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Abstract

The recommendation principle states that, without losing generality, a sender

can focus on experiments in which messages are recommendations in the re-

ceiver’s action space. We study the general validity of the recommendation

principle and characterize the conditions under which it holds in persuasive

communication settings. Using our characterization, we construct a simple test

that asserts the validity of the recommendation principle. We apply our test to

examples in the literature where the principle has been assumed or proved for

that specific application.
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1. Introduction

Information plays a crucial role in countless economic environments: from financial mar-

kets to political campaigns, the ability of an informed agent to shape others’ beliefs and

influence their subsequent actions is a fundamental ingredient of many economic models.

Kamenica and Gentzkow (2011) provide a foundational framework for studying this kind

of problem, showing that an informed party (sender) can influence the choices of an un-

informed opponent (receiver) by committing to an experiment whose results her opponent

can observe.

Analogous to the revelation principle in mechanism design, the recommendation prin-

ciple considerably simplifies the search for the optimal experiment by showing that no

generality is lost by restricting attention to direct recommendation experiments— that is,

experiments in which the sender recommends an action to the receiver.1 The useful recom-

mendation principle is critical to ensure the tractability and applicability of the persuasion

framework of Kamenica and Gentzkow (2011).

Despite the widespread use of the recommendation principle in the literature, its general

validity remains an open question. This paper fills this gap by identifying the key features

of the receiver’s decision-making environment that ensure it is without loss of generality to

focus on direct recommendation experiments, and by providing an intuitive framework to

diagnose failures of the principle.

Our model mirrors the standard persuasion framework with one sender and one re-

ceiver. The sender (he), before learning about the state of the world, commits to a com-

munication experiment consisting of an arbitrary message space and an arbitrary family of

conditional probability distributions over messages. Then, a potentially privately informed

receiver (she), who knows the sender’s experiment, observes the realization of one of its

messages (possibly together with her private payoff type), updates her beliefs about the

state of the world, and takes an action.2

To discuss the action choice problem of the receiver, we assume that the receiver chooses

her action to maximize her value function, that is, her indirect utility as a function only

of her action, type, posterior and, possibly, the distribution of posteriors generated by the

1In particular, the recommendation principle makes it possible to study the sender’s payoff maximiza-
tion problem with standard optimization techniques: rather than maximizing over a (potentially
very complex) set of possible experiments, it is enough to focus on the much simpler problem
maximizing over the set of all distributions over action recommendations.

2In models of Bayesian persuasion, the sender can be considered an informed party, as long as he
commits to an experiment before realizing his private information. This assumption, contrasting
with the literature on cheap talk, implies that the experiment choice does not contain information
about the state of the world (Crawford and Sobel, 1982).
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experiment chosen by the sender. We show how several setups and models in the literature

can be analyzed based on such a value function.

If the receiver’s value function does not depend on the posterior distribution generated

by the experiment, we show that the recommendation principle holds if and only if the

set of posteriors for which each action is optimal is convex. This is the case, for example,

in the standard framework of Kamenica and Gentzkow (2011) in which the value function

is linear in the posterior beliefs. If the set of receiver’s actions is binary, we show that

the recommendation principle holds whenever the value functions associated with the two

actions intersect only once.

If the receiver’s optimal action also depends on the posterior distribution generated by

the experiment, we show that a slightly stronger version of the recommendation principle

holds if and only if “pooling” posteriors inducing the same action do not cause the receiver

to change her favorite action. We apply this framework to models of persuaded search

(Mekonnen et al., 2025), of persuasion of an inattentive receiver of (Dall’Ara, 2024), and

non-Bayesian persuasion (de Clippel and Zhang, 2022). Our analysis shows how the recom-

mendation principle extends beyond the standard framework without a significant change

in the machinery behind the results. In addition, this analysis sheds light on the aspects of

a communication model that would lead to violations of the recommendation principle.

We are not the first to observe that convexity and invariance in the pooling of mes-

sages are relevant to establish a recommendation principle.3 For example, Lipnowski and

Mathevet (2018) notice that the recommendation principle may fail (in a specific sense)

whenever the set of posteriors for which an action is optimal is not convex. Similarly, Doval

and Skreta (2024) proves a recommendation principle for a class of persuasion problems

with constraints if the sender cannot increase its payoff by pooling different messages. Our

paper complements these analyses by providing a converse to their results while generaliz-

ing the applicability of the recommendation principle to a much broader class of persuasion

problems, including stationary dynamic problems (Mekonnen et al., 2025), non-Bayesian

updating (de Clippel and Zhang, 2022), and bounded rationality (Dall’Ara, 2024). This is

possible because our results do not rely in any way on the specifics of the payoff function

of the sender, focusing instead on the decision-making environment of the receiver only.

The current paper also relates to the recent work on convex choice settings, for example,

in which the set of types for which a given action is optimal is convex (Kartik et al., 2023;

Kartik and Kleiner, 2025).

The remainder of the paper proceeds as follows. Section 2 presents the model that

3More broadly, our findings also relate to efforts trying to characterize the class of mechanism design
problems in which the revelation principle holds (Saran, 2011; Rubbini, 2024b; Xiong, 2024) and
in which incentive compatibility is a necessary condition for implementation Rubbini (2024a).
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defines the general framework for information design and persuasion problems. Section 3

introduces the conditions under which the recommendation principle holds in problems

where the receiver’s utility from taking a given action depends on her posterior but not

on the distribution of posteriors generated by the experiment chosen by the sender. Sec-

tion 4 extends the model by removing this limitation. Finally, Section 5 discusses possible

generalizations of our model. Proofs of results and one such generalization are relegated to

Appendix B, and one additional generalization is the content of an Online Appendix.

2. Model

2.1. Setup

Denote by Ω a set of states of the world, with typical element ω, and a set of payoff types

Θ for the receiver, with typical element θ.

We analyze the following game. First, without observing the state of the world, the

sender commits to an experiment π = (S, σ), consisting of a realization space S and a

family of distributions σ = {σ(· | ω)}ω∈Ω over S, where σ(s | ω) represents the probability

that the message s is sent in the state ω. For simplicity of exposition, we assume that the

spaces S and Ω are finite.4

The receiver then observes the experiment π, a realization s, and a realization θ of her

private type θ, and updates her prior belief µ0 ∈ ∆(Ω) to posterior µπ(s) ∈ ∆(Ω). As we

interpret θ as the receiver’s payoff type, we make the standard assumption that the receiver’s

prior does not depend on her payoff type θ.5 Then the receiver chooses an action from the

finite action space A. We denote a typical action by a ∈ A. As the receiver’s actions may be

different depending on her payoff type, we define an action plan as the function ā : Θ → A,

where ā(θ) is the action that the receiver takes according to plan ā. We denote by AΘ the

set of all possible action plans. Finally, since the posterior beliefs of the receiver depend on

the realization s, we denote by Gπ the distribution of posteriors induced by experiment π.

The receiver chooses an action to maximize her value function, which is defined as

v : B×A×Θ → R and B ⊆ ∆(Ω) is a convex set of posteriors. We interpret v as a reduced

form expression capturing all other factors that could affect the receiver’s utility, such as

other players’ actions.6

4None of our results crucially hinge on these finiteness assumptions except for Theorem 1: we discuss
the impact of these finiteness assumptions and how to generalize the model in paragraph 5.

5In the online appendix, we discuss that more general case, which requires significantly more cum-
bersome notation, offering similar results.

6Although this paper focuses on value functions for a simple application to existing models, our re-
sults do not conceptually hinge on the receiver’s choices being represented by a real-valued function,
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2.2. Implementation and the Recommendation Principle

We set a receiver’s environment E as a tuple {Ω, B,Θ, A, v}. We formalize the receiver’s

behavior induced by an experiment.

Definition 1 (Implementation of Action Distributions). Experiment π implements an ac-

tion distribution dπ : Ω×Θ → ∆(A) whenever:

1. µ0 =
∑

s∈S σ
π(s)µπ(s),

2. there exists απ : S ×Θ → A such that:

(a) for all θ ∈ Θ, s ∈ supp(σπ), and a′ ∈ A:

v(µπ(s), απ(s, θ), θ) ≥ v(µπ(s), a′, θ)

(b) for all θ ∈ Θ, we have:

dπ(ω, θ)[a] =
∑
s∈S

1{απ(s,θ)=a}(s)σ(s|ω).

Requirement 1 is the standard feasibility or Bayesian plausibility requirement that the

average posterior is equal to the prior.7 Meanwhile, 2.a represents the obedience requirement

that the receiver’s action is optimal given her beliefs. Finally, 2.b summarizes the fact that

the probability that the action a is played in state ω by type θ is given by the aggregate

probability of the signal realizations that, conditional on ω, induce the action a in a receiver

of type θ. We note that to implement dπ, we require that there exists at least one strategy

απ inducing dπ.

This assumption is in line with the model of Kamenica and Gentzkow (2011), who

require that there exists at least one equilibrium of the sender-receiver game inducing the

distribution over actions the sender seeks to implement.8

We say that the recommendation principle holds for the receiver environment E when-

ever, for any possible prior, any action distribution the sender can implement can also be

implemented by recommending an action plan to the receiver. Formally:

and could be generalized by assuming the receiver’s choices can be represented by a correspondence
mapping B ×Θ to non-empty subsets of A.

7For ease of exposition, most of the discussion focuses on a Bayesian receiver. In Section 4.1, we
show that our results extend naturally to a class of non-Bayesian updating rules as well.

8In case of multiple equilibria, Kamenica and Gentzkow (2011) focus attention on the equilibrium
yielding the highest payoff to the sender. Without this assumption, restricting attention to direct
experiments may lead to loss of generality: we refer the reader to the discussion in Bergemann and
Morris (2019) and references therein.
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Definition 2. The recommendation principle holds for the receiver environment E if, for

any µ0 ∈ B, any action distribution the sender can implement through experiment π can

be implemented via the direct recommendation experiment π∗ = (AΘ, σπ
∗
) and strategy

απ
∗
(ā, θ) = ā(θ) for all θ ∈ Θ.

2.3. Posterior Convexity

The key property of the value function that characterizes the set of persuasion problems

that can be simplified using the recommendation principle is that the set of posteriors

that support each action plan as optimal is convex. That is, a property of optimal-action

posterior convexity, or posterior convexity, for short:

Definition 3 (Posterior Convexity (PC)). A value function v satisfies posterior convexity

whenever, if µ, µ′ ∈ B, ā ∈ AΘ and for all a′ ∈ A, having that

v(µ, ā(θ), θ) ≥ v(µ, a′, θ) and v(µ′, ā(θ), θ) ≥ v(µ′, a′, θ) for all θ ∈ Θ,

then for all λ ∈ [0, 1], One also has that

v(λµ+ (1− λ)µ′, ā(θ), θ) ≥ v(λµ+ (1− λ)µ′, a′, θ) for all θ ∈ Θ.

