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1 Introduction

In many economic settings, including trading and joint production, the surplus

to be shared is created through collaboration. Complementarity and substi-

tutability among agents determine how much a group of agents can share when

they cooperate. Consider, for instance, three musicians who can play together

as a duo or a trio for an event (but not as soloists). They will collect $900 for

performing as a trio. Should they instead perform as a smaller ensemble, they

would be paid less: Musicians 1 and 2 could collect $800, Musicians 1 and

3 could collect $600, and Musicians 2 and 3 could collect $400. If you could

decide, as a neutral outside party, how to split the $900 earnings of the trio

between them, what would you do?

Intuitively, the allocated reward for collaborating may be small if an agent’s

role in creating the surplus is limited. By contrast, an agent judged as playing

a more critical role might be rewarded more. The long economic literature

on other-regarding preferences has so far studied the notion of fairness from

a very different angle. It was not designed to address scenarios with such

complementarity and substitutability among agents,1 as subcoalitional worths

are not taken into account. If one were forced to apply this literature to

our problem, then choices for others would be independent of the worths of

subcoalitions (and in many cases, would be an equal split).

As its main takeaway, the paper provides robust evidence, through a series

of experimental treatments, that coalition worths do matter when choosing

for others, and that principles from cooperative game theory have strong ex-

planatory power in such situations.2 We test axioms, and compare competing

solutions. At least in the context of the problems studied here, we find that

choices are well understood with a one-parameter solution that finds its roots

1See Fehr and Schmidt (1999), Bolton and Ockenfels (2000), Andreoni and Miller (2002),
Charness and Rabin (2002), Karni and Safra (2002), and Fisman, Kariv and Markovits
(2007), among others. Discussions of this literature can be found, for instance, in the book
by Camerer (2003) and the survey by Sobel (2005).

2See Moulin (2003) for a textbook introduction to cooperative games from a normative
perspective, which is the perspective we adopt here.
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in cooperative game theory.

Understanding people’s views when allocating money in such settings is

important, both for its own sake, as well as to shed light on the right refer-

ence point to use when assessing intentions and reciprocity. Our experimental

design eliminates strategic considerations to pinpoint fairness views in their

purest form, but our findings likely have important implications for more com-

plex settings with strategic considerations. For instance, being offered a reward

that is considered unfair may make a musician resentful, inducing her to either

refuse joining the ensemble, or to exert relatively little effort if she does join.

These considerations are left for future work.

We describe below our three treatments, comprising six sessions each (per

a Latin Square design). We begin by discussing the results in the ‘Quiz’

treatment in greater detail, as this will facilitate comparisons when the other

treatments are introduced. Our Quiz treatment has three subjects designated

at the start of each session as Recipients, and the remaining subjects designated

as Decision Makers. In each of seven rounds, the Decision Makers are provided

the set of coalition worths for the three Recipients (a characteristic function, in

the terminology of cooperative game theory). These worths correspond to the

value of different combinations of the Recipients’ ‘electronic baskets’, whose

composition is decided by the performance of each Recipient on an earlier quiz.

Decision Makers play the main role in our experiment, as only they provide

our choice data. For each characteristic function, we ask Decision Makers to

decide how to split the worth of the grand coalition between the three Recip-

ients. At the end of the session, the three Recipients are paid according to

one randomly selected decision of one randomly selected Decision Maker. Our

experimental design ensures that Decision Makers are ‘impartial observers’,

in the sense that their monetary payoffs are independent of their recommen-

dation (in contrast to dictator and ultimatum games). Moreover, the design

eliminates strategic channels that might affect recommendations (in contrast

to ultimatum games, or settings where reciprocity may be a concern).

Our data in the Quiz treatment shows that a large fraction of Decision

Makers take the worths of subcoalitions into account when allocating money.
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While nearly all Decision Makers choose equal split when the characteristic

function is symmetric (and all the solution concepts we study agree on this),

these same Decision Makers often choose unequal splits when the characteristic

function is asymmetric. Analyzing average payoff allocations as a start, we find

evidence in support of the axioms of Symmetry, Desirability, Monotonicity,

and Additivity. However, the Dummy Player axiom, whereby a Recipient who

adds no value to any coalition should get a zero payoff, is clearly violated.

We show that satisfying Symmetry and Additivity (along with Efficiency,

which must be satisfied in our experiment) means that Decision Makers’ choices

must be a linear combination of the Equal Split solution and Shapley value,

with the weights summing to one.3 We fit the resulting one-parameter, linear

model – which we refer to as the ESS model – to the data by linear regression.

This one-parameter model explains average choices quite well (R2 > 97%),

with the estimated weight on the Shapley value around 37% (p-value < 0.001).

We then take a closer look at the individual-level data to consider het-

erogeneity. For each characteristic function, a significant fraction of observed

payoff allocations fall on, or near, the line joining the Shapley value to equal

split; but differ in how far along the line they go. We use the empirical CDF’s

of money allocated to Recipients to perform statistical tests of axioms. We

find elucidating evidence of behavioral regularity, generally corroborating the

analysis of averages. Next, we estimate the ESS model at the aggregate level,

both with and without the sub-population of Decision Makers we call D-equal

splitters (who opt for equal split whenever the total is divisible by three).

Finally, we run a horse-race based on MSE between the ESS model, the nucle-

olus, and the strong constrained egalitarian allocation (Dutta and Ray, 1991),

which seem to have some adherents in the scatterplots of data. We find 93% of

subjects are best described by the ESS model, and that strict mixtures matter.

This first treatment is designed to convey a sense of earned worths, while

3This theoretical result holds for the set of 3-player characteristic functions studied here,
although Casajus and Huettner (2013)’s result tells us the result essentially extends to any
number of players and general characteristic functions, provided one adds a mild requirement
that null players receive a nonnegative amount when the grand coalition has a positive
amount to share. Alternate axiomatizations are given in van den Brink et al. (2013).
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also reflecting a type of real-life uncertainty, whereby we often observe out-

comes but not the process by which they were achieved (e.g., we may not

know whether someone’s position in life is the result of hard work, lucky con-

nections, or initial inheritance; or the relative role of training versus innate

talent in someone’s demonstrated skill). Decision Makers are given the val-

ues of basket combinations and know they were generated by taking a quiz,

but aren’t given information about Recipients’ performance or the mapping

between performance and basket values. Beyond realism, a second motivation

for this design choice is that, even in a controlled laboratory setting, providing

more information could lead to less control: how difficult the Decision Maker

finds the task, and whether they find the skill it tests valuable, can confound

their interpretation of the results in idiosyncratic ways. Thirdly, attention

remains focused on the characteristic function itself.

While our Decision Makers cannot precisely gauge the extent of meritoc-

racy in coalition worths, in theory such uncertainty should be inconsequential

as far as our qualitative results go. That is, the overall assessment of the axioms

and the usefulness of the ESS model should remain valid, though it is plausible

that payoff allocations and thus parameter estimates might vary with the con-

text in which the characteristic functions arose. As an analogy, expected utility

theory can be helpful to explain choices in various contexts of choice under

risk, though risk attitude may be context-dependent (see Barseghyan, Prince

and Teitelbaum (2011) and Einav, Finkelstein, Pascu and Cullen (2012)). In

his survey of positive analyses of distributive justice, Konow (2003) argues

that justice is “context dependent, but not context specific”: general prin-

ciples hold widely (qualitative results in our context), while “context is the

indispensable element that supplies the people, variables, time framework and

weighting of principles that result in justice preferences” (as in the determi-

nation of parameter estimates in our context). For the ESS model, all that is

needed for accurate predictions in a given context is to test choices in just a

few (or even as little as one) characteristic functions, within that same context,

to assess the weight on the Shapley value.

Our second, ‘No-Quiz’ treatment differs from the first treatment in only
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one respect: the same electronic baskets that were earned in the Quiz treat-

ment are simply assigned randomly, leading to the same subcoalitional worths.

The treatment thus eliminates effort entirely, and thereby also eliminates any

uncertainty about the extent of meritocracy. One may wonder whether, in

this case, Decision Makers will ignore subcoalition worths and split the pie

equally, or whether they will take coalition worths into account independently

of their origin. For instance, some may want to more greatly reward a band

member who plays an important role in drawing audiences, even if that ability

is mostly attributable to luck (e.g. appearance, innate vocal talent, etc.).

The results from these first two treatments are directly comparable, as they

test the same characteristic functions. As we anticipated, the above qualitative

results regarding the axioms and the usefulness of the ESS model are repli-

cated to a large degree by the No-Quiz treatment. Perhaps surprisingly, the

quantitative results are remarkably similar too. Theoretically, it could mean

that estimated parameters are context independent. Alternatively, not know-

ing how challenging the quiz was, nor the precise mapping between earned

fictitious objects and coalition worths, it could be that many Decision Makers

treated characteristic functions as if they were randomly assigned.

To further test whether our qualitative results are portable across a wide

variety of contexts, we designed a third, more radically different treatment.

Both the Quiz and No-Quiz treatments generate coalition worths somewhat

abstractly through baskets combinations of fictitious objects. Would we still

find that the ESS model, and its underlying axioms, help organize choices if

coalition worths arise in a context more relatable to real-life situations? And

if so, would the pull towards the Shapley value be quantitatively different? To

study these questions, we turn to the long tradition of vignettes in a strand of

the experimental literature on distributive justice: see, for instance, the classic

papers of Yaari and Bar-Hillel (1984), Kahneman, Knetsch and Thaler (1986),

Levine (1993), or many other papers reviewed in Konow (2003)’s survey, which

also discusses benefits and drawbacks of the method.4 A vignette provides

4This treatment thus contributes to that literature, which also employs an impartial
observer approach (often using the terminology ‘benevolent dictator’). Unlike our work, this
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subjects with contextual information on a realistic problem, and asks them to

make a decision for that circumstance. They are intended to help participants

understand, relate and think through a problem. In our setting, the hope is

to make the characteristic function come to life in a practical problem.

The vignette we test is based on the musicians in our introductory para-

graph. We use the ‘same’ characteristic functions as in the first two treatments,

but multiply all coalition worths by 10 for the vignette to be plausible. In our

‘Vignettes’ treatment, all subjects are Decision Makers (and paid per decision,

as before). The three musicians in a vignette are the hypothetical Recipients.

Unlike our other treatments, Decision Makers’ choices are never implemented.

Since their choice matters to no one but themselves, and they are paid a

fixed amount regardless of the allocation selected, some might expect Deci-

sion Makers to avoid thinking costs: for instance, simply allocating the entire

amount to one musician, or always splitting equally. However, it is well doc-

umented that subjects take vignettes seriously (Konow, 2003). Indeed, we

again find that subjects take coalition worths into account, and that coopera-

tive game theory provides a useful way to organize the data. In particular, we

find extremely similar qualitative results, but uncover quantitative differences,

with a greater pull towards the Shapley value, away from equal split. In the

aggregate, the estimated weight on the Shapley value in the Vignettes treat-

ment is about 50% larger than in the Quiz and No-Quiz treatments. This is

reflected in a comparison across treatments of the CDFs of money allocated to

each Recipient. For each characteristic function and Recipient whose Shapley

value is greater than (smaller than) the amount they would receive from equal

split, the CDF of money allocated to them in the Vignettes treatment nearly

first-order stochastically dominates (is dominated by) the CDFs from the other

treatments. Most of these rankings are highly statistically significant.

