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1. Introduction

If a continuously differentiable demand function is the result of utility maximization, its

Slutsky matrix is symmetric.1 Comprising all derivatives of demand, the Slutsky matrix

captures the changes in demanded quantities due to compensated changes in prices. The

symmetry of the Slutsky matrix is also important in that it is a key ingredient of the solution

to the “Integrability” problem (Hurwicz and Uzawa, 1971), i.e., to be able to derive the

preferences underlying a given demand. Due to the importance of symmetry as a testable

implication of rationality in applied work, an econometric test has been devised and applied

to household consumption data (Haag, Hoderlein and Pendakur, 2009).

Yet, as Samuelson (1947) emphasizes, this property is somewhat mysterious and goes beyond

what one would derive without the help of mathematics. In their authoritative monograph,

Mas-Colell, Whinston and Green (1995) echo this opinion and highlight that the symmetry

property is difficult to interpret in economic terms. The objective of this paper is to provide

a behavioral restriction that is necessary and sufficient for Slutsky symmetry under mild

regularity conditions.

While other existing foundations of the Slutsky matrix increase our understanding of the

property, they do not hinge on a transparent revealed-preference condition. (In contrast,

we showcase here such a condition, by focusing on the role of consumer attention to price

changes.) For instance, the Ville Axiom of Revealed Preference (VARP, Hurwicz and Richter

(1979)), a differential form of the Strong Axiom of Revealed preference, provides an impressive

characterization of Slutsky symmetry, and it can be viewed as a technical restriction. Indeed,

Jerison and Jerison (1993) define a Ville cycle as a situation where the consumption is the

same at the beginning and after a rising real income situation, and VARP amounts to the
1The Slutsky matrix is also negative semidefinite and the price vector is in its eigenspace–i.e., it is associated

with the null eigenvalue, from now on p-singularity. For a full study of rationality and its relation with the
Slutsky matrix, see Aguiar and Serrano (2017).
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nonexistence of Ville cycles. If the demand of a consumer exhibits a Ville cycle, the consumer

is inattentive to wealth increases (a similar interpretation of Slutsky symmetry is given in

Aguiar and Serrano (2017)). Jerison and Jerison (1996) provides a closely related condition

using anti-symmetric income growth cycles, a discrete version of VARP. Finally, in a finite

data setting, Aguiar and Serrano (2018) relate the asymmetry of the Slutsky matrix to the

presence of revealed-preference cycles involving chains of at least three bundles.

Our new behavioral condition is Symmetric Attention to Compensated Price-Paths (SACPP).

A compensation price-path describes a price change from a baseline situation to a target

situation. The paths are called compensated because we impose the restriction that the

consumer is always able to just afford the consumption bundle at baseline along the path

(Slutsky compensation). This means that the consumer is kept “indifferent” within each

path. But furthermore, SACPP requires that the consumer does not care about the particular

compensation price-path leading to a given target. Hence, the wealth compensation required

to move along one path or another should be always the same, introducing a more transparent

revealed preference dimension, on the space of compensated price paths.2

2. Preliminaries.

Consider a demand function x : Z 7→ X, where Z ≡ P ×W is a compact space of price-wealth

pairs (p, w); P ⊂ RL
++; W ⊂ R++; and X ≡ RL

+ is the consumption set. This demand system

is a generic function that maps price and wealth to consumption bundles.

Assume that x is continuously differentiable, and satisfies Walras’ law (p′x(p, w) = w for

all (p, w) ∈ Z) and homogeneity of degree 0 (i.e., x(αp, αw) = x(p, w) for all α > 0). Let
2This paper takes as primitive the demand function which requires in principle infinite data, but as Aguiar

and Serrano (2018) have shown it is always possible to interpolate a finite dataset of prices and demand
quantities to recover a demand function in which one can test conditions such as VARP and the SACPP.
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X (Z) ⊂ C1(Z) denote a set of functions that satisfy these characteristics, with C1(Z) denoting

the complete metric space of vector-valued functions f : Z 7→ RL, that are continuously

differentiable, uniformly bounded with compact domain Z ⊂ RL+1
++ , equipped with a norm.

Next, we define the Slutsky matrix function:

Definition 1. For an arbitrary price-wealth pair (p, w) in Z, the Slutsky matrix function

S ∈ M(Z) –the space of matrix-valued functions defined on Z– is defined pointwise:

S(p, w) = Dpx(p, w) + Dwx(p, w)x(p, w)′ ∈ RL×L,

with entry

sl,k(p, w) = ∂xl(p, w)
∂pk

+ ∂xl(p, w)
∂w

xk(p, w).