In particular, PC holds whenever the value function is linear in the posterior. This is the

case, for instance, in the standard setup of Kamenica and Gentzkow (2011) or in the special

case of a non-Bayesian receiver who systematically distorts Bayesian posteriors (de Clippel

and Zhang, 2022).

In some cases, it is easier to check the following (stronger) condition:

Definition 4 (Strong Posterior Convexity (SPC)). A value function v satisfies Strong

Posterior Convexity whenever, if a, a′ ∈ A and µ, µ′ ∈ B are such that

v(µ, a, θ) ≥ v(µ, a′, θ) and v(µ′, a, θ) ≥ v(µ′, a′, θ)

then for all λ ∈ [0, 1],

v(λµ+ (1− λ)µ′, a, θ) ≥ v(λµ+ (1− λ)µ′, a′, θ)

In fact, the PC and SPC coincide whenever the set of possible receiver types is a sin-

gleton. More generally, it is easy to see that SPC implies PC. Suppose that there exist µ

and µ′ such that ā(θ) is optimal for the type θ at the posteriors µ and µ′. Although SPC
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implies that ā(θ) is also optimal for the type θ in any linear combination of µ and µ′, PC

implies the same only if ā(θ′) is optimal for θ′ in any posteriors µ and µ′, for all θ′ ̸= θ.

To illustrate PC, consider a simple set-up with two states (Ω = {ω, ω′}) and two actions

(A = {a, a′}) in which the planner is interested. As the state space is binary, the receiver’s

beliefs are captured by the probability p ∈ [0, 1] that the state is ω. As we do not discuss

types at this moment, let us omit θ as an argument for v.

For a simple example of a PC value function, we can turn to the standard Bayesian

Persuasion model in Kamenica and Gentzkow (2011). The value function for this problem

can be written as:

v(p, a) = pu(a, ω) + (1− p)u(a, ω′),

where p is the probability of state ω. It is immediate to notice that PC holds: for all

p, p′ ∈ [0, 1] with v(p, a) ≥ v(p, a′) and v(p′, a) ≥ v(p′, a′), the fact that v is affine in the

posterior entails that we have v(λp+ (1− λ)p′, a) ≥ v(λp+ (1− λ)p′, a′) for all λ ∈ [0, 1].

It is also instructive to inspect the plot of the two value functions. Figure 1 shows

graphically how the set of posteriors such that action a is optimal is convex, as is the set

of posteriors at which action a′ is optimal. It is sometimes useful to instead consider the

function ψ(p) = v(p, a) − v(p, a′): a will be preferred to a′ at all posteriors p such that

ψ(p) ≥ 0, while a′ will be preferred to a for all posteriors p such that ψ(p) ≥ 0.

1

v(p, a)

v(p, a′)

p∗0

p

1

ψ(p)

p∗0

p

Figure 1: In the standard Bayesian Persuasion problem (Kamenica and Gentzkow,
2011), value functions are linear in the posterior and cross only once. This entails

the function ϕ(µ) = v(µ, a)− v(µ, a′) crosses the horizontal axis only once.

This convexity means that a (a′) is optimal for all posteriors that are a linear combina-

tion of posteriors such that the action a (a′) is optimal. Therefore, for the standard Bayesian

persuasion problem, the recommendation principle holds since the associated value function

v is PC. That is, because the sets of posteriors supporting each action as optimal are convex.
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1

v(p, a)

v(p, a′)

p∗0

p

1

v(µ, a)

v(µ, a′)

0

p

Figure 2: The recommendation principle may hold even if the value function is not
linear in the posterior (left). The recommendation principle holds whenever the

locus of points at which two continuous value functions intersect is convex (right).

Although v is linear in the posterior in the model of Kamenica and Gentzkow (2011),

this is not necessary for the recommendation principle to hold. For example, consider the

following v:

v(p, a) = pu(a, ω) + (1− p)u(a, ω′),

v(p, a′) =
1

4
− p(1− p).

As the two functions cross only once, the sets of posteriors supporting each action are

convex: this is a case in which the recommendation principle holds even if utilities are

posterior dependent, since the payoff of the second action depends only on the degree of

certainty, i.e., how certain she is about the state. Moreover, v is not linear in the posterior

for action a′: however, as long as the two curves cross only once in the interval [0, 1], the

recommendation principle holds, as the sets of posteriors such that a is optimal and a′ is

optimal are convex.

For the two-action case, the single crossing of v(·, a) and v(·, a′) is sufficient for the

recommendation principle to hold. However, it is not necessary: for the recommendation

principle to hold, it suffices that the two curves cross only in a convex set of points as in

the example presented in the right panel of Figure 2.
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3. Optimal Action Independent of Posterior Distribution

3.1. Main Results for the Independent Case

In this section, we study a persuasion model with a receiver whose choices only depend on

the Bayesian posterior and her type.9 Our main result in the section is that PC charac-

terizes the class of value functions v and, therefore, of receiver’s environments where the

recommendation principle holds. Formally:

Theorem 1. Suppose the receiver’s choices only depend on the Bayesian posterior and her

payoff type. Then, the recommendation principle holds if and only if v satisfies PC.

As argued above, PC amounts to the convexity of the set of posteriors that makes each

action plan ā optimal.

This result is related to an observation in Lipnowski and Mathevet (2018), who remark

that the recommendation principle may fail in their setup whenever the convexity of the

set of posteriors making a given action optimal fails.10 In fact, our result shows that the

recommendation principle can hold even when the receiver prefers finer information. For

example, let |Ω| = 2, A = {0, 1}, and v(a, p) = u(a, p) = ap2 + (1− a)c. Even if v is convex

in p for all a ∈ {0, 1}, it satisfies SPC and the recommendation principle holds.

Theorem 1 immediately leads to the following sufficient condition for the recommenda-

tion principle:

Corollary 1. Let v∗(·, θ) = maxa′ ̸=a v(·, a, θ). If v is continuous in the posterior and the

locus of µ ∈ B such that v(·, a, θ) = v∗(·, θ) is a hyperplane for all a ∈ A and θ ∈ Θ, the

recommendation principle holds.

Corollary 1 is a generalized single crossing condition: in particular, if |A| = |Ω| = 2, the

recommendation principle holds whenever, for all θ ∈ Θ, v(·, a, θ) and v(·, a′, θ) intersect

at most at one µ ∈ B. While Corollary 1 is a sufficient condition for PC to hold, it is by

no means necessary. The right panel of Figure 2 is a case in point: rather than for a single

posterior, in that case v(·, a, θ) and v(·, a′, θ) intersect for an interval of posteriors in B.

Corollary 1 is particularly useful in setups in which the locus of the points at which

v and v∗ intersect is “thin”, in the sense that it has zero measure. This is the case, for

instance, if small perturbations of the posteriors lead to a strict preference for one action or

9This also allows us to capture some forms of non-Bayesian updating, as discussed in de Clippel and
Zhang (2022).

10Their definition of recommendation principle, however, is different from ours. In their setup, sender
and receiver share the same payoff function, and they say the RP holds whenever direct recom-
mendations maximize the payoff of both players.
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another, i.e., whenever for all θ ∈ Θ, µ ∈ B and ϵ > 0, there exists a µ′ in the ϵ-ball around

µ such that either v(µ′, a, θ) > v∗(µ′, θ) or v(µ′, a, θ) < v∗(µ′, θ). If |Ω| = 2 and v and v∗

are differentiable in p, this is the case whenever the derivatives of ∂v(p,a,θ)∂p is either strictly

higher ors strictly lower than ∂v(p,θ)
∂p for all p ∈ [0, 1] and a ∈ A.

If v and v∗ intersect in such a “thin” locus of points, we moreover have a partial converse

to Corollary 1: whenever the recommendation principle holds, the set of posteriors at which

any two actions a, a′ ∈ A are optimal must be a hyperplane. This follows from the fact that,

if both a, a′ are optimal at posteriors µ, µ′ ∈ B, then both must be optimal at all posteriors

λµ+ (1− λ)µ′ on the line segment between µ and µ′.

3.2. Examples and Applications

Standard Bayesian Persuasion We can capture in our framework the standard set-

ting in Kamenica and Gentzkow (2011) if we assume that the value function v of the receiver

is equal to her expected utility given the action and the posterior considered:

v(µ, a, θ) =
∑
ω∈Ω

µ[ω]u(ω, a, θ).

It is immediate to see that as v is an affine function of the posterior, given any type θ

and any action a:

v(λµ+ (1− λ)µ′, a, θ) =∑
ω∈Ω

(λµ[ω] + (1− λ)µ′[ω])u(ω, a, θ) = λv(µ, a, θ) + (1− λ)v(µ′, a, θ).

Consequently, for all a, a′ and µ, µ′, if v(µ, a, θ) ≥ v(µ, a′, θ) and v(µ′, a, θ) ≥ v(µ′, a′, θ),

then v(λµ+ (1− λ)µ′, a, θ) ≥ v(λµ+ (1− λ)µ′, a′). In turn, v satisfies SPC and the recom-

mendation principle holds.

Non-Bayesian Expected Utility de Clippel and Zhang (2022) prove that the rec-

ommendation principle holds for non-Bayesian persuasion models where the receiver’s pos-

teriors are determined from passing Bayesian posteriors through a distortion function Dθ

and each distortion function maps each convex combination of Bayesian posteriors µ, µ′ to

a convex combination of the distorted posteriors Dθ(µ) and Dθ(µ
′).11 We verify that this

property implies that v satisfies the PC property, immediately leading to the recommenda-

11de Clippel and Zhang (2022) also allow the distortion function to depend on the receiver’s prior:
we discuss this extension in Section 4.1.
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tion principle. This observation allows us to make use of our framework whenever we can

still express the receiver’s beliefs in terms of the Bayesian posterior, even if she is not a

Bayesian updater. de Clippel and Zhang (2022) show that this class of updating rules is

quite large, and it includes many models of non-Bayesian updating discussed in previous

literature.

We can capture the setup of de Clippel and Zhang (2022) in our framework by consid-

ering the value function

v(µ, a, θ) =
∑
ω∈Ω

Dθ(µ(ω))u(ω, a, θ).

As the value function of the receiver depends on her type θ, we also allow for settings in

which the receiver’s updating rule is correlated with her private payoff type θ.

de Clippel and Zhang (2022) show the recommendation principle holds whenever the

distortion function is an affine function of the posterior. For all types θ, let Dθ be such that

for all λ ∈ [0, 1] and posteriors µ, µ′ there exists γ ∈ [0, 1] such that:

Dθ(λµ+ (1− λ)µ′) = γDθ(µ) + (1− γ)Dµ0,θ(µ
′).

