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Introduction

Land varies widely in its productivity and amenity value.  It is difficult for people to live or
produce output in rugged mountains or deep deserts.  Similarly, fertile soil, a moderate climate,
and access to the coast are conducive to settlement and economic activity.  Scholars have long
recognized that differences in land characteristics might impact economic outcomes.   For
example, Smith (1776) stresses the role of access to water transport in facilitating specialization
and industrial development.  Jones (1981) and Diamond (1997) are among many authors who
link the dynamics of long run economic growth to land characteristics.  Another obvious place in
which land quality matters is in interpreting population density, which is in turn a central measure
in the thinking of economists regarding economic growth, population size, agglomeration effects,
and the role of natural resources in affecting economic outcomes.  For many purposes, though
certainly not all, a measure of population size relative to the ability of land to provide support for
those people will be more relevant than a simple calculation of people per unit area.

In this paper we construct a new measure of land quality that can be used for pursuing the
above topics and, as we show, for several other purposes as well.  There are two main
obstacles to such an endeavor.  First, land quality has many dimensions: agricultural suitability,
coastal location, ruggedness, and many aspects of climate all seem potentially relevant, with no
clear a priori basis for assigning weights to them. Second, empirically assessing the effects of
different land characteristics on a location’s outcomes, in terms of population or income,
requires disentangling the effect of land quality from that of country-level institutions that may be
correlated with it, as stressed by Acemoglu, Johnson, and Robinson (2001). While previous
work has explicitly or implicitly measured land quality along a single dimension such as
agricultural production potential (Binswanger and Pingali, 1988), coastal distance (Mellinger,
Sachs, and Gallup, 2000), and potential crop yield (Galor and Ozak, 2016), or has included
climate and land controls in cross-country regressions where population density, income, or
income growth is the dependent variable (e.g. Masters and McMillan, 2001; Burke, Hsiang, and
Miguel, 2015), none has simultaneously addressed both problems.

The measure of land quality that we construct solves both of the problems just mentioned.
Specifically, we estimate weights on land characteristics from a Poisson regression of
population in grid cells on a vector of geographic characteristics and country fixed effects.  We
then use fitted values (suppressing the fixed effects) to form a measure of land quality for each
grid square. The country fixed effects circumvent the bias due to the correlation of country-level
institutions with country-level average geographic characteristics.2

2 Nordhaus (2006) takes an approach similar to that in the current paper, regressing the logs of total
output, output per capita, and population at the level of one degree grid cells on country fixed effects and
a set of geographic covariates. Our paper differs from his in its specification (log-linear vs. Poisson, as
discussed below), population data used, the set of geographic covariates, and most importantly in
interpretation, in focusing on re-scaling population density as a function of geographic characteristics.
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With our measure of land quality in hand, we construct a set of interesting variables at the
country level: average land quality (ALQ), total quality-adjusted land area (QAA), and
quality-adjusted population density (QAPD).  The last is simply total population divided by the
quality adjusted area. Such measures can be used to quantify intuitions about how land quality
adjustments matter. For example, while Canada and the USA have very similar areas, our
measure of quality adjusted area for the USA is 8.8 times as large as that of Canada. As
another example, while Rwanda and the Netherlands have fairly similar values of conventionally
measured population density, with quality adjustment Rwanda remains one of the most densely
populated countries in the world, while density in the Netherlands is close to the world median.
As part of our analysis, we also discuss the extent of mismatch between countries’ current
population and their quality adjusted land areas, and the flows of population that would be
required to equalize this ratio across countries.

Using our new measure, we establish a number of interesting facts linking land quality with
current population and income per capita as well as historical population and income growth.
First, there is a strong and robust positive correlation between countries’ average land quality
and their level of income per capita.  Second, while there is no statistically significant
relationship between income per capita and conventionally defined population density, there is a
strong negative correlation between income per capita and our measure of quality adjusted
density.  While such a relationship would be predicted by a simple macro-demographic model in
which natural resources play a role in production, our estimates suggest that, while resource
congestion is important, it alone is insufficient to explain the extent of the negative correlation.

