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We present comparative performance of cryptocurrencies by the performance index

based on the Aumann-Serrano –henceforth, AS– economic index of riskiness. We

consider three cryptocurrencies: Bitcoin, Ethereum and Binance-coin, which have

the largest market capitalizations among all cryptocurrencies. Ethereum is about

twice as good as Binance-coin and fourteen times as good as Bitcoin when we

evaluate them by the AS performance index. Therefore, Bitcoin is rated quite

poorly –much riskier– compared to other cryptocurrencies although it is the most

popular and has the largest market capitalization among all the cryptocurrencies.

On the other hand, SPY is rated the best –least risky– and much better than the

three cryptocurrencies by the AS performance index. The evaluation by the AS
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1 Introduction

Cryptocurrencies have received considerable attention recently. For example, the price

of Bitcoin, which has the largest market capitalization among all the cryptocurrencies,

is now reported in major financial news and cited every day around the globe. Cryp-

tocurrencies have increased their market capitalizations tremendously in the last decade

so that they now play important roles as financial products and targets in financial and

risk management and investing. On the other hand, cryptocurrencies also have a great

deal of variation compared to traditional financial assets, such as stocks, commodities,

derivatives, etc. It is therefore not surprising to find many studies that try to capture

the volatility of cryptocurrencies. Cryptocurrencies are now one of major investment

targets, so that assessment of cryptocurrencies is quite important in investment and fi-

nancial risk and management. In this paper, we present evaluation of cryptocurrencies

by an axiomatic performance measure of the Aumann-Serrano –AS hereafter– perfor-

mance index due to Kadan and Liu (2014), which is based on the economic index of

riskiness proposed in Aumann and Serrano (2008).

Studies of the properties, modeling, and forecasting of cryptocurrencies abound. A

partial list follows. Their market efficiency has been studied in Urquhart (2016); Nadara-

jah and Chu (2017); Bariviera et al. (2017); Khuntia and Pattanayak (2018); Tiwari et

al. (2018). On the other hand, Lo (2004) proposed an alternative of the market efficiency

hypothesis, i.e., the adaptive market hypothesis where the efficiency evolves over time.

There are some studies of the adaptive market hypothesis for cryptocurrencies (e.g., Chu

et al. (2019); Noda (2020)).

Cryptocurrencies have extremely large volatility. One of the well-known methods of

capturing volatility is the autoregressive conditional heteroskedasticity (ARCH) model by

Engle (1982), which is generalized to the general autoregressive conditional heteroskedas-

ticity (GARCH) model by Bollerslev (1986). Glaser et al. (2014) estimated a standard

GARCH(1,1) model for Bitcoin. Gronwald (2014) found an autoregressive jump-intensity

GARCH model fits better than a standard GARCH(1,1) model for Bitcoin. Dyhrberg

(2016) estimated an asymmetric GARCH model for Bitcoin. Katsiampa (2017) found

that an autoregressive model with a component GARCH model fits best for Bitcoin.
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Chu et al. (2017) tried 12 GARCH specifications with different distributions for the

error term.

There are also studies of long memory and volatility for cryptocurrencies, such as

Bariviera et al. (2017), Caporale et al. (2018), Cheah et al. (2018), Charfeddine and

Maouchi (2019), and Yaya et al. (2019).

Bauwens et al. (2010,2014) found structural change results in biased estimation and

poor forecasting of GARCH models. To deal with this issue, Markov switching models

have been proposed. Ardia et al. (2018) estimated a number of Markov switching

GARCH models and found Markov switching GARCH models outperform single regime

models in forecasting value at risk and expected shortfall.

On the other hand, not many studies exist that obtain the comparative assessment

of cryptocurrencies, with the possible exception of popular performance measures such

as the Sharpe ratio. We intend to present the assessment of cryptocurrencies by per-

formance measures in this paper. Although several performance measures have been

proposed in the literature, most of them are somewhat ad-hoc (e.g., Eling et al. (2007);

Farinelli et al. (2008)). In this paper, we choose to employ the AS performance in-

dex, which is based on axiomatic principles and applies to any population of risk-averse

investors (Aumann and Serrano (2008); Kadan and Liu (2014)).

Hodoshima and Otsuki (2019) presented the AS performance index of Bitcoin as

compared to traditional assets of U.S. stocks and gold. That paper assumed that!! the

underlying gamble of Bitcoin is a static gamble, i.e., its observations are sample data

of a static random variable and assumed the underlying distribution follows the class of

normal mixture distributions. However, it may be more appropriate to treat observa-

tions of cryptocurrencies as realizations of stochastic processes, since cryptocurrencies

vary tremendously both in the short-run and in the long-run, so that treating them as

static random variables may not be as reasonable. Therefore, in this paper, we assume

observations of cryptocurrencies are realizations of stochastic processes, instead of static

random variables. In other words, we assume cryptocurrencies are multi-period gambles,

which are treated as stochastic processes. Under this assumption, it is appropriate to

use the AS performance index for multi-period gambles instead of one-period gambles,
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as formulated by Kadan and Liu (2014) (cf. Section 3.2 of Kadan and Liu (2014)).

Furthermore, Hodoshima and Otsuki (2019) did not model volatility clustering for the

assets they investigated, unlike what is done in the current study.