Therefore, we can rewrite:

v(λµ+ (1− λ)µ′, a, θ) =
∑
ω∈Ω

Dθ(λµ[ω] + (1− λ)µ′[ω])u(ω, a, θ).

Substituting for λµ[ω] + (1− λ)µ′[ω]:

∑
ω∈Ω

Dθ(λµ[ω] + (1− λ)µ′[ω])u(ω, a, θ) =

∑
ω∈Ω

[γDθ(µ[ω]) + (1− γ)Dθ(µ
′[ω])]u(ω, a, θ).

This entails for all a ∈ A:

v(λµ+ (1− λ)µ′, a, θ) = γv(µ, a, θ) + (1− γ)v(µ′, a, θ).

10



Therefore, whenever v(µ, a, θ) ≥ v(µ, a′, θ) and v(µ′, a, θ) ≥ v(µ′, a′, θ):

v(λµ+ (1− λ)µ′, a, θ) = γv(µ, a, θ) + (1− γ)v(µ′, a, θ)

≥ γv(µ, a′, θ) + (1− γ)v(µ′, a′, θ)

= v(λµ+ (1− λ)µ′, a′, θ)

It follows that v satisfies SPC and, by Theorem 1, that the recommendation principle holds.

3.3. Information Design without Commitment

While this paper focuses on setups in which the sender commits to an information structure,

PC is also helpful in analyzing models in which the sender has limited or no commitment

power. We can interpret PC as the requirement that a receiver playing a given action after

observing two different messages also follows the corresponding direct recommendation of

playing that action. PC is, therefore, a condition about the receiver’s choices: as long as the

receiver’s choices do not depend on the set of information structures the sender can pick,

the presence or absence of commitment power on the part of the sender might not matter

to establish whether the receiver will follow or not an action recommendation.

If the interaction between sender and receiver is analyzed through the lens of Perfect

Bayesian Equilibrium (PBE henceforth) or Sequential Equilibrium (SE henceforth), this

feature is enough to yield a recommendation principle analogue. In line with the related

literature, assume that the space of messages S is fixed and that AΘ ⊂ S.

Theorem 2. If PC holds and there exists a PBE (SE) e of the game without commitment,

then there exists a PBE (SE) e′ in which the sender uses the direct recommendation strategy

σπ
∗
with supp(σπ

∗
) ⊆ AΘ and the receiver plays the action that ā recommends for her type.

For both PBE and SE, the argument behind Theorem 2 is based on supporting equilib-

rium e′ through the same off-path beliefs that supported equilibrium e. Importantly, this

result does not mean that we can derive a recommendation principle for other refinements

of PBE. In equilibria with more stringent off-path belief restrictions, it may be unfeasible

to support a direct recommendation equilibrium.

4. Optimal Action Dependent on Posterior Distribution

Our results extend to models in which the optimal action for the receiver depends not only

on her posterior, but also on the distribution over posteriors the experiment induces. By

doing this, we include now models in which the receiver may be taking her action ex ante,
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i.e., before observing the realization of a given message. One example is models where the

receiver can pay a cost to access a signal about the state of the world (e.g., Dall’Ara (2024);

Mekonnen et al. (2025)). Another example—for some non-Bayesian updating rules—is the

case of a receiver that does not update beliefs based on the Bayes rule (de Clippel and

Zhang, 2022).

Let π generate the posterior distribution G, inducing the action distribution dπ. The

first step is to determine the direct recommendation experiment associated with π∗. As π∗

“pools” together all the messages that induce the same action plan, one may think that

the distribution H over the posteriors induced by π∗ will simply “pool” together all the

posteriors that induce the same action plan. That is, one may think H will assign to the

“average” posterior inducing ā the aggregate probability of posteriors inducing ā under G.

We first establish that this intuition is generally incorrect.

Example 1. Suppose that the receiver has no private information and that Ω = A = {x, y}
with µ0[x] = p0 =

1
2 . Let π be such that S = {x, y, z}, σ(y|y) = 1, and σ(x|x) = σ(z|x) = 1

2 .

Denoting µπ(·)[x] as p(x), this implies p(y) = 0 and p(x) = p(z) = 1. Suppose now v is

such that v(1, x) = v(1, y) and v(0, y) > v(0, x). If the receiver plays y when she observes

messages y or z, and x otherwise, π implements the action distribution dπ so that y is played

for sure when the state is y, and x and y are played with equal probability when the state

is x. Notice that π induces a posterior distribution that assigns probability 1
2 to posterior

1 and probability 1
2 to posterior 0. Therefore, “pooling” all the posteriors inducing actions

x and y would generate a distribution over posteriors that is not properly defined, since it

would assign probability 1 to posterior 1
2 and probability 1

2 to posterior 1. Consider now the

associated direct recommendation experiment π∗ = (A, σπ
∗
), which recommends x and y

with equal probability when the state is x, and recommends y with probability one when the

state is y. The associated distribution of posteriors assigns probability 1
4 to posterior 1 and

probability 3
4 to posterior 1

3 .

Notice that the issue discussed in the example arises as we “pool together” posteriors

0 and 1 because they induce the same optimal action y, but we do not account for the

fact that the receiver plays x half of the time when the posterior is 1. In other words,

we fail to account for the fact that two experiments inducing the same distribution over

posteriors may induce different distributions over actions whenever more than one action

plan is optimal at each posterior.

To simplify exposition, in this section, we address this issue by assuming v is such that

there exists a unique action plan ā that maximizes v for each posterior µ, type θ, and poste-

rior distribution ā. This is the case, for instance, if we assume that the potential receiver’s

indifferences are broken in favor of the sender’s preferred action, as is often assumed in the
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literature (Bergemann and Morris, 2019). Appendix B, in the appendix, contains a more

general version of our result that does not rely on this assumption.

Let G ⊆ ∆(∆(Ω)) denote the class of distributions G such that supp(G) ⊆ B. For any

G ∈ G and ā ∈ AΘ, denote as BG
ā the set of posteriors for which action plan ā is optimal

for the receiver:12

BG
ā = {µ ∈ B : ā(θ) ∈ argmax

a′∈A
v(G,µ, a′, θ) for all θ ∈ Θ}

We can now define the average posterior inducing ā as:

µ̄Gā =
∑
µ∈BG

ā

G(µ)

G(BG
ā )
µ,

where G(BG
ā ) =

∑
µ∈BG

ā
G(µ) is the total probability the original experiment induces a

posterior µ such that ā is optimal. We can then write the distribution over posterior HG

induced by the direct recommendation experiment as:

HG(µ) =
∑
ā∈AΘ

1{µ=µ̄Gā }G(B
G
ā ).

That is, the probability HG assigns to posterior µ is equal to the probability of any recom-

mendation ā that induces posterior µ in the direct recommendation experiment.

We are now ready to define the main condition for this section:

Definition 5 (Convex Posterior Pooling (CPP)). We say a function v satisfies convex posterior pooling

whenever for all G ∈ G, ā ∈ AΘ, a′ ∈ A, and θ ∈ Θ:

v(HG, µ̄Gā , ā(θ), θ) ≥ v(HG, µ̄Gā , a
′, θ).

In words, CPP requires that any action plan that is optimal in the posterior µ and

distribution G is still optimal for each possible pooled posterior µ̄Gā and pooled distribution

over the posteriorsHG. Notice also that CPP implies PC: It is enough to consider a posterior

distribution G such that G(µ) = λ and G(µ′) = 1− λ for µ, µ′ ∈ Bā.

We can then generalize Theorem 1 as follows:

Theorem 3. Suppose the receiver’s optimal action also depends on the posterior distribu-

tions generated by the experiment. Then, the recommendation principle holds if and only if

v satisfies CPP.

12Recall we define µ : Θ → ∆(Ω) to capture the possibility that the receiver’s posteriors may also
depend on her type.
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CPP holds, in particular, whenever v(G, ·, ·, ·) satisfies PC for all G with supp(G) ⊆ B

and v depends on G only through the expectation of a function of the posterior µ, which is

affine over the set of posteriors that induce each action plan ā. This is the case, for example,

if v depends on G only through the ex ante expected state. Section 4.1 shows this property

is satisfied by some models considered in the literature (Mekonnen et al., 2025; Dall’Ara,

2024; de Clippel and Zhang, 2022), as well as by novel examples that have not yet been

explored, such as models with reference-dependent preferences or moral wiggle-room (see

the next subsection).

Formally, denote by ϕ = {ϕk}k∈K any (possibly infinite) collection of functions, where

ϕ : B × A × Θ → R. We say ϕ is posterior-linear over set B̃ ⊆ ∆(Ω) whenever for all

µ, µ′ ∈ B̃ and λ ∈ [0, 1]:

λϕ(µ, ·, ·) + (1− λ)ϕ(µ′, ·, ·) = ϕ(λµ+ (1− λ)µ′, ·, ·).

That is, ϕ is posterior-linear if every function ϕk in the collection is linear in the posteriors

in set B̃.

Denoting
∑

µ∈∆(Ω)G(µ)ϕ(µ, a, θ) as ϕ
G(a, θ), we then have the following corollary:

Corollary 2. Suppose that v(G, ·, ·, ·) satisfies PC for all G ∈ G and that there exists a

collection of functions ϕ such that for all µ ∈ B, a ∈ A, and θ ∈ Θ:

v(G,µ, a, θ) = v̂(ϕG(a, θ), µ, a, θ).

If ϕ is posterior-linear over BG
ā for all ā ∈ AΘ, the recommendation principle holds.

If v depends on G only through the expected value of collection ϕ, the posterior linear-

ity of ϕ over the set BG
ā of posteriors that make ā optimal ensures that “pooling” those

posteriors together by using a direct recommendation experiment do not affect the value of

v. Together with the fact that v satisfies PC for all G, this implies that the way v ranks

the different actions available to the receiver is also unaffected. Although posterior linearity

is sufficient to ensure that PCC holds and is satisfied in many of the examples presented

below, it is not a necessary condition for PCC to hold if pooling posteriors affects the value

of v but not the ranking it induces on the receiver’s actions.

4.1. Examples and Applications

Persuaded Search The value function approach developed above is also suitable to

capture dynamic persuasion applications that are history independent, in the sense that the
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payoff of the action the receiver takes after observing a message only depends on her current

posterior and action.

An example is the sequential search problem of Mekonnen et al. (2025), where an agent

(receiver) cannot observe the quality of the good sampled in each period, but can acquire

information from a principal (sender). The paper’s analysis focuses on stationary equilibria,

i.e., in which the contract offered by the sender and the behavior of the receiver do not

depend on the game’s history, both on and off the equilibrium path.

