correlation (traditional) suggesting that the relation

between this two random variables is strong, monotone but not linear (Table 3). This result has

interest in its own right, and relates tangentially to the literature concerned with learning the

joint distribution of behavioral biases (Dean & Ortoleva, 2014). The second stylized fact is that

the distribution of violations of symmetry first-order stochastically dominates the distribution

of violations of NSD. This evidence supports models that relax the first condition and maintain

the second, as was already expected to happen in the original work of Kihlstrom et al. (1976).

This finding gives empirical grounds to the theoretical idea that symmetry is a fragile property

(based on equalities), while the NSD is a more robust behavioral feature (based on an inequality)

– (Aguiar & Serrano, 2014). Finally, the ordinal correlation of the SMN and Afriat’s efficiency

index surpasses 60%, again coexisting with a comparable Pearson correlation. This monotone

dependence corroborates the results delineated by Jerison & Jerison (2012). The numerical

value of the SMN itself has interest as a measure of error in prediction of comparative statics

analysis. As we can see, this application mainly illustrates the usefulness of the SMN approach

to summarize the violations of rationality in a way that is complementary to the RP approach.

The Stochastic Dominance of Violations of Symmetry w.r.t. NSD: Next, we consider

only the population that violates SARP, and we compute the distribution of the violations of

10The exact solution to the interpolator problem formulated in Corollary 4 is not solved analytically nor it is
implemented, and it is left as an open problem. However, the work of Pinkus (1978) on perfect splines that have
a similar set-up for a unidimensional case suggest the use of low order interpolators to obtain the lower bound of
the SMN while the highest orders approximate the upper bounds (the simulations support this intuition).
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the symmetry and NSD conditions. The stochastic dominance of the violations of the symmetry

condition can be visualized in Figure 1. The average Afriat index of this dataset is G = 0.947.11

The mean of ||Eσ|| is 0.33% that is interpreted as a measure of dispersion of the prediction errors

done when assuming symmetry given the data (e.g., when given 1 token, the average prediction

amounts to 0.33 tokens). The mean of ||Eν ||u is 0.27%. This evidence supports the theoretical

insights of Kihlstrom et al. (1976) that symmetry is more unstable that NSD.
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(a) Density (fj), where j ∈ {σ, ν} and σ is red and ν is blue.
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(b) Cummulative distribution (Fj), where j ∈ {σ, ν} and σ is red and ν is blue.

Figure 1: First order stochastic dominance of ||Eσ||u to ||Eν ||u for individuals that fail SARP.

Testing Rationality: There exists a sharp test based on the SMN that corresponds to the

solution and implementation of the class of estimators delineated in Corollary 4. However, the

main point here is to show that even for small samples (consisting of as few as 50 observations)

the use of an out-of-the-box interpolator does a good job in detecting rationality violations in

terms of power and significance. More importantly, by our results in Proposition 3, we know

11The minimum Afriat efficiency is 0.74681 and the maximum is 1 – 12% of subjects satisfy SARP (G =1).
The standard deviation is 0.06.
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Passes SARP
Satisfies

Symmetry σ NSD ν σ, ν.
Yes (12%) 95% 95% 90%
No (88%) 57.5% 20% 17%

Total 62% 29% 25%

Table 4: Testing rationality using the Slutsky Matrix Norm estimates.

that, as the number of observations increases, the SMN estimate will converge to its true value.

Thus, we know its performance will improve with richer datasets. Recall that this excersise is

deterministic but contains error due to the use of a fast hermite polynomial interpolator that has

gains in terms of speed and interpretation, but its use has a cost in terms of accuracy. In order

to formulate a test that takes into account this fuzzyness, we compute a test quantity (analogous

to a test statistic) for the estimated SMN. In particular, we compute the error of the estimation

(ηj for j ∈ {σ, ν}) and then compute the test quantity σ̂i =
||Ei,σ||2u
|ηiσ|

, and ν̂i =
||Ei,ν ||2u
|ηiν |

for all

i ∈ {1, · · · 154} individuals.12 The critical value of each quantity is computed to guarantee a 5%

significance level (proportion of type I error).

In the case of testing the symmetry property the power to test rationality on its own is 42%

while the power of the NSD property to test rationality is 80% alone. It is encouraging that the

NSD test alone has a high power to test rationality, maintaining a standard size (significance)

of 5%. We can reject that the individual Slutsky matrix has the property (σ, ν) when σ̂i > τσ

and similarly when ν̂i > τν .

