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Abstract We axiomatically characterize bargaining outcomes in the presence of coalitional
threats. As in Nash’s solution, these involve the product of payoffs net of disagreement
points, but coalitional threats appear as conventional constraints, and are not netted out
from payoffs as disagreement points are. This asymmetry is implied by a new “expansion
axiom” (along with standard axioms), one that is automatically satisfied in the standard
bargaining problem. We then endogenize coalitional threats using internal consistency, re-
quiring coalitions to be constrained by their subcoalitions just as the grand coalition is. For
games with convex payoff sets, this consistent solution coincides with one in which the
only threat from each coalition is their “standard” Nash solution, unconstrained by sub-
coalitions. For transferable-utility games, this observation uncovers a connection between
the coalitional solution and the egalitarian solution of Dutta and Ray (1989, 1991).

1. INTRODUCTION

This paper studies Nash bargaining with coalitional threats. We establish an axiomatic
characterization of a bargaining solution in the presence of exogenously given coalitional
threats. Our solution is closely related to Nash’s solution for bargaining problems, but
coalitional threats are incorporated in a particular way that we shall discuss in detail. We
then go on to endogenize coalitional threats by imposing internal consistency, which asks
that the threats posed by any coalition must form a solution to a parallel, recursively defined
problem, constrained by threats from their subcoalitions.

The first exercise faithfully attempts to follow Nash’s original axioms, making necessary
changes to accommodate the presence of coalitions. A game with coalitional threats is a
tripleG = (F,Θ, d), where F ⊂ Rn is a set of feasible outcomes forN , the grand coalition
of all players, Θ collects sets Θ(S) ⊂ R|S| of payoff threats that each coalition S has at its
disposal, and d is a vector of disagreement payoffs for each player when no coalition has
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formed at all. We prove that a solution σ(G) satisfies our axioms if and only if

(1) σ(G) = arg max
∏
j∈N

[xj − dj]

over the set of all allocations x ∈ F that are unblocked by some coalitional threat (S, y),
where S ⊂ N and y ∈ Θ(S); see Theorem 1 for a precise statement.

While this result and our axiomatic formalization are new, it owes much to Kaneko (1980).
Kaneko works with a rich domain of feasible sets without any coalitional threats. But “fea-
sibility” is a broad concept. It could include non-blocking by coalitions. Had we treated
no-blocking on par with feasibility by assumption, Theorem 1 would stand as a modest
generalization of Kaneko’s Theorem 2, with some interpretative interest. But our approach
does not assume this equivalence; rather, it is derived from a substantially broader frame-
work. Our derivation lays bare a central point of interest to us, which is the asymmetric
treatment of individual disagreement payoffs and coalitional threats embodied in (1).

Specifically, disagreement payoffs are subtracted from overall payoffs, as they are in Nash’s
theorem, “before” maximization proceeds. But coalitional threats, including individual
threats, appear as standard constraints that bind in the conventional way. Nash’s origi-
nal theorem in a two-player setting characterizes a solution as maximizing the product of
payoff excesses over individual disagreement payoffs:

(2) σ(F, d) = arg max
x∈F

{(x1 − d1)(x2 − d2)|x > d}

for every bargaining problem, where F is a compact, convex set of feasible payoffs and
d ∈ F is the disagreement payoff. That is, the bargain sets aside what the players can get on
their own, and then divides any surplus. This familiar property emerges from the invariance
axiom, which states that an affine transformation of payoffs should not affect the solution.
It is often viewed as a “fairness” principle; see, e.g., the “disputed garment principle” in
Aumann and Maschler (1985), or the pre-kernel of Davis and Maschler (1965).

Now consider instead the maximization of the product of gross payoffs from F , subject to
the no-blocking constraints imposed by individual threats ζi ≡ max Θ({i}):

(3) σ̃(F, ζ) = arg max
x∈F

{x1x2|x > ζ} .

(3) is fully compatible with (1) if we allow for disagreement payoffs di and individual
threats ζi to differ for each i, normalizing the former to zero using Nash’s invariance axiom.
However, if we refuse to make a distinction between these two objects — which may well
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be reasonable — then (3) is killed off by the invariance axiom. It all depends on how we
view di, which is the payoff accruing to any individual if no coalition forms, compared to
the payoff ζi that accrues when the single player i goes off on her own.

In a dynamic context, Binmore, Shaked, and Sutton (1989) and Compte and Jehiel (2010)
draw a distinction between d and ζ .1 Binmore et al. (1989) note that ζ refers to outside
options or threats that players can access only if they abandon negotiations.2 They provide
experimental evidence as well as strategic analysis (via a Rubinstein-style alternating offers
game with outside options) in support of (3) over (2). In their espousal of (3), they write:

“The attraction of split-the-difference lies in the fact that a larger outside option
seems to confer greater bargaining power. But how can a bargainer use his outside
option to gain leverage? By threatening to play the deal-me-out card. When
is such a threat credible? Only when dealing himself out gives the bargainer a
bigger payoff than dealing himself in. It follows that the agreement that would be
reached without outside options is immune to deal-me-out threats, unless the deal
assigns one of the bargainers less than he can get elsewhere” [emphasis ours].

Unlike this approach, our coalitional solution (1) is entirely based on axiomatics. It allows
for d to equal or differ from ζ , and therefore in effect for both (2) and (3). In this sense
we take a weaker stance. At the same time, and from a completely different perspective,
we agree with Binmore et al. (1989) that there is no parallel room for ambiguity when it
comes to coalitional threats. No coalitional threat is subtracted from payoff in our solu-
tion, whatever “subtract” might exactly mean in a vector-valued context. Specifically, such
threats are binding only in the standard sense of the term: they affect the solution only
when it lies on the edge of the unblocked set. That asymmetry could of course be assumed
directly by asserting that coalitional constraints are just one instance of feasibility; on par
with technological constraints, for instance. But simply assuming that equivalence does
not allow us to examine it. Rather, our result is derived from a simple “expansion axiom”
that’s automatically met in a world without coalitional threats. Specifically:

Suppose there are just two feasible allocations x and y, neither of which is blocked by any
threat, and suppose that x belongs to the solution. Then there exists some λ ∈ RN with
λi > 1 for all i ∈ N such that under an unchanged threat constellation, λ ⊗ x belongs
1See also Binmore, Rubinstein, and Wolinsky (1986), Chatterjee, Dutta, Ray, and Sengupta (1993) and Okada
(1996).
2Binmore et al. (1989) refer to our disagreement payoff as an impasse point and an individual threat as an
outside option. We prefer our terminology in this axiomatic setting with no explicit timeline.
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to the solution from the two-point set {λ ⊗ x, λ ⊗ y}, where for any z ∈ RN , λ ⊗ z =

(λ1z1, . . . , λnzn).

In a world without coalitions, the expansion axiom above is automatically implied by the
invariance axiom. With coalitional threats, it is an independent assumption. This seemingly
innocuous restriction, combined with other standard restrictions, delivers the asymmetric
nature of coalitional threats discussed above. See Example 1 for more discussion.