Mekonnen et al. (2025) focus their attention on binary (“pass/fail”) messages, and then

show that this leads to no loss of generality, since all stationary equilibria of the game are

payoff-equivalent for the players. Indeed, in a binary action framework, a pass-fail test can

be interpreted as a recommendation experiment if messages are relabeled accordingly. In

Mekonnen et al. (2025), the receiver will stop the search if and only if the sampled good

passes the test.

By applying Theorem 3, we can confirm that it is without loss of generality to focus

on such binary experiments, as the value function associated with the problem (receiver’s

expected utility in each period) satisfies CPP. Besides being significantly simpler, our ap-

proach also allows us to show that this result does not hinge on the choice of the sender’s

utility function, provided such a function only depends on the receiver’s action.

Mekonnen et al. (2025) define a contract as a pair (pt, πt)t≥0 of (possibly period-

dependent) price and experiment, which the receiver can decide whether to accept or reject.

Given the focus on stationary equilibria, we will restrict attention to contracts in which the

receiver pays the same price and accesses the same experiment each period. In each period,

the receiver can stop searching and buy the good (a = s) or continue searching in the next

period (a = c).

We will now show that if the sender can induce some distribution of actions via contract

(p, π), he can induce the same distribution over actions via contract (p, πd), where πd is a

direct recommendation experiment. Denote asm(µ) the expected value of the good sampled

in the current period given posterior µ:

m(µ) =

∫
Ω
ω dµ(ω).

The value of buying the good for the receiver is then equal to her utility from stopping the

search and buying the good:13

v(G, s, µ) = v(s, µ) = m(µ).

13As the receiver holds no private information, we omit θ from the arguments of v.
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Meanwhile, the value of continuing the search solves:

v(G, c, µ) =

∫
∆(Ω)

max{δv(G, c, µ′),m(µ′)} dG(µ′) =∫
BG

s

m(µ′) dG(µ′) +

∫
BG

c

δv(G, c, µ′) dG(µ′),

where BG
s is the set of posteriors µ′ ∈ ∆(Ω) such that stopping the search and buying the

good is optimal (m(µ′) ≥ δv(G, c, µ′)) and BG
c is the set of posteriors such that continuing

the search is optimal (m(µ′) < δv(G, c, µ′)).14

As the value of continuing the search does not depend on the posterior µ but only on

its distribution G, we can rewrite:

v(G, c) =
1

1− δG(BG
c )

∫
BG

s

m(µ′) dG(µ′).

We can now easily check that v satisfies CPP. Notice that v satisfies PC for all G ∈ G, as for
any given G both v(µ, s) and v(G, c) are linear in µ. In addition, note that v(G, c) depends

on G only through the averages of ϕ1 = m and ϕ2 = 1{µ∈BG
c }(µ), which are affine over both

BG
c and BG

s . Corollary 2 then establishes that v satisfies CPP.

This result implies that it is without loss of generality to focus on experiments that

directly recommend to the receiver whether she should continue or stop searching: modulo

a relabeling of the messages, this is equivalent to restricting attention to the class of binary

pass/fail experiments.

As any distribution of actions that can be induced by an experiment can be induced by

a pass/fail recommendation, it follows immediately that it is enough to restrict attention to

contracts in which the sender offers such an experiment. This avoids the need for a lengthy

proof to show that all stationary equilibria of the game are payoff-equivalent, as is the case

in Mekonnen et al. (2025). Furthermore, our result establishes that, when utility for the

receiver has this form, it is enough to focus on a sender that only offers binary experiments

even when the sender has a different utility function than the one considered in Mekonnen

et al. (2025), as long as his utility function only depends on the action the receiver takes.

This means, for example, that focusing on binary experiments is enough no matter how

patient the sender is or whether the sender is consistent from an intertemporal perspective.

Persuasion of an Inattentive receiver Dall’Ara (2024) considers a setup in which

14As m(µ) = 0 for µ ∈ BG
s ∩BG

c , double-counting elements of BG
s ∩BG

c is immaterial.
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a sender persuades a receiver to take a costly action and paying attention to the sender’s

message is costly for the receiver. Both the cost of taking the action and the cost of paying

attention to the sender’s message are private information of the receiver.

We can capture this setup within our framework by letting A = {0, 1} and θ = (β, c),

where β ∈ R is a parameter that captures the effort cost of paying attention and c is the

material cost the receiver bears from taking action a = 1. Denoting again the expected

value of ω given µ as m(µ), we can write the utility of the receiver given a belief µ and an

effort level e as:

a(m(µ)− c)− βk(e),

where parameters β ∈ R and k : [0, 1] → R capture the cost of paying attention to the

sender’s message and k is known to the sender. Before sending the message, the receiver

chooses an attention level e∗(G, (β, c)) to maximize:

e∗
∫
∆(Ω)

max{m(µ)− c, 0} dG(µ′) + (1− e)m(µ0)− βk(e∗).

We can capture this setup by letting the receiver’s value function be

v(G,µ, a, (β, c)) = a(m(µ)− c)− βk(e∗(G, (β, c))).

Notice that e∗(G, θ) depends on G only through the value of information G provides,

which can be rewritten as:∫
∆(Ω)

max{m(µ)− c, 0} dG(µ′) =
∫
B1(β,c)

(m(µ)− c) dG(µ′) +

∫
B0(β,c)

0 dG(µ′) =∫
B1(β,c)

(m(µ)− c) dG(µ′),

where BG
1 (β, c) denotes the set of posteriors such that m(µ) ≥ c and BG

0 (β, c) denotes

the set of posteriors such that m(µ) < c. As before, we can see that m(µ) − c is an affine

function of µ, so its expectation is not affected by pooling posteriors that all belong to

either BG
1 (β, c) or to B

G
0 (β, c). By Corollary 2, it is then without loss of generality to focus

on binary type-dependent action recommendations regardless of the utility function of the

sender, as long as it depends only on the action taken by the receiver. It would also be

possible to extend this result to an arbitrary action space A, provided that the utility of

each action a is affine in the posterior.

Notice also that the functional form of the cost function and the fact it does not depend

on G are crucial to the result: for instance, if k depended on G through a non-affine function
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of the posterior, pooling posteriors may affect the action taken by the receiver by affecting

her optimal level of effort e∗.

Expectations-based Reference Dependence Our framework can also capture se-

tups in which the receiver’s preferences may directly depend on the distribution of posteriors.

We present an example based on the intuition that losses with respect to a reference point

loom larger than equivalent gains.15 Building on the intuition that the reference point is

determined by endogenous expectations (Kőszegi and Rabin, 2006), we assume that the

receiver forms a reference point based on the distribution of posteriors in the experiment.

For simplicity, we focus on a simple model where A = {0, 1} and Ω ⊆ R. The receiver’s

utility in each state is reference-dependent, that is,

u(a, ω,G) =

 aω + χ(aω − r(Gπ)) if aω ≥ r(G),

aω + χλ(aω − r(Gπ)) if aω < r(G),

where χ > 0 captures how much the receiver values the gain-loss component of utility, λ > 1

is the loss aversion coefficient, and r : ∆(∆(Ω)) → R represents the reference point, defined

as the ex-ante expected value of taking action a = 1:

r(G) =

∫
∆(Ω)

m(µ) dG(µ).

We can capture this feature of the receiver in our framework by assuming that the

receiver evaluates actions according to the ex ante expected value of u:

v(G,µ, a) =

∫
Ω
u(a, ω,G) dµ(ω).

As m is affine, r(G) is not affected by pooling posteriors that induce the same action:

as v is affine in the posterior and therefore satisfies PC for all G ∈ G, Corollary 2 ensures v

satisfies CPP.

Notice that a similar argument would hold if we replaced m with any affine function ϕ

of the posterior. Although ϕ being affine is sufficient to ensure that v satisfies CPP, it is

not a necessary condition. As an example, consider ϕ(µ) = max{0,m(µ)}:

r(G) =

∫
∆(Ω)

max{0,m(µ)} dG(µ).

15We refer the reader to O’Donoghue and Sprenger (2018) for an overview of the literature about
reference-dependent preferences.
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As a = 1 maximizes v if and only if m(µ) ≥ 0 and the maximum function is piecewise

linear, r(G) is unaffected by pooling posteriors that are both nonnegative or nonpositive.

Shortlisting Actions Following on the intuition that a decision-maker may be over-

whelmed by the amount of choices at her disposal (see, for instance, Lleras et al. 2017), we

consider the case of a receiver who can pay limited attention to the menu of actions she

has available. When learning of the distribution of posteriors generated by the experiments,

the receiver “shortlists” the actions that grant the top-k ex ante expected payoffs, where

k < |A|. Then, when the message from the experiments is realized, she picks the shortlisted

action granting her the highest expected payoff given the message she observed.

For the sake of simplicity, assume that the receiver’s expected utility u(a, µ) is bounded

below by 0. We can then capture this setup by assuming that the receiver’s value function

takes the value v(G,µ, a) = u(a, µ) if a is on the shortlist κ(G) and v(G,µ, a) = 0 otherwise.

It is easy to check that v satisfies CPP. Suppose a maximizes v(G,µ, ·) and v(G,µ′, ·),
so that a ∈ κ(G). As ex ante payoffs are linear in the posterior, by Corollary 2, we have

κ(G) = κ(HG). This immediately implies that a maximizes v(HG, µ, ·) and v(HG, µ′, ·), and
that v satisfies CPP.

Non-Bayesian Expected Utility (continued) The non-Bayesian framework of the

previous section can be extended to accommodate distortion functions Dµ0,θ that depend

on the prior: it is enough to notice that the distribution over Bayesian posteriors generated

by any experiment π must be such that the average posterior coincides with the prior µ0.

We can then capture the setup of de Clippel and Zhang (2022) by setting

v(G,µ, a, θ) = v(µ0, µ, a, θ) =
∑
ω∈Ω

Dµ0,θ(µ(ω))u(ω, a, θ).

Suppose now that Dµ0,θ be is such that for all λ ∈ [0, 1], θ ∈ Θ, posteriors µ, µ′, and prior

µ0, there exists γ ∈ [0, 1] such that:

Dµ0,θ(λµ+ (1− λ)µ′) = γDµ0,θ(µ) + (1− γ)Dµ0,θ(µ
′).

By a similar argument to that in the previous section, this entails that for all a ∈ A:

v(µ0, λµ+ (1− λ)µ′, a, θ) = γv(µ0, µ, a) + (1− γ)v(µ0, µ
′, a, θ).

As γ ∈ [0, 1], v(µ0, µ, a, θ) ≥ v(µ0, µ, a
′, θ) and v(µ0, µ

′, a, θ) ≥ v(µ0, µ
′, a′, θ), it follows that

v(µ0, ·, ·, ·) satisfies SPC for all µ0 ∈ B. As the function ϕ(µ, ·, ·) = µ is posterior-linear

19



for all posteriors in B, Corollary 2 then implies that the recommendation principle holds.