Our three treatments provide robust evidence that coalition worths do mat-

ter in settings where agents can vary in how substitutable or complementary

they are, and that the ESS model and its underlying axioms are important

experimental literature does not consider sub-coalition worths, and thus overlooks potential
complementary or substitutability of agents.
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tools for organizing the data. The Vignettes treatment provides some evidence

that parameter estimates may vary across contexts. This opens directions for

future research. First, one may want to better understand how parameter

estimates might vary across contexts, by drawing connections to theories of

desert in the distributive-justice literature. For instance, Buchanan (1986)

contrasts luck, choice, effort, and birth as distinct categories that impact one’s

claim to wealth; see also Konow (2003, Section 4.2). Second, one could test

and calibrate the ESS model with different subject pools. Interestingly, while

Croson and Gneezy (2009)’s survey highlights robust gender differences in risk,

other-regarding and competitive preferences, we find no statistically significant

differences in the parameter estimates across men and women. Exploring this

further, and testing for cultural differences, would be of interest.

Further related literature

We now discuss related literatures that have not already been noted above.

One interpretation of the Shapley value is that it rewards people for their

role in creating the surplus, which Shapley measures by their marginal contri-

butions. Konow (2000) and Cappelen, Hole, Sørensen, and Tungodden (2007)

also touch upon the theme of rewarding contributions, but in a two-player

dictator game where the pie to split is the sum of the two subjects’ ‘contri-

butions’ in an earlier production phase. To understand how the dictator’s

choice depends on factors within versus beyond their control, a subject’s con-

tribution is the product of a chosen investment level and an exogenous rate

of return. Among other questions, Konow studies whether liberal egalitarian-

ism explains observed allocations when entitlement follows an accountability

principle. Cappelen et al. studies the relative prevalence of fairness ideals

beyond liberal egalitarianism, such as strict egalitarianism and libertarianism.

We study scenarios that differ on multiple dimensions, as explained below.

First, instead of being specified as the sum of individual contributions,

the amount to split arises from complementarity and substitutability across

agents. A main question is then how Decision Makers assess individual contri-
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butions in such settings. Do they use marginal contributions, as suggested by

the Shapley value? Many other measures are conceivable as well. As another

point of departure, we provide no quantifiable information to express coalition

worths as a precise function of effort and luck parameters. Besides keeping

the analysis focused on our main point of interest – whether and how Decision

Makers reward people for their role in creating the surplus – we see it as a

realistic feature of some applications. For instance, the musicians’ opportuni-

ties are quantifiable in terms of profit, but we would not expect the musicians

themselves, and a fortiori impartial observers, to understand or agree on the

differential impacts of talent and hard work in generating them.

Our work may also be contrasted with the small experimental literature on

cooperative games, which allows multiple subjects to bargain given a charac-

teristic function. Kalisch, Milnor, Nash and Nering (1954), one of the earliest

papers in experimental economics, informs subjects of their role in a character-

istic function and lets them interact informally. Others impose a formal bar-

gaining protocol, in addition to specifying a characteristic function, to concen-

trate on a particular question of interest. For instance, Murnighan and Roth

(1977) consider the effect of messages during negotiation, and the announce-

ment of payoff decisions, on the resulting allocations; while Bolton, Chatterjee,

and McGinn (2003) study the impact of communication constraints in a three-

person bargaining game in characteristic-function form. Nash, Nagel, Ocken-

fels and Selten (2012) are interested in whether efficient outcomes arise from a

40-times repeated bargaining game, with each stage following their ‘agencies’

bargaining protocol; they study who is appointed to split the pie (e.g., is it

the ‘strongest’ player in the characteristic function?), and how the appointee’s

split compares to some known solutions. On balance, a fair allocation can

potentially serve as a focal or reference point to select among multiple equilib-

ria in simple games. Little is known, however, about focal points in complex

strategic games, where many conflicting aspects play a role.5 The ‘fair’ bench-

5Consider for instance Nash et al (2012)’s repeated game. Each stage starts with one
player out of three being selected by the ‘agencies’ protocol to allocate the coalition’s profit
(including to himself). Repeating this 40 times, choices can reflect negative reciprocity
(they show “the more aggressive the demand of one player is, the more aggressive are those

8



mark against which offers in such games may be measured, is hard to tease

out given the many, other considerations players in the above experiments may

take into account.

By contrast to these bargaining experiments, our study has no strategic

considerations at play. We focus on one question that is posed to benevolent

Decision Makers for each characteristic function: how would you split the pie

for the three recipients? The answers allow us to test axioms, narrow down to a

meaningful class of solutions, and study behavior as the characteristic function

varies. Though it has not been formalized there, our question is thus closer in

spirit to the aforementioned experimental literature on distributional justice,

while our design and analysis borrow tools from cooperative game theory.

2 Theoretical Benchmark

Before detailing our treatments and results, we provide a quick primer on the

theory which is in the background of our design and analysis.

2.1 Solution Concepts

Let I be a set of n individuals. A coalition is any subset of I. Following von

Neumann and Morgenstern (1944), a characteristic function v associates to

each nonempty coalition S a worth v(S). The amount v(S) represents how

much members of S can share should they cooperate. That is, an allocation

x is feasible for S if
∑

i xi ≤ v(S). Assuming that the grand coalition forms

(that is, all players cooperate), how should v(I) be split among individuals?

This is the central question of cooperative game theory.

The equal-split solution simply divides v(I) equally among all individuals.

By contrast, cooperative game theory provides a variety of solution concepts

of the others”), reputation building, strategic experimentation (how much disparity others
tolerate), and end-game effects (will the last appointee take all?). They show splits vary
widely as a function of the appointee, who always either favors himself or splits equally
(thus departing from all cooperative solutions whenever the appointee is not the ‘strongest’
player). For each characteristic function, they quantify how much the average split over 40
rounds departs from different solutions using MSE.
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that account for the worths of sub-coalitions, each capturing a distinct notion

of fairness. Prominent solution concepts are the Shapley value (Shapley, 1953),

the core (Gillies, 1959), the nucleolus (Schmeidler, 1969), and the weak- and

strong-constrained egalitarian allocations (Dutta and Ray, 1989 and 1991).

The Shapley value. Consider building up the grand coalition by adding

individuals one at a time, giving each their marginal contribution v(S ∪{i})−
v(S) to the set S of individuals preceding i. The Shapley value achieves a

notion of fairness by averaging these payoffs over all possible ways to build up

the grand coalition. That is, the Shapley value is computed as

Shi(v) =
∑

S⊆I\{i}

pi(S)[v(S ∪ {i})− v(S)],

where pi(S) = |S|!(n−|S|−1)!
n!

is the fraction of possible orderings in which the

set of individuals preceding i is exactly S. This formula also has an axiomatic

foundation. The Shapley value is the only single-valued solution that satisfies

Efficiency, Symmetric, Additivity and the Dummy Player axiom. Many al-

ternative axiomatic characterizations have been proposed. Axioms are defined

formally below, as we explain the rationale behind our selection of characteris-

tic functions for the experiment. We will also test their validity experimentally.

The core. The core looks for payoffs x ∈ RI such that there is no coali-

tion whose members would be better off by cooperating on their own; that is,∑
i∈S xi ≥ v(S) for each coalition S, with

∑
i∈I xi = v(I) for the grand coali-

tion. While often interpreted from a positive standpoint, it also has normative

appeal, as it respects property rights for individuals and groups: picking pay-

offs outside the core means robbing some individuals from what they deserve.

The nucleolus. Like the Shapley value, the nucleolus prescribes a unique

solution in all cases. Given a payoff vector x, the excess surplus of a coalition

S is the amount it receives net of what it could obtain on its own, that is,∑
i∈S xi − v(S). The nucleolus interprets excess surplus as a welfare criterion
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for a coalition, and chooses among all feasible payoff vectors the one that

lexicographically maximizes all coalitions’ excess surpluses, starting from the

coalition with the lowest excess surplus and moving up. By contrast, the

core simply requires each coalition’s excess surplus to be nonnegative. Hence,

whenever the core is nonempty, it must contain the nucleolus.

Constrained egalitarian allocations. The constrained egalitarian allo-

cation combines egalitarianism with protection of individual interests. The

notion of egalitarianism is based on the Lorenz ordering, which is a partial

ordering over allocations such that x Lorenz-dominates y if, loosely speaking,

x can be derived from y through a sequence of transfers from ‘rich’ to ‘poor.’

The Lorenz core of the grand coalition is recursively defined. The Lorenz core

of a singleton coalition {i} is simply {v(i)}. The Lorenz core of a coalition S

is then the set of feasible allocations for S such that there does not exist any

y ∈ T ⊂ S such that y is Lorenz-undominated within T and the members of T

‘all prefer’ y to x. The solution concept then picks those allocations that are

Lorenz-undominated within the Lorenz core of the grand coalition. The idea

in this recursive definition is that objections must be egalitarian themselves.

The solution concept has two versions, Strong and Weak, which differ in what

‘all prefer’ means: in the Strong version (S-CEA), everyone must be strictly

better off, while in the Weak version (W-CEA), all must be weakly better off,

with at least one strict improvement. This seemingly small difference can yield

very different predictions. Note that the S-CEA may be multi-valued and is

always nonempty; but the W-CEA, when it exists, selects a unique allocation.

2.2 Normative Principles

We now turn our attention to some normative properties (or axioms) which

may guide Decision Makers’ choices, even if they do not follow one of the above

solution concepts. A significant part of cooperative game theory precisely aims

at defining such principles, and understanding which combinations character-

ize solution concepts. Some properties are satisfied by multiple reasonable

solution concepts, and may thus appear, at least on a theoretical level, to be
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more universal and fundamental. Others are satisfied by a narrower class of

solution concepts, and thus sharply capture the essence of what distinguishes

some solutions from others. Testing the axioms, in addition to examining

the explanatory power and the relative prevalence of a handful of solution

concepts, offers a fuller picture of what people view as fair.

Individual i is a dummy player if v(S) = v(S \ {i}), for any coalition

S containing i. In order to test this property, we included in our study a

characteristic function with a dummy player (as will be seen, this is Recipient

3 in CF1). The Dummy Player axiom requires that such individuals receive a

zero payoff. It is satisfied by the Shapley value, the core, and thus any selection

of it as well (such as the nucleolus for instance). The equal split solution, on the

other hand, violates the Dummy Player axiom. Hence characteristic functions

with a dummy player offer a stark test of the difference between equal split

and most standard solutions from cooperative game theory.