We then turn to an endogenous determination of the coalitional threat sets Θ. We focus
exclusively on the internal consistency of those sets, leaving an exploration of “external
consistency” to a subsequent contribution. Internal consistency requires that coalitions are
to be constrained (by their subcoalitions) in just the same way as the grand coalition is.
If the latter attempts a Nash-like bargain that is immune to blocking, so must the former,
viewed as a “mini-society” which is subject to threats from its subcoalitions. But that
naturally imposes a credibility constraint on each coalition’s threat set: coalitions realize
that they cannot block freely and will be subject to the same forces as the grand coalition.3

Following this idea, internally consistent coalitional Nash solutions are defined recursively
using Theorem 1, building up from singleton coalitions. Each coalitional solution in turn
becomes a threat set facing still larger coalitions. Despite its conceptual directness, this
recursively constructed collection of solutions appears convoluted and difficult to apply.
Examples 2 and 3 suggest that in general, no easy characterization of the recursive solution
might exist, at least none amenable to easy applicability. However, under the assumption
that all feasible payoff sets are convex, Theorem 2 achieves a significant simplification,
arguing that the resulting solution is equivalent to the maximizers of (1), but taken over
all payoff allocations that are unblocked using the unconstrained Nash outcome for each
coalition. That is, for each coalition, we compute its Nash bargaining solution relative to
just its individual disagreement points and no other threats. This is not a conceptually ac-
curate computation by any means. After all, a block using the unconstrained Nash solution
is not, in general, credible. Nevertheless, this easy though artificial problem delivers the
“correct” recursive answer. Theorem 1, which shows that coalitional constraints appear in
the conventional form discussed earlier, is crucial to achieving this characterization.

3In noncooperative game theory, that sort of consistency is, of course, implicit in the very notion of subgame
perfection. Coalitional analogues appear there too, as in the work of Bernheim, Peleg, and Whinston (1987),
Bernheim and Ray (1989) and Farrell and Maskin (1989). In cooperative game theory, the same idea appears
in the credible core (Ray 1989) in solution concepts that rely on constrained welfare solutions (Dutta and Ray
1989, 1991), and less directly in the concept of reduced games (Aumann and Maschler 1985, Peleg 1986).
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Our final results pertain to transferable utility games, in which (after the normalization of
intercept and slope) payoffs can be transferred 1-1 across players in every coalition. This
setting yields a close connection between the coalitional solution and the egalitarian solu-
tion introduced in Dutta and Ray (1989, 1991). Their notion of “constrained egalitarianism”
combines a commitment to egalitarianism with the pragmatics of coalitional participation.
The idea is to apply a social norm (egalitarianism) to the greatest extent possible, while
remaining bound by the need to seek individual and coalitional buy-ins. Specifically, Dutta
and Ray (1989, 1991) argued that the grand coalition would choose unmajorized or Lorenz-
maximal elements from its set of unblocked allocations. At the same time, because every
coalition is also presumed to subscribe to egalitarianism, any credible block would also
need to be egalitarian (for the coalition doing the blocking), just as we ask of the grand
coalition. Dutta and Ray restrict their attention to internal blocking to develop their notion
of constrained egalitarianiasm, and so employ the same recursive structure as we do here.

Theorem 3 asserts that the internally consistent Nash solution must be a subset of the set of
egalitarian solutions. At one level, this is intuitive: with symmetric bargaining power, the
Nash product favors equality of payoffs, though the solution is constrained by coalitional
threats. It therefore stands to reason that there should be a close connection between the
internally consistent Nash solution and constrained egalitarianism; namely, that the former
should be housed within the latter. The nonintuitive part comes from the fact that subset
inclusion lower down in the recursion expands the unblocked set, opening up the possibility
for Nash solutions at higher levels to lose all connections with the constrained egalitarian
set. That those connections are in fact not lost is a crucial implication of Theorem 2.

Theorem 3 also provides conditions under which the internally consistent Nash bargaining
solution is nonempty. It turns out that this is true of all superadditive games: those for
which the worth of any coalition exceeds the total worth of any partition of it. This is a
significantly lighter condition than one that guarantees the non-emptiness of the core, which
is what we would have contend with in the absence of any consistency restriction on the
behavior of blocking coalitions. We end with some remarks on the uniqueness of the Nash
solution. This is a deep and interesting question on which we do not make full progress
— the unblocked sets are typically nonconvex, after all — but sufficient conditions can be
provided for the internally consistent Nash solution set to be a singleton.

An axiomatic characterization is appealing if on the one hand, the axioms appear to be
reasonable or intuitive, while at the same time their mathematically equivalent outcome is
surprising or strong. The reader must judge whether the transparent and simple nature of the
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expansion assumption is illuminating in this sense, while at the same time its implication
(jointly with the other standard axioms) is striking in the asymmetry it generates across
different constraints even as it retains the simplicity of Nash’s original characterization.

2. A CHARACTERIZATION OF NASH BARGAINING UNDER COALITIONAL THREATS

2.1. Notation. N = {1, . . . , n} is the set of players, or the grand coalition. A coalition S is
any nonempty subset ofN , and a subcoalition is any strict subset ofN . For any coalition S,
RS denotes |S|-dimensional Euclidean space with coordinates indexed by the elements of
S. For any x ∈ RS , ‖x‖ ≡

∑
i∈S |xi|, and for T ⊂ S, xT is the restriction of x to RT . For x

and y in Rm, x > y if xi > yi for all i, x > y if x > y but x 6= y, and x� y if xi > yi for all
i. For any x and λ ∈ Rm, write λ⊗x ≡ (λ1x1, . . . , λmxm). Given τ = (α, β) ∈ Rm×Rm,
an affine transform of z ∈ Rm with respect to τ is α + β ⊗ z. An affine transform of a set
Z ⊆ RS with respect to τ is {z′ ∈ RS|z′ = α + β ⊗ z for some z ∈ Z}.

2.2. Coalitional Threats. A game with coalitional threats is a tripleG = (F,Θ, d), where
F ⊂ RN is a set of feasible payoffs for the grand coalition, Θ = {Θ(S)S⊂N} are sets of
threats in RS for each subcoalition S, and d ∈ RN is a vector of disagreement payoffs.
Later, we endogenize Θ(S), but for now we regard these threats as exogenously given.

The disagreement payoff d is to be interpreted as some status quo payoff when no arrange-
ment is in place in any subcoalition. Compare it with individual threat payoffs in Θ({i})
when the coalition {i} has formed, the best of which are presumably no smaller than di,
though the door is left open for di to possibly equal the individual threat payoff.

An allocation x ∈ F is blocked by the threat (S, y) if y � xS , and it is unblocked if it is
not blocked by any threat in Θ. For any game G = (F,Θ, d), define its unblocked set by

U(G) ≡ {x ∈ F |x is not blocked by any threat (S, y)}.

This definition clarifies that a “threat” only refers to the blocking allocation of a coalition,
and has no additional connotations for the payoffs of the complementary coalition.

We consider the universe G of all conceivable games G = (F,Θ, d) such that:

[Dom 1] For each subcoalition S, Θ(S) is nonempty and compact with z > dS for every
z ∈ Θ(S). In particular ζi ≡ maxx∈Θ({i}) ui(x) is well defined, with ζi > di for every i.

[Dom 2] F is nonempty and compact, and contains some x� d.
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[Dom 1] asks that individual threats be no smaller than disagreement payoffs, which is
presumably true almost by definition: every agent should be able to enjoy at least her dis-
agreement payoff when she “forms her own coalition.” [Dom 2] asks that feasible payoffs
for the grand coalition include some allocation that strictly dominates individual disagree-
ment payoffs. Both conditions also add on the technical restriction of compactness.4

Coalition S is ineffective if Θ(S) = {dS}, and effective otherwise. Let Θ0 denote threats
when all subcoalitions are ineffective and let G0 ⊂ G contain all games G = (F,Θ0, d).
Each such game is a standard bargaining problem without coalitional threats. The al-
lowance for nontrivial threat constellations Θ 6= Θ0 is our central point of departure.