Notice that the discussion can also be easily extended to cases in which the receiver’s value

function depends on G both through the distortion function and directly, as would be the

case if we reconsidered the two previous examples with a non-Bayesian receiver.

Moral Wiggle Room The concept of moral wiggle room (Dana et al., 2007) has been

proposed to explain why subjects exhibit less prosocial behavior in experiments in which

they have “an excuse” to do so. For instance, a CEO may prioritize shareholders’ interests

when the impact of her actions on their welfare is clear, but act more self-interestedly when

it is uncertain whether her decisions serve her own interests or those of the shareholders.

To capture this intuition with a simple example, assume that a CEO can either invest

in a project or not (A = {0, 1}), and the value of the project for shareholders is positive

or negative (Ω = {−1, 1}). The CEO gets a payoff of β < 1 from investing (regardless

of the quality of the project), plus a payoff m(µ) from the expected value of the project.

Before investing, the CEO can privately observe a report on the quality of the project,

modeled as an experiment that generates a posterior distribution G. The CEO incurs an

image cost ψ ∈ (β, 1) from investing in the project if she has no “excuse” she can use to

justify investing, i.e., if there exists no posterior in the support of G such that m(µ) ≥ 0.

We can interpret ψ as a cost associated with shame, social image, or loss of reputation that

the CEO incurs when she cannot justify her decision to invest by claiming that she received

a message that the project was not profitable.

We can capture this setup using the following function v:

v(G,µ, a) = a(β +m(µ)− ψ(G)),

where ψ(G) = ψ if m(µ) < 0 for all µ supported by G and ψ(G) = 0 otherwise.

This value function violates CPP even if the set of posteriors that support each action

as optimal is convex for every distribution of posteriors G. Consider the distribution of

posteriors G assigning probability 1
2 to posterior µ = 0, β

4ψ to posterior µ′ = 1−β
2 , and

1
2 −

β
4ψ to posterior µ′′ = 1−β+ψ

2 . As β < 1, the action a = 0 is optimal for the receiver when

the posterior is µ = 0, while the posterior µ′ = 1−β
2 is high enough to make the receiver

indifferent between both actions when she faces no image cost ψ, but not so high that a = 1

is still optimal when image costs are present. The posterior µ′′ = 1−β+ψ
2 is instead high

enough to ensure that a = 1 is optimal even when there are image costs.

Notice that m(µ̄) < 0, where µ̄ = β
4ψµ

′ + (12 − β
4ψ )µ

′′. Therefore, pooling the posteriors

µ′ and µ′′ means that the CEO loses any excuse to justify investing in the project, as all

posteriors in the support of the new distribution HG imply a negative expected value of

20



the project. It follows that ψ(HG) = ψ: given that m(µ̄) is not high enough to ensure that

a = 1 is optimal when image costs are present, v does not satisfy CPP.

5. Discussion and Generalizations

Unique Optimal Action Plan In Section 4, we assumed that, for each posterior, only

one action plan maximizes v in order to simplify the discussion. A similar result to Theorem 3

also obtains in setups in which this assumption does not hold. The main difficulty in this case

is that we need a way to keep track of the action plan the receiver could potentially choose

whenever more than one is optimal at some posterior µ ∈ B. We do so through a function

λG(µ) ∈ ∆(AΘ) that assigns positive probability only to action plans that are optimal at

posterior µ and distribution G. In other words, this function tells us, for each posterior,

what distribution over action plans the receiver would choose. Despite the more complex

notation, the argument and characterization are very similar to the ones of Theorem 3

and just require adapting the definitions of the average posterior µ̄Gā inducing ā and of

the distribution over posteriors HG generated by the direct recommendation experiment

accordingly. Loosely speaking, the generalized characterization requires CPP to hold for

every possible function λG of the kind described above. We discuss such generalization in

full detail in Appendix B, in the appendix.

Type-dependent Priors In the Online Appendix, we further generalize the model

by allowing the receiver’s priors to depend on the receiver’s private type. We show that

a distribution over type-dependent posteriors can be generated by an experiment if and

only if the product between the probability of a posterior and the posterior-prior ratio is

independent of the receiver’s private type. For each distribution in this class, we obtain a

characterization similar to Theorem 3, with a few adjustments that account for the fact

that now every type may have a different prior. If we interpret different types of the same

receiver as different receivers altogether, this same machinery can serve as a starting point

to discuss whether the recommendation principle holds in setups with multiple receivers

who observe the same public message. In the same way, it can help to discuss setups with

multiple senders, as we can interpret the message a receiver observes from a sender as her

“private type” from the perspective of other senders. While extremely interesting, these

applications and extensions fall beyond the scope of the current paper, and we leave them

open for future research.
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Finiteness assumptions In our model, we assume S, A, and Ω are finite to avoid the

more cumbersome measure-theoretic notation and the addition of technical assumptions.

Our most general result (Theorem 3) does not rely in any significant way on the finiteness

assumption, which could be relaxed by assuming continuity of v in a and compactness of A

to ensure there is at least one optimal action for each posterior, or by slightly adapting the

definition of function λG (in the Appendix) to ensure λG(µ)[ā] = 0 for all ā ∈ AΘ whenever

there is no ā ∈ AΘ such that for all θ ∈ Θ and a′ ∈ A we have v(G,µ, ā(θ), θ) ≥ v(G,µ, a′, θ).

Theorem 1 relies instead on the finiteness of S to simplify the presentation of CP, making

the meaning of the condition clearer by presenting it in terms of a convex combination of two

posteriors. The proof of Theorem 1 would still go through without any finiteness assumption

by replacing Lemma 1 with a non-finite version of PC by requiring that, whenever an action

plan is optimal for a (possibly infinite) set of posteriors, then it is still optimal for any

(possibly infinite) linear combination of posteriors in that set.

Corollary 2 requires finiteness of A to ensure that for all posteriors µ and distribution G,

there exists an action plan ā ∈ AΘ such that v(G,µ, ā(θ), θ) ≥ v(G,µ, a′, θ) for all a′ ∈ A.

In this case, the finiteness of A can again be replaced with the milder assumption that v is

continuous in a and that A is compact.
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A. Mathematical Appendix

Proof of Theorem 1. Suppose v satisfies PC and that π implements the distribution dπ :

Ω × Θ → ∆(A). As π implements dπ, there exists απ : S × Θ → A that maximizes v for

each message s and type θ of the receiver, and that is such that for all s ∈ S and θ ∈ Θ:

d(ω, θ)[a] =
∑
s∈S

1{απ(s,θ)=a}(s)σ(s|ω)

For any ā : Θ → A, let η(ā) denote the set of all messages s that induce the receiver to

play according to ā : Θ → A when her strategy is ā. That is:

η(ā) = {s ∈ S : απ(s) = ā}

Notice that, for all θ ∈ Θ, the posterior after observing type-dependent recommendation

ā such that η(ā) ̸= ∅ is the average posterior after observing each of the messages s that

would induce the receiver to play ā:16

µπ
∗
(ā) =

∑
s∈η(ā) σ(s)µ

π(s)∑
s∈η(ā) σ(s)

This implies the posterior after observing type-dependent action recommendation ā is a

convex combination of the posteriors the receiver would have after receiving a message

s ∈ η(ā). Consider now experiment π∗ = (AΘ, σπ
∗
), where for all ω ∈ Ω and ā ∈ AΘ:

σπ
∗
(ā|ω) =

∑
s∈η(ā)

σ(s|ω)

Notice that, as π induces a Bayes-feasible posterior distribution, so does π∗:

µ0 =
∑
s∈S

σ(s)µπ(s) =
∑
ā∈AΘ

∑
s∈η(ā)

σ(s)µπ(s) =
∑
ā∈AΘ

σπ
∗
(ā)µπ

∗
(ā)

Let απ
∗
: AΘ × Θ → A be such that απ

∗
(ā, θ) = ā(θ) for all θ ∈ Θ. Notice απ

∗
generates

the same distribution over actions as απ given communication strategy σπ
∗
:

d∗(ω, θ)[a] =
∑
ā∈AΘ

1{απ∗ (ā,θ)=a}(ā)σ
π∗
(ā|ω)

16Note that µπ∗
and µπ are vectors indexed by ω.
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=
∑
ā∈AΘ

∑
s∈η(ā)

1{απ∗ (ā,θ)=a}(ā)σ(s|ω)

=
∑
ā∈AΘ

∑
s∈η(ā)

1{απ(s,θ)=a}(s)σ(s|ω)

=
∑

s∈∪āη(ā)

1{απ(s,θ)=a}(s)σ(s|ω)

=
∑

s∈∪āη(ā)

1{απ(s,θ)=a}(s)σ(s|ω) +
∑

s ̸∈∪āη(ā)

1{απ(s,θ)=a}(s)σ(s|ω)

=
∑
s∈S

1{απ(s,θ)=a}(s)σ(s|ω)

Where the third equality follows from the fact that for all s ∈ η(ā) we have that απ(s, ·) =
ā = απ

∗
(ā, ·) and the fifth equality follows from the fact that if s ̸∈ η(ā) for all ā ∈ AΘ,

then 1{απ(s,θ)=a}(s) = 0.

It remains to prove απ
∗
satisfies the obedience constraint, i.e. that for all θ ∈ Θ, ā ∈

supp(σπ
∗
) and a′ ∈ A:

v(µπ
∗
(ā), ā(θ), θ) ≥ v(µπ

∗
(ā), a′, θ)

Notice that for any ā ∈ supp(σπ
∗
), s ∈ η(ā) entails that for all θ ∈ Θ and a′ ∈ A:

v(µπ(s), ā(θ), θ) ≥ v(µπ(s), a′, θ)

We then invoke the following result, proven separately:

Lemma 1. PC holds if and only if for all {µk, λk}Kk=1 with
∑

k≤K λk = 1, K <∞, ā ∈ AΘ

and a′ ∈ A:

v(µk, ā(θ), θ) ≥ v(µk, a
′, θ) for all k ≤ K and θ ∈ Θ =⇒

v(
∑
k≤K

λkµk, ā(θ), θ) ≥ v(
∑
k≤K

λkµk, a
′, θ) for all θ ∈ Θ

It follows by PC, Lemma 1, and |S| <∞ that for any θ ∈ Θ and a′ ∈ A:

v(µπ
∗
(ā), ā(θ), θ) = v(

∑
s∈η(ā)

σ(s)µπ(s), ā(θ), θ) ≥ v(
∑
s∈η(ā)

σ(s)µπ(s), a′, θ) = v(µπ
∗
(ā), a′, θ)

Concluding this direction of the proof.