Suppose that for any (non-singleton) coalition containing individual j but

not i, replacing j with i strictly increases profit. In this case, we say that indi-

vidual i is more desirable than j. If replacing j with i never makes a difference,

we say that i and j are symmetric. A payoff vector respects Symmetry if it

allocates the same amount to symmetric individuals. It respects Desirability

if it allocates a strictly larger amount to i than to j when i is more desirable

than j.6 The Shapley value respects both Symmetry and Desirability. The

core always contains payoff vectors that respect both Symmetry and Desir-

ability, but may contain additional payoff vectors. The equal split solution

respects Symmetry, but systematically violates Desirability. The constrained

egalitarian allocations may violate both Symmetry and Desirability.

The properties above apply pointwise: i.e., for given characteristic func-

tions. The next properties relate payoff vectors across characteristic functions.

Suppose that one selects a payoff vector x for a characteristic function v,

and a payoff vector x̂ for a characteristic function v̂. Suppose further that the

only difference between v and v̂ is that the worth of coalition S has increased.

6Comparisons of payoffs in terms of the individuals’ relative desirability were first sug-
gested by Maschler and Peleg (1966).
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Then the payoff vectors x and x̂ respect Monotonicity if the payoff of each

member of S increases, that is, x̂i > xi for all i ∈ S. The Shapley value

selects payoff vectors that systematically respect this property. Young (1985)

provides an example of two characteristic functions with singleton cores that

violate Monotonicity. However, one can show that the core does admit a single-

valued selection (e.g. the nucleolus) that respects Monotonicity for games with

only three individuals, as in our experiment. The equal split solution violates

Monotonicity since it overlooks the worths of sub-coalitions.

A cornerstone of Shapley’s (1953) characterization of his value is the Ad-

ditivity axiom. Given two characteristic functions v and v̂, the sum v + v̂ is

the characteristic function where the worth of each coalition is the sum of its

worth in v and in v̂. Suppose that a single-valued solution concept ϕ selects

the payoff vector x for characteristic function v, and the payoff vector x̂ for

characteristic function v̂. For ϕ to respect Additivity, the allocation selected

for the characteristic function v + v̂ must be the payoff vector x+ x̂. That is,

ϕ(v + v̂) = ϕ(v) + ϕ(v̂). As is well known, Additivity is equivalent to linear-

ity with respect to rational coefficients: ϕ(αv + βv̂) = αϕ(v) + βϕ(v̂), where

α, β ∈ Q+. The case α = β = 1/2 will be particularly useful for us, and it is

easy to see why Additivity implies it. Indeed, since ϕ(2v) = 2ϕ(v), we have

ϕ(
1

2
v +

1

2
v̂) = ϕ(

1

2
v) + ϕ(

1

2
v̂) =

1

2
ϕ(v) +

1

2
ϕ(v̂).

3 Design of Treatments and Procedure

Our three treatments test what monetary payments individuals (henceforth

called Decision Makers) deem appropriate for three Recipients, in view of

how much different coalitions of Recipients would be worth. We describe the

treatments below, starting with the Quiz treatment (Section 3.1), and then

explain how No-Quiz and Vignettes differ (Sections 3.2-3.3). In Section 3.4, we

discuss theoretical motivations and implications of the characteristic functions

tested. In Section 3.5, we discuss experimental procedures. In Section 3.6, we

provide summary information on the subject pool per treatment.
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3.1 The ‘Quiz’ Treatment

At the start of each session in this treatment, three subjects are chosen through

uniform randomization and designated Recipients 1, 2 and 3, respectively.

Recipients stay in that role for the duration of the session. All other subjects

are designated Decision Makers. A session has seven rounds.

At the start of each round, each Recipient receives an empty ‘electronic

basket.’ By answering trivia questions correctly, a Recipient earns some ficti-

tious objects (e.g., two left shoes, a bicycle frame, one bicycle wheel) for his

or her basket. Combinations of objects that form a “match” have monetary

value. For instance, in a given round a complete pair of shoes – left and right

– may be worth $15, while a bicycle frame with two wheels may be worth $40.

The objects available to each Recipient in a round have been selected so that

only combinations of two or three Recipients’ baskets may have positive worth.

The worth of a combination of two or more baskets is given by the maximum

possible sum of values that the objects inside generate. To continue the exam-

ple above, if combining two particular baskets leads only to a complete pair of

shoes and a complete bicycle, then that basket combination would be worth

$55. We momentarily defer discussion of how we chose the possible objects

and their worths, in order to describe the key role of Decision Makers.

For each round, once the content of the Recipients’ baskets has been de-

termined, Decision Makers are informed of the value of different basket com-

binations. The Decision Maker is permitted to allocate, as he or she deems fit,

the monetary proceeds of the three-basket combination among the Recipients.

We require monetary allocations to be efficient and nonnegative, and allow the

Decision Maker to opt out of any given round without making a decision.

At minimum, all subjects receive a five-dollar show up fee. Decision Makers

receive one additional dollar for each round in which they participate. At the

end of the session, one round and one Decision Maker (who participated in

that round) are randomly chosen. Recipients receive the monetary payoffs

determined by the chosen Decision Maker in the chosen round (in addition to

their show up fee). Subjects are informed only of their own payoff, and do not

14



learn which roles other subjects played during the experiment.

The treatment was designed with the following considerations in mind.

First, the coalitions’ worths are “earned” by Recipients, by letting Recipients

earn objects by answering quiz questions correctly.

Second, to permit specific tests of solution concepts and axioms, we nonethe-

less hope to maintain some control over the set of characteristic functions faced

by Decision Makers. Subjects were told that Recipients would be earning ob-

jects in each round, but were not told how those objects and their values were

selected. For each round, we selected the available objects and values of object

combinations with the following goal in mind: if Recipients earn all the objects

available to them in a round, then one of the seven characteristic functions in

Table 1 would be generated.7 In all our sessions, Recipients did indeed earn all

available objects. Had they earned fewer objects, then some other characteris-

tic functions would have been generated, based on which objects were earned

and their values, as explained above.8 Section 3.4 details the motivations for,

R1+R2 R1+R3 R2+R3 R1+R2+R3

CF1 60 0 0 60
CF2 40 40 0 40
CF3 40 40 20 50
CF4 80 60 40 90
CF5 30 15 15 30
CF6 40 40 0 70
CF7 40 40 40 60

Table 1: The seven characteristic functions (CF) studied are described in the rows.
The numerical values in the last four columns are the dollar amounts generated by
combining the baskets of the Recipients listed, where Recipient i is denoted Ri.

and theoretical implications of, CF1-7.

7We explain below the session-dependent map from rounds to characteristic functions.
For testing other characteristic functions, the authors can provide an algorithm showing
how to generate any desired superadditive characteristic function (if all objects are earned),
by selecting object values and which objects are available for each Recipient to earn.

8Precisely to reduce the probability that some other characteristic functions would be
generated, Recipients were afforded multiple opportunities to earn available objects.
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Third, we ran six different sessions of this treatment to be able to test

for potential effects from the order in which the characteristic functions are

presented, and if needed, help wash these out in the aggregate.9 We use a Latin

square design for characteristic functions one through six. Table 2 details the

session-dependent mapping between rounds and characteristic functions. CF7

is fully symmetric and all standard solution concepts prescribe an equal split.

This characteristic function is left as a consistency check in the final round of

all sessions, where it cannot affect subsequent behavior.

Round
1 2 3 4 5 6 7

Session 1 1 6 2 5 3 4 7
Session 2 2 1 3 6 4 5 7
Session 3 3 2 4 1 5 6 7
Session 4 4 3 5 2 6 1 7
Session 5 5 4 6 3 1 2 7
Session 6 6 5 1 4 2 3 7

Table 2: The ordering of characteristic functions in the six sessions. Round entries
identify the characteristic function using the scheme from Table 1. The Latin square
design means each possible pair from CF1-CF6 is adjacent in some session.

Fourth, Decision Makers are informed that the Recipient numbers on their

screen in each round are only randomly generated aliases.10 The Recipient

whose alias is Ri (i = 1, 2, 3) on the Decision Maker’s screen in a given round

is equally likely to be given the alias R1, R2 or R3 in the next round. These

random aliases rule out the possibility a Decision Maker’s payoff allocation for

a Recipient is influenced by his earlier choices for that Recipient.

Finally, related to the point above, we generally tried to mitigate the pos-

sibility that information extraneous to the monetary values of basket combi-

nations affects Decision Makers’ choices. For this reason, subjects remain in

separate roles throughout the experiment, so that Decision Makers cannot dif-

ferentially consider their personal experience as a Recipient when determining

9As seen in Appendix D, we do not find such order effects.
10The characteristic function the Decision Maker sees is permuted accordingly.
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payoff allocations. Moreover, a Decision Maker’s chosen payoff allocation need

not reflect strategic concerns, both because it cannot influence his or her own

payoff, and because Recipients play no further strategic role. Decision Makers

are presented only with the computed values of different basket combinations.

They do not learn which objects are in the Recipients’ baskets or the values of

different object combinations. Similarly, Decision Makers do not see the quiz

questions Recipients faced, or how well the Recipients performed.11 Finally,

they do not learn the outcomes of other Decision Makers’ choices, and cannot

communicate with other subjects. This keeps our setting as close as possible

to standard split-the-pie problems. The above features have the added benefit

of simplifying the Decision Maker’s problem from a computational standpoint.

3.2 The ‘No-Quiz’ Treatment

Our second treatment, comprising another six experimental sessions following

the same Latin square design, differs from the Quiz treatment in only one

respect. Instead of having a quiz phase where the objects are earned, the

Recipients are randomly assigned seven baskets of objects. These baskets are

identical to those that were generated in the main treatment, and we use

the same monetary values of object combinations. Thus for each round, the

same characteristic functions as in the Quiz treatment are generated. The

only difference from the Quiz treatment is thus that Recipients play no role

in generating these baskets. Recipient aliases are again permuted in each

question, as in the Quiz Treatment, and the interface for inputting choices is

identical. Payments to subjects are determined just as before.

3.3 The ‘Vignettes’ Treatment

Our third and final treatment, also comprising six experimental sessions fol-

lowing the same Latin square design, has all subjects in a session serving as

11Notice in passing that keeping such background information from Decision Makers is
not unrealistic outside of the lab, in the sense that one does not necessarily know precisely
whether other peoples’ successes are due to luck, hard work, nepotism, etc.
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Decision Makers. In each session, we present Decision Makers with a sequence

of seven vignettes regarding hypothetical musicians, each differing only in the

characteristic function it encapsulates.

Each vignette states that “Three musicians can play together as a duo or

trio for an event (but not as soloists).” The vignette specifies the amounts the

different duos and the trio would earn. The Decision Maker is then asked, “The

musicians will perform as a trio for the event, and ask you to decide on their

behalf how to share the $[dollar amount] earned. Which split do you choose?”

In each question, the worths of the ensembles correspond to one of CF1-CF7,

but with all worths scaled by ten dollars to reflect market values. Musician

identifiers (i = 1, 2, 3) are randomly permuted in each question, analogously

to the prior two treatments, since otherwise Musician 1 (3) would consistently

appear strongest (weakest). The interface for inputting choices is identical

to the prior treatments. Decision Makers are aware their choices will not be

implemented, and their own payments are determined as before.