The Slutsky matrix function is well-defined for all x ∈ C1(Z). Restricted to the set of rational

behaviors, the Slutsky matrix satisfies a number of regularity conditions, chiefly (for our

purposes here) symmetry, i.e., S(p, w) = S(p, w)′.

3. The SACPP Condition and Symmetry of the Slutsky Matrix

Our aim in this section is to provide a behavioral condition that is equivalent to the symmetry

of the Slutsky matrix. we call it Symmetric Attention to Compensated Price-Paths (SACPP).

This condition is inspired by some informal discussion in the work of Russell (1997).

Fix a wealth level w = w. Define the conditional demand function xw(p) = x(p, w) and

the associated conditional Slutsky matrix Sw(p) = Dpxw(p) − 1
w

Dpxw(p)pxw(p)′.3 Follow-

ing John (1995), the conditional Slutsky matrix can be defined as the Jacobian of the
3By homogeneity of degree 0, it follows that − 1

w Dpx(p, w)p = Dwx(p, w). In which case, the conditional
Slutsky matrix is numerically equivalent to the Slutsky matrix for each wealth level.
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price-level compensated conditional demand fw
q (p) = xw((w/p′q)p) at q = xw(p). Then,

Dpfw
q (p)|q=xw(p) = Sw(p).

Define the correspondence Bw(p) = {q ∈ P |q′xw(p) = w}. The correspondence Bw(p) maps

prices, for a fixed wealth, to the set of all price compensations that keep the original bundle

just affordable (Slutsky compensation). The correspondence Bw(p) is lower hemicontinuous,

convex-valued, and compact-valued, thanks to the compactness of Z. Hence, by Michael (1956),

there are continuous selections of Bw(p). We further assume that there exist continuously

differentiable selections.4 Define Q as the set of all continuously differentiable selections of

Bw(p), and note that any element of Q is a function of prices for a fixed wealth level. We

denote q, r ∈ Q as typical elements of this set.

A directed or directional Jacobian with respect to prices of a vector-valued function q in

the direction of the vector v ∈ RL is: limt→0
q(p+tv)−q(p)

t
= Dpq(p)v ∈ RL (i.e., the marginal

change of q with respect to prices in the direction of v, with Dpq(p) being the Jacobian of q).

Define q∗ = q(p) − p for any q ∈ Q.

Definition 2. (Directed price change compensation). For all (p, w) and for selections q, r ∈ Q,

Let mq,r be the excess wealth amount that the consumer must be paid to accept a change

from p in the direction of r∗ within selection q, instead of a change from p in the direction of

q∗ within selection r:

mq,r(w, p) = lim
t→0

[q(p + tr∗) − q(p)
t

− r(p + tq∗) − r(p)
t

]′xw(p)

= [Dpq(p)(r(p) − p)]′xw(p) − [Dpr(p)(q(p) − p)]′xw(p).

With this definition, we are ready to state the following behavioral restriction:

Definition 3. (Symmetric Attention to Compensated Price-Paths, SACPP) A demand
4This is mainly a technical assumption. For primitive conditions, see Dentcheva (1998).
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x ∈ X (Z) is said to satisfy SACPP whenever for all p, w and for all q, r ∈ Q: mq,r(p, w) = 0.

Note that, since the paths are constructed using Slutsky compensations, the consumer is

always kept “indifferent” between any two discrete points in the path. Furthermore, comparing

across paths, a consumer that obeys SACPP is said to be indifferent to the “direction” of price

change. Intuitively, a rational consumer satisfies SACPP because she is a consequentialist: all

paths or directions of compensation should be indifferent to her. We explore several examples

next.

Proposition 1. A conditional demand xw satisfies SACPP if and only if its conditional

Slutsky matrix Sw is symmetric.

We can also state a immediate corollary of our main result.

Corollary 1. For a given w, and q, r ∈ Q,

mq,r(p, w) = q(p)′[Sw(p)′ − Sw(p)]r(p).

The corollary above states that mq,r depends on the price paths and on the degree of asymmetry

of the conditional Slutsky matrix. Hence, the results here also provide a foundation for the

degree of asymmetry of the conditional Slutsky matrix. This line of research was pursued

earlier in Aguiar and Serrano (2017).

The corollary also expands the intuition behind SACPP. A rational consumer does not mind

the particular path as she perceives the price changes perfectly as is able to see that they

give the same purchasing power. However, some boundedly rational consumers may satisfy

SACPP without being fully rational that is, SACPP does not imply rationality.
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4. Examples

This section illustrates the SACPP with several examples.