7 Literature Review

The current research can be considered as an extension and generalization of the work of Chi-

appori and Rochet (1987) and Lee & Wong (2005) that prove the equivalence of SARP and

rationalizability by a smooth demand generated by maximizing a smooth utility function. Their

work unifies the binary tests of rationality from both RP and smooth approaches. Our result

generalizes these findings, taking them to the realm of quantifying departures from rational-

ity. Jerison and Jerison (2012) innovative work regarding the local equivalence between Afriat’s

inefficiency index and a quadratic form of the Slutsky matrix is also used as a stepping stone

in establishing the relationship between the SMN and the RP approaches. We have provided

a complementary framework to the RP approach to testing consumer behavior as initiated by

Varian (1983), Afriat (1973) and continued in the works of Echenique et al. (2011), Dean &

Martin (2013) and others. Our work can be seen as a specialization of the work of Nishimura

et al. (2013), by establishing a unified approach to the Richter and the Afriat traditions using

multiple choice correspondence extensions of a finite dataset for the results of the first section.

Furthermore, it also generalizes the approach by establishing its extension to a noisy or measure-

ment error environment. The SMN approach has desirable properties such as power against all

alternatives and closed- form asymptotic behavior under regularity conditions. The results in the

nondeterministic part of the paper generalize those in Haag et al. (2009) for testing symmetry

12The rationale for doing this is that the numerator corresponds to the value of absolute error under the null
that the SMN is zero while the denominator is the estimate of the true absolute error. When the null is false the
numerator will increase, thus we conclude that the true SMN is positive when the test quantity is large enough.
This is in line with δ−decidability (Gao et al., 2012) or approximate decidability (Hemmerling, 2003).
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to all Slutsky regularity conditions. The boostrapping techniques proposed by these authors can

be combined with our approach fruitfully. Our approach is an alternative to the methodologies

proposed in Blundell et al. (2008) or Epstein & Yatchew (1985), which depend on the demand

function instead of the Slutsky matrix function. It improves upon them by obtaining closed-form

solutions for the asymptotics and by having a simpler implementation, as well as a clear inter-

pretation as a positive index of departures from rationality that has an axiomatic foundation

provided in Aguiar & Serrano (2014). Finally, we also provide a new way to analyze the power

of consumer rationality tests with respect to all possible alternatives, a very significant improve-

ment with respect to the current practice born with Bronars (1987) that uses as the non-rational

benchmark the Becker (uniformly) random consumer. We show that our SMN approach in the

presence of noise has an asymptotic power of 1 with respect to all possible alternatives. This

result is similar to Lewbel (1995), but the latter is only done for the symmetry condition.

8 Conclusion

We present a unification of the RP and SMN approaches to measure departures from rationality.

In particular, we conclude that: (i) testing rationality in both settings is equivalent, (ii) Locally

a quadratic form of the Slutsky error norm converges to zero proportionally to the Afriat’s

inefficiency index. (iii) In the presence of noise, the smooth approach that characterizes the SMN

allows us to obtain a closed-form asymptotic theory for the measures of bounded rationality. Our

unified approach is smooth and easy to implement, and it avoids the issues of partial identification

related to the use of inequalities in the RP approach. Finally, the SMN measure of departures

from rationality is a positive measure, and as such, it allows interpersonal comparisons and it

can be monetized. It also provides a new criterion to judge whether maintaining the rationality

hypothesis is acceptable, that of failures of making comparative statics analysis. We have applied

it to experimental data, to conclude that insisting on the Slutsky matrix symmetry hypothesis

leads to making a higher error in this excersise than maintaining the NSD of the Slutsky matrix.

As far as we know, this is the first evidence brought forward on the claims of the higher robustness

of WARP with respect to the Ville axiom as already suggested in Kihlstrom et al. (1976).
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Appendix

This appendix presents several results that have been referred to in the main text. In particular,

we have the following technical remark that tightens the connection of the discrete and continuous

approaches.

Proof of Corollary (5)

Proof. To violate the Ville axiom we just have to build a Ville cycle C1. We use a quadratic

spline,

Let x ∈ XL, be defined pointwise by a quadratic spline x(τ) = zt+1−zt
2[τt+1−τt] [τ−τt]

2+zt[τ−τt]+xt

for τ ∈ [τt, τt+1].

It’s derivative is:∂x(τ)∂τ = zt+1−zt
[τt+1−τt] [τ − τt] + zt

with zt+1 = −zt + 2
(
xt+1−xt
τt+1−τt

)
with z0 = ∂x(τ)

∂τ |τ0=0.