3.4 CF1-7: Motivations and Theoretical Implications

To ensure that subjects acting as Decision Makers are not overwhelmed by

numbers, we tested only characteristic functions for which the monetary payoff

of singleton coalitions is zero. We introduce CF1-CF6 to distinguish between

some different solution concepts. All solution concepts agree on equal split for

CF7; it is useful nonetheless to identify subjects who believe in equal splits

for symmetric settings, as our analysis focuses on what these subjects will do

in asymmetric ones. Table 3 details the payoff allocations selected in those

characteristic functions.

Since the Shapley value need not belong to the core, we can test the relative

prevalence of these competing norms. To make this comparison most mean-

ingful, we include some characteristic functions whose core is single-valued

(CF2-CF5). With three individuals and singleton coalitions that generate zero

profit, the core is single-valued if and only if v({1, 2})+v({1, 3})+v({2, 3}) =

2v({1, 2, 3}). Under this condition, the Shapley value is exactly halfway be-
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CF1 CF2 CF3 CF4 CF5 CF6

Shapley (30, 30, 0) ( 80
3 , 40

6 , 40
6 ) ( 70

3 , 40
3 , 40

3 ) (40, 30, 20) (25
2 , 25

2 , 5) (110
3 , 50

3 , 50
3 )

Core P1 {(40, 0, 0)} {(30, 10, 10)} {(50, 30, 10)} {(15, 15, 0)} P2

Nucleolus (30, 30, 0) (40, 0, 0) (30, 10, 10) (50, 30, 10) (15, 15, 0) (40, 15, 15)

W-CEA (30, 30, 0) - - (40, 40, 10) (15, 15, 0) ( 70
3 , 70

3 , 70
3 )

S-CEA P3 {(20, 10, 10)} {(20, 15, 15)} {(40, 25, 25)} {(15, 7.5, 7.5)} {( 70
3 , 70

3 , 70
3 )}

Table 3: What the different solution concepts prescribe for CF1-CF6, where P1 =
{(x, 60 − x, 0) | x ∈ [0, 60]}, P2 = {(70 − x − y, x, y) | x, y ∈ [0, 30]}, and P3 =
{(30, 15, 15), (15, 30, 15)}. All the solution concepts prescribe equal split in CF7.
W-CEA does not exist in CF2-CF3.

tween the equal-split solution and the single payoff vector in the core (since

the core is single-valued, it also coincides with the nucleolus).

We also include two characteristic functions with multi-valued cores (CF1,

CF6). The Dummy Player axiom can be tested in CF1 (where Recipient 3

plays the dummy role). The worth of the grand coalition in CF1 is the same

as in the fully symmetric CF7, since it interesting to see whether the choices

in these two cases differ. The Monotonicity axiom can be tested by comparing

the choices in CF2 with those in CF3 and CF6. Indeed, Monotonicity requires

that the payoffs of Recipients 2 and 3 are greater in CF3 than in CF2; and

that the payoffs of all three Recipients are greater in CF6 than in CF2.

We have two ways of testing Additivity, even though no two of our char-

acteristic functions directly add up to a third. First, under the reasonable

assumption that Decision Makers would choose an equal split in a hypothet-

ical characteristic function where only the grand coalition has positive worth

(equal to $30), the Additivity axiom can be examined using Decision Makers’

choices in both CF2 and CF6. Second, as noted earlier, Additivity is equiva-

lent to linearity with rational coefficients, which is directly testable using the

fact that CF3 is the average of CF2 and CF7.

In each of CF1-7, every pair of Recipients can be ranked in terms of ei-

ther symmetry or desirability. In particular, Recipient i is more desirable

than (symmetric to) Recipient j if and only if v({i, k}) > v({j, k}) (resp.,

v({i, k}) = v({j, k})). Table 4 shows the ranking of Recipients in each of our
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seven characteristic functions. Symmetry and Desirability have implications

within each characteristic function, with the exceptions of CF4 (only Desir-

ability applies, as it is fully asymmetric) and CF7 (only Symmetry applies,

as it is fully symmetric). Notice that Recipient 1 is always more desirable

than, or symmetric to, Recipient 2; and in turn, Recipient 2 is always more

desirable than, or symmetric to, Recipient 3. This was only for the purpose

of normalization when designing the characteristic functions. As discussed

in Section 3.1, Recipients’ true identities (as R1, R2 or R3) are masked by

a randomly generated alias in each round (with the characteristic function

permuted accordingly), so Decision Makers cannot identify a pattern.

CF 1 and 5 CF 2, 3 and 6 CF4 CF7

Rankings R1∼R2�R3 R1�R2∼R3 R1�R2�R3 R1∼R2∼R3

Table 4: The ranking of Recipients in each of the seven characteristic functions,
where Ri�Rj (Ri∼Rj) means that Ri is more desirable than (symmetric to) Rj.

The imputation triangles representing our data in Figures 1, 3 and 4 in-

clude, for reference, allocations prescribed by the different solution concepts

for CF1-7. Since R1 is either symmetric to, or more desirable than R2, most

solution concepts require R1’s payoff to be at least as high as R2’s. In those

figures, this corresponds to a payoff allocation in the “left” half of each trian-

gle (that is, left of the vertical line which bisects the bottom edge). Similarly,

since R2 is either symmetric to, or more desirable than R3, this corresponds

to a payoff allocation in the “lower” half of each triangle (that is, below the

diagonal line which bisects the right edge). Given our normalization of Recipi-

ent rankings, nearly all the solution concepts in our setting prescribe choosing

an allocation in the “bottom-left” subtriangle. Although these imputation

triangles represent different total monetary amounts, allocations can be com-

pared even across triangles as describing the percentages allotted to different

Recipients. We picked CF1-CF6 to generate variation across solution concepts.
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3.5 Experimental Procedure

Subjects were allowed to participate in at most one session, across all treat-

ments. The treatments thus comprise disjoint sets of subjects. Subjects were

recruited via the BUSSEL (Brown University Social Science Experimental Lab-

oratory) website.12 The six sessions of the Quiz treatment were conducted in

April and May 2013. The six sessions of the No-Quiz treatment were con-

ducted in April, May and November of 2017. The six sessions of the Vignettes

treatment were conducted in December 2018. All sessions were held at Brown

University.13 The interface for the experiment was programmed by Possible

Worlds Ltd. to run through a web browser.14

Sessions lasted approximately thirty to forty minutes. At the start of each

session, the supervisor read aloud the experimental instructions, which were

simultaneously available on each subject’s computer screen. The onscreen

instructions for each treatment, available in Appendix E, contained a practice

screen for inputting Recipients’ payoffs, to get accustomed to the interface.

For the Quiz and No-Quiz treatments, the session supervisor then summarized

how subjects are selected into roles and how baskets values are constructed

using a presentation projected onto a screen (see Appendix F). In those two

treatments, subjects learned their role as Decision Maker or Recipient only

after going through all of the instructions. In all three treatments, each subject

12This site, available at bussel.brown.edu, offers an interface to register in the system
and sign up for economic experiments. To do so, the information requested from subjects
is their name and email address and, if applicable, their school and student ID number.
The vast majority of subjects registered through the site are Brown University and RISD
graduate and undergraduate students, but participation is open to all interested individuals
of at least 18 years of age without discrimination regarding gender, race, religious beliefs,
sexual orientation or any other personal characteristics.

13The Quiz treatment was held at a Brown University computer laboratory, which was
used by BUSSEL for economic experiments in that time period. The more recent two treat-
ments were held at the new laboratory space designated for BUSSEL, which is comparable
to the previous laboratory in size and location on campus.

14In the first couple of sessions of the Quiz treatment, after all but one or two Decision
Makers had completed all seven rounds, a connectivity issue with the server prevented the
remaining Decision Makers from entering their choice in the final one or two rounds. Of
course, the last round was always CF7. Since it was through no fault of their own, those
few subjects were paid $1 for each of those missing decisions. This did not affect any of the
remaining payment process. The connectivity problem was then identified and corrected.
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received payment in cash at the end of the session, including a $5 show-up fee.

After completing all 7 rounds, subjects were presented with an optional exit

survey via the computer interface. This survey collected basic demographic

information (major, gender, age and number of siblings) and allowed subjects

to describe how they made choices as Decision Makers, if applicable.

3.6 Our subject pool

A total of 107 subjects (and thus 89 Decision Makers, given the three Re-

cipients per session) participated in the Quiz treatment; 130 subjects (and

112 Decision Makers) participated in the No-Quiz treatment; and 85 subjects

(and thus 85 Decision Makers) participated in the Vignettes treatment. De-

mographic details are provided in Appendix D.

Almost all Decision Makers chose to actively participate in each round

(see Table 5 for the number of observations per characteristic function).15 In

all sessions of the Quiz treatment, recipients answered sufficiently many quiz

questions per round to generate the desired characteristic functions, CF1-

7. Across all treatments, only 12 out of the 286 Decision Makers opted for

an unequal split in the fully symmetric CF7 (5 in the Quiz treatment, and

7 in the No-Quiz Treatment).16 CF7, which is always the last characteristic

function, serves a purpose as a screening device: our study aims to understand

what individuals who believe in an equal split for symmetric settings do in

asymmetric settings. As such, we drop these 12 subjects from all ensuing

analysis, leaving 274 Decision Makers.

15In the No-Quiz treatment, all but 4 of the 112 Decision Makers opted to answer for
all characteristic functions; one Decision Maker answered 5 out of the 7, and 3 Decision
Makers answered 6 out of the 7. In the Vignettes treatment, one of the 85 Decision Makers
answered 6 out of the 7 characteristic functions, with the others answering all of them. For
the Quiz treatment, two Decision Makers in the Quiz treatment chose to opt out of one
characteristic function, and one chose to opt out of three.

16Some of their survey responses suggest a lack of understanding of basket worths or of
the setting, or that they were intentionally allocating payoffs in an arbitrary manner; e.g.,
in describing how they made their choices in the exit survey, one of these five outliers wrote
“Pretty arbitrary”, and another explained that “i gave one person all of the money because
i thought it would increase the recipients average earnings” (sic).
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4 Analysis of Population Averages

For a first look at the data, we analyze (for each treatment) the average payoff

allocations to the three recipients in each characteristic functions. These are

provided in Table 5, and depicted in the ‘imputation triangles’ of Figure 1.

It will prove helpful to look at those payoff allocations in terms of per-

centage departures from equal split. These numbers are provided in Table

6; underset ‘fitted’ values will be explained further below.17 Percentages are

easier to compare across characteristic functions, as the worth of the grand

coalition may vary. The table reveals that Recipient 1 systematically gets a

positive transfer compared to equal split, while Recipient 3 always suffers a

net loss. Whether Recipient 2 benefits or loses against the equal-split bench-

mark depends on the characteristic function being tested. The analysis below

culminates in a simple, theoretically founded model that can explain not only

the sign of those transfers, but also, to a remarkable degree, their magnitude.

Standard theories of other-regarding preferences would overlook the worth

of pairwise coalitions. If so, then average payoff allocations should also be

insensitive to such worths, which is not the case.

Result 1. Average payoff allocations vary with the worth of sub-coalitions.