In order to obtain the AS performance index for multi-period gambles instead of

one-period gambles, we must model and estimate the underlying process of the multi-

period gambles to compute the index. We employ a class of normal mixture distributions

with GARCH volatility models. The class of normal mixture distributions is a flexible

class that can reproduce symmetric distributions as well as asymmetric and/ or heavy

tail distributions often found in financial products, such as stocks, commodities, foreign

currencies, etc. The class of normal mixture distributions can be considered to be one

of Markov switching models where the transition matrix is time independent. Since

GARCH volatility models are also well-known to capture volatility clustering, we incor-

porate them into the class of normal mixture distributions. In particular, we examine up

to four-components normal mixture distributions to examine whether such higher order

normal mixture models are useful to capture the enormous variation of cryptocurrencies.

Summarizing our main findings, We consider three cryptocurrencies: Bitcoin, Ethereum

and Binance-coin, which have the largest market capitalizations among all cryptocur-

rencies. Ethereum is about twice as good as Binance-coin and fourteen times as good

as Bitcoin when we evaluate them by the AS performance index.1 Therefore, Bitcoin

is rated quite poorly –much riskier– compared to other cryptocurrencies although it is

the most popular and has the largest market capitalization among all the cryptocurren-

cies. On the other hand, SPY is rated the best –least risky– and much better than the

three cryptocurrencies by the AS performance index. The evaluation by the AS perfor-

mance index contrasts sharply to that made by the Sharpe ratio, according to which the

difference among the three cryptocurrencies and SPY is fairly small.

The rest of the article is organized as follows. Section 2 presents the setup of our

models. Section 3 explains data. Section 4 provides the empirical examples. Section 5

presents concluding comments.

1As two benchmark comparisons –see Aumann and Serrano (2008)–, (i) a gamble that results in a
loss of l with probability 1/e, and a “very large” gain with the rest of probability has AS-riskiness l, for
any l > 0; and (ii) given any base binary gamble with gain g and loss l, for any λ > 0, its AS riskiness
is multiplied by λ when both gain and loss are also multiplied by λ.
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2 Models

In this section, we present the models that are used in this paper. Modeling volatil-

ity is key in capturing the variation of cryptocurrencies, and to that end, we use the

GARCH(1,1) family of volatility models. In particular, we use the standard GARCH(1,1)

model as well as the asymmetric GARCH(1,1) (AGARCH(1,1)) model (cf. Engle (1990))

and the GJR(1,1) model (the model based on Glosten et al. (1993)). In the latter two

asymmetric GARCH(1,1) models, the response is asymmetric with respect to the sign of

the return of one-period behind.

We employ the class of normal mixture distributions to capture the underlying dis-

tribution of the return of cryptocurrencies. As the underlying model, we use a class of

normal mixture distributions with three volatility specifications of GARCH(1,1) families.

In other words, we assume the return Xt of the three cryptocurrencies follows a mixture

of K normal distributions with a time-varying volatility process

Xt|It−1 ∼ πkN(µk, σ
2
k,t) (1)

for t = 1, · · · , T and k = 1, · · · , K, where N(µk, σ
2
k,t) denotes normal distribution with

mean µk and variance σ2
k,t, It−1 is the information set up to time t− 1, 0 ≤ πk ≤ 1, and∑K

k=1 πk = 1. We further assume that the conditional variance of the k-th component

follows three possible processes:

(1)GARCH(1,1) process

σ2
k,t = ωk + αkX

2
t−1 + βkσ

2
k,t−1 (2)

(2)AGARCH(1,1) process

σ2
k,t = ωk + αk(Xt−1 − λk)

2 + βkσ
2
k,t−1 (3)

(3) GJR(1,1) process

σ2
k,t = ωk + αkX

2
t−1 + λkd

−
t−1X

2
t−1 + βkσ

2
k,t−1 (4)

where d−t = 1 if Xt < 0 and 0 otherwise, the component conditional variance depends

on the previous return Xt−1 as well as its own previous conditional variance. Under
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these assumptions, the conditional mean, variance, skewness, and kurtosis of Xt given

the information set up to time t− 1 are given respectively by:

µ =
K∑
k=1

πkµk

σ2
t =

K∑
k=1

πk(σ
2
k,t + µ2

k)− µ2

τt =
1

σ3
t

K∑
k=1

πk(µk − µ)
[
3σ2

k,t + (µk − µ)2
]

(5)

κt =
1

σ4
t

K∑
k=1

πk

[
3σ4

k,t + 6(µk − µ)2σ2
k,t + (µk − µ)4

]
.

The AS performance index for multi-period gamble g = (g1, g2, · · · , gT ) is given by

the unique positive solution PAS(g) of the implicit equation

T∑
t=1

ρt−1E[exp(−PAS(g) · gt)] =
T∑
t=1

ρt−1 (6)

where ρ ∈ (0, 1) is a discount factor (cf. Section 3.2 of Kadan and Liu (2014)). Equation

(6) is actually equation (8) of Kadan and Liu (2014). In this paper, we use conditional

expectation instead of unconditional expectation in equation (6), since expectation for

Xt is conditional, as per its description above.