Example 1. (Compensation Price-Paths for a Cobb-Douglas) Without loss of generality,

let L = 2 and let demand be a Cobb-Douglas x(p, w) = (αw
p1

, (1−α)w
p2

)′. It has a symmetric

Slutsky matrix, and has correspondence Bw(p) = {q ∈ P : q1 = p1(p2−q2+αq2)
αp2

}. We let

P = {p ∈ R2
++ : 1

Kl
≤ p1, p2 ≤ Kh}, for fixed positive constants Kh > 1

Kl
. Fix w = 1. We

illustrate SACPP with two simple compensation price-paths q, r ∈ Q. Take compensation

price-paths q(p) = (p1(α−1+Klp2)
Klp2α

, 1
Kl

)′ and r(p) = ( 1
Kl

, p2(Klp1−α)
Klp1(α−1) )′. It is easy to verify that

r′x(p, 1) = q′x(p, 1) = 1 and that q, r are continuously differentiable. Direct computation

verifies that mq,r = 0.

Example 2. (Compensation Price-Paths for an Price-Inattentive Cobb-Douglas) We can

change the previous example to add price inattention. Let demand be a price-inattentive

Cobb-Douglas as defined in Gabaix (2014)

x(p, w) = ( α

pG
1

w

α(p1/pG
1 ) + (1 − α)(p2/pG

2 ) ,
1 − α

pG
2

w

α(p1/pG
1 ) + (1 − α)(p2/pG

2 ))′

with pG
l = mlpl + (1 − ml)pd

l for l ∈ {1, 2}, and ml ∈ [0, 1]. Fix Z to be some compact set of

prices and w = w. Let Ew(p) = Sw(p) − Sw(p)′ and evaluate p = pd the default price, then

Ew(p) = w(α − 1)α(1 − m2 + α(m1 + m2 − 2))
p1p2

 0 −1

1 0

 .

By Corollary 1 we conclude that

mq,r = q(p)′Ew(p)r(p) ̸= 0,

generically when m1, m2 ̸= 1. Recall that the case of perfect and symmetric attention to
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prices is m1 = m2 = 1. The expression above is further simplified if α = 1/2, then

Ew(p) = w(m1 − m2)
8p1p2

 0 1

−1 0

 ,

in this case SACPP holds also for the case of symmetric inattention m1 = m2. Notice that in

this example HD0 fails, yet all our results in Corollary 1 hold for the compensated demand

and compensated Slutsky matrix.

Example 3. (A demand that satisfies SACPP but fails WARP, Aguiar and Serrano (2021))

Let demand be x(p, w) = ( p1w
p2

1+p2
2
, p2w

p2
1+p2

2
)′. This demand has a symmetric Slutsky matrix, yet

the Slutsky matrix is not negative semidefinite (i.e., it can be shown that this demand violates

WARP).

The next example features a demand that fails SACPP, but whose conditional Slutsky matrix

–Slutsky matrix– is NSD. This means that NSD and SACPP are independent properties.

Example 4. (A demand that fails SACPP) Consider

x(p, w) = (w(p1 + (1 − c)p2

2p1(p1 + p2)
,
w(p1 + (1 − c)p2)

2p2(p1 + p2)
,

wcp2

p3(p1 + p2))′

for a constant c ≥ 0. When c = 0, this demand is rational and has a Slutsky matrix that is

symmetric, NSD, and singular in prices. When 0 < c < 1 only the symmetry of the Slutsky

matrix fails. Finally, when c ≥ 1 the symmetry and the NSD of the Slutsky matrix fail. The

correspondence

Bw(p) = {q ∈ P : q1 = p1(2p1p2p3 + 2p2
2p3 − p1p3q2 − p2p3q2 + cp2p3q2 − 2cp2

2q3)
p2(cp2 − p1 − p2)p3

}.

Let P be a compact set that guarantees the existence of continuously differentiable paths and
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w = 1. We take two arbitrary paths

q(p) = (p1((p1 + p2)(2Kp2 − 1)p3 + cp2(p3 − 2p2))
Kp2(p1 + p2 − cp2)p3

,
1
K

,
1
K

)′,

and

r(p) = ( 1
K

,
p2((2Kp1 − 1)(p1 + p2)p3 + cp2(p3 − 2p1))

Kp1(p1 + p2 − cp2)p3
,

1
K

)′.

Direct computation gives us mq,r(c) as a function of c:

mq,r(c) = 2c(Kp3 − 1)(−2cp1p
2
2 + (p1 + p2)(−p1 + (−1 + c + 2Kp1)p2)p3)

K2(p1 + p2)(p1 + p2 − cp2)p2
3

.

For prices p = (1, 2, 1), and K = 1, we have mq,r(0) = 0, mq,r(1/2) = 7
24 , and mq,r(2) = 11

3 .

Importantly, mq,r ≠ 0 when c = 1/2, which maintains NSD of the Slutsky matrix, but breaks

symmetry.

5. Conclusion

A new behavioral restriction is shown to be equivalent to the symmetry of the Slutsky matrix.