As for the converse, suppose the recommendation principle holds. Take any λ ∈ [0, 1], ā ∈
AΘ and posteriors µ, µ′ ∈ B such that v(µ, ā(θ), θ) ≥ v(µ, a′, θ), v(µ′, ā(θ), θ) ≥ v(µ′, a′, θ)

for all θ ∈ Θ and a′ ∈ A.
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Consider prior µ0 = λµ+ (1− λ)µ′, and experiment π = (S, σ) where S = {s, s′} and σ

is such that σ(s|ω) = λ µ[ω]
µ0[ω]

and σ(s′|ω) = (1−λ) µ
′[ω]

µ0[ω]
. Notice µ0 ∈ B and µ, µ′ ∈ B and B

is convex. Moreover, by construction, µπ(s) = µ, µπ(s′) = µ′, σ(s) = λ and σ(s′) = 1− λ.

Consider now απ such that απ(s, θ) = απ(s′, θ) = ā(θ) for all θ ∈ Θ. Notice απ maximizes

v for each type θ when the posterior is either µ or µ′ by construction and by the premise of

PC.

Therefore, απ implements dπ such that for all ω ∈ Ω, θ ∈ Θ and a ∈ A:

dπ(ω, θ)[a] = σ(s|ω)1{απ(s,θ)=a} + σ(s′|ω)1{απ(s′,θ)=a}

As the recommendation principle holds for any prior distribution (including µπ0 ), d
π can

also be implemented by the direct recommendation experiment π∗ = (AΘ, σπ
∗
) and απ

∗
:

AΘ ×Θ → A such that απ
∗
(ā, ·) = ā and dπ = d∗. Therefore, for all ω ∈ Ω and θ ∈ Θ:

dπ(ω, θ)[a] = d∗(ω, θ)[a]

Substituting, this entails that for all ω ∈ Ω and θ ∈ Θ:

σ(s|ω)1{απ(s,θ)=a} + σ(s′|ω)1{απ(s′,θ)=a} =
∑
ā∈AΘ

1{απ∗ (ā,θ)=a}σ
π∗
(ā|ω)

As ā is the unique action plan in AΘ satisfying the equality for all θ ∈ Θ, it follows that for

all ω ∈ Ω:

σπ
∗
(ā|ω) = σ(s|ω) + σ(s′|ω)

As απ
∗
maximizes v for each posterior and type of the receiver, we have for all θ ∈ Θ:

v(µπ
∗
(ā), ā(θ), θ) ≥ v(µπ

∗
(ā), a′, θ)

Notice moreover that:

µπ
∗
(ā) =

∑
s′′∈η(ā)

σ(s′′)µπ(s′′) = σ(s)µπ(s) + σ(s′)µπ(s′) = λµ+ (1− λ)µ′

Therefore, for all θ ∈ Θ:

v(λµ+ (1− λ)µ′, ā(θ), θ) ≥ v(λµ+ (1− λ)µ′, a′, θ)

This concludes the proof.

Proof of Lemma 1. The if direction is trivial to prove. The proof of the only if direction
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relies on a simple induction argument. The claim is clearly true for K = 1. Let ā ∈ AΘ and

suppose v(µk, a(θ), θ) ≥ v(µk, a
′, θ) for all k ≤ N + 1 and θ ∈ Θ, and that the implication

holds for K = N . Pick an arbitrary collection {λk}N+1
k=1 . Notice that as the implication holds

for K = N , we have v(
∑

k≤K λ
′
kµk, ā(θ), θ) ≥ v(

∑
k≤K λ

′
kµk, a

′, θ), where λ′k = λk
1−λN+1

.

Then, by PC:

v(µN+1, ā(θ), θ) ≥ v(µN+1, a
′, θ), v(

∑
k≤K

λ′kµk, ā(θ)) ≥ v(
∑
k≤K

λ′kµk, a
′) for all θ ∈ Θ

Implies:

v(
∑
k≤K

λkµk, ā(θ)) ≥ v(
∑
k≤K

λkµk, a
′) for all θ ∈ Θ

As our choice of {λk}N+1
k=1 was arbitrary, this concludes the proof.

Proof of Corollary 1. Suppose v is continuous in the posterior and the intersection of v(·, a, θ)
and v∗ = maxa′ ̸=a v(·, a, θ) is a hyperplane. For each a ∈ A, denote the locus of points of

intersection as B∗
a. We then show that the set of posteriors supporting a as optimal is con-

vex at state θ. Notice B∗
a partitions B/B∗

a in two sets, which we denote as Ba = {µ ∈ B :∑
ω∈Ω bωµ[ω] > c} and B′

a = {µ ∈ B :
∑

ω∈Ω bωµ[ω] < c}. If v(µ, a, θ) ≥ v∗(µ, θ) for all

µ ∈ B, a is optimal over the whole set B, which is convex by assumption. Conversely, if

v(µ, a, θ) ≤ v∗(µ, θ) for all posteriors in B, a is optimal only for posteriors in set B∗
a, which

is convex. As v is continuous in its first argument and both Ba and B′
a are convex (and

thus connected), the last case we need to consider is v(µ, a, θ) > v∗(µ, θ) for all µ ∈ Ba and

v(µ, a, θ) < v∗(µ, θ) for all µ ∈ B′
a (the reasoning is analogous in case v(µ, a, θ) < v∗(µ, θ) for

all µ ∈ Ba and v(µ, a, θ) > v∗(µ, θ) for all µ ∈ B′
a). As Ba∪B∗

a = {µ ∈ B :
∑

ω∈Ω bωµ[ω] ≥ c}
is convex and our initial choice of a was arbitrary, it follows the set of posteriors for which

action a is optimal is convex for all θ ∈ Θ and, therefore, that SPC holds. Applying Theo-

rem 1 concludes the proof.

Proof of Theorem 2. Suppose PC holds and that there exists a PBE e in which the sender

picks a communication strategy σ. Denote as µe(s) the receiver’s posterior when she observes

realization s, as ae(s, θ) the action she takes in e, and as η(ā) ⊆ S for ā ∈ AΘ the set of all

messages inducing the receiver to play according to the type-dependent recommendation ā.

Then, we can construct a PBE e′ in which the sender chooses the direct recommendation

strategy σπ
∗
(ā) =

∑
s∈η(ā) σ(ā) and the receiver obeys the action that ā recommends for

her type. To do so, it is enough to exploit the freedom PBE leaves in the choice of off-path

beliefs: for any off-path realization the receiver could observe, we will assume her beliefs in
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e′ are the same as those she holds in e. That is, for all s ̸∈ supp(σπ
∗
) and θ ∈ Θ:

µe′(s) = µe(s)

By PC and the same argument as Theorem 1, the receiver will obey any action recom-

mendation on path. Moreover, as off-path beliefs are the same in both e and e′, off-path

behavior for the receiver can be the same as in equilibrium e, i.e., for all θ:

απ
∗
(s, θ) = απ(s, θ)

As off-path receiver behavior is the same in both e and e′, any deviation σ′ from σπ
∗
can

yield the sender a payoff no higher than the one granted by σ. As σ and σπ
∗
implement

the same action distribution, it follows that σ′ is not a profitable deviation from e for the

sender. Therefore, e′ is a PBE.

This logic can be extended to sequential equilibrium. That is, if e is a sequential equi-

librium, e′ is a sequential equilibrium as well. Indeed, if e is a sequential equilibrium, there

exists a completely mixed sequence σn → σ such that the corresponding posteriors µn con-

verge to µe. Consider the same PBE e′ as above and a sequence σπ
∗n[s|ω] that puts weight

1
n on the sequence σn[s|ω] supporting e and weight (1− 1

n) on:

• 0 if message s is off-path in e′

•
∑

s′∈η(ā) σ
n[s′|ω] if message s is on path in e′

Formally:

σπ
∗n[s|ω] = 1

n
σn[s|ω] + (1− 1

n
)
∑
ā∈AΘ

1{s=ā}σ
π∗
[ā|ω]

receiver’s posteriors then are:

µne′(ω|s) = µ0(ω)
1
nσ

n[s|ω] + (1− 1
n)
∑

ā∈AΘ 1{s=ā}σ
π∗
[ā|ω]

1
nσ

n[s] + (1− 1
n)
∑

ā∈AΘ 1{s=ā}σπ
∗ [ā]

Off-path, the receiver observes s ̸∈ supp(σπ
∗
). Therefore, her beliefs are:

µne′(ω|s) = µ0(ω)
1
nσ

n[s|ω]
1
nσ

n[s]

As e is a sequential equilibrium, µ0(ω)
σn[s|ω]
σn[s]

converges to µe(ω|s, θ) = µe′(ω|s, θ).
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On path, the receiver observes instead ā ∈ supp(σπ
∗
) and has beliefs:

µne′(ω|ā) = µ0(ω)
1
nσ

n[ā|ω] + (1− 1
n)σ

π∗
[ā|ω]

1
nσ

n[ā] + (1− 1
n)σ

π∗ [ā]

As ā is on path, the limit of the denominator of the equality above is non-zero. Therefore, the

limit of µne′ is just the ratio of the limit of the numerator and the limit of the denominator,

and thus:

µne′(ω|ā) → µ0(ω)
σπ

∗
[ā|ω]

σπ∗ [ā]
= µe′(ω|ā)

Proof of Theorem 3. Suppose v satisfies CPP and that π implements the distribution dπ :

Ω × Θ → ∆(A). Denote as G the distribution over posteriors induced by π, and recall it

averages to the prior µ0 due to Bayes feasibility.