2.3. Coalitional Nash Solution. A solution σ assigns to every G ∈ G a nonempty subset
σ(G) of U(G) whenever U(G) 6= ∅, and the empty set otherwise. Unlike Nash, our solu-
tion could be multi-valued. This is not driven by a desire for generality but by the fact that
coalitional threats lead naturally to nonconvex unblocked sets and therefore to the possibil-
ity of multiple outcomes. From this perspective, our approach benefits from the literature
on Nash bargaining over nonconvex sets; see especially Kaneko (1980).5 We now impose
axioms on solutions, beginning with:

[Par] σ(G) ⊆ U(G) is Pareto optimal in the unblocked set U(G) (and therefore in F ).6

Next, we adopt the affine invariance axiom. In Nash’s original conception, payoffs are
generated from outcomes, including lotteries. Any expected utility representation of pref-
erences must be invariant to affine transformations, which induces an affine transformation
of the entire game G in the obvious way.7 The Nash invariance axiom asserts that:

[Inv] If G′ is an affine transform of G, then σ(G′) is the same affine transform of σ(G).

Our next assumption is placed on bargaining problems in which no coalition has power:

[Sym] Suppose that every subcoalition is ineffective and di = dj for all i, j ∈ N . If, for
some permutation π of N , y(π) ≡ (yπ(1), . . . , yπ(n)) ∈ F for any y ∈ F , then x(π) ≡
(xπ(1), . . . , xπ(n)) ∈ σ(G) for any x ∈ σ(G).

4Comprehensiveness or free disposal is a standard property of payoff sets, but its compatibility with com-
pactness is easily restored by noting that no payoff below the disagreement points will ever be relevant.
5Zhou (1997) and Serrano and Shimomura (1998) also study Nash bargaining with nonconvexities.
6An allocation x ∈ A is Pareto-optimal in A if there does not exist x′ ∈ A such that x′ � x.
7Formally, G′ = (F ′,Θ′, d′) is an affine transform of G = (F,Θ, d), with respect to τ , if F ′ is an affine
transform of F with respect to τ , Θ′(S) is an affine transform of Θ(S) with respect to τS for every S, and d′

is an affine transform of d with respect to τ .



8

For two-player games, this is just the standard symmetry assumption of Nash.

Next, we suitably modify Nash’s independence of irrelevant alternatives to allow for a
multi-valued solution. We adapt the version of this axiom by Kaneko (1980) to our frame-
work in a minimal way. Our adaption allows for changes in the feasible set F but leaves
coalitional threats Θ unchanged.

[IIA] If G = (F,Θ, d) and G′ = (F ′,Θ, d), both in G, differ only because F ′ ⊆ F , then
σ(G′) = σ(G) ∩ F ′ whenever this intersection is nonempty.

We follow Kaneko (1980) again in assuming upper hemicontinuity of the solution.

[UHC] Let Gk be a sequence such that (F k,Θk, dk) converges in the (product) Hausdorff
metric to G = (F,Θ, d).8 Then xk ∈ σ(Gk) for all k and xk → x implies x ∈ σ(G).

Kaneko (1980) attributes the modified versions [IIA] and [UHC] to an informal note of
Nash in Shapley and Shubik (1974).

The above axioms are all standard conditions, mildly adapted to the coalitional setting.
The next condition is new, though it is automatically implied in games without coalitional
threats. Say that λ ∈ RN

+ is an expansion if λi > 1 for all i ∈ N .

[Exp] Suppose that G = (F,Θ, d) is such that F = {x, y}, neither of which is blocked by
any threat from Θ, and suppose that x ∈ σ({x, y},Θ, d). Then there exists an expansion λ
such that λ⊗ x ∈ σ({λ⊗ x, λ⊗ y},Θ, d)

[Exp] states that if x is chosen from two unblocked alternatives x and y, then there is some
expansion λ for which λ ⊗ x will is chosen from the (still unblocked) set {λ ⊗ x, λ ⊗ y}.
Notice that this assumption is not implied by scale invariance because the threats are not
scaled up or down. In Section 2.4, we discuss [Exp] and the role played by it.

Theorem 1. A solution σ(G) satisfies axioms [Par], [Inv], [Sym], [IIA], [UHC] and [Exp]
for every game G ∈ G if and only if it maximizes the product of the payoffs in excess of the
individual disagreement payoffs within the set of unblocked allocations:9

(4) σ(G) = arg max
x∈U(G)

∏
j∈N

[xj − dj],

8More precisely, the sequence in either of the first two components either contains only empty sets after some
finite index, and the presumed limit is also an empty set, or the sequence contains only nonempty sets after a
finite index, the presumed limit is also nonempty, and convergence occurs in the Hausdorff metric.
9Recall that U(G) = {x ∈ F |x is not blocked by any threat (S, y)}.
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and we shall refer to it as the coalitional Nash solution.10

2.4. Discussion. Within a sub-domain with all coalitions ineffective, our proof of Theo-
rem 1 follows (but generalizes) the argument in Kaneko (1980) by defining a preference
ordering over payoff allocations in bargaining problems, and then using IIA, affine invari-
ance and symmetry to establish that such an ordering must be represented by the symmetric
Nash product defined on payoffs net of disagreement. Other axioms in Kaneko (1980) can
be dropped for free; see proof for details. Axiom [Exp] then constructs a bridge from this
ordering to a corresponding ordering for games with coalitional threats.

Of course, we could have assumed that unblocked sets in our sense are equivalent to feasi-
ble sets in the sense of Nash. That would be tantamount to admitting from the outset that
coalitional threats are no different from any other constraint on feasibility, and our gen-
eralization of Kaneko’s arguments would apply with no need for Axiom [Exp]. But our
analysis does not assume this, allowing (at least in principle) for coalitional threats to be
distinct from a mere delineator of feasibility. The fact that [Exp] then forces the same result
uncovers a more basic property of the coalitional Nash solution, to which we now turn.

Recall that Nash’s original theorem characterizes a solution as maximizing the product of
payoff excesses over disagreement points:

(5) σ(F, d) = arg max
x∈F
{(x1 − d1)(x2 − d2)|x > d}

for every bargaining problem (F, d), where F is compact and convex and d is the dis-
agreement payoff. The subtraction of disagreement points emerges from the symmetry and
invariance axioms, and our coalitional solution, suitably specialized to two-person bargain-
ing, yields the same formula. Alternatives such as

σ̂(F, d) = arg max
x∈F
{x1x2|x > d}

are killed off by the invariance axiom. However, a parallel solution such as

(6) σ̃(F, ζ) = arg max
x∈F

{x1x2|x > ζ} .

where ζ is now the vector of individual threat points, is also implied by Theorem 1 if
we allow for disagreement and threats to differ, and normalize the former to zero using

10Compte and Jehiel (2010) define a similar notion by taking the unblocked set to be the core of a character-
istic function game. This will become a meaningful distinction only when, in Section 3, we make coalitional
threats endogenous. Our approaches, however, are complementary in that we are interested in an axiomatic
characterization of (4) while they derive it as an equilibrium of a dynamic game.
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invariance. Threats are not “subtracted” from payoffs, and are binding in the standard
sense of the term — indeed, the extension of (6) to all coalitions yields precisely (4).