When the return X = (X1, X2, · · · , XT ) follows the above normal mixture process

with time-varying volatility of GARCH(1,1) families, the following equality holds for

E[exp(−PAS(X) ·Xt)] in the implicit equation (6) of the AS performance index:

E[exp(−PAS(X) ·Xt)] =
K∑
k=1

πk exp(−µkP
AS(X) + σ2

k,tP
AS(X)2/2) (7)

where X = (X1, X2, · · · , XT ) is treated as a multi-period gamble since the moment-

generating function (MGF) E[exp(sY )] of a random variable Y is given by

exp(µs+ σ2s2/2) (8)

when Y follows normal distribution N(µ, σ2). Notice E[exp(−PAS(g) ·gt)] is, besides the

minus sign, nothing but the MGF of gt as a function of PAS(g).

In order to obtain the AS performance index for multi-period gambles, we must first

estimate µk and σk,t under the parametric assumption of the normal mixture process of
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X = (X1, X2, · · · , XT ). To estimate these parameters, we follow the continuous empiri-

cal characteristic function (CECF) approach of Xu and Wirjanto (2010), which facilitates

the estimation of a class of normal mixture distributions with three volatility models of

GARCH(1,1) families containing three or four normal mixture components.2 The CECF

approach of Xu and Wirjanto (2010) has several advantages as a method of estimating

the parametric model: a closed-form objective distance function is available, the estima-

tor is strongly consistent and asymptotically normal, and the characteristic function is,

unlike the likelihood function, always uniformly bounded (cf. Xu and Wirjanto (2010)).

The characteristic function of Xt associated with equations (1)-(4) is defined by

Ct(r, θ) = E[eirXt ] =
K∑
k=1

πk exp

(
iµkr −

1

2
σ2
k,tr

2

)
(9)

where i =
√
−1, r is a real number, and θ denotes the set of parameters in the model.

The empirical characteristic function of the above equation is given by

Ct(r,Xt) = exp(irXt). (10)

Then, we consider the following distance measure defined by

Dt(θ;Xt) =

∫
| Ct(r,Xt)− Ct(r, θ) |2 exp(−br2)dr. (11)

where b is a parameter to be specified.

We have the following result for the closed-form expression of the above distance

function Dt(θ;X t).

Theorem 1 (Proposition 1 of Xu and Wirjanto (2010)) If the return Xt is gen-

erated by equations (1)-(4) and the distance measure under the CECF is given by Equa-

tion (11), then the closed-form-expression for the distance measure Dt(θ;Xt) is given

2It was mentioned in Alexander and Lazar (2009) that estimation of normal mixture distributions
with three normal mixture components is difficult by the traditional maximum likelihood method.
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by

Dt(θ;Xt) =

√
π

b
+

K∑
k=1

π2
k

√
π

b+ σ2
k,t

−2
K∑
k=1

(
πk

√
π

1
2
σ2
k,t + b

exp

(
−(Xt − µk)

2

4b+ 2σ2
k,t

))

+2
∑
k ̸=h

πkπh

√
π

b+ 1
2
(σ2

k,t + σ2
h,t)

× exp(− (µk − µh)
2

4b+ 2(σ2
k,t + σ2

h,t)
). (12)

The conditional variance σ2
k,t of the k-th component in the closed-form-expression

given above can be any of the three possible processes of GARCH(1,1) families given

above. In other words, the closed-form-expression (12), originally for the standard

GARCH models, continues to hold for other forms of GARCH families such as AGARCH

and GJR models. We employ b = 1 when we implement estimation by minimizing the

closed-form expression as in Xu and Wirjanto (2010).

The CECF estimation of the model is to minimize D(θ) =
∑T

t=1Dt(θ;X t) with

respect to the set of unknown parameters in the model. The following result states the

asymptotic normality:

Theorem 2
√
T (θ̂ − θ) =⇒ N(0,Λ−1ΩΛ−1) (13)

where θ̂ denotes the estimator by the CECF approach, =⇒ denotes convergence in dis-

tribution, Λ = E
[
∂2D(θ)
∂θ∂θ′

]
, and Ω = E

[
∂D(θ)
∂θ

∂D(θ)
∂θ′

]
.

See Heathcote (1977) for the proof of the above theorem. The CECF estimation of

the model was carried out by Hodoshima and Yamawake (2020) to estimate the AS

performance index for multi-period gambles using U.S. stock data.

3 Data

In order to study cryptocurrencies, we focus on Bitcoin, Ethereum, and Binance-coin,

which have the largest market capitalizations among all the cryptocurrencies except sta-

ble coins such as Tether as of July 31, 2022. In addition, we use a stock ETF with
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S&P500 as the benchmark, i.e., SPY,3 as a representative traditional asset to compare

with the three cryptocurrencies. We employ daily return data of the three cryptocur-

rencies from January 1, 2018 to July 31,20224 for our analysis. We use daily return rt

at time t defined by

rt = 100× (Pt/Pt−1 − 1) (14)

where Pt and Pt−1 denote the price at time t and t-1, respectively. There are 1673 daily

return data for the three cryptocurrencies. On the other hand, there are 1152 daily

return data for SPY since there are no obserbations for weekends and holidays for SPY.

The data are downloaded from Yahoo Finance.