As π implements dπ, there exists απ : S × Θ → A that maximizes v for each message

s and type θ of the receiver when the distribution of posteriors is G, and that is such that

for all s ∈ S and θ ∈ Θ:

d(ω, θ)[a] =
∑
s∈S

1{απ(s,θ)=a}σ(s|ω)

For any ā : Θ → A, let η(ā) = {s ∈ S : απ(s) = ā} denote the set of all messages s that

induce the receiver to play according to ā. Consider experiment π∗ = (AΘ, σπ
∗
), where for

all ω ∈ Ω and ā ∈ AΘ:

σπ
∗
(ā|ω) =

∑
s∈η(ā)

σ(s|ω)

For all θ ∈ Θ and ā such that η(ā) ̸= ∅ we have:

µπ
∗
(ā) =

∑
s∈η(ā) σ(s)µ

π(s)∑
s∈η(ā) σ(s)

Moreover, π∗ induces distribution over posteriors HG such that:

HG(µ) =
∑
ā∈Aθ

1{µπ∗ (ā)=µ}σ
π∗
(ā)

=
∑
ā∈Aθ

1{µπ∗ (ā)=µ}

 ∑
s∈η(ā)

σ(s)


=
∑
ā∈Aθ

1{µπ∗ (ā)=µ}G(B
G
ā )
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=
∑
ā∈Aθ

1{µ̄Gā =µ}G(B
G
ā )

Where the last step follows from the fact that, for all ā such that η(ā) ̸= ∅:

µπ
∗
(ā) =

∑
s∈η(ā) σ(s)µ

π(s)∑
s∈η(ā) σ(s)

=

∑
µ∈supp(G)

(∑
s∈η(ā) 1{µπ(s)=µ}σ(s)µ

)
∑

µ∈supp(G)

(∑
s∈η(ā) 1{µπ(s)=µ}σ(s)

)
=

∑
µ∈BG

ā
G(µ)µ∑

µ∈BG
ā
G(µ)

=

∑
µ∈BG

ā
G(µ)µ

G(BG
ā )

= µ̄Gā

Where the third equality follows from the fact that s ∈ η(ā) if and only if µπ(s) = µ for

µ ∈ BG
ā . As α

π maximizes v for all types θ, we have that for all θ ∈ Θ, s ∈ η(ā), and a′ ∈ A:

v(G,µπ(s), απ(s, θ), θ) ≥ v(G,µπ(s), a′, θ)

So that µπ(s) ∈ BG
ā for all s ∈ η(ā). Moreover, as Bā ⊆ supp(G), for all µ ∈ Bā there exists

s ∈ S such that µπ(s) = µ. By CPP and µ̄Gā = µπ
∗
(ā, ·) for all ā ∈ AΘ, this implies that for

all θ ∈ Θ and a′ ∈ A:

v(HG, µπ
∗
(ā), ā(θ), θ) = v(HG, µπ

∗
(ā), απ(s, θ), θ) ≥ v(HG, µπ

∗
(ā), a′, θ)

Consider απ
∗
: AΘ × Θ → A is such that απ

∗
(ā, θ) = ā(θ) and for all θ ∈ Θ. As απ

∗

still induces action distribution dπ given communication strategy σπ
∗
and the obedience

constraint is satisfied, we conclude the proof.

As for the converse statement, suppose the recommendation principle holds. Take any G

with supp(G) ⊆ B and ā ∈ AΘ. As the recommendation principle must hold for all priors in

B, let us consider prior µ0 =
∑

µ∈supp(G) µG(µ). As B is convex and supp(G) ⊆ B, µ0 ∈ B.

Consider now experiment π = (supp(G), σ) such that for all ω ∈ Ω with µ0[ω] > 0:

σ(µ|ω) = µ[ω]

µ0[ω]
G(µ)

While we let σ(µ|ω) be any arbitrary lottery over ∆(S) whenever µ0[ω] = 0.
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It is immediate to notice σ(·|ω) ∈ ∆(S) whenever µo[ω] > 0 as:

∑
µ∈supp(G)

σ(µ|ω) = 1

µ0[ω]

 ∑
µ∈supp(G)

G(µ)µ[ω]

 = 1

Where the first equality follows from the fact that the prior equals the average posterior.

Moreover, applying Bayes’ rule yields that µπ(µ′) = µ if and only if µ = µ′. This implies π

induces posterior distribution G as:

σ(µ) =
∑
ω∈Ω

σ(µ|ω)µ0[ω] = G(µ)

Denote now as η(ā) the set of all messages inducing action plan ā, i.e.:

η(ā) = {s ∈ S : µπ(s) ∈ BG
ā }

As the recommendation principle holds, we can implement the action distribution dπ induced

by π and απ via a direct recommendation experiment π∗. Notice that, by an argument

similar to the one in the proof of Theorem 3, π∗ pools together all messages in S that

induce the same action:

σπ
∗
(ā|ω) =

∑
s∈η(ā)

σ(s|ω)

This implies:

σπ
∗
(ā) =

∑
ω∈Ω

∑
s∈η(ā)

σ(s|ω) =
∑
s∈η(ā)

σ(s) = G(BG
ā )

Therefore, π∗ induces posterior distribution:

HG(µ) =
∑
ā∈Aθ

1{µπ∗ (ā)=µ}σ
π∗
(ā)

=
∑
ā∈Aθ

1{µπ∗ (ā)=µ}G(B
G
ā )

=
∑
ā∈Aθ

1{µ̄Gā =µ}G(B
G
ā )

Where the last inequality follows from the fact the posterior the receiver holds after observ-
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ing message ā is, for all ω ∈ Ω and θ ∈ Θ:

µπ
∗
(ā)[ω] =

σπ
∗
(ā|ω)

σπ∗(ā)
µ0[ω]

=

∑
µ∈supp(G)

(∑
s∈S 1{µπ(s)=µ}σ(s|ω)

)
G(BG

ā )
µ0[ω]

=

∑
µ∈supp(G)

(∑
s′∈S′ 1{µπ′ (s′)=µ}σ(s

′|ω)µ0[ω]
)

G(BG
ā )

=

∑
µ∈supp(G)

(∑
s′∈S′ 1{µπ′ (s′)=µ}σ(s)µ[ω]

)
G(BG

ā )

=

∑
µ∈BG

ā
G(µ)µ[ω]

G(BG
ā )

= µ̄Gā [ω]

Where the fourth equality follows again from the fact σ(s′|ω)µ0[ω] = σ(s′)µ[ω] for s′ such

that µπ
′
(s) = µ and that G(µ) =

∑
s′∈S′ 1{µπ′ (s′)=µ}σ(s). As α

π∗
such that απ

∗
(ā, ·) = ā,

we then have that for all a′ ∈ A and θ ∈ Θ:

v(HG, µ̄Gā , ā(θ), θ) = v(HG, µπ
∗
(ā), ā(θ), θ) ≥ v(HG, µπ

∗
(ā), a′, θ) = v(HG, µ̄Gā , a

′, θ)

This concludes the proof.

Proof of Corollary 2. By Theorem 3, we need only to check v is CPP. Notice that for all

a ∈ A, θ ∈ Θ, and ā ∈ AΘ, we have by assumption that:

ϕG(a, θ) =
∑

µ∈∆(Ω)

G(µ)ϕ(µ, a, θ)

=
∑
ā∈AΘ

∑
µ∈BG

ā

G(µ)ϕ(µ, a, θ)

Where the second equality follows from the fact that, as A is finite, for each µ and θ there

exists ā maximizing v.17 Using the fact ϕ is posterior-linear over BG
ā for all ā, we can then

rewrite:

ϕG(a, θ) =
∑
ā∈AΘ

∑
µ∈BG

ā

G(µ)ϕ(µ, a, θ)

17Notice that for all θ ∈ Θ and µ ∈ B, finiteness of A implies there exists ā(θ) such that
v(G,µ, ā(θ), θ) ≥ v(G,µ, a′, θ) for all a′ ∈ A.
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=
∑
ā∈AΘ

G(BG
ā )ϕ(µ̄

G
ā (θ), a, θ)

=
∑
ā∈AΘ

 ∑
µ∈∆(Ω)

1{µ=µ̄Gā }G(B
G
ā )ϕ(µ, a, θ)


=

∑
µ∈∆(Ω)

∑
ā∈AΘ

1{µ=µ̄Gā }G(B
G
ā )

ϕ(µ, a, θ)

=
∑

µ∈∆(Ω)

HG(µ)ϕ(µ, a, θ)

= ϕH
G
(a, θ)

Where the second and third equality follow from the definition of µ̄Gā . Therefore, for all ā,

a′, and θ:

v(HG, µGā , ā(θ), θ) = v(G,µGā , ā(θ), θ) ≥ v(G,µGā , a
′, θ) = v(HG, µGā , a

′, θ)

Where the inequality follows from the fact v is PC. This concludes the proof.

B. Generalization of Section 4

In this section, we generalize the results of Section 4 by dropping the assumption that

for each G ∈ ∆(Ω) and µ ∈ supp(G) ⊆ B there exists a unique action plan ā such that

v(G,µ, ā(θ), θ) ≥ v(G,µ, a′, θ) for all θ ∈ Θ and a′ ∈ A.

For any G and ā ∈ AΘ, let BG
ā be the set of posterior for which action plan ā is optimal

for the receiver:

BG
ā = {µ ∈ B : ā(θ) ∈ argmax

a′∈A
v(G,µ, a′, θ) for all θ ∈ Θ}

We then denote as λG : supp(G) → ∆(Aθ) any function such that ā ∈ supp(λG(µ)) implies

µ ∈ Bā. In other words, λG is any function mapping the support of G to a probability

distribution over action plans such that any ā ∈ supp(λG(µ)) maximizes v at µ. In some

sense, we can interpret λG(µ) as telling us how the total probability G(µ) of posterior µ

should be “partitioned” among all action plans that maximize v at µ. Note that if the

receiver’s preferences are strict at each µ, λG(µ)[ā] = 1 for exactly one ā ∈ AΘ.
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The average posterior inducing ā (according to λG) is defined as:

µ̄λGā =
∑

µ∈supp(G)

(
λG(µ)[ā]G(µ)∑

µ∈supp(G) λG(µ)[ā]G(µ)

)
µ

If we interpret λG(µ)[ā]G(µ) as the probability ā is played and that the posterior is µ, we

can interpret µ̄λGā as the posterior the receiver would form if she observed recommendation

ā in the direct mechanism.18

The distribution HλG induced by the direct mechanism is:

HλG(µ) =
∑
ā∈AΘ

1{µ=µ̄′λGā }

 ∑
µ′∈supp(G)

λG(µ
′)[ā]G(µ′)


Where

∑
µ′∈supp(G) λG(µ

′)[ā]G(µ′) is the total probability ā is played under posterior dis-

tribution G, and we sum over all possible ā action plans that lead to the same average

posterior.

We then say a function v satisfies convex posterior pooling (CPP) whenever for all G ∈ G,
and ā, a′ ∈ A, θ and λG:

v(HλG , µ̄λGā , ā(θ), θ) ≥ v(HλG , µ̄λGā , a′, θ)

Theorem 4. Suppose the receiver’s optimal action depends on her posterior, her payoff

type, and the posterior distributions generated by the experiment. Then, the recommendation

principle holds if and only if v satisfies CPP.

We can also generalize the argument for Corollary 2. Denote as ϕ = {ϕk}k∈K any

(possibly infinite) collection of functions with ϕ : B × A × Θ → R. We say ϕ is posterior-

linear over set B̃ ⊆ ∆(Ω) whenever for all µ, µ′ ∈ B̃ and λ ∈ [0, 1]:

λϕ(µ, ·, ·) + (1− λ)ϕ(µ′, ·, ·) = ϕ(λµ+ (1− λ)µ′, ·, ·)

Denoting
∑

µ∈∆(Ω)G(µ)ϕ(µ, a, θ) as ϕ
G(a, θ), we have:

Corollary 3. Suppose that v(G, ·, ·, ·) is PC for all G ∈ G and that there exists a collection

of functions ϕ such that for all µ ∈ B, a ∈ A, and θ ∈ Θ:

v(G,µ, a, θ) = v̂(ϕG(a, θ), µ, a, θ)

18Notice in this case we can interpret
∑

µ∈supp(G) λG(µ)[ā]G(µ) as the total probability ā is played
under posterior distribution G.
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If ϕ is posterior-linear over BG
ā for all ā ∈ AΘ, the recommendation principle holds.