Support: If not, then percentage departures from equal split should be in-

dependent for each treatment across characteristic functions. Table 6 clearly

shows that, on the contrary, there are sizable variations. For Recipient 2, for

instance, those percentage departures vary from−14.3% to +21.8% in the Quiz

treatment, from −16.4% to +20.3% in the No-Quiz treatment, and from −33%

to +28.1% in the Vignettes treatment. A test of means based on Hotelling’s

T -squared statistic strongly rejects, for each recipient and each treatment, the

joint equality (across characteristic functions) of the percentage by which the

average allocation departs from equal split (with eight out of the nine p-values

17To understand how these percentages are derived, consider for instance Recipient 1’s
average payoff in CF1 in the Quiz treatment: $24.30, as reported in Table 5. In that
characteristic function, there are $60 to share. Thus the equal split solution gives $20 to
each recipient. Recipient 1’s percentage departure from equal split is thus equal in that case
to 24.30−20

20 = +21.5% as reported in Table 6.
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Quiz Treatment CF1 CF2 CF3 CF4 CF5 CF6 CF7

Recipient 1 $24.30
(0.73)

$17.70
(0.73)

$19.07
(0.52)

$34.02
(0.70)

$10.50
(0.23)

$27.71
(0.70)

$20
(0)

Recipient 2 $24.36
(0.75)

$11.42
(0.51)

$15.22
(0.33)

$29.04
(0.52)

$11.08
(0.26)

$21.57
(0.57)

$20
(0)

Recipient 3 $11.34
(1.05)

$10.88
(0.45)

$15.70
(0.47)

$26.94
(0.54)

$8.41
(0.33)

$20.72
(0.53)

$20
(0)

Observations 83 84 83 83 81 82 79

No-Quiz Treatment CF1 CF2 CF3 CF4 CF5 CF6 CF7

Recipient 1 $22.94
(0.78)

$18.33
(0.88)

$19.64
(0.58)

$33.84
(0.97)

$10.73
(0.22)

$28.81
(1.02)

$20
(0)

Recipient 2 $24.06
(0.84)

$11.15
(0.53)

$15.05
(0.45)

$29.96
(0.87)

$11.09
(0.24)

$19.78
(0.57)

$20
(0)

Recipient 3 $13.00
(1.00)

$10.53
(0.50)

$15.31
(0.42)

$26.20
(0.92)

$8.18
(0.38)

$21.41
(0.61)

$20
(0)

Observations 105 104 104 104 104 105 104

Vignettes Treatment CF1 CF2 CF3 CF4 CF5 CF6 CF7

Recipient 1 $248.46
(6.38)

$216.87
(8.84)

$222.32
(5.90)

$373.53
(8.19)

$114.89
(2.70)

$330.58
(11.92)

$200
(0)

Recipient 2 $256.11
(7.15)

$89.33
(4.87)

$141.07
(3.86)

$295.88
(5.04)

$116.18
(2.64)

$182.32
(6.26)

$200
(0)

Recipient 3 $95.44
(8.32)

$93.80
(5.47)

$136.61
(3.26)

$230.59
(7.87)

$68.93
(3.71)

$187.10
(7.04)

$200
(0)

Observations 85 85 85 85 85 84 85

Table 5: Average amounts allocated to Recipients per characteristic function, in
each treatment (after dropping the 5/7/0 outliers in the Quiz/No-Quiz/Vignettes
treatments), with standard errors in parentheses.

below 0.001, and a p-value of 0.019 for Recipient 1 in the No-Quiz treatment).

Remaining p-values for tests in this section are in Appendix B. �

Figure 1 also depicts the standard solution concepts presented in Section

2. Clearly, none of them provide a good description of average choices. Yet

some striking regularity can be found. A first, obvious feature is that average

payoff allocations systematically fall very near the line passing through the

equal split solution and the Shapley value. Next, notice that both average

payoff allocations and the Shapley value are sometimes closer to equal split

and sometimes further out (for instance, compare where the corresponding dot
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Figure 1: Average choices per treatment, and solution concepts. R3’s payoff is
read from the vertical axis, R2’s payoff is read from the diagonal isoprofit lines, and
R1’s payoff is what remains from the total. The top (bottom right, bottom left)
corner of the simplex corresponds to giving everything to R3 (R2, R1). The dashed
line connects Shapley and equal split in the region satisfying Desirability

falls in CF2 versus CF4 per treatment). Taking a closer look, the two payoff

allocations (average choices and Shapley) move inward or outward in a covari-

ant way. As we will see, the relation is essentially linear: the distance from

equal split to the average payoff allocation, divided by the distance from equal

split to the Shapley value, is nearly constant across characteristic functions.

To understand average payoff allocations, we start by checking the empir-

ical validity of the axioms presented in Section 2.

Result 2. Overall, there is strong evidence for Additivity, Desirability, Mono-

tonicity, and Symmetry for average payoff allocations. On the other hand,
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Quiz CF1 CF2 CF3 CF4 CF5 CF6

Recipient 1 21.5%
18.4%

32.8%
36.8%

14.4%
14.7%

13.4%
12.3%

5.1%
9.2%

18.8%
21.0%

Recipient 2 21.8%
18.4%

−14.3%
−18.4%

−8.7%
−7.4%

−3.2%
0%

10.9%
9.2%

−7.6%
−10.5%

Recipient 3 −43.3%
−36.8%

−18.4%
−18.4%

−5.8%
−7.4%

−10.2%
−12.3%

−15.9%
−18.4%

−11.2%
−10.5%

No Quiz CF1 CF2 CF3 CF4 CF5 CF6

Recipient 1 14.7%
18.4%

37.4%
36.9%

17.8%
14.7%

12.8%
12.3%

7.3%
9.2%

23.5%
21.1%

Recipient 2 20.3%
18.4%

−16.4%
−18.4%

−9.7%
−7.4%

−0.1%
0%

10.9%
9.2%

−15.2%
−10.5%

Recipient 3 −35.0%
−36.9%

−21.0%
−18.4%

−8.1%
−7.4%

−12.7%
12.3%

−18.2%
−18.4%

−8.2%
−10.5%

Vignettes CF1 CF2 CF3 CF4 CF5 CF6

Recipient 1 24.2%
30.6%

63.7%
61.3%

33.4%
24.5%

24.5%
20.4%

14.9%
15.3%

41.7%
35.1%

Recipient 2 28.1%
30.6%

−33.0%
−30.6%

−15.4%
−12.3%

−1.4%
0%

16.2%
15.3%

−21.9%
−17.5%

Recipient 3 −52.3%
−61.3%

−29.6%
−30.6%

−18.0%
−12.3%

−23.1%
−20.4%

−31.1%
−30.6%

−19.8%
−17.5%

Table 6: Percent departures from equal split, rounded to one decimal point. En-
tries show actual values, with fitted values underset.

Dummy Player is clearly rejected.

Support: A casual look at Table 5 suggests that average payoff allocations

respect Symmetry and Desirability comparisons listed in Table 4, with sym-

metric Recipients allocated approximately equal average payoffs, and more

desirable Recipients allocated seemingly higher average payoffs. For each char-

acteristic function and each applicable symmetry comparison Ri∼Rj, the null

hypothesis that the average payoffs of Ri and Rj are equal cannot be rejected by

a paired t-test. Moreover, for each applicable desirability comparison Ri�Rj,

the null hypothesis that the payoffs of Ri and Rj are equal is rejected by a

paired t-test at all conventional levels of significance (p ≤ 0.001), with the

exception of a p-value of 0.0138 for the payoffs of R2 and R3 in CF4.

In the characteristic functions tested here, Monotonicity has implications

when moving from CF2 to either CF3 or CF6. In the former case, Recipient 2

and 3’s payoffs should increase because the worths of both the grand coalition

and {2, 3} increase. In the latter case, all three recipients’ payoffs should in-

crease because the worth of the grand coalition increases. The average payoffs
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in Table 5 appear to confirm these comparisons. For each applicable Recipient

and each characteristic function, a paired t-test rejects the null hypothesis that

the Recipient’s average payoffs are the same (all p-values are 0.0000).

Recall that Additivity has two testable implications for our characteristic

functions. We discuss each of these testable implications in turn. Note that

the following statements pertain to all three treatments, with the understand-

ing that numbers should be multiplied by 10 when discussing the Vignettes

treatment. First, remember that CF6 can be written as the sum of CF2 and

the characteristic function given by v({1, 2, 3}) = 30 and v(S) = 0 for all

other coalitions S. Under the relatively safe assumption that Decision Makers

would allocate $10 to each Recipient in v, Additivity can be tested by checking

whether each Recipient is allocated an extra $10 when moving from CF2 to

CF6. With three treatments and three recipients per treatment, there are thus

nine equations to check. Average payoff allocations in Table 5 suggest that

Additivity holds. All but one paired t-test cannot reject the null hypothesis

that Ri’s payoff in CF6 is exactly ten dollars larger than that in CF2, for any

i = 1, 2, 3. The only rejection concerns Recipient 2 in the No-Quiz treatment

($11.15 in CF2 and $19.78 in CF6, with a p-value of 0.0189).

As a second test of Additivity, notice that CF3 is the average of CF2 and

CF7. Additivity implies that the solution for CF3 should be the average of

solutions for CF2 and CF7. Again, there are nine equations to check, and

average payoff allocations in Table 5 suggest that Decision Makers’ decisions

respect linearity. To confirm this, we test the null hypotheses that each Recip-

ient’s average payoff in CF3 is exactly the average of those in CF2 and CF7.

The null for all but two comparisons cannot be rejected using a paired t-test.

The two cases where the hypothesis is rejected concern Recipients 1 and 3

in the Vignettes treatment (who get $222.32 and $136.61 in CF3, versus an

average over CF2 and CF7 of $208.44 and $146.90, with p-values of 0.0107 and

0.0016 respectively). As we take a closer look at the data in the next section,

we will identify a possible cause for this specific violation of Additivity.

Finally, CF1 is the only characteristic function among those we tested

which has a dummy player (Recipient 3). It is clear at once from Table 5 that
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the dummy player is getting an average payoff that is strictly positive (p-value

of 0.0000 in each treatment). Beyond statistical relevance, the magnitude of

Recipient 3’s average payoff is also noteworthy. �

The classic characterization of the Shapley value is based on the axioms

of Additivity, Efficiency, Symmetry, and Dummy Player. Having to allocate

all the money means Efficiency is automatically satisfied in our setting. In

view of Result 2, it is natural to ask which class of solution concepts emerges

if we drop the Dummy Player axiom from the above characterization. A

clean theoretical characterization emerges for the domain V of three-player

characteristic functions for which the worth of each coalition is a rational

number, and singleton coalitions are worth nothing. Naturally, V contains all

seven characteristic functions we tested. The proof of the following observation

is straightfoward, and may be found in Appendix A.

Observation 1. A single-valued solution concept σ : V → R3 is Additive,

Symmetric, and Efficient if and only if σ is a linear combination of the Shapley

value and the equal split solution, that is, σ = δSh+ (1− δ)ES. Moreover, δ

is positive if and only if σ satisfies either Monotonicity or Desirability.