We provide figures of the three cryptocurrencies and SPY at Figures 1-4 at the end of

the paper. We present summary statistics of daily return data of the three cryptocurren-

cies and SPY at Table 1. Summary statistics of the three cryptocurrencies show different

characteristics in the three cryptocurrencies. Binance-coin is the one with the highest

standard deviation and highest mean, while Bitcoin is the one with the lowest standard

deviation and lowest mean among the three cryptocurrencies. Bitcoin and Ethereum are

negatively skewed, while Binance-coin is positively skewed. The three cryptocurrencies

have heavy tails compared to the normal distribution. Bitcoin has the smallest extreme

values of the maximum and minimum among the three cryptocurrencies. On the other

hand, the stock ETF SPY has significantly lower mean and standard deviation compared

to the cryptocurrencies. SPY is negatively skewed and has heavy tails compared to the

normal distribution. SPY also has smaller maximum and minimum values compared to

the cryptocurrencies.

3SPY is also analyzed as an asset to compare with cryptocurrencies in Sheely (2022).
4This sample period excludes the period when the three cryptocurrencies do not receive a lot of

attention and their prices do not vary a great deal jointly.
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Table 1: Summary Statistics of Daily Return Data for the Assets

name mean s.d. skew kurt max min

BTC 0.108 3.925 -0.382 10.057 18.746 -37.170
ETH 0.179 5.070 -0.309 8.183 25.949 -42.346
BNB 0.383 6.039 1.925 26.903 69.765 -41.889
SPY 0.053 1.344 -0.643 14.733 9.060 -10.942

In the table, s.d., skew, kurt, max, and min denote respectively standard deviation,
skewness, kurtosis, maximum, and minimum. BTC, ETH, and BNB stand for Bitcoin,
Ethereum, and Binance-coin respectively. SPY denotes the SPY ETF.

4 Empirical Results

In this section, we present empirical results for the three cryptocurrencies and stock ETF

SPY.

We first adjust the autocorrelation of returns of the assets in question by autore-

gressive models. In other words, we first fit the autoregressive model by the Bayesian

information criterion (BIC) for the cryptocurrencies and SPY. We present the best au-

toregressive model in equations (15)-(18) for the assets.

rt = 0.10825 + ut Bitcoin (15)

rt = 0.16708 + 0.05921rt−1 − 0.04841rt−2 + ut Ethereum (16)

rt = 0.29995− 0.00044rt−1 + 0.05821rt−2 − 0.01507rt−3 − 0.00689rt−4 − 0.01545rt−5

+0.08157rt−6 − 0.04221rt−7 + ut Binance-coin (17)

rt = 0.04974 + 0.13127rt−1 − 0.09490rt−2 + 0.14974rt−3 − 0.09777rt−4 − 0.00262rt−5

−0.06639rt−6 + 0.03770rt−7 + 0.06223rt−8 − 0.10064rt−9 + ut SPY (18)

where ut in equations (15)-(18) denote unpredictable returns.

We first provide summary statistics of unpredictable returns at Table 2. Mean at

Table 2 is 0, which results from the fact that unpredictable returns are residuals in the

autocorrelation adjustment. Standard deviation at Table 2 is similar to that for the

original returns at Table 1. Other summary statistics at Table 2 are also similar to those
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at Table 1. Therefore, unpredictable returns have similar characteristics to those of the

original return data except for mean.

Table 2: Summary Statistics of Unpredictable Return Data for the Assets

name mean s.d. skew kurt max min

BTC 0 3.925 -0.382 10.057 18.638 -37.278
ETH 0 5.046 -0.327 8.267 26.134 -42.620
BNB 0 5.655 1.093 21.314 68.253 -42.791
SPY 0 1.266 -0.683 9.763 6.915 -8.948

In the table, s.d., skew, kurt, max, and min denote respectively standard deviation,
skewness, kurtosis, maximum, and minimum. BTC, ETH, and BNB stand for Bitcoin,
Ethereum, and Binance-coin respectively. SPY denotes the SPY ETF.

Table 3: Diagnostic Test Results for Unpredictable Returns for the Assets

name BTC ETH BNB SPY
Ljung-Box(12) in levels 11.012 17.061 5.010 1.061
Ljung-Box(12) in squares 45.537∗∗ 35.844∗∗ 39.050∗∗ 72.267∗∗

Sign Bias 1.270 1.252 -0.177 2.876∗∗

Negative Size Bias −3.055∗∗ −3.624∗∗ −1.827† −9.631∗∗

Positive Size Bias -0.329 -0.367 6.556∗∗ 5.237∗∗

Joint Test 9.698∗ 14.068∗∗ 60.312∗∗ 160.724∗∗

Table 3 provides the results of Ljung-Box test statistic, modified by Diebold (1988), of
the first twelve autocorrelations in levels and squares of the unpredictable return data as
well as the results of the sign bias test statistic, negative size bias test statistic, positive
size bias test statistic, and joint test statistic. One and two asterisks indicate significance
at the five and one percent levels respectively and † denotes significance at the ten percent
level.

We then present diagnostic test results for the unpredictable returns at Table 3.