Notice that letting zt+1 − zt = Bt+1we have that
∂x(τ)
∂τ = Bt

[τt+1−τt] [τ − τt] + zt

Bt = 2
(
xt+1−xt
τt+1−τt

)
Then multiply by prices

pt+1Bt = 2
(
pt+1[xt+1−xt]

τt+1−τt

)
> 0

and
∂x(τ)
∂τ = Bt

[τt+1−τt] [τ − τt] + zt

∂x(τ)
∂τ = Bt

[τt+1−τt] [τ − τt] + zt

pt+1 ∂x(τ)
∂τ = pt+1Bt

[τt+1−τt] [τ − τt] + pt+1zt

pt+1 ∂x(τ)
∂τ = p1B0[τ − τ0] + p1z0

Since I have a free parameter fix p1z0 > 0 then

pt+1 ∂x(τ)
∂τ = p1B0[τ − τ0] + p1z0 > 0 for τ ∈ [0, τ1]

Also,

p1B0 = p1z1 − p1z0 > 0 implies p1z1 > p1z0 > 0

p2B1 = p2z2 − p2z1 > 0 implies p2z2 > p2z1 > 0.

This can be extended for all t

ptBt = ptzt − ptzt−1 > 0 such that ptzt > ptzt−1 > 0.

And this in turns implies that

pt+1 ∂x(τ)
∂τ > 0 for all τ ∈ [τt, τt+1]

Let p(τ) = pt+1 if τ ∈ (τt, τt+1] such that p0 = p(0) = p(T ) = pT and let w(τ) be defined

implicitly as w(τ) = p(τ)x(τ).

Then x : [0, T ]→ X forms a C1 Ville Cycle thus breaking the Ville Axiom.

We can mollify the step function p(τ) for it to be continuous and smooth without loosing

the main result stated above (i.e. convolute it with an infinitely differentiable function such that

p : [0, T ]→ P is close enough to p : [0, T ]→ P in order not to alter the inequalities.

The Connection of the Slutsky Matrix Norm and the Money Pump

Index

We start with some preliminary definitions.
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Definition 12. (Slutsky demand) A Slutsky demand is a function q : P × RL+ 7→ X, defined

pointwise as q(p, r) = x(p, p′r), given a price p and a reference bundle r.

The main feature of the Slutsky demand that we are interested in is that its jacobian with

respect to prices is Dpq(p, r) = Dpx(p, p′r) +Dwx(p, p′r)r′. In particular, when r = x(p, w) we

get the Slutsky matrix Dpq(p, r)|r=x(p,w) = S(p, w) under Walras’ law. Additionally, we have

the simple property that q(p, x(p, w)) = x(p, w). Finally, the jacobian with respect to the second

argument is Drq(p, r) = Dwx(p, p′r)p′ that will come in handy later.

It is interesting to notice that a “rational” Slutsky demand has a symmetric, NSD and

singular in prices jacobian only evaluated at r = x(p, w), elsewhere it may not be the case.

The first step is to characterize what we mean by the Walrasian and Slutsky demands to be

rational. The first discrete characterization will be given by analogy to the GARP.

Definition 13. The following statements are equivalent.

(i) A walrasian demand is said to be rationalizable if it is generated by maximizing a locally

nonsatiated continuous and concave utility function subject to a linear budget constraint.

(ii) A walrasian demand is said to be rational if it generates a dataset that satisfies SARP

evaluated at any sequence of prices and wealth.

(iii) A walrasian demand is said to be rational if it satisfies the Ville axiom and the weak

WARP.

In particular, we say that a dataset generated by a demand function or DGDF x ∈ X satisfies

SARP if there are not revealed preference cycles.

If we observe a revealed demand cycle CD,T = {pt, wt, xt}Tt=0 we have: ptx(pt, wt) >

ptx(pt−1, wt−1), where x ∈ X is the true DGDF, we can also write the same cycle condition

using Slutsky demands:

ptq(pt, xt) > ptq(pt−1, xt−1) = ptx(pt−1, wt−1)

Finally, we know that ptxt > ptx ⇐⇒ xtRx for all x ∈ RL+, where R denotes the revealed

preference relation.

Then we can define the more general revealed Slutsky demand cycle CS,T = {pt, rt, qt}Tt=0,

where q is a Slutsky demand and qt = q(pt, rt) and for all t ∈ {0, · · · , T}, we haveptq(pt, rt) >

ptq(pt−1, rt−1) with r0 = rT , p0 = pT , and rt ∈ RL+.