In a dynamic bargaining model, Binmore, Shaked, and Sutton (1989) and Compte and Je-
hiel (2010) draw a distinction between d and ζ .11 As already discussed, Binmore, Shaked,
and Sutton (1989) view individual threats as outside options that players can access only
when they abandon negotiations altogether. In similar vein, Compte and Jehiel (2010) ef-
fectively separate d from ζ , viewing d as a per-period return that accrues when bargaining
is still ongoing.12 With d and ζ thus separated and the former normalized to zero, Compte
and Jehiel (2010) connect to the equilibria of an N -player model of coalitional bargain-
ing. They show that an efficient stationary equilibrium must maximize the product of the
players’ payoffs across all the payoffs unblocked by any coalition:13

(7) x∗ = arg max
x∈Core

∏
j∈N

xj,

which is the solution we obtain axiomatically when disagreement payoffs are separated
from individual threats, reducing to (6) in the two-person case. In short, our approach
allows for both (5) and (6), depending on whether or not we insist on d = ζ .

Indeed, in a narrower domain in which ζ is restricted to always equal d, we would still be
able to prove Theorem 1, despite the loss of one degree of freedom across d and ζ . (That
degree of freedom is never used in the proof.) In that domain ζ would be subtracted from
payoffs. But there is no parallel latitude for nonsingleton threats, which are binding only
in the conventional sense. That stark difference arises from Axiom [Exp], which states that
a “revealed preference” for x over y is maintained for some expansion of both x and y.

As already noted, [Exp] automatically follows from affine invariance for all “pure bargain-
ing” problems, in which coalitions are ineffective. Given our continuity axiom [UHC],
[Exp] is also automatically satisfied for all problems with or without coalitional threats

11A similar approach to ζ also underlies Chatterjee, Dutta, Ray, and Sengupta (1993) and Okada (1996).
12Binmore, Rubinstein, and Wolinsky (1986) adopt a different perspective, also in the context of a nonco-
operative bargaining game. They allow for some exogenous low-probability event that causes bargaining to
break down altogether, leaving players stranded with d. In the equilibrium of that game, it turns out those
payoffs must be subtracted from bargaining payoffs and the Nash product applied to the net amounts, whereas
in the absence of breakdown, it is the gross bargaining payoff that enters into the Nash product. While this is
an interpretation that we choose not to pursue here, it has potentially interesting implications in a coalitional
setting. Presumably, the probability distribution over coalitional payoff allocations following an exogenous
“breakdown event” would pin down the particular form assumed by the Nash product.
13Chatterjee, Dutta, Ray, and Sengupta (1993) connect bargaining in coalitional games to the egalitiarian
solution of Dutta and Ray (1989), which maximizes the product in (7). We return to this connection below.
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when just one of the two outcomes in F is in the solution, but not the other. So the real
bite of [Exp] pertains to the knife-edge case in which both outcomes are chosen in a two-
outcome problem, asserting that that indifference is preserved for some expansion of the
outcomes. Because such situations of indifference are relatively “rare” or “non-generic”,
that makes [Exp] an even weaker restriction, and yet its implications are substantial.

To illustrate how [Exp] works, we drop it, and construct a new solution which satisfies all
our other axioms. (In so doing, we establish the independence of [Exp]. The Supplemen-
tary Notes show that the other axioms are similarly independent.) Formally, we construct a
solution φ(G) for every game G ∈ G that satisfies [Par], [Inv], [Sym], [IIA] and [UHC].

By [Inv], there is no loss of generality in assuming d = 0. For every S ⊂ N , let Θ̃(S)

denote the Pareto frontier of Θ(S) and let ai(S) be the mean payoff to i in S given the uni-
form distribution over Θ̃(S). For every i ∈ N , let S(i) be the collection of all subcoalitions
ofN that contain i. Write the average of the average payoff to i as ai ≡ [

∑
S∈S(i) ai(S)]/m,

where m = 2n−1 − 1 is the number of coalitions in S(i). Now define a solution by

φ(G) = arg max
x∈U(G)

∏
j∈N

[xj − aj].

It is easy to see that φ satisfies [Par], [Inv], [Sym], [IIA] and [UHC]. However, there exist
games for which φ fails to satisfy [Exp]. The following example makes this clear.

Example 1. Consider a three-person game with d = (0, 0, 0), in which all coalitions except
N and {1, 2} are ineffective. The threat set of coalition {1, 2} is given by:

Θ({1, 2}) = {(x1, x2) ∈ R2
+|x1 + x2 6 2},

and the grand coalition is equipped with the feasible set

F = {y, z}, where y = (3, 3, 1) and z = (2, 2, 4).

Note that both y and z are unblocked. Observe that (a1, a2, a3) = (1, 1, 0), so that:

(8) φ(G) = arg max
x∈{y,z}

(x1 − 1)(x2 − 1)x3 = {y, z},

where the second equality follows from the fact that (y1 − 1)(y2 − 1)y3 = 4 = (z1 −
1)(z2 − 1)z3. We claim that φ does not satisfy [Exp]. To this end, consider any expansion
λ = (λ1, λ2, λ3)� (1, 1, 1). We shall show that for the game G′ = ({λ⊗ y, λ⊗ z},Θ, 0),

(9) φ(G′) = arg max
x∈{λ⊗y,λ⊗z}

(x1 − 1)(x2 − 1)x3 = {λ⊗ z},
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which, given (8), contradicts [Exp]. To prove (9), let di ≡ λi − 1 for each i. Note that

λ⊗ y = (3[1 + δ1], 3[1 + δ2], 1 + δ3) and λ⊗ z = (2[1 + δ1], 2[1 + δ2], 4[1 + δ3]).

Letting the maximand in φ be denoted by f(x) = (x1 − 1)(x2 − 1)x3, we have:

f(λ⊗ y) = (2 + 3δ1)(2 + 3δ2)(1 + δ3) = (4 + 6δ1 + 6δ2 + 9δ1δ2)(1 + δ3)

and

f(λ⊗ z) = (1 + 2δ1)(1 + 2δ2)[4(1 + δ3)] = (4 + 8δ1 + 8δ2 + 16δ1δ2)(1 + δ3).

Clearly, f(λ⊗ z) > f(λ⊗ y), which implies (9). �

2.5. Proof of Theorem 1. By [Inv], there is no loss of generality in assuming that for every
G ∈ G, d = 0. This normalization will be in force through the proof. Using [Inv], [UHC]
and [Exp], we will first reduce any two-allocation problem with threats to a two-allocation
bargaining problem, and then match the analysis to a generalized version of the argument
in the proof of Theorem 2, Kaneko (1980).

Consider any distinct x, y ∈ Rn
+ and any effective collection of threats Θ (that is, at least

one coalition is effective), with both x and y unblocked, and with x ∈ σ({x, y},Θ, 0).
Say that Θ′ - Θ if there exists α ∈ Rn with 1 � α > 0 such that Θ′ = α ⊗ Θ

and x ∈ σ({x, y},Θ′, 0). Now fix Θ̄ with x and y both unblocked under Θ̄, and with
x ∈ σ({x, y}, Θ̄, 0). Let T collect all threat constellations Θ such that Θ - Θ̄.

We claim that Θ0 ∈ T , and in particular that x ∈ σ({x, y},Θ0, 0).