We follow Engle and Ng (1993) to carry out the Ljung-Box test of the first twelve

autocorrelations in levels and squares, sign bias test, negative size bias test, positive size

12



bias test, and joint test described in Engle and Ng (1993). The sign bias test, negative size

bias test, and positive size bias test are respectively defined as the t-test for the coefficient

associated with an explanatory variable of a dummy variable of taking one when the

unpredictable return at one day behind is negative and zero otherwise, an explanatory

variable of the dummy variable times the unpredictable return at one day behind, and

an explanatory variable of the dummy variable, which takes one when the unpredictable

return at one day behind is positive and zero otherwise, times the unpredictable return

at one day behind in the regression model for the square of the normalized residual under

the volatility model hypothesized (cf. Engle and Ng (1993)). The joint test is defined

as a Lagrange multiplier (LM) test of adding the three explanatory variables of the sign

bias test, negative size bias test, and positive sign bias test in the regression model for

the square of the normalized residual under the volatility model hypothesized.

The Ljung-Box tests of the existence of the first twelve autocorrelations in the level

of unpredictable returns show they are all insignificant, which is natural since unpre-

dictable returns are residuals after the autocorrelation adjustment. On the other hand,

the Ljung-Box tests of the existence of the first twelve autocorrelations in the square

of unpredictable returns show they are highly significant, indicating the phenomenon of

volatility clustering in unpredictable returns. The sign bias tests are all insignificant for

cryptocurrencies but highly significant for SPY. This indicates that the cryptocurrencies

and stock ETF SPY are different with respect to the response of the sign of the return

at one day behind. The negative sign bias tests are significant at the one percent signifi-

cance level except for Binance-coin with the ten percent significance, which is similar to

the result in Engle and Ng (1993). The positive size bias tests are only significant at the

one percent significance level for Binance-coin and SPY. The joint tests are significant

at the five and one percent significance levels.

We then model unpredictable returns as follows. We intend to find the best model

for the unpredictable returns of the assets at this stage. We first estimate a class of

normal mixture distributions with the three volatility models of GARCH(1,1) families

and employ the best model to be used to estimate the AS performance index for multi-

period gambles.
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Below we provide the best model by the BIC for the assets in question. We present

the best model for Bitcoin at Table 4. The best model for Bitcoin among the three classes

of GARCH(1,1) families is a three-components normal mixture model of GARCH(1,1)

volatility model. The best GARCH(1,1) model is, unlike the AGARCH model and GJR

model, symmetric with respect to the response of the sign of the unpredictable return at

one day behind. The first component is a stable component with probability of 0.6111,

the second component is another stable component with probability of 0.319, and the

third component is a crash component with a probability of 0.070. The volatility reaction

(αi) is low and the volatility persistence (βi) is high in the first and second components.

On the other hand, the volatility reaction is extremely high but the volatility persistence

is zero in the crash component. Mean is near zero in the first and second components.

On the other hand, mean is −0.624 in the third component although it is insignificant.

Table 4: Best Estimation of the Three Classes of GARCH(1,1) Families in Bitcoin

GARCH-3component
µ1 µ2 µ3 ω1 α1 β1 ω2 α2

-0.000 -0.005 -0.624 1.913E-09 0.069 0.933 4.116E-10 0.011
(0.006) (0.027) (0.583) (0.160) (0.031) (0.018) (0.019) (0.006)

β2 ω3 α3 β3 π1 π2 π3 BIC
0.930 4.788E-08 75.245 0 0.611 0.319 0.070 9086.315
(0.017) (1.750) (2.393) (1.009E-05) (0.180) (0.019)

Table 4 shows the best estimation result for Bitcoin in the three classes of GARCH(1,1)
families, i.e., GARCH(1,1) model, AGARCH(1,1) model, and GJR(1,1) model. Standard
errors, shown in parentheses, are obtained using asymptotic variance given in equation
(13) in Theorem 2. In models with more than one component, probability of one com-
ponent is determined automatically by the restriction of the sum of probabilities of all
the components being equal to one so that its standard error is not given.

We present the best model for Ethereum at Table 5. The best model is again a sym-

metric three-component normal mixture model with the GARCH(1,1) volatility model.

The first component has positive mean with probability of 0.429, the second component

has negative mean with probability 0.407, and the third component has large positive
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mean 1.238 with probability of 0.164. The volatility reaction is small but the volatil-

ity persistence is high in the first component. The mean return (ωi) in the volatility

equation is large with 1.657 in the first component. The volatility reaction is small and

the volatility persistence is high in the second component too. The same is true in the

third component. The third component with the highest mean 1.238 has the smallest

reaction and the largest volatility persistence. Therefore, the best model for Ethereum

does not contain a crash component as in the third component for Bitcoin. Instead, all

the components for Ethereum are stable components with positive mean in the first and

third components and negative mean in the second component.

Table 5: Best Estimation of the Three Classes of GARCH(1,1) Families in Ethereum

GARCH-3component
µ1 µ2 µ3 ω1 α1 β1 ω2 α2

0.345 -0.681 1.238 1.657 0.099 0.906 0.000 0.081
(0.005) (0.025) (0.292) (0.001) (0.009) (0.002) (0.118) (0.007)

β2 ω3 α3 β3 π1 π2 π3 BIC
0.772 0.063 0.001 0.984 0.429 0.407 0.164 9915.745
(0.003) (0.008) (0.000) (0.002) (0.026) (0.016)

Table 5 shows the best estimation results for Ethereum in the three classes of
GARCH(1,1) families, i.e., GARCH(1,1) model, AGARCH(1,1) model, and GJR(1,1)
model. Standard errors, shown in parentheses, are obtained using asymptotic variance
given in equation (13) in Theorem 2. In models with more than one component, prob-
ability of one component is determined automatically by the restriction of the sum of
probabilities of all the components being equal to one so that its standard error is not
given.