Thus the axioms, which our averaged data seems to corroborate, singles

out a simple, one-parameter solution concept. Under this model, payoffs for all

recipients are determined in all characteristic functions by a fixed affine com-

bination (i.e., independent of Recipients and characteristic functions) of equal

split and the Shapley value. We will call this the ESS model. Recipients start

on equal footing, and then gain (lose) δ dollars for each dollar by which the

Shapley value is larger (smaller) than equal split: δ = σi(v)−ESi(v)
Shi(v)−ESi(v)

, for each

characteristic function v and each Recipient i such that Shi(v) 6= ESi(v).

Equivalently, the percentage departure of the solution from equal split coin-

cides with δ times the percentage departure of the Shapley value from equal

split for all recipients in all characteristic functions:

σi(v)− ESi(v)

ESi(v)
= δ

(
Shi(v)− ESi(v)

ESi(v)

)
,
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Figure 2: The ESS model fitted to the average payoffs in the three treatments.

for each Recipient i and each characteristic function v.

The tests of axioms performed earlier check whether the data is consistent

with particular instances of these axioms, as they apply to the characteristic

functions studied here. On the other hand, the ESS model in Observation 1

relies on the axioms being satisfied universally by the average choices, which

is not directly testable. For this purpose, we fit the model to the data and

see that it provides a close match. The next result also provides an empirical

estimate of the parameter δ in each of the three treatments.

Result 3. The ESS model successfully captures average payoff allocations. The

estimated weight on the Shapley value is 0.368 for the Quiz treatment, 0.369

for the No-Quiz treatment, and 0.613 for the Vignettes treatment.

Support: Accounting for noisy departures, the ESS model lends itself to at

least two possible methods of estimation through linear regression. In one

possibility, the average amount m̄i(v) − ESi(v) a Recipient receives net of

equal split is proportional, by δ, to the amount Shi(v) − ESi(v) that the

Shapley value offers him, net of equal split. This would lead to a regression

in levels, potentially allowing characteristic functions with larger monetary

amounts to unduly influence our estimates. To account for this, we follow a

natural alternative instead, which is to divide both sides of the solution in

Observation 1 by the equal split solution. Note that this does not change

the solution concept: like all the other solution concepts, it is invariant to

normalization. The interpretation is then in terms of percent departure from
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Quiz Treatment No-Quiz Treatment Vignettes Treatment
m̄−ES
ES

m̄−ES
ES

m̄−ES
ES

Sh−ES
ES 0.368∗∗∗

(0.021)
0.369∗∗∗

(0.010)
0.613∗∗∗

(0.029)

constant −0.005
(0.007)

0.001
(0.005)

0.009
(0.013)

num. obs. 14 14 14
R2 0.9799 0.9901 0.9786

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 7: Per treatment, regression of the average percentage departure from equal split
of the allocations for R1 and R3, against percentage departure of the Shapley value from
equal split. Robust standard errors in parentheses. Estimates rounded to 3 decimal places.

equal split, just as in Table 6.18 That is, under this model, the percentage by

which a Recipient’s allocation departs from equal split is proportional, by δ, to

the percentage by which the Shapley value departs from equal split. Because

the ESS model applies the same δ to each Recipient, we can pool data across

Recipients to estimate δ. Since the payoff of a Recipient can be inferred from

the payoffs of the other two Recipients (the sum of all three payoffs is fixed per

characteristic function), we only consider the average choices for Recipients 1

and 3 per characteristic function (we drop Recipient 2 since R2’s Shapley value

coincides with equal split in CF4, leading to less exploitable variation).

Table 7 shows the regression results for each treatment, using robust stan-

dard errors. As can be seen there, the estimate of δ, which is the coefficient

of the variable (Sh − ES)/ES, is highly significant in each treatment, and

the smallest R2 value across treatments is 0.9786. There is indeed a striking

linear relationship apparent in Figure 2, where we plot for each treatment the

averaged data together with the fitted regression line. Table 6 specifies these

estimated values beneath the observed ones, to help quantify the close fit. �

Results 1-4 show that our qualitative findings replicate to a large extent

across the three treatments. As noted in the Introduction, an implication is

that sub-coalition worths matter for average payoff allocations even when there

is no sense conveyed that they were earned (as in the No-Quiz treatment). As

18This is mathematically equivalent to normalizing by the total v({1, 2, 3}) available; that
would be interpreted as the departure from equal split as a percent of the pie.
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for quantitative comparisons, the average payoffs in the Quiz and No-Quiz

treatments are strikingly similar, and nearly overlay each other in the imputa-

tion triangles of Figure 1. By contrast, average payoffs in the Vignettes treat-

ment, in which Recipient values are generated in the context of professional

service, suggest that marginal contributions there are weighted more heavily

than in the prior treatments. The next result confirms these statements.

Result 4. Average payoff allocations are not significantly different in the Quiz

and No-Quiz treatments. By contrast, average payoff allocations are signifi-

cantly different, moving further away from Equal Split, in the Vignettes treat-

ment than in both the Quiz and No-Quiz treatments.

Support: Going back to the estimations in Table 2, we cannot reject the null

hypothesis that the estimated weights δ = 0.368 and δ = 0.369 for the Quiz

and No-Quiz treatments, respectively, are the same (p-value 0.9878). However,

the null hypothesis that the estimated δ = 0.613 for the Vignettes treatment

is the same as for the Quiz Treatment, or the No-Quiz treatment, is rejected

at all conventional significance levels (both p-values are 0.0000). �

Average payoffs provide an elucidating, birds-eye view of the data, which

is the primary purpose of this section. Beyond this, the simple average is a

quite natural means of aggregating opinions,19 and in this case average payoff

allocations could been seen as reflecting the societal view of how to split the

money available. We note averaging is purely an ex-post exercise: recipients

were not paid according to such averages, nor were they mentioned to subjects.

5 A Closer Look at the Data

Average choices have the advantage of partially canceling noise and potentially

reflecting a societal view, but miss additional information in the data. We

19Applying Rubinstein and Fishburn (1986)’s result to our setting, it is the only aggregator
that picks the common opinion when all Decision Makers agree, that is efficient, and for
which a Recipient’s payoff depends only on the amounts Decision Makers’ allocated to him.
For example, the aggregation method giving each Recipient the median payoff chosen for
him would satisfy the first and last properties, but violate the second.

31



revisit Results 1-4 by examining Decision Makers’ choices from different per-

spectives. How many Decision Makers overlook the worths of sub-coalitions,

choosing equal splits? Are axioms like Additivity and Symmetry valid on

average due to the presence of equal splitters, or do they still hold among non-

equal splits? Do the δ’s from Result 3 reflect a homogenous population or the

average of a heterogenous one? Are other models useful for explaining some

individuals’ choices, but not prevalent enough to survive (or cancel each other)

when averaging? How do distributions of choices compare across treatments?

5.1 Description of the Data

By depicting a Decision Maker’s allocation for the three Recipients in impu-

tation triangles (as standard in the cooperative games literature), Figures 3-4

provide a visualization of all Decision Makers’ choices for each characteristic

function in each treatment.20 Within each simplex, a ball’s radius is propor-

tional to the fraction of Decision Makers who picked its center.

Table 8 shows the percentage of equal splits in CF1-CF6. Observe that

in CF2, CF3 and CF6, the worth of the grand coalition is not divisible by

three. Decision Makers can input numbers with decimal places, but may find

payments in whole dollars to be simpler. Throughout the paper, we will thus

count a Decision Maker’s chosen allocation in the Quiz and No-Quiz treatments

as an equal split if payoffs across Recipients differ by at most one dollar. For the

Vignettes treatment, where all values are scaled by ten, we count an allocation

as an equal split if payoffs across Recipients differ by at most ten dollars.

Since the imputation triangles are all the same size (only tick marks differ),

they are comparable in terms of percentages of the total allocated to each

recipient. Reinforcing Result 1, the movement of the clouds of points across

characteristic functions suggests that splits do vary with sub-coalition worths.

CF1 and CF7 provide a particularly salient contrast, as they share the same

total amount available but differ in the sub-coalition worths.

20We include in these scatterplots the 5 subjects in the Quiz treatment and the 7 subjects
in the No-Quiz treatment who select an unequal split in CF7.
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CF1 CF2 CF3 CF4 CF5 CF6 CF7

Quiz 40.96% 23.81% 18.07% 57.83% 65.43% 20.73% 100%

No Quiz 51.43% 38.46% 35.58% 50.96% 60.58% 39.05% 100%

Vignettes 25.88% 12.94% 11.76% 31.76% 35.29% 20.24% 100%

Table 8: Percent of payoff allocations that are ‘equal splits’.

5.2 Testing Axioms

Result 2 established that average payoffs satisfy all the axioms listed in Section

2.2, except Dummy Player. We now gauge the extent to which individual

choices satisfy them. A good understanding of individual choices is more

informative than an understanding of average choices, but harder to attain.

Satisfying Additivity, for instance, means satisfying a knife-edge equality. Even

if all Decision Makers abide by it, most will appear to fail it individually

when noise is added. Thus we also explore axioms at an intermediate level

of aggregation, by performing tests on the distributions of money allocated to

recipients. Certain axioms are trivially satisfied for Decision Makers who split

equally in the relevant characteristic functions. In those cases, we focus on

testing the axiom among the subpopulation that chose otherwise. Additional

figures and p-values for tests in this section appear in Appendix C.

Dummy player. CF1 is the only characteristic function tested which has

a dummy player (Recipient 3). A substantial fraction of subjects satisfy the

Dummy Player (34.9%/29.5%/27.1%),21 and a substantial fraction violate it,

either by choosing equal split (41%/51.4%/25.9%) or a strict convex combina-

tion of the equal split solution and the Shapley value (15.7%/12.4%/41.2%).

Many in the last category gave $10 to Recipient 3 (or $100 in the Vignettes

treatment). There are many reasons why one may see few norms here; for

instance, the Shapley value is an element of the core, and coincides with the

nucleolus. A more complex picture arises in other characteristic functions.

21The three figures refer to percentages in the Quiz/No-Quiz/Vignettes treatments.
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Figure 3: Frequency-weighted scatterplots of all choices in CF1-CF3.
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Figure 4: Frequency-weighted scatterplots of choices in CF4-CF7. There is no
frequency-weighting for CF7 of the Vignettes treatment, as all split equally.
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Figure 5: Symmetry and Desirability. Empirical CDFs per Recipient in CF2.

Symmetry and Desirability. By its nature, the equal split solution re-

spects Symmetry but violates Desirability. As we will show, Symmetry ap-

pears to be respected even among non-equal splits, and as we have already

established, Desirability appears to be respected even when including them.

We quickly revisit our analysis of average payoffs, among non-equal splits.