The SACPP condition only requires continuous differentiability and knowledge of the function

x(p, w) for all (p, w) ∈ Z, making it as general as the VARP, but it is easier to interpret in

economic terms.
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Appendix

Proof of Proposition 1

Proof. We prove that if the conditional demand xw satisfies SACPP then its conditional

Slutsky matrix Sw is symmetric. Fix w = w. For any q ∈ Q it follows that q(p)′xw(p) = w.

Then, by differentiating the former equality with respect to p:

xw(p)′Dpq(p) + q(p)′Dpxw(p) = 0.
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Post multiplying by r ∈ Q:

xw(p)′Dpq(p)r(p) + q(p)′Dpxw(p)r(p) = 0, or

xw(p)′Dpq(p)r(p) = −q(p)′Dpxw(p)r(p).

Post multiplying by −p: −xw(p)′Dpq(p)p = q(p)′Dpxw(p)p.

Similarly, with any r ∈ Q it follows that r(p)′xw(p) = w.

Differentiating with respect to p:

xw(p)′Dpr(p) + r(p)′Dpxw(p) = 0.

Post multiplying by q ∈ Q:

xw(p)′Dpr(p)q + r(p)′Dpxw(p)q(p) = 0.

Transposing:

q(p)′Dpr(p)′xw = −q′Dpxw(p)′r(p)

Then, the quantity mq,r can be written pointwise as:

mq,r(w, p) = [−q(p)′Dpxw(p)r(p) + q(p)′Dpxw(p)p + q(p)′Dpxw(p)′r(p) − p′Dpxw(p)′r(p)] for

all p ∈ P .

Then, dividing and multiplying the second term and the fourth term by w and using the fact

that xw(p)′r = xw(p)′q = w:

mq,r(w, p) = [−q(p)′Dpxw(p)r(p) + 1
w

q(p)′Dpxw(p)pxw(p)′r(p)

+ q(p)′Dpxw(p)′r(p) − q(p)′xw(p)p′Dpxw(p)′r(p) 1
w

].

Rearranging terms, it follows that:

mq,r(w, p) = q(p)′[Sw(p)′ − Sw(p)]r(p) = 0 for all p ∈ P and w ∈ W .

In particular, for q ̸= p, r ̸= p and q ̸= r, this implies that:
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Sw(p) = Sw(p)′ (symmetry).

If the conditional Slutsky matrix is symmetric then SACPP holds trivially. ■

Connection with VARP

The Ville Axiom of Revealed Preference (VARP) due to Hurwicz and Richter (1979)) is

roughly equivalent to the symmetry of the Slutsky matrix. First, we need some preliminaries.

Definition 1. (Real income path). A real income path consists of both a wealth path

w : [0, b] 7→ W , and a price path p : [0, b] 7→ P , having that (w(τ), p(τ)) is a piecewise

continuously differentiable path in Z.

Next, we define a Ville Cycle:

Definition 2. (Ville cycle) A Ville Cycle CV (S),b is a pair of functions (p(τ), x(τ)) for τ ∈ [0, b]

for some b > 0 where x is a S continuously differentiable commodity path x : [0, b] → RL
+

such that x(0) = x(b) and x ∈ CS([0, b];RL
+) for S ≥ 1 and p(τ)∂x(τ)

∂τ
> 0 almost everywhere

in τ ∈ [0, b], for any piecewise continuous price path p : [0, b] → RL
++.

The Ville Axiom of revealed preference (VARP) requires that a demand function x ∈ X (Z)

does not have a Ville cycle CV (S),b for all S ≥ 1 and b > 0.

Observe that if there is a rising real income situation ∂w
∂τ

(τ) > ∂p
∂τ

(τ)′x(p(τ), w(τ)), and

the price-wealth path forms a cycle (p(0), w(0)) = (p(b), w(b)), then the situation is equiv-

alent (almost everywhere) to p(τ)∂x(τ)
∂τ

> 0 for all τ ∈ [0, b] since ∂w
∂τ

(τ) = p(τ)′ ∂x(τ)
∂τ

+
∂p
∂τ

(τ)′x(p(τ), w(τ)) (Jerison and Jerison (1993)). A Ville cycle means that the demand is the

same at the beginning and at the et of a path but the consumer faces a rising real income

situation.

The VARP is hard to interpret in economic terms. The main reason is that a differentiable

commodity path does not contain any revealed preference information. This is in contrast
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with a discrete commodity path. In fact, a discrete cycle would say that pt′(xt − xt−1) > 0

implies that xt is revealed preferred strictly to xt−1. However, p(τ)′ ∂x(τ)
∂τ

> 0 for any τ ∈ [0, b]

does not contain any such preference revelation.
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