First observe that T is nonempty. For by [Exp], there is λ � 1 such that λ⊗ x ∈ σ({λ⊗
x, λ⊗y}, Θ̄, 0). Let α = (1/λ1, . . . , 1/λn). Then 1� α > 0 (in fact α� 0), and defining
Θ = α⊗ Θ̄, we deduce from [Inv] that x ∈ σ({x, y},Θ, 0). So Θ ∈ T .

Note that T is partially ordered by -.14 For any totally ordered subset T c of T , define

a ≡ inf{‖α‖|Θ = α⊗ Θ̄ for some Θ ∈ T c}.

If there is Θ∗ ∈ T c of the form Θ∗ = α∗ ⊗ Θ̄ where ‖α∗‖ = a, then clearly Θ∗ - Θ for
every Θ ∈ T c, and so Θ∗ is a lower bound for T c. Otherwise, by the definition of a, there
is a sequence {Θk} in T c with Θk = αk ⊗ Θ̄, with 1� αk > 0 for every k, and ‖αk‖ →
a. Let (Θ∗, α∗) be any limit point of {Θk, αk}, the first component under the product

14Every element Θ of T has the property that Θ = α ⊗ Θ̄ for some α with 1 � α > 0. Therefore x and y
are also unblocked under Θ. Now the transitivity of - on T is immediate.
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Hausdorff metric and the second in the standard sense.15 Then Θ∗ = α∗ ⊗ Θ̄. Moreover,
because x ∈ σ({x, y},Θk, 0) for every k along the sequence of threat constellations {Θk},
it follows from [UHC] that x ∈ σ({x, y},Θ∗, 0). Therefore Θ∗ ∈ T and just as in the
previous case, Θ∗ - Θ for every Θ ∈ T c, and so serves as a lower bound for T c.

We may therefore apply Zorn’s Lemma to assert that T admits a minimal element Θ. We
claim that Θ = Θ0; that is, all coalitions are ineffective under Θ. Otherwise, if Θ ∈ T
is effective, it could be contracted further, which violates minimality. We have therefore
proved the claim. And as an implication, we have established the following:

(10) If x and y are unblocked by some effective Θ and x ∈ σ({x, y},Θ, 0), then x ∈ σ({x, y},Θ0, 0).

The remaining argument lines up (10) with Theorem 2 of Kaneko (1980) for pure bargain-
ing problems. It is easy to see that [Inv], [Sym], [IIA] and [UHC] corresponds to axioms
N.2-N.5 of Kaneko (1980) in the smaller domain G0 of bargaining problems. The Supple-
mentary Notes show that [Par], while weaker than Kaneko’s axiom N.1, suffices for the
proof of his Theorem 2. The Notes also show that Kaneko’s “strict individual rationality”
can be dropped at no cost. Additionally, Kaneko’s Theorem 2 also assumes a dimensional-
ity condition which implies in particular that the domain includes all sets consisting of no
more than three points. It can be checked that his proof only relies on this implication and
not the dimensionality condition itself. Moreover, the implication follows from [Dom 1]
and [Dom 2], which implies that all bargaining problems with compact feasible sets are in
G0. We can now appeal to Theorem 2 of Kaneko to assert that for any x, y ∈ RN

+ ,

If x ∈ σ({x, y},Θ0, 0), then
∏
j∈N

xj >
n∏
j=1

yj.

Recalling (10), this implies that

(11) If x and y are unblocked by Θ and x ∈ σ({x, y},Θ, 0), then
∏
j∈N

xi >
∏
j∈N

yj.

Now consider a game G = (F,Θ, 0) ∈ G and x ∈ σ(G). Take any y that is unblocked by
Θ. Since x, y ∈ F , and x ∈ σ(G), [IIA] implies that x ∈ σ({x, y},Θ, 0). As this holds for
any y unblocked by Θ, it follows from (11) that

σ(G) = arg max
x∈U(G)

∏
j∈N

xj.

When d is not necessarily 0, [Inv] can be invoked to yield (4), and the proof is complete.

15These are well-defined given that 0 6 αk � 1 for every k.



14

x
1

x
2

x
3

(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

(0.4, 0.4, 0.2)

(a) Over the core

x
1

x
2

x
3

(0.4, 0.3, 0.3) (0.3, 0.4, 0.3)

(1, 0, 0)

(0, 1,  0)

(0, 0, 1)

(b) Over the unblocked set

Figure 1. Maximizing payoff product with d normalized to 0. The darker area in each panel
are the allocations that survive threats.

3. INTERNALLY CONSISTENT COALITIONAL THREATS

3.1. Internal Consistency. We now study threat sets in more detail, under the restriction
that all threats to a coalition come from its own subcoalitions. We begin with a simple
example to illustrate our recursive approach to endogenously constructing threat sets. The
example is an instance of a transferable utility (TU) game: there is an affine transform of
payoffs such that d = 0 and for each S, there is a scalar v(S) so that its feasible set of
allocations is given by F (S) = {x ∈ RS|

∑
i∈S v({i}) 6

∑
i∈S xi 6 v(S)}.16

Example 2. Consider a three-player TU game with player set N = {1, 2, 3}. Suppose
v(N) = 1, v({1, 2}) = 0.8 and v(S) = 0 for all other S. In particular, we normalize both
d and ζ to 0. Now, if {1, 2} can use any feasible allocation as a threat, the unblocked set
for the grand coalition — or the core of the game — is the set:

C = {x ∈ R3
+|x1 + x2 + x3 = 1;x1 + x2 > 0.8}

16This isn’t standard, in that the usual definition allows for unlimited free disposal. We choke that off by
requiring every allocation in S to be individually rational relative to the outside options v({i}). It makes no
difference as allocations failing that condition are completely irrelevant.
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This is the shaded portion of the unit simplex (the efficient frontier) in Figure 1(a). If we
maximize the product of payoffs over the core, the solution is (0.4, 0.4, 0.2). This is the
Compte and Jehiel (2010) solution for this game.

But if the grand coalition is to be subject to our axioms, consistency demands that the same
restrictions be imposed on coalition {1, 2} as well. That raises questions about what the
“same” restrictions mean. In this paper, we take the position that {1, 2} is only threatened
by its subcoalitions. That leads to the notion of internal consistency. In our example,
invoking (4), the unique solution for {1, 2} is given by (0.4, 0.4). This is its only credible
threat, so Θ({1, 2}) = {(0.4, 0.4)}, while of course Θ(S) is the zero vector for all other
subcoalitions. So if we set F = F (N), the unblocked set for the grand coalition N is given
— with a slight abuse of earlier notation — by:

U(N) = {x ∈ F |max{x1, x2} > 0.4},

which is the shaded area in Figure 1(b). Restricting the threat from {1, 2} to be the Nash
solution for {1, 2} results in an unblocked set for the grand coalition that is larger than its
core. After all, to negate the putative threat, it is enough to offer 0.4 to just one of the
players in {1, 2}. Note that the unblocked set is not convex. Maximizing the product of
payoffs on it yields, again with a little abuse of notation:

σ(N) = {(0.4, 0.3, 0.3), (0.3, 0.4, 0.3)}.