In particular, this means that for a constant sequence rt = r (a trivial cycle), there is a viola-

tion of rationality if we observe the following chain x(pT , pT r)Rx(pT−1, pT−1r) · · ·x(p1, p1r)Rx(p0, p0r)

which is a violation of SARP. These generalized cycles are of interest because we can make them

equivalent to the standard cycles around a reference point (p, w) (i.e., locally) and they are

strongly related to the Slutsky matrix norms, thus constituting the bridge across the two ap-

proaches. In a similar spirit, a generalized Ville cycle or Slutsky cycle CG(S),b = (p, r) (p, r :

[0, b] → RL+and p, r ∈ CS([0, b])) can be defined as a situation where p(τ)′ ∂q(p(τ),r(τ))∂τ ≥ 0 for

τ ∈ [0, b] and p(0) = p(b) and r(0) = r(b). In particular notice that p(τ)′ ∂q(p(τ),r(τ))∂τ = p(τ)′ ∂x(τ)∂τ

when we let r(τ) = x(τ) for all τ ∈ [0, b] . Hence, the Ville cycle is a specific kind of Slutsky

cycle. It is also useful to define a continuous version of the JJ index.

Definition 14. Continuous JJ index ι(v, S) =
´ b
0
v(τ)S(p, w)∂v(τ)∂τ where v : [0, b]→ RL, v(0) =

v(b), p(τ) = p + v(τ) and p(τ)x(τ) = w(τ) with S(p, w) the Slutsky matrix of x at the fixed

price and wealth pair.
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The first main result of this subsection is a connection between the existence of a Slutsky

cycle with the JJ index.

Lemma 8. The aggregated real income growth
´ b
0
p(τ)′ ∂x(τ)∂τ dτ for a cycle around a reference

point (p, w) can be linearly approximated by the continuous JJ index for an associated cycle

around the same reference point.

Proof. Let r(τ) = x(p, w) for τ ∈ [0, b] and obtain the first order approximation of the Slutsky

demand q(p, x(p, w)) = x(p, w) +Dpq(p, x(p, w))[p− p] + o(1 · |p− p|2).

Then we get the approximation of the time derivative ∂q(p(τ))
∂τ = Dpq(p, w)∂p(τ)∂τ +o(|p−p|) =

S(p, w)∂p(τ)∂τ + o(1 · |p(τ)− p|), where | · | is the supremum norm defined for the path functions

p(·).
This implies that p(τ)′ ∂q(p(τ),r(τ))∂τ = p(τ)′S(p, w)∂p(τ)∂τ + o(|p − p|), since it is the constant

approximation of its derivative.

Finally, we can write without loss of generality p(τ) = p+v(τ), under Walras’ law this implies

p(τ)′S(p, w)∂p(τ)∂τ ' v(τ)′S(p, w)∂v(τ)∂τ since p′S(p, w) = 0.

Then we obtain the following result εp = |p − p|, then let γS =
´ b
0
p(τ)′ ∂q(p(τ),r(τ))∂τ dτ and

γJJ =
´ b
0
v(τ)′S(p, w)∂v(τ)∂τ , soγS − γJJ = o(εp) and limεp→0

γS−γJJ
εp

→ 0.

The γJJ is nothing but the continuous time version of the JJ index for a cycle v : [0, b]→ RL

with v(0) = v(b).

Notice that |p(τ)′ ∂q(p(τ),x(p,w))
∂τ − p(τ)′ ∂q(p(τ),x(τ))∂τ | → 0 as ε = |(p, w) − (p, w)| → 0, more

simply |x(τ)−x(p, w)| → 0 when we let ε→ 0 then we let γV =
´ b
0
p(τ)′ ∂x(τ)∂τ dτ and we conclude

limε→0
γV −γJJ

ε = 0.

The main point of this result is that for a small enough ε → 0 we have x(τ) ' x(p, w)

thus making limε→0ε
−2[
´ b
0
p(τ)′ ∂x(τ)∂τ dτ −

´ b
0
v(τ)′S(p, w)∂v(τ)∂τ dτ ] = 0. In other words, locally

the Slutsky cycles coincide with the Ville cycles thus yielding the same real income growth in

the interval [0, b]. This reasoning provides a “continuous” version of the conclusion reached

by Jerison and Jerison (2012) for the “discrete” case. More precisely, the Slutsky cycle for

r = x(p, w) converges at a rate of ε−2 to the Ville cycle in a small open ball around the reference

point (p, w). This local convergence result will be preserved in the discrete or finite data case

thus making the connection with several measures based on revealed preference cycles.