We present the best model for Binance-coin at Table 6. The best model for Binance-

coin is again a symmetric three-component normal mixture model with the GARCH(1,1)
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Table 6: Best Estimation of the Three Classes of GARCH(1,1) Families in Binance-coin

GARCH-3component
µ1 µ2 µ3 ω1 α1 β1 ω2 α2

-1.297 -0.475 1.559 0.000 0.258 0.845 0.331 0.065
(0.140) (0.047) (0.560) (0.342) (0.088) (0.071) (0.157) (0.010)

β2 ω3 α3 β3 π1 π2 π3 BIC
0.674 0.000 0.002 0.995 0.373 0.321 0.306 9981.776
(0.008) (0.024) (0.001) (0.002) (0.011) (0.071)

Table 6 shows the best estimation result for Binance-coin in the three classes of
GARCH(1,1) families, i.e., GARCH(1,1) model, AGARCH(1,1) model, and GJR(1,1)
model. Standard errors, shown in parentheses, are obtained using asymptotic variance
given in equation (13) in Theorem 2. In models with more than one component, prob-
ability of one component is determined automatically by the restriction of the sum of
probabilities of all the components being equal to one so that its standard error is not
given.

Table 7: Best Estimation of the Three Classes of GARCH(1,1) Families in SPY

AGARCH-1component
µ1 ω1 α1 λ1 β1 BIC

0.049 0 0.134 0.619 0.823 3257.185
(0.003) (0.069) (0.042) (0.324) (0.067)

Table 7 shows the best estimation result for SPY in the three classes of GARCH(1,1)
families, i.e., GARCH(1,1) model, AGARCH(1,1) model, and GJR(1,1) model. Standard
errors, shown in parentheses, are obtained using asymptotic variance given in equation
(13) in Theorem 2.

volatility model. The first component has large negative mean with probability 0.373.

The second component has negative mean with probability 0.321. The third component

has large positive mean with probability 0.306. The volatility reaction 0.258 is rather

high in the first component. However, the volatility reaction is small in the second and

third components. On the other hand, the volatility persistence is much higher than the

volatility reaction in all the components. The third component for Binance-coin is similar

to that for Ethereum. As in Ethereum, there is no crash component for Binance-coin.

We present the best model for SPY at Table 7. The best model for SPY is an

asymmetric one component normal mixture model with the AGARCH(1,1) volatility

model. It has positive mean 0.049. The volatility reaction is small and the volatility
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persistence is larger, which is not particularly different from those in the non-crash

components in the best model for the cryptocurrencies. The effect (λ1) of the sign of

the unpredictable return at one day behind is highly significant in SPY. This implies

that volatility increases when the sign of the unpredictable return at one day behind is

negative.

Overall, the best model for the three cryptocurrencies is a three-component normal

mixture model with the GARCH(1,1) volatility model. Hence, it is symmetric with

respect to the sign of the unpredictable return at one day behind. The best model

contains a crash component for Bitcoin but does not for the remaining cryptocurrencies.

The three components are stable components with positive as well as negative means in

Ethereum and Binance-coin. On the other hand, the best for the stock ETF SPY is a one-

component normal mixture model with the AGARCH(1,1) volatility model. Therefore,

the asymmetric one-component model fits better than higher-components models for the

stock index. We emphasize the BIC 3257.185 for SPY is much smaller, about one-third,

than that for the cryptocurrencies. Therefore, modelling the variation of the underlying

asset is much more successful in the stock index than in the cryptocurrencies.

We remark that in the case of one-regime or one-component normal mixture model

with three classes of GARCH(1,1) families, the AGARCH(1,1) model, which is asym-

metric with respect to the response of the sign of the unpredictable return at one day

behind, is the best model for the three cryptocurrencies. The BIC of the AGARCH(1,1)

model is about twice as small as that of the symmetric GARCH(1,1) model in one-

component (regime) model for the three cryptocurrencies. On the other hand, in more

than one-component (regime) models, the symmetric GARCH(1,1) model always has the

smallest BIC for the three cryptocurrencies. Therefore, the asymmetry with respect to

the response of the sign of the unpredictable return at one day behind is captured by

the AGRCH(1,1) or GJR(1,1) model in one-component (regime) GARCH(1,1) families.

However, the asymmetry appears to be assimilated into the normal mixture model with

the symmetric GARCH(1,1) model in multiple components (regimes).