IfN = {1, 2, 3}were embedded in turn into a larger game, there would be two threats from
{1, 2, 3}, namely (0.4, 0.3, 0.3) and (0.3, 0.4, 0.3), and σ(N) would be renamed to Θ(N).
That suggests a recursive construction of threat sets from smaller to larger coalitions. �

The analytical advantage of internal consistency is precisely that it is amenable to recursive
treatment. A more general consistency notion, which allows for subcoalitions of a coalition
to combine with other players who are not in the coalition, is beyond the scope of the
current exercise, but will form the subject of a forthcoming paper. The difficulty is that there
is no starting point for a recursion, and a fixed point argument along with other conceptual
considerations intrude into the story; see Ray and Vohra (2015, 2019) for related exercises.
One could, of course, close the construction by attaching arbitrary division methods at
certain nodes, but it could be argued that this violates the spirit of consistency.17 In Example
17The solution of Serrano and Shimomura (1998), which attempts to incorporate “external threats,” illustrates
the difficulty. In their exercise, an efficient payoff profile x across all players in N precipitates a particular
two-player game on any pair {i, j}. The induced feasible set contains all allocations in F (N) that respect
the granting of xk to any k 6= i, j, The outside option of i is defined to be the maximum that she can get by



16

2 that we develop into a fuller theory below, there is no discrepancy: coalitional threats are
determined by the same considerations that are applied to the grand coalition. It is for the
sake of that precise concordance that we are less ambitious in this paper.

3.2. Recursive Definition. There is, in the background, a disagreement payoff vector d.
Consider a characteristic function F = {F (S)S⊆N} where N is the grand coalition and
for every coalition S, F (S) is a non-empty, compact set of feasible payoffs, with x > dS

for all x ∈ F (S). To rule out uninteresting cases, we also presume that x � dS for
some x ∈ F (S) whenever F (S) 6= {dS}. Observe that ζi = maxF ({i}) is player i’s
individual threat. Whether or not ζ is automatically linked to d is a matter to be settled by
the application at hand. It will make no difference to the analysis, as long as we remember
the two interpretations discussed in Section 2.4. Henceforth we normalize d = 0.

We will recursively pin down endogenous threat sets Θ∗(S) (or equivalently, solutions
σ∗(S)) for every subcoalition S. Note the slight abuse of notation as these are only indexed
by S and not the entire game G as we did before.) For singleton sets {i}, set Θ∗({i}) =

Θ∗({i}. Now suppose that for some coalition S we have already determined the sets Θ∗(T )

for every T ⊂ S, and that each such Θ∗(T ) is nonempty and compact. We can now use
these threats to construct the unblocked set for coalition S:

U∗(S) ≡ {x ∈ F (S)|x is unblocked by any (T, y) with T ⊂ S and y ∈ Θ∗(T )}.

If U∗(S) = ∅, declare S to be ineffective, write Θ∗(S) = {dS} = {0S} and set σ∗(S) = ∅.
Otherwise, U∗(S) is nonempty and compact. In this case, set:

Θ∗(S) ≡ σ∗(S) ≡ arg max
x∈U∗(S)

∏
j∈N

xj,

which is the internally consistent solution for the game restricted to S and its subcoalitions.

Now the recursion, indexed by cardinality, can continue to still larger sets. When concluded
at the level of the grand coalition, we can define the internally consistent coalitional Nash

joining some coalition T that doesn’t include j, once again paying off each k ∈ T to the tune of precisely xk.
Serrano and Shimomura (1998) impose a consistency condition that asks (xi, xj) to be the Nash bargaining
solution for the induced two-player game, for every pair {i, j}. (There are other conditions in the Serrano-
Shimomura axiomatization, including converse consistency, which asks that any xwith the above consistency
property must be a solution to the original game.) In TU games, this approach characterizes the pre-kernel of
Davis and Maschler (1965). Note that when i approaches some coalition (without j in it), the other members
of such a coalition are not similarly able to make use of their outside options to negotiate; they are assumed
to simply acquiesce to be paid according to x. In Example 2, the pre-kernel consists of the unique allocation
(0.45, 0.45, 0.1), different from both the coalitional Nash solution and the internally consistent Nash solution.



17

solution, or internally consistent Nash solution for short, as

σ∗(N) = arg max
x∈U∗(N)

∏
j∈N

xj.

3.3. A Characterization. From an applied perspective, this is an unwieldy concept which
appears to necessitate recursion not just to define but to fully describe. At every stage,
we would need to know the internally consistent Nash solution for every subcoalition of a
given coalition before unblocked sets for that coalition — or its internally consistent Nash
solution — can be calculated. The problem is not unlike the computation of subgame
perfect equilibria along game trees. Two alternatives present themselves that have at least
the advantage of easier computability. One is the solution that Compte and Jehiel (2010)
obtain in a noncooperative bargaining model, which entails the maximization of the Nash
product over the core of the game. This is obviously simpler but asymmetrically ascribes
to subcoalitions the total freedom to choose any allocation it pleases, while restricting the
grand coalition. It is obvious that the “inconsistent solution” thus obtained will generally
be different from our recursive solution; see, for instance, Example 2.

A second, equally naive, and even simpler alternative is to presume that each coalition
blocks with its standard (unconstrained) Nash solution, one that ignores all coalitional
constraints, except the disagreement points. We cannot condone such naı̈veté either. It
stretches credibility in another direction, in that coalitions anticipate that they, too, will
engage in bargaining but fail at the same time to acknowledge that they will similarly face
constraints from their subcoalitions. Once again, the solution thus obtained will generally
be different from our recursive solution. Our next example illustrates this,18 but the reader
interested in the broader argument can skip it for now and return later for details.

Example 3. Let N = {1, 2, 3, 4} with di = ζi = 0 for all i, and:

(i) F (N) = {x ∈ R4
+|x1 + x2 + x3 + x4 6 v}.

(ii) F ({1, 2, 3}) has just two payoff allocations (1, 1, 1) and (a, a, b), where (a, b)� 0.

(iii) F ({1, 2}) consists of the single payoff allocation (c, c), with c > 0.

(iv) F (S) = {0S} for every other coalition S.

18We could have used a three-player game to make the same point, but then ζ would need to be distinct from
d. We prefer to not rely on the possibility that ζ 6= d.



18

(v) a2b < 1 < c < a < v, and b > v−c
3
> 0.19

The “naive” coalitional bargaining solution for N presumes that coalitions will block with
their unconstrained Nash allocations. For coalition {1, 2} this is just (c, c), and for coalition
{1, 2, 3} it is (1, 1, 1), using the assumption that a2b < 1. So, keeping in mind that c > 1,
the unblocked set U ′(N) for N is the set of all allocations in F (N) that are unblocked by
the threat (c, c) from coalition {1, 2}. The naive solution forN is then easily seen to consist
of the two allocations (c, v−c

3
, v−c

3
, v−c

3
) and (v−c

3
, c, v−c

3
, v−c

3
).20 The internally consistent

Nash solution for coalition {1, 2} is still (c, c). But the solution for coalition {1, 2, 3} is
(a, a, b), now that the allocation (1, 1, 1) is blocked by {1, 2} with (c, c), and also because
a > c by (v). Returning, then, to the grand coalition, its internally consistent unblocked set
U∗(N) must consist of allocations unblocked by (a, a, b), and this set is clearly nonempty
because b < 1. The naive solution (c, v−c

3
, v−c

3
, v−c

3
) is blocked by the recursively defined

threat from {1, 2, 3}; after all, a > c and b > v−c
3

by assumption. The internally consistent
solution is therefore different from the naive solution.21 �

Example 3 suggests that a simple, non-recursive description of the internally consistent
Nash solution may not be possible. But if the feasible set F (S) for every coalition is con-
vex, as it indeed would be in the world of Nash’s “anticipations” with lotteries, a straight-
forward characterization is available. As in Example 3, define the standard Nash solution
Ψ(S) for coalition S by ignoring all coalitional constraints:

Ψ(S) = arg max
x∈F (S)

∏
j∈S

xj,

where we recall once more that d has been normalized to zero. If F (S) is convex, Ψ(S)

consists of a single allocation; call it ψ(S). Let

U ′(S) ≡ {x ∈ F (S)|x is unblocked by any (T, ψ(T )) with T ⊂ S},

be the unblocked set for S using the artificial disagreement points from the unconstrained
Nash bargaining solutions for each subcoalition. Note that no recursive argument is re-
quired to define U ′(S).