To see this, note that p(τ)′ ∂q(p(τ),r(τ))∂τ = p(τ)′Dpq(p(τ), r(τ))∂p(τ)∂τ +p(τ)′Drq(p(τ), r(τ))∂r(τ)∂τ

when r(τ) = x(τ) then Drq(p(τ), x(τ)) = Dwx(τ)p(τ)′, also p(τ)′Dwx(τ) = 1 clearly for

p(τ)′Dpq(p(τ), x(τ)) = p(τ)′S(p(τ), w(τ)) = 0 such that p(τ)′ ∂q(p(τ),r(τ))∂τ = p(τ)′ ∂x(τ)∂τ .

Remark 6. The discrete JJ index can be generated by discretizing the path v(τ) and letting the

interval [0, b] be replaced by T evenly spaces knots 0 ≤ τ2 ≤ τ3 ≤ · · · τT−1 ≤ b (τt = τt−1 + h).

Then
´ b
0
v(τ)′S(p, w)∂v(τ)∂τ dτ ' 1

T

∑T
t=0 v

′
tS(p, w)[vt − vt−1], for vt = v(τt) and v1 = vT a cycle.

This discrete JJ index will converge to the continuous JJ index when h→ 0 and the contin-

uous JJ index will converge to aggregated real income growth around a reference point (p, w) at

the rate ε = |(p, w) − (p, w)|. By definition h < ε then the discrete JJ index will approximate

the discrete aggregated real income.

Our Slutsky cycle results allow us to make another connection of the JJ index with the well

known Money pump index, however this requires the convergence of ε→ 0, that is both εp → 0

and εw → 0. In that case, the denominator of the Money pump index converges to the JJ index.
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First, note that the numerator of the MPI can be defined along a cycle as

MPC =
∑K
t=0 p

t′(xt−xt−1) =
∑K
t=1(wt−pt′xt−1) we let t = τt and τt = τt−1+h and h→ 0.

MPC =
∑K
t=0 p

t′(xt − xt−1)→
´ b
0
p(τ)′ ∂x(τ)∂τ dτ .

Now, we can state the second result of this subsection, which makes use of Lemma 8.

Corollary 7. The MPI index of a Ville cycle converges towards a normalized JJ index locally.

Proof. For a Ville cycle, let MPI =
´ b
0
p(τ)′ ∂x(τ)∂τ dτ/

´ b
0
p(τ)′x(τ)dτ , then notice that the nu-

merator of the MPI converges to the JJ index at a rate of ε−2 by proposition 2.

Then we conclude that:

limε→0ε
−2 ´ b

0
p(τ)′ ∂x(τ)∂τ dτ/

´ b
0
p(τ)′x(τ)dτ =

´ b
0
v(τ)′S(p, w)∂v(τ)∂τ dτ/

´ b
0
p(τ)′x(τ)dτ .

Finally, we can discretize the normalized JJ index or the JJ money pump JJ −MPI:

Remark 7. We can discretize the JJ-MPI for a given ville cycle as:´ b
0
v(τ)′S(p, w)∂v(τ)∂τ dτ/

´ b
0
p(τ)′x(τ)dτ '

∑T
t=0 v

t′S(p,w)[vt−v−1]∑T
t=0 p

txt
with {vt}Tt=0 a cycle and pt =

p+ vt and p(0) = p1, pT = p(b).

The Montecarlo Analysis of the Decomposition of the SMN with Noise

The results of the σ, ν cases of bounded rationality are presented in table (5) and table (6):

Null hypothesis (σ) Sample
Proportion null is rejected.

c = 0
(||Eσ||2u = 0)

c = 3/2
(||Eσ||2u = 0.03)

c = 3
(||Eσ||2u = 0.13)

H0 :||Êσ||2u = 0

K = 100 0.12 0.32 0.55
K = 500 0.01 0.12 0.50
K = 1000 0.01 0.26 0.63
K = 2000 0.01 0.10 0.41

Table 5: Montecarlo simulation for ns = 100, proportion of cases where the null (symmetry) is
rejected.

Null hypothesis (ν) Sample
Proportion null is rejected.

c = 0
(||Eσ||2u = 0)

c = 3/2
(||Eσ||2u = 0.11)

c = 3
(||Eσ||2u = 10.97)

H0 :||Êν ||2u = 0

K = 100 0.00 0.15 0.88
K = 500 0.00 0.75 1.00
K = 1000 0.00 0.90 1.00
K = 2000 0.00 1.00 1.00

Table 6: Montecarlo simulation for ns = 100, proportion of cases where the null (NSD) is
rejected.
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