For Symmetry, the null hypothesis that average payoffs of Ri and Rj are equal

cannot be rejected by a paired t-test for any treatment or applicable symmetry

comparison, with only one exception: in CF6 of the No-Quiz Treatment, the

p-value for symmetry of average payoffs of R2 and R3 is 0.0091. For Desirabil-

ity, our earlier conclusion that it is generally satisfied was reached even when

including equal splits. The evidence is yet stronger when dropping them. For

each applicable desirability comparison, the null hypothesis that the average

payoffs are equal is rejected by a paired t-test at all conventional levels of sig-

nificance (p ≤ .001), with the exception of three comparisons involving CF4,

which are rejected only at the 5% significance level.22

A panoramic view of Symmetry and Desirability at the aggregate level is

provided by the empirical CDFs of money allocated per Recipient in each char-

acteristic function. Theoretically, average payoffs of symmetric agents could be

near each other, even while the CDFs differ widely. For each treatment, Fig-

ure 5 superimposes the empirical CDF’s of money allocated to the recipients

in CF2; see Figure 12 in the Appendix for the other characteristic functions.

22The p-values are 0.0167 for R1�R2 in No-Quiz, 0.0109 for R2�R3 in Quiz, and 0.0138
for R2�R3 in No-Quiz.
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These figures paint a suggestive picture of Symmetry and Desirability.

Indeed, even among non-equal splits, the Wilcoxon23 signed-ranks test can-

not reject any of the null hypotheses that the money allocated to symmetric

Recipients come from the same distribution (although the p-value of 0.0540

for R2 ∼ R3 in CF6 of the No-Quiz Treatment is marginal). Moreover, even

when including equal splits, the Wilcoxon signed-ranks test rejects all the null

hypotheses that the money allocated to two Recipients ranked by desirability

in a characteristic function come from the same distribution. These null hy-

potheses are rejected at all conventional levels of significance (p ≤ 0.001), with

the exception of the desirability comparison R2�R3 in CF4, which is rejected

at a 5% significance level in the Quiz treatment (p-value 0.0387) and at the

1% level in the No-Quiz treatment (p-value 0.0029).

Finally, we examine Symmetry and Desirability at the individual level.

Decision Makers opting for equal splits clearly respect all symmetry compar-

isons, but violate all desirability comparisons. Among Decision Makers who

split unequally in a given characteristic function, Table 9 shows that a sub-

stantial portion respect all applicable symmetry and desirability comparisons.

One should keep in mind that it is nontrivial to assess symmetry and desirabil-

ity in each characteristic function; and due to our randomly generated aliases

for recipients, Decision Makers cannot detect or rely on any patterns. The

table allows for differences of at most one dollar in payoffs in assessing sym-

metry (ten for Vignettes). Note that in CF4, no two players are symmetric.

As also seen at the aggregate level, this feature may have complicated the

problem in Quiz and No-Quiz (though, interestingly, not in Vignettes, which

might suggest that the presence of a relatable story in the vignette did help

subjects think through the problem at hand), adding some noise. However,

94.3%/84.3%/96.6% of subjects respect at least two out of the three rankings.

23Note that the Kolmogorov-Smirnov test, which we will use later for comparing distri-
butions across treatments, is not the most appropriate test for the current null hypotheses,
which are within treatments: unlike the Wilcoxon test, it does not take into account that
these are matched samples (i.e., from the same Decision Makers). However, it may be worth
noting that the Kolmogorov-Smirnov test makes nearly identical conclusions here.
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Quiz CF1 CF2 CF3 CF4 CF5 CF6

Symmetry 81.6% 57.8 % 67.6% n/a 57.1% 56.9%

Desirability 85.7% 56.3% 63.2% 31.4% 67.9% 55.4%

Both 79.6% 53.1% 58.8% 31.4% 57.1% 50.8%

No-Quiz CF1 CF2 CF3 CF4 CF5 CF6

Symmetry 74.5% 64.1 % 68.7% n/a 78.0% 62.5%

Desirability 84.3% 62.5% 71.6% 35.3% 85.4% 65.6%

Both 76.5% 59.4% 65.7% 35.3% 75.6% 59.4%

Vignettes CF1 CF2 CF3 CF4 CF5 CF6

Symmetry 87.3% 83.8% 74.7% n/a 72.7% 89.6%

Desirability 90.5% 85.1% 82.7% 96.6% 78.2% 88.1%

Both 87.3% 82.4% 74.7% 96.6% 63.6% 86.6%

Table 9: Symmetry and Desirability in each treatments. For each CF, the per-
centage of chosen allocations (among non-equal splits) respecting these axioms.

Monotonicity Among those characteristic functions tested here, Monotonic-

ity has implications only when moving from CF2 to either CF3 or CF6. In the

former case, Recipient 2 and 3’s payoffs should increase because the worths of

both the grand coalition and {2, 3} increase. In the latter case, all Recipients’

payoffs should increase because the worth of the grand coalition increases.

Figure 6 superimposes, for each treatment, the relevant empirical CDFs

for Recipient 2. As seen there, his payoff in both CF3 and CF6 first-order

stochastically dominates (or nearly does) his payoff from CF2. The analo-

gous graphs for the other recipients, shown in Figure 13, similarly corroborate

Monotonicity. Because the value of the grand coalition happens to also in-

crease relative to CF2, the equal split solution also satisfies these instances of

Monotonicity. Even among those who split unequally in at least one of the

applicable characteristic functions, t-tests of the average payoffs of a recipient,

and Wilcoxon signed-ranks tests of the distributions of payoffs to a recipient,

all soundly reject the null hypotheses of equality when moving from CF2 to

CF3/CF6 (all the p-values are 0.0000, for all recipients and treatments).
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Figure 6: Monotonicity. Empirical CDFs for Recipient 2 in CF2, CF3 and CF6.

At the individual level, any Decision Maker splitting equally in both char-

acteristic functions would satisfy these particular instances of Monotonicity.

Among other Decision Makers, 75.8%/68.6%/74.3% allocate strictly more

money to all recipients when going from CF2 to CF6. Going from CF2 to

CF3, 57.4%/66.7%/71.1% allocate strictly more to Recipients 2 and 3.

Additivity Recall that Additivity has two testable implications for our char-

acteristic functions. We discuss each of these testable implications in turn.

First, remember CF6 can be written as the sum of CF2 and the character-

istic function given by v({1, 2, 3}) = 30 and v(S) = 0 for all other coalitions S

(all amounts should be multiplied by 10 for the Vignettes treatment). Under

the relatively safe assumption that Decision Makers would allocate $10 to each

Recipient in v, Additivity can be tested by checking whether each recipient is

allocated an extra $10 when moving from CF2 to CF6. Additivity was first

discussed in Result 2, but when including equal splits. The averages remain

strongly suggestive of Additivity even when dropping those Decision Makers

who split equally in both CF2 and CF6: paired t-tests cannot reject the null

hypothesis that Ri’s payoff in CF6 is exactly ten dollars larger than that in

CF2, for any i = 1, 2, 3, with the only exception of R2 in No-Quiz (the payoff

difference is statistically significant with a p-value of 0.0180, though amounts

to a discrepancy of only $1.37).

For a broader picture, we consider again the empirical CDFs. As seen

in Figure 7, after translating the CDF of money allocated to R1 in CF2 by
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Figure 7: 1st instance of Additivity. The relevant empirical CDFs for Recipient 1.
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Figure 8: 2nd instance of Additivity. Empirical CDFs in Vignettes treatment.

$10, the resulting CDF is close to the empirical CDF of money allocated to

R1 in CF6. Corresponding graphs for R2 and R3 appear in Figure 14 of the

Appendix, and overall suggest a strong support for Additivity. Even among

only those Decision Makers who choose an unequal split in at least one of

CF2 or CF6, the Wilcoxon signed-rank test cannot reject the null hypothesis

that the data in each case comes from the same distribution, with the only

exception of R2 in the No-Quiz treatment (p-value 0.0325).

At the individual level, even among those choosing an unequal split in

at least one of CF2 or CF6, we find 17/14/24 Decision Makers satisfy this

instance of Additivity with exact equality for all three Recipients.

As a second test of Additivity, remember that CF3 is the average of CF2

and CF7. Additivity implies that the solution for CF3 should be the average

of solutions for CF2 and CF7. For the Quiz and No-Quiz treatments, none

of the null hypotheses corresponding to this second instance of Additivity

can be rejected, whether we examine equality of average allocations among
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non equal-splitters using paired t-tests, or equality of underlying distributions

using Wilcoxon signed-rank tests. For the Vignettes Treatment, however, these

null hypotheses are rejected for both R1 and R3 (which reflects the fact that

Additivity was not satisfied for average payoffs in that case either, see the

analysis in support of Result 2). The empirical CDFs in Figure 8 show the

regions where these (translated) empirical CDFs in the Vignettes treatment

depart, and shed light on a likely cause. Namely, in CF3, there are 21 Decision

Makers who allocate ($300, $100, $100), which is precisely the singleton core in

that characteristic function, and thus also the nucleolus. To satisfy Additivity,

those same Decision Makers would need to allocate $0 to both Recipients 2

and 3 in CF2, since they allocate $200 to all Recipients in CF7. Interestingly,

all these subjects do treat Recipients 2 and 3 symmetrically in CF2, but only

5 subjects out of these 21 give them $0.24 Repeating the paired t-tests and

Wilcoxon signed-rank tests after dropping the above 21 (even dropping the 5

among them who do satisfy Additivity), we find that Additivity is satisfied by

the remaining 55 subjects : none of the null hypotheses corresponding to this

second instance of Additivity can be rejected.

At the individual level, even among those choosing an unequal split in at

least one of CF2 or CF3, we find 7/15/19 Decision Makers satisfy this instance

of Additivity with exact equality for all three Recipients.

5.3 ESS and Other Models

Recall Result 3, which shows that average payoff allocations are well explained

by the ESS model with δ = 0.368/0.369/0.613 for the Quiz/No Quiz/Vignettes

treatment. What does this mean at the individual level? Does the ESS model

provide a better fit to individual choices compared to alternatives like the

nucleolus or the strong-CEA solution? Moreover, should the ESS model prove

dominant, is the δ identified for each treatment in Result 3 a reflection of

24Among the other 16 subjects, 1 subject gives them $1; 1 subject gives them $25; 6
subjects give them $50; 2 subjects give them $75; and 6 subjects give them $100. This
can either be noise or a disinclination to give Recipient 1 all the money in CF2, which is
theoretically different than violating the Dummy Player axiom. In fact, half of these 16
subjects do give $0 to the dummy player in CF1.
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mostly homogenous opinions, or is it the average of heterogenous ideals?

Section 5.1 revealed that for each characteristic function, there is a fraction

of Decision Makers who select an equal split. As we now consider choices across

characteristic functions, we will define a Decision Maker as an equal splitter if

she picks equal splits in all characteristic functions. There are 10/22/6 such

Decision Makers in the Quiz/No-Quiz/Vignettes treatment. By definition, the

δ of these individuals under the ESS model will be close to zero, providing a

first sense of heterogeneity in the population.