19For instance, v = 3.05, a = 1.18, b = 0.66 and c = 1.1, satisfy all the restrictions of the example, and
additionally the game can be seen to be superadditive under these specifications.
20Because a > 1 and a2b < 1, we have b < 1. Therefore c > 1 > b > v−c

3 , and this assures us that the naive
solution is indeed as stated in the main text.
21The exact form of σ∗(N) will depend on the values of the parameters. If v = 3.05, a = 1.18, b = 0.66
and c = 1.1, it can be checked that σ∗(N) consists of the two allocations (1.1, 0.645, 0.66, 0.645) and
(0.645, 1.1, 0.66, 0.645). The naive solution consists of (1.1, 0.65, 0.65, 0.65) and (0.65, 1.1, 0.65, 0.65).
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Theorem 2. Assume that F (S) is compact and convex for every coalition S. ThenU∗(S) =

U ′(S), and so when this common set is nonempty, the internally consistent Nash solution
for any coalition need only guard against the threats posed by the standard Nash solutions
of its subcoalitions. That is,

σ∗(S) = arg max
x∈U ′(S)

∏
j∈S

xj.

Specifically, under the assumptions of the Theorem, Example 3 does not apply.

The theorem achieves a significant simplification. Instead of finding the coalitional bar-
gaining solution immune to recursively defined threat sets, which could be quite demanding
computationally, Theorem 2 asserts that the same solution can be found by using artificial
threat sets for each subcoalition, which consist only of a single point — the unconstrained
Nash bargaining solution for that subcoalition.

The careful reader will have noticed that the results in this Section apply to a wider class
of solutions: those that emerge from the maximization of any system of coalitional wel-
fare functions that are quasiconcave and strictly increasing in individual payoffs, under the
assumption that all feasible sets are convex.

An alternative line of generalization comes from dropping the convexity assumption on
feasible sets. A set A ⊆ Rm is subconvex if for every x, y ∈ A and t ∈ [0, 1], there is
z ∈ A such that z > tx + (1 − t)y, and a set A ⊆ Rm

+ is log subconvex if lnA ≡ {z ∈
Rm|(z1, . . . , zm) = (lnx1, . . . , lnxm) for some x ∈ A} is subconvex.22 Log subconvexity
is a weak property that could apply to connected sets as well as to sets with isolated ele-
ments,23 and moreover, a convex set in Rm

+ must be log subconvex.24 The Supplementary
Notes show that Theorem 2 holds under the weaker assumption that all feasible sets are log
subconvex, though the unconstrained Nash solution could now be multi-valued.

3.4. Proof of Theorem 2. The proof combines Claims 1–3 below.

Claim 1. For any coalition S, U∗(S) ⊆ U ′(S).

Proof. Suppose x ∈ U∗(S) but x /∈ U ′(S). Then there is some coalition T ⊂ S such that
ψ(T ) � xT . If ψ(T ) ∈ Θ(T ), that would contradict x ∈ U∗(S). If ψ(T ) 6∈ Θ(T ), then

22Note that log subconvexity is only defined for subsets A of Rm
+ , so that lnx is well-defined in the extended

reals for all x ∈ A. The vector ordering “>” is then applied to the extended reals in the obvious way.
23However, in Example 3, F ({1, 2, 3}) is not log subconvex.
24Let A be convex. Then for every x, y ∈ A and t ∈ (0, 1), z ≡ tx + (1 − t)y ∈ A. But we know that
ln(z) > t lnx+ (1− t) ln y, which proves that A is log subconvex.
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there is W ⊂ T and y ∈ Θ(W ) with y � ψ(T )W . But then (W, y) also blocks x, and we
again have a contradiction to the supposition that x ∈ U∗(S).

Claim 2. Suppose there exists x ∈ Θ(T ) such that x 6= ψ(T ). Then there exists W ⊂ T

such that ψ(W ) > xW .

Proof. We proceed by induction on coalition size. Clearly the assertion is trivially true
for all coalitions of size 2 or less: for such coalitions Θ(T ) = Ψ(T ) = {ψ(T )}. Now
suppose that the lemma is true for any coalition of size k or less, where k > 2. Let T have
cardinality k + 1. Suppose that x ∈ Θ(T ) and x 6= ψ(T ). Observe that the Nash product
value of Ψ(T ) strictly exceeds that of x. By the quasi-concavity of the Nash product, this
must be also true of any allocation of the form tx + (1 − t)ψ(T ) for t ∈ (0, 1), which all
lie in F (T ) because F (T ) is convex. Therefore each such allocation must be blocked by
some subcoalition of T using some internally consistent Nash solution for that subset. In
particular, by taking t to 1, we see that there exist H ⊂ T and y ∈ Θ(H) such that

(12) y > xH

If y = ψ(H) we are done. If y 6= ψ(H), then noting that |H| 6 k, the induction hypothesis
implies there is W ⊂ H with ψ(W ) > yW . Combining this information with (12), we
must conclude that ψ(W ) > xW .

Claim 3. For any coalition S, U ′(S) ⊆ U∗(S).

Proof. Suppose there exists x ∈ U ′(S) but x /∈ U∗(S). Since x ∈ F (S), this means that
there is some coalition T and y ∈ Θ(T ) such that y � xT . Because x ∈ U ′(S), we have
y 6= ψ(T ). But then by Claim 2, there exists W ⊂ T such that ψ(W )� yW � xW , which
contradicts the hypothesis that x ∈ U ′(S).

The Theorem is an immediate consequence of Claims 1 and 3.

4. TRANSFERABLE UTILITY GAMES

4.1. Constrained Egalitarianism. The goal of this section is to draw a connection be-
tween the internally consistent Nash solution and the constrained egalitarian solution (Dutta
and Ray 1989, 1991), in the context of transferable utility (TU) games. Recall that a game
with coalitional threats is TU if there is an affine transform of payoffs such that d = 0

and for each S, there is a scalar v(S) so that its feasible set of allocations is given by
F (S) = {x ∈ RS|

∑
i∈S v({i}) 6

∑
i∈S xi 6 v(S)}.
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Dutta and Ray (1989, 1991) proposed a solution concept for such games that combines a
commitment to egalitarianism with the pragmatics of coalitional participation. Their idea
was to design “constrained norms” under which the a social ethic (egalitarianism, in their
case) could be applied to the greatest degree possible, while remaining limited by individual
and coalitional buy-ins. The following example illustrates their concept:

Example 4. Consider the three-player TU game from Example 2, with player set N =

{1, 2, 3}, d normalized to zero, v(N) = 1, v({12}) = 0.8 and v(S) = 0 for all other S.