We then present diagnostic test results at Table 8 in the best model for the assets

to follow Engle and Ng (1993). The tests are applied to the normalized residuals of the
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best model in the three t-tests related to the three coefficients associated with the sign

of the unpredictable return at one day behind and the joint test of the three coefficients

to examine how the best model performs in these tests for the normalized residuals. The

Ljung-Box statistics of serial correlation of the first twelve autocorrelations in the level

are all insignificant. We omit the Ljung-Box statistics of serial correlation of the first

twelve autocorrelations in the squares. The sign bias test is also all insignificant for the

cryptocurrencies but highly significant for SPY. On the other hand, the negative size

bias test is significant with the ten and one percent significance level respectively for

Bitcoin and Ethereum but insignificant for Binance-coin and SPY. The positive size bias

test is significant with the five and one percent significance level for the cryptocurrencies

but insignificant for SPY. The joint test is significant with the five and one percent

significance level for the cryptocurrencies but significant with the ten percent significance

level for SPY. Overall, the residual of the best volatility model does not either contain

serial correlation in the level or indicate different characteristics as compared to the

residual of the original unpredictable return given at Table 3 with respect to the sign

bias test. However, the residual of the best volatility model shows somewhat different

characteristics compared to the residual of the original unpredictable return given at

Table 3 with respect to other tests.

We then compare summary statistics of the estimated conditional variance of the

return in the best model at Table 9. In the table, u2 denotes the squared unpredictable

return after the autocorrelation adjustment. Therefore, Table 9 compares the squared

unpredictable return and estimated conditional variance of the unpredictable return in

the best model in their summary statistics. In Bitcoin, mean, standard deviation, max-

imum, and minimum largely differ although skewness and kurtosis are quite similar be-

tween u2 and estimated conditional variance of the best model. Therefore, low moments

are largely different but higher moments such as skewness and kurtosis are close be-

tween u2 and estimated conditional variance of the best model for Bitcoin. In Ethereum,

Binance-coin, and SPY, mean is similar but other summary statistics are strikingly dif-
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Table 8: Diagnostic Test Results for the Best Model of the Assets

name Model LB (12) Sign Bias - Size Bias + Size Bias Joint
BTC GARCH-3 16.005 1.575 −1.744† −2.297∗ 11.541∗∗

ETH GARCH-3 9.112 1.544 −3.079∗∗ −2.776∗∗ 8.958∗

BNB GARCH-3 10.870 0.242 1.373 2.418∗ 13.826∗∗

SPY AGARCH-1 5.627 3.257∗∗ -0.296 0.962 6.884†

Table 8 provides diagnostic test results for the best model in the three classes of
GARCH(1,1) families with respect to the BIC in the three cryptocurrencies and SPY.
LB (12) denotes Ljung-Box statistics, modified by Diebold (1988), of serial correlation
of the the first twelve autocorrelations in levels of the normalized residuals. Sign Bias,
- Size Bias, + Size Bias, and Joint denote respectively the sign bias test statistic, nega-
tive size bias test statistic, positive sign bias test statistic, and joint test statistic. These
tests are applied to the normalized residuals, i.e., the residuals divided by the conditional
standard deviation estimate. In the table, GARCH-3 denotes a GARCH(1,1) three com-
ponents model and AGARCH-1 denotes an AGARCH(1,1) one component model. One
and two asterisks indicate significance at the five and one percent levels respectively and
† denotes significance at the ten percent level.

ferent between u2 and estimated conditional variance of the best model. Therefore, the

best model works similarly to capture the variation of the squared unpredictable return

in Ethereum, Binance-coin, and SPY, which is different from Bitcoin. Overall, the best

model does not reproduce well the variation of the original squared unpredictable return

although the best model is the most successful in specification of the assets. However,

the outcome of modelling the variation of the underlying asset is similar in the cryp-

tocurrencies of Ethereum and Binance-coin, but quite different in Bitcoin. Therefore,

the variation of the underlying asset in Bitcoin appears to be different from that in the

other two cryptocurrencies and the stock index ETF SPY.

Finally, we present the AS performance index for multi-period gambles as well as

the Sharpe ratio for the three cryptocurrencies and SPY at Table 10. We provide the

AS performance index for multi-period gambles when the discount rate ρ is 0.01, 0.05,
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Table 9: Summary Statistics of the Conditional Variance Estimate

name Model mean s.d. max min skewness kurtosis
BTC u2 15.398 46.355 1389.631 0.000 17.092 469.556

GARCH-3 91.409 246.923 7372.323 0.839 16.850 459.744
ETH u2 25.443 68.609 1816.444 0.000 13.201 296.527

GARCH-3 24.048 13.459 162.457 10.383 3.778 26.797
BNB u2 31.964 144.107 4658.537 0.000 22.286 660.997

GARCH-3 29.115 40.893 697.844 6.815 8.231 101.701

SPY u2 1.601 4.741 80.072 0.000 9.126 116.025
AGARCH-1 1.499 2.380 28.679 0.153 6.208 52.433

Table 9 provides summary statistics of the conditional variance estimate of the best model
of the three classes of GARCH(1,1) families in each asset with respect to the BIC. In the
table, u2 denotes the squared unpredictable return after the autocorrelation adjustment.
In the table, s.d., max, and min stand for respectively standard deviation, maximum,
and minimum. In the table, GARCH-3 denotes a GARCH(1,1) three components model
and AGARCH-1 denotes an AGARCH(1,1) one component model.

and 0.1. The results do not differ much when we use different discount rates. The AS

performance index increases as the discount rate increases in SPY, which is different

from the previous result in stock data (cf. Hodoshima and Yamawake, 2020). Ethereum

is rated the best, Binance-coin is rated the second best, and Bitcoin is rated the third

best by the AS performance index. In particular, Ethereum is about twice as good as

Binance-coin and fourteen times as good as Bitcoin. Therefore, the difference between

the three cryptocurrencies by the AS performance index is quite large. On the other

hand, Binance-coin is about 1.8 times as good as Ethereum and 2.4 times as good as

Bitcoin by the Sharpe ratio. Therefore, the evaluation of the three cryptocurrencies by

the Sharpe ratio is different from that by the AS performance index, and strikingly so

for Bitcoin. Bitcoin is rated the worst by the two performance measures. However, the

performance of Bitcoin is much worse by the AS performance index than by the Sharpe

ratio.