We can single out a larger class of Decision Makers. Say that a Decision

Maker is a D-equal splitter if she splits the money exactly equally in all four

characteristic functions where the total worth is divisible by three. Through

their choices, D-equal splitters reveal themselves as having a strong tendency

towards equal splits. In our data, equal splitters are a subset of D-equal

splitters (they do divide the money exactly equally, not just within $1, in CF1,

CF4, CF5 and CF7), but there are many more D-equal splitters (28/42/15 in

Quiz/No-Quiz/Vignettes). Looking at the data, some of these subjects seem

to round payments by multiples of $5 instead of $1 when the worth of the

grand coalition is not divisible by three.25 Those Decision Makers, too, would

be well-captured by the ESS model with δ close to zero. Interestingly, a few

other D-equal splitters seem to follow a more intricate model of choice: they

sometimes select reasonable payoff allocations that are far from equal splits

when the worth of the grand coalition is not divisible by three.26 The ESS

model is not a good description of such choices. We find it interesting to

25It would be inadequate, though, to redefine the notion of equal split in a given charac-
teristic function by allowing differences of up to $5. For instance, 53 subjects in the Quiz
treatment would pass the $5 test in CF3, but only 23 of them are D-equal splitters. Instead,
the large majority (73.7%) of those who are within $5 but not within $1 select the allocation
($20, $15, $15), which is consistent with rewarding R1, who is most desirable, while giving
equal payoffs to the symmetric R2 and R3.

26One such D-equal splitter in the Quiz treatment is within $5 in all other characteris-
tic functions, with one exception: they choose ($40, $0, $0) in CF2, following the nucleolus
in respecting the extreme competition between R2 and R3 for cooperation with R1. An-
other interesting D-equal splitter, this time in the Vignettes treatment, chooses exactly the
allocations prescribed by the nucleolus in CF3 and CF6, and exactly that prescribed by
the strong-CEA in CF2; hence they split equally when the total is divisible by three, and
otherwise choose allocations with differences ranging from $100 to $250.
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document these behaviors, though they are rather unusual and have limited

impact on our analysis.

As D-equal splitters comprise a sizable fraction of subjects and most are

well described by the ESS model with δ’s near zero, it must be that other

Decision Makers use much larger δ’s to obtain the average δ uncovered in

Result 3. Addressing this question, Table 10 provides the results of linear

regressions of the same normalized form as in Result 3. Unlike Result 3, the

choices are not averaged. This allows us to keep track of each Decision Maker’s

identity, and we use a generalization of the Huber-White sandwich estimator

of errors that is not only robust to heteroscedasticity, but also clustered at the

level of the Decision Maker to permit for correlation across his or her choices

(Rogers, 1993). The regressions in the leftmost column consider all Decision

Makers. We get about the same estimates for δ in each treatment as we did in

Result 3, but naturally with lower R2’s as the noise from the variety of choices

hasn’t been canceled out by averaging. The middle column estimates the

same regression model, but among those who are not D-equal splitters. The

estimates of δ significantly increase for each treatment (p-values all less than

0.0001). The rightmost column considers D-equal splitters, who are captured

by a small, positive δ. We compare δ’s across treatments in Section 5.4.

In Appendix D we consider some possible sources (or correlates) of hetero-

geneity in δ: interaction effects with a Decision Maker’s major, age, gender,

and number of siblings, or session effects (e.g., arising from the ordering of

characteristic functions in the Latin square design). We find that a Decision

Maker’s gender has no statistically significant impact on δ; nor does their num-

ber of siblings. Being an economics-related major may have some impact: an

increase in δ of about 0.2, significant only at the 5% level. Further interaction

with age reveals that the effect is significant only for subjects who are at least

20 years old, and presumably more advanced in their studies. We thus suspect

that the effect has more to do with coursework in economics than personal

traits, but cannot draw any definitive conclusions using the sparse education

data we collected. We find no session effects.

Next, we delve more deeply into Decision-Maker behavior, considering
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Quiz Treatment (all) (no D-equal splitters) (D-equal splitters)
m−ES
ES

m−ES
ES

m−ES
ES

Sh−ES
ES 0.368∗∗∗

(0.039)
0.521∗∗∗
(0.044)

0.065∗
(0.028)

constant −0.005
(0.005)

−0.012
(0.007)

0.008∗
(0.003)

No. subjects 84 56 28
Observations 1150 766 384

R2 0.3003 0.4297 0.0450

No-Quiz Treatment (all) (no D-equal splitters) (D-equal splitters)
m−ES
ES

m−ES
ES

m−ES
ES

Sh−ES
ES 0.368∗∗∗

(0.047)
0.595∗∗∗
(0.064)

0.027∗
(0.011)

constant 0.001
(0.006)

−0.002
(0.009)

0.005∗∗
(0.001)

No. subjects 105 63 42
Observations 1460 874 586

R2 0.2085 0.3305 0.0384

Vignettes Treatment (all) (no D-equal splitters) (D-equal splitters)
m−ES
ES

m−ES
ES

m−ES
ES

Sh−ES
ES 0.613∗∗∗

(0.049)
0.733∗∗∗
(0.048)

0.054
(0.036)

constant 0.009∗
(0.004)

0.008
(0.005)

0.014
(0.007)

No. subjects 85 70 15
Observations 1188 978 210

R2 0.4774 0.5752 0.0285
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 10: Regressions of the percentage departure from equal split of allocations to R1
and R3, against percentage departure of the Shapley value from equal split. Robust standard
errors in parentheses, clustered by Decision Maker. Estimates rounded to 3 decimal places.

individual-level regressions to estimate each Decision Maker’s δ under the ESS

model. For these individual regressions only, we focus on the 79/101/84 sub-

jects in the Quiz/No-Quiz/Vignettes treatments who made choices for all seven

characteristic functions, so that each regression has 14 observations. As we

find a few individuals with δ > 1 (which violates individual rationality in CF1)

or with δ < 0 (which violates Desirability and Monotonicity), we perform the

regression while constraining δ ∈ [0, 1]. While δ’s outside this range could be

attributed to noise, they may simply be the result of model misspecification.

We precisely intend to account for the possibility that individuals apply dif-

ferent models. To do this, we consider ‘three’ possible solution concepts for
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ESS Nucleolus Strong-CEA
Quiz 93.7% 3.8% 2.5%

No-Quiz 92.1% 5.9% 2.0%
Vignettes 88.1% 8.3% 3.6%

Table 11: Percentage of subjects each model best explains.

each subject: the nucleolus, the strong solution, and the ‘best’ linear combi-

nation of the Shapley value and equal split solution, as estimated from the

normalized, individual-level regression just discussed. We classify a Decision

Maker according to which of these solution concepts minimizes the sum (over

CF1-CF6) of the squared error between their chosen normalized allocation for

the three recipients and the predicted normalized allocation.27

By its nature, the linear model estimated nests both equal split and the

Shapley value. We consider the single-valued nucleolus rather than the core,

which is very permissive in some of our characteristic functions. Since the

strong-CEA selects two possible allocations for CF1, we consider the mini-

mum error among these two. We do not consider the weak solution in this

analysis, as it is undefined for CF2-CF3. Table 11 displays the classification

results. Some subjects in each treatment are best explained by the nucleo-

lus or strong-CEA. One might worry the continuum of possible values for δ

in the ESS model stacks the deck against these other models. Surprisingly,

every subject is classified under the same solution concept (ESS, nucleolus,

strong-CEA) if instead of estimating δ in the ESS model through regression,

we allow only δ ∈ {0, 1/3, 2/3, 1}, that is, only two intermediate values of δ

along with the equal split solution and Shapley value. In that discrete analy-

sis, about 38%/51%/20% of subjects are classified as equal splitters (δ = 0),

27%/16%/21% are classified as δ = 1/3, 24%/15%/26% as δ = 2/3, and

5%/11%/20% as Shapley, for Quiz/No-Quiz/Vignettes, respectively. In line

with our discussion of D-equal splitters, those individuals are almost entirely

27Again, we normalize all allocation by the total amount available to prevent conclusions
being unduly influenced by characteristic functions with large amounts available. However,
the results are nearly identical to those without normalization.
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classified under the equal split solution (δ = 0), with just a couple of exceptions

per treatment; and they constitute 67%/76%/76% of the δ = 0 category.

A benefit of estimating δ through individual regressions is confidence in-

tervals. Figure 9 graphs the individual δ’s estimated through regression, along

with their 95% confidence interval using robust standard errors when the

δ ∈ [0, 1] constraint is slack. Each individual regression, of course, has only

14 observations per Decision Maker, which are likely to be noisy; hence some

confidence intervals are quite large. The distribution of δ’s in the population,

seen in Figure 10, may provide a more informative picture of heterogeneity

and comparisons across treatments, which we discuss next.

5.4 Comparing Treatments

Expanding upon Result 4, our estimates of the ESS model in each treat-

ment suggest that, at least at the aggregate level, the estimated weight on

the Shapley value is similar across the Quiz and No-Quiz treatments, and

significantly smaller than in the Vignettes treatment. This is confirmed statis-

tically. Among the population of non D-equal splitters, these differences are

less pronounced: while the estimates for the Quiz and Vignettes treatments

are statistically significant, the estimate for the No-Quiz treatment (which falls

in between) is only marginally different from Vignettes (p-value of 0.0824).

An interesting explanation is suggested by the empirical CDF’s of esti-

mated individual δ’s in Figure 10. The distributed of estimated δ’s in the
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Figure 9: Estimated weight on Shapley and its 95% robust CI for each individual
best explained by the ESS model, per treatment.
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Figure 10: CDFs of estimated weights on Shapley, per treatment.

Vignettes treatment first-order stochastically dominates the distributions of

the Quiz and No-Quiz treatments, and the Kolmogorov-Smirnov test indeed

rejects that they are the same (p-values 0.003 and 0.000, respectively). The

Kolmogorov-Smirnov test cannot reject that the distributions from the Quiz

and No-Quiz treatments are the same (p-value 0.307). In fact, the distribution

of δ’s from No-Quiz has some features of a mean-preserving spread of the dis-

tribution of δ’s from the Quiz treatment, placing greater weight on extremes.

We now examine our data from this perspective. Figure 11 superimposes

the empirical CDFs for the different treatments in 3 different panels, one for

each Recipient in CF4. Figure 16 in the Appendix contains all remaining

panels. Consistent with our theoretical observation, Figure 11 shows the em-

pirical CDF’s of money allocated to R2 in CF4 are nearly identical across

treatments.For each pair of treatments, the Kolmogorov-Smirnov test cannot

reject that the allocations to R2 in CF4 come from the same distribution.

Beyond this, Figures 11 and 16 reveal that the empirical CDFs of money

allocated in the Quiz and No-Quiz Treatments are quite similar in every panel,

In each case, the Kolmogorov-Smirnov test cannot reject the null that the two

distributions are the same. They also reveal that in every panel except that of

R2 in CF4, the empirical CDFs from the Quiz and No-Quiz Treatments are

ranked, or nearly ranked, by FOSD to the empirical CDF from the Vignettes

Treatment. The direction of dominance reflects whether the given Recipi-

ent’s Shapley value is superior or inferior to equal split in that characteristic

function. Notice that R1’s Shapley value is always above equal split, while
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Figure 11: Empirical CDFs across treatments, for CF4.

R3’s Shapley value is always below it. Many of these differences are highly

statistically significant according to the Kolmogorov-Smirnov test, with the

differences most significant across the No-Quiz and Vignettes Treatments.28
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