A commitment to egalitarianism on the part of the coalition {12} is not constrained by
players 1 or 2 acting on their own accord. The latter would get either player 0, so coali-
tion {12} can credibly carry out their social preference for egalitarianism. If formed, that
coalition would implement the allocation {0.4, 0.4}. The same commitment exists for the
grand coalition N , but it is constrained by the possibility that players 1 and 2 could exit
the grand coalition (with their credible threat {0.4, 0.4}) if pushed too far. A natural can-
didate for a “constrained egalitarian solution” is therefore given by the set of two allo-
cations {0.4, 0.3, 0.3} and {0.3, 0.4, 0.3}, which are the Lorenz-maximal elements of the
unblocked set for the grand coalition. As we saw in Example 2, these are also the two
allocations in the internally consistent Nash solution. �

Dutta and Ray (1989, 1991) generalized this idea to societies of arbitrary size and any
specification of worths {v(S)} across coalitions. Specifically, they argued that the grand
coalition would need to choose the Lorenz-maximal elements from its set of unblocked
allocations. In turn, because every coalition is also presumed to subscribe to the social ethic
of egalitarianism, any credible block would also need to be egalitarian (for the coalition
doing the blocking) in the same way asked of the grand coalition. Throughout, Dutta
and Ray restrict their attention to internal blocking to develop their notion of constrained
egalitarianiasm, and so employ the same recursive structure as we do here.

Consider two payoff allocations x and y in Rk that add to the same total, arranged such
that xi 6 xi+1 and yi 6 yi+1 for all i = 1, . . . , k − 1. Say that x majorizes (or Lorenz-
dominates) y if

∑j
i=1 xi >

∑j
i=1 yi for every j = 1, . . . , k, with strict inequality for some

j. This ordering is well known to agree with the ethics of egalitarianism (see, e.g., Kolm
1969, Dasgupta, Sen, and Starrett 1973 and Fields and Fei 1978), though it is partial. For
any set of allocations A adding to the same total, let L(A) be its set of Lorenz-maximal
elements: those allocations in A that are not majorized by any other allocation in A.
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Now we define solutionsE(S) for every coalition S. For any singleton coalition {i}, define
E({i}) = {v(i)}. Recursively, consider any coalition S and suppose that we’ve defined
E(T ) for every strict subset T of S. Then define

U e(S) ≡ {x ∈ F (S)|x is unblocked by any (T, y) with T ⊂ S and y ∈ E(T )}.

and, whenever this set is nonempty, set

E(S) = L(U e(S)).

This is the constrained egalitarian solution for coalition S.25 Proceed in this manner until
all coalitions are covered.

4.2. Constrained Egalitarianism and the Internally Consistent Nash Solution. We
now connect constrained egalitarianism to the internally consistent Nash solution. As al-
ways, we normalize individual disagreement points to zero.

Theorem 3. In a TU game, the internally consistent Nash solution is a subset of the con-
strained egalitarian solution for every coalition S:

σ∗(S) ⊆ E(S).

Suppose additionally that a TU game is superadditive, in that for every coalition S:

(13) v(S) >
m∑
j=1

v(Tj) for all partitions (T1, . . . , Tm) of S.

Then for all S, σ∗(S) is nonempty, and is found by maximizing the Nash product over the
set of allocations that are unblocked by any subcoalition using equal division.

Theorem 2 is crucial to the proof of this result, allowing us to sidestep a recursive argument.
Such arguments generally fail for set-inclusion results. Under the recursive approach, the
inductive hypothesis is that σ∗(S) ⊆ E(S) for all coalitions of some size k or smaller. That
widens the unblocked set for Nash bargaining for a larger coalition relative to the Dutta-Ray
unblocked set, and prevents the inductive step from being completed. Theorem 2 avoids
this line of reasoning altogether.

The existence of an internally consistent Nash solution is assured in all superadditive games
(recall (13)), which is a very general class. That is because the ability of subcoalitions to
25Dutta and Ray actually use two different notions of blocking. Dutta and Ray (1989) define (T, y) to block
x ∈ F (S) if yT > x, whereas (in line with the current paper) Dutta and Ray (1991) use the stronger blocking
criterion yT � x. The two induced solutions are different; see Dutta and Ray (1991). We use the latter here.
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block an allocation is compromised by their anticipation that they, too, will seek a Nash
bargain — and not be able to follow through with any arbitrary block. In contrast, a non-
cooperative solution such as the one in Compte and Jehiel (2010) does not exhibit internal
consistency; effectively, coalitional blocks are unrestricted. That limits the existence of a
Nash bargain, even in TU games, to situations in which the game has a balancedness prop-
erty, which is a far narrower class than mere superadditivity.26 We do not view existence as
a reason for choosing one concept over another, but the comparison is still of interest.

4.3. Proof of Theorem 3. In a TU game, the standard Nash solution for every S is the
same as the equal division solution:27

e(S) =

(
v(S)

|S|
, . . . ,

v(S)

|S|

)
.

To establish the first part of the theorem, begin by observing that for each S, the feasible set
F (S) = {x ∈ RS|

∑
i∈S v({i}) 6

∑
i∈S xi 6 v(S)} is compact and convex. So Theorem

2 applies. Noting that the unconstrained Nash solution for any such T is equal to e(T ), we
must conclude that

(14) Θ∗(S) = σ∗(S) = arg max
x∈U ′(S)

∏
j∈S

xj.

where

(15) U ′(S) = {x ∈ F (S)|x is unblocked by any (T, y) with T ⊂ S and y = e(T )}

is nonempty. But by Theorem 1 of Dutta and Ray (1991),

(16) E(S) = L(U ′(S)).

when U ′(S) 6= ∅. In the light of (14) and (16), it suffices to prove that for every nonempty
compact set A ⊂ Rk in which all allocations have the same total, arg maxx∈A

∏k
i=1 xi ⊆

L(A). But the product maximand is increasing and strictly quasi-concave, and the agree-
ment of such functions (in value) with majorization is well known; see, e.g., Kolm (1969),
Atkinson (1970) and Dasgupta, Sen, and Starrett (1973).

The second part follows from Lemma 3 of Dutta and Ray (1991), who prove that under
assumption (13), the set U ′(N) — see equation (15) with S = N — is nonempty. It is
obviously compact, so σ∗(N) = arg maxx∈U ′(N)

∏k
i=1 xi must be nonempty.

26If a game is not TU, superadditivity does not guarantee that σ∗(S) is nonempty, but balancedness does.
27Recall that the disagreement points are all normalized to zero.
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Finally, one might ask when the internally consistent Nash solution is unique. This is a
deep question to which we do not have a complete answer. But Dutta and Ray (1991)
provide some leads. They invoke the following partial ordering from Maschler and Peleg
(1966): for two players i and j, say that i % j if for all S ⊆ N − {i, j} (possibly empty),
v(S ∪ {i}) > v(S ∪ {j}). This ordering is transitive (cf. Maschler and Peleg 1966), but
additionally, there is a wide class of games for which % is complete. In such cases, we have

Corollary 1 (to Theorem 3 and Dutta and Ray 1991, Theorem 3). If % is complete, then
every allocation in σ(N) is identical up to a permutation of the players.

We omit the proof, which is an immediate consequence of combining Theorem 3 and Dutta
and Ray (1991), Theorem 3. But it remains to be seen whether we can do better. Our
completeness condition is sufficient but far from necessary. For instance, it can be shown
that the Nash bargaining solution must contain a single allocation (again up to possible
permutations) for all three player games, though % is not always complete for such games.28
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