On the other hand, SPY is rated the best and much better than the three cryptocur-

rencies by the AS performance index. However, SPY is not rated highly by the Sharpe

ratio: it is rated the second best by the Sharpe ratio among the four assets. The AS

performance index is known to be a performance index sensitive to losses but insensitive
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Table 10: The AS Performance Index for Multi-Period Gambles and Sharpe ratio for the
Assets

name ρ=0.01 ρ=0.05 ρ=0.1 Sharpe ratio
BTC 0.0014 0.0014 0.0013 0.0266
ETH 0.0201 0.0201 0.0200 0.0345
BNB 0.0109 0.0109 0.0108 0.0628
SPY 0.1140 0.1146 0.1154 0.0369

Table 10 presents the AS performance index for multi-period gambles in the best
model with respect to the BIC in the class of normal mixture models with the three
GARCH(1,1) volatility families. In the table, the best model with respect to the BIC is
always the three-components model with the GARCH(1,1) volatility model in the three
cryptocurrencies while it is a one-component model with the AGARCH(1,1) volatility
model in the stock ETF SPY.

to gains of the underlying asset, and hence appropriate to investors afraid of the riskiness

of the underlying target. This suggests that the evaluation of the AS performance index

should be more valuable to assess the assets, instead of that of the Sharpe ratio, for a

population of risk-sensitive investors.

Overall, the stock index ETF is much better than the three cryptocurrencies by the

AS performance index. Among the three cryptocurrencies, Bitcoin is rated the worst

and Ethereum is about twice as good as Binance-coin and fourteen times as good as

Bitcoin by the AS performance index.

5 Conclusion

We have computed the AS performance index for multi-period gambles in the three

cryptocurrencies, which have the largest market capitalizations, and in the stock index

ETF SPY. In order to obtain the AS performance index for multi-period gambles, we

have estimated parametric models of the class of normal mixture models with three

GARCH(1,1) volatility families. Unlike preceding studies in the literature, we have tried

to fit the class of normal mixture models up to four-component normal mixture models

with the GARCH volatility families by using the continuous empirical characteristic

function (CECF) approach of Xu and Wirjanto (2010).

The best model is found to be always the three-component normal mixture model with
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the GARCH(1,1) volatility model in the three cryptocurrencies of Bitcoin, Ethereum,

and Binance-coin, while it is the AGARCH(1,1) model in the stock index ETF SPY.

The best volatility model we have found is symmetric with respect to the sign of the

unpredictable return at one day behind in the three cryptocurrencies. In other words,

asymmetric models of the AGARCH model and GJR model are not chosen as the best

model. Ethereum is found to be rated the best, Binance-coin to be rated the second best,

and Bitcoin to be rated the worst by the AS performance index for multi-period gambles.

In particular, Ethereum is twice as good as Binance-coin and more than fourteen times

as good as Bitcoin by the AS performance index for multi-period gambles. Therefore,

Bitcoin is rated quite poorly by the AS performance index, although it is the most popular

and has the largest market capitalization among all cryptocurrencies. The evaluation of

the three cryptocurrencies by the AS performance index is different from that made by

the Sharpe ratio. The results for Bitcoin are particularly striking: its evaluation by the

Sharpe ratio is not too bad, while it is very poor when one uses the AS performance index.

The AS performance index is a measure much more sensitive to losses than to gains of

the underlying asset (cf. Aumann and Serrano (2008); Kadan and Liu (2014)). On

the other hand, the AS performance index of the stock index ETF SPY is much better

than that of the cryptocurrencies. Indeed, the cryptocurrencies are evaluated poorly

compared to the traditional stock index by the AS performance index. One cannot reach

this conclusion if one uses the Sharpe ratio, perhaps a red flag about its use for our

purpose. The three cryptocurrencies perform quite poorly and, in particular, Bitcoin is

the worst performer by the risk-sensitive AS performance index. Therefore, we should

be careful about recommending the three cryptocurrencies to risk-sensitive investors.

Since cryptocurrencies vary a great deal as compared to traditional financial assets such

as stocks, bonds, commodities, etc., assessing their risk is crucial in investment and

financial management. Our study should be viewed as an attempt to do just that. We

have provided an assessment of the three most popular cryptocurrencies by the risk-

sensitive measure of the AS performance index. Our findings could be used as guidance

for risk-sensitive investors who might be interested in cryptocurrencies, and our final

recommendation is probably “buyer, beware!.”
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Figure 1: Bitcoin Price
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Figure 2: Ethereum Price
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Figure 3: Binance-coin Price
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Figure 4: SPY Price
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