B.1. Proofs

Proof of Theorem 4. Suppose v satisfies CPP and that π implements the distribution dπ :

Ω × Θ → ∆(A). Denote as G the distribution over posterior induced by π, and recall it

averages to the prior µ0 due to Bayes feasibility.

As π implements dπ, there exists απ : S × Θ → A that maximizes v for each message

s and type θ of the receiver when the distribution of posteriors is G, and that is such that

for all s ∈ S and θ ∈ Θ:

d(ω, θ)[a] =
∑
s∈S

1{απ(s,θ)=a}(s)σ(s|ω)

For any ā : Θ → A, let η(ā) denote the set of all messages s that induce the receiver

to play according to ā. Let η(ā) = {s ∈ S : απ(s, ·) = ā} and consider now experiment

π∗ = (AΘ, σπ
∗
), where for all ω ∈ Ω and ā ∈ AΘ:

σπ
∗
(ā|ω) =

∑
s∈η(ā)

σ(s|ω)

Notice that for all θ ∈ Θ and ā such that η(ā) ̸= ∅:

µπ
∗
(ā) =

∑
s∈η(ā) σ(s)µ

π(s)∑
s∈η(ā) σ(s)

Moreover, π∗ induces distribution over posteriors HλG such that:

HλG(µ) =
∑
ā∈Aθ

1{µπ∗ (ā)=µ}σ
π∗
(ā)

=
∑
ā∈Aθ

1{µπ∗ (ā)=µ}

 ∑
s∈η(ā)

σ(s)


=
∑
ā∈Aθ

1{µπ∗ (ā)=µ}

 ∑
µ∈supp(G)

λG(µ)[ā]G(µ)


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Where for all µ ∈ supp(G) and ā ∈ AΘ:

λG(µ)[ā] =
1

G(µ)

∑
s∈η(ā)

1{µπ(s)=µ}σ(s)

Notice the last equality above follows then from the fact that:∑
µ∈supp(G)

λG(µ)[ā]G(µ) =
∑

µ∈supp(G)

∑
s∈η(ā)

1{µπ(s)=µ}σ(s) =
∑
s∈η(ā)

σ(s)

We can then rewrite, for all ā such that η(ā) ̸= ∅ and θ ∈ Θ:

µπ
∗
(ā) =

∑
s∈η(ā) σ(s)µ

π(s)∑
s∈η(ā) σ(s)

=

∑
s∈η(ā)

(∑
µ∈supp(G) 1{µπ(s)=µ}σ(s)µ

)
∑

s∈η(ā)

(∑
µ∈supp(G) 1{µπ(s)=µ}σ(s)

)
=

∑
µ∈supp(G)

(∑
s∈η(ā) 1{µπ(s)=µ}σ(s)

)
µ∑

µ∈supp(G)

(∑
s∈η(ā) 1{µπ(s)=µ}σ(s)

)
=

∑
µ∈supp(G) λG(µ)[ā]G(µ)µ∑
µ∈supp(G) λG(µ)[ā]G(µ)

= µ̄λGā

Where the fourth equality follows from the definition of λG. As α
π maximizes v for all types

θ, we have that for all θ ∈ Θ, s ∈ η(ā), and a′ ∈ A:

v(G,µπ(s, θ), απ(s, θ), θ) ≥ v(G,µπ(s, θ), a′, θ)

So that µπ(s) ∈ BG
ā for all s ∈ η(ā). Moreover, as Bā ⊆ supp(G), for all µ ∈ Bā there exists

s ∈ S such that µπ(s) = µ. By CPP this implies that for all θ ∈ Θ and a′ ∈ A:

v(HλG , µπ
∗
(ā), ā(θ), θ) = v(HλG , µπ

∗
(ā), απ(s, θ), θ) ≥ v(HλG , µπ

∗
(ā), a′, θ)

Consider απ
∗
: AΘ × Θ → A is such that απ

∗
(ā, θ) = ā(θ) and for all θ ∈ Θ. As απ

∗

still induces action distribution dπ given communication strategy σπ
∗
and the obedience

constraint is satisfied, we conclude the proof.

As for the converse statement, suppose the recommendation principle holds. Take any

G, λG : supp(G) → ∆(AΘ) and ā ∈ AΘ, and prior µ0 =
∑

µ∈supp(G) µG(µ) ∈ B. Consider
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now experiment π = (supp(G)×AΘ, σ) such that for all (µ, ā) ∈ (supp(G)×AΘ) and ω ∈ Ω

with µ0[ω] > 0:

σ((µ, ā)|ω) = λ(µ)[ā]
µ[ω]G(µ)

µ0[ω]

For ω with µ0[ω] = 0, let instead σ(·|ω) be any distribution over messages ∆(S).

We first show σ(·|ω) ∈ ∆(S) for any ω such that µ0[ω] > 0. Notice that:

∑
µ∈supp(G)

∑
ā∈AΘ

σ((µ, ā)|ω) =
∑

µ∈supp(G)

∑
ā∈AΘ

(
λ(µ)[ā]

µ[ω]G(µ)

µ0[ω]

)

=
∑

µ∈supp(G)

∑
ā∈AΘ

λ(µ)[ā]

 µ[ω]G(µ)

µ0[ω]

=
∑

µ∈supp(G)

µ[ω]G(µ)

µ0[ω]

=
1

µ0[ω]

 ∑
µ∈supp(G)

G(µ)µ[ω]


=

1

µ0[ω]
µ0[ω]

= 1

A similar argument delivers σ(·|ω) ∈ ∆(S) for ω ∈ Ω with µ0[ω] = 0 for all θ ∈ Θ. Moreover,

it is easy to see that µπ((µ, ā)) = µ and that π induces the same distribution over posteriors

as G as for all µ ∈ supp(G):∑
ā∈AΘ

σ(µ, ā) =
∑
ā∈AΘ

λ(µ)[ā]G(µ) = G(µ)

Consider now απ such that απ((µ, ā), θ) = ā(θ). As the recommendation principle holds, we

can implement the action distribution dπ induced by π and απ via a direct recommendation

experiment π∗. By an argument similar to the one in the proof of Theorem 3, π∗ pools

together all messages in S that induce the same action:

σπ
∗
(ā|ω) =

∑
µ∈supp(G)

σ((µ, ā)|ω)

This implies:

σπ
∗
(ā) =

∑
µ∈supp(G)

σ((µ, ā))
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=
∑

µ∈supp(G)

(∑
ω∈Ω

σ((µ, ā)|ω)µ0[ω]

)

=
∑

µ∈supp(G)

λG(µ)[ā]G(µ)

Therefore, π∗ induces the posterior distribution:

HλG(µ) =
∑
ā∈Aθ

1{µπ∗ (ā)=µ}σ
π∗
(ā)

=
∑
ā∈Aθ

1{µπ∗ (ā)=µ}

 ∑
µ′∈supp(G)

λG(µ
′)[ā]G(µ′)


=
∑
ā∈Aθ

1{µ̄λGā =µ}

 ∑
µ′∈supp(G)

λG(µ
′)[ā]G(µ′)


Where the last inequality follows from the fact that the posterior the receiver holds after

observing message ā is, for all ω ∈ Ω:

µπ
∗
(ā)[ω] =

σπ
∗
(ā|ω)

σπ∗(ā)
µ0[ω]

=

∑
µ∈supp(G) σ((µ, ā)|ω)µ0[ω]∑
µ∈supp(G) λG(µ)[ā]G(µ)

=

∑
µ∈supp(G) λG(µ)[ā]G(µ)µ[ω]∑
µ∈supp(G) λG(µ)[ā]G(µ)

= µ̄λGā (θ)[ω]

Where the fourth equality follows again from the fact σ((µ, ā)|ω)µ0[ω] = µ[ω]σ((µ, ā)) =

µ[ω]λG(µ)[ā]G(µ) for s such that µπ(s) = µ and that
∑

s∈s 1{µπ(s)=µ}σ(s) = G(µ) for all

µ ∈ supp(G).

As απ
∗
such that απ

∗
(ā, ·) = ā, we then have that for all a′ ∈ A and θ ∈ Θ:

v(HλG , µ̄λGā (θ), ā(θ), θ) = v(HλG , µπ
∗
(ā), ā(θ), θ) ≥ v(HλG , µπ

∗
(ā), a′, θ) = v(HλG , µ̄λGā (θ), a′, θ)

This concludes the proof.

Proof of Corollary 3. By Theorem 4, we need only to check v is CPP. Notice that for all
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a ∈ A, θ ∈ Θ and λG:

ϕG(a, θ) =
∑

µ∈∆(Ω)

G(µ)ϕ(µ, a, θ)

=
∑

µ∈∆(Ω)

∑
ā∈AΘ

λG(µ)[ā]

G(µ)ϕ(µ, a, θ)

=
∑
ā∈AΘ

∑
µ∈∆(Ω)

λG(µ)[ā]G(µ)ϕ(µ, a, θ)

=
∑
ā∈AΘ

∑
µ∈BG

ā

λG(µ)[ā]G(µ)ϕ(µ, a, θ)

Where the last equality follows from the fact λG(µ)[ā] = 0 for all µ ̸∈ BG
ā . Using the fact ϕ

is posterior-linear over BG
ā for all ā, we can then rewrite:

ϕG(a, θ) =
∑
ā∈AΘ

 ∑
µ∈BG

ā

λG(µ)[ā]G(µ)ϕ(µ, a, θ)


=
∑
ā∈AΘ

 ∑
µ′∈supp(G)

λG(µ
′)[ā]G(µ′)

ϕ(µ̄λGā (θ), a, θ)

=
∑

µ∈∆(Ω)

∑
ā∈AΘ

1{µ=µ̄λGā }

∑
µ′∈supp(G)

λG(µ
′)[ā]G(µ′)

ϕ(µ(θ), a, θ)

=
∑

µ∈∆(Ω)

HλG(µ)ϕ(µ(θ), a, θ)

= ϕH
λG (a, θ)

Where the second equality follows from the fact ϕ is posterior-linear. Therefore, for all ā,

a′, θ, and λG:

v(HλG , µλGā (θ), ā(θ), θ) = v(G,µλGā (θ), ā(θ), θ) ≥ v(G,µλGā (θ), a′, θ) = v(HλG , µλGā (θ), a′, θ)

Where the inequality follows from the fact v is PC. This concludes the proof.
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