We then turn to study the historical evolution of these same variables.  We show that the
relationship between land quality and population density was much stronger historically than it is
today. The correlation of income per capita with conventionally defined population density, which
is insignificant today, was significantly positive in the past, while the correlation between quality
adjusted population density and income, which is negative today, was positive in the past.  One
of the drivers of this change is the fact that population growth over the last 200 years has been
much lower in countries with higher levels of average land quality.

Notably these facts are inconsistent with standard theories of economic development, natural
resources, and population growth.  Models going back to Malthus and Ricardo, with more recent
examples being Galor and Weil (2000), Hansen and Prescott (2002), and Lucas (2002),
predict that population in a pre-industrial equilibrium will be proportional to natural resources,
and give no reason to think that the same should not be true of population following
industrialization.

In the final section of the paper, we describe a model that can explain all of the observed facts.
The key driving forces in our model are two additional phenomena that we confirm in the data.
The first is that the takeoff into modern economic growth occurred earliest in countries with high
land quality.  The second is that in countries that experienced later takeoffs into growth, the
extent of population increase over the course of industrialization was larger than in countries
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that took off earlier. The source of this greater population multiplication was the rapid transfer of
health technology from leading to following countries.  In our model, this larger population
multiplier results in a permanently higher ratio of population to natural resources in follower
countries, and to a persistent gap in income per capita, even when there is full convergence of
productive technology.

The rest of this paper is organized as follows. In Section 1, we discuss the data we use as well
as a simple model for estimating geographic impacts. Section 2 presents our basic results in
terms of geographic predictors and fitted values for land quality at the level of grid cells.  This
section also explores the robustness of our results to alteration in the sample of countries used
for estimation and the set of geographic variables.  Section 3 presents our basic findings on
average land quality, quality adjusted area, and quality adjusted population density aggregated
to the level of countries.  This section also examines the relationships between income per
capita, on the one hand, and ALQ, QAPD, and conventionally defined population density, on the
other.  Section 4 looks at the historical relationship between land quality, population density,
growth of income per capita, and growth of population.  Our model for explaining this historical
evolution is presented in Section 5.  Section 6 concludes.

1. Data and Specification

In this section we first discuss the data on geographic characteristics and the spatial distribution
of population that we use, paying particular attention to differing characteristics of available
population datasets.  We then present a simple model of how population is allocated within a
country as a function of geographic characteristics, which we use to motivate our empirical
specifications.

1.1  Geographic and Population Data

To measure land quality, our baseline specification combines geographic characteristics from
Henderson et al. (2018) with agro-climatic data provided by the U.N. Food and Agricultural
Organization's Global Agro Ecological Zones v4 dataset (FAO's GAEZv4), working with3

quarter-degree grid squares (approximately 773 square km at the equator). From Henderson et
al. we use elevation, latitude, ruggedness, an index of malaria transmission, distance to the
coast, and a set of 4 dummies indicating the presence of a coast, a navigable river, a major
lake, and a natural harbor within 25 km of a cell centroid. Next we add a selection of 33
characteristics from GAEZ that provide information on the thermal regime, moisture regime, and

3 Data from Henderson et al. (2018) are slightly updated. The FAO's GAEZ v4 dataset provides spatial
data on more than 180 variables relevant to crop production. These variables are organized into 6 main
themes: Land and water resources, agro-climatic resources, agro-climatic potential yield, suitability and
attainable yield, actual yields and production, and yield and production gaps. The data can be accessed
via the following link: https://gaez.fao.org/
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growing period of each grid square for the time period 1981-2010. Finally, we include suitability4

indices of 11 major crops for the time period 1971-2000 from GAEZ. These 53 variables are5

listed in Table A3 of the Appendix. An alternate extended specification adds 66 indicators
defining classes from 5 climate classifications in GAEZ for the time period 1981-2010.6

These geographic data are available for 164 countries. While other exogenous natural features
are likely useful for human settlement, they are either hard to define, like defendability, or
measured based on highly endogenous search, like mineral deposits.

Our primary population dataset is the European Union’s Global Human Settlements population
layer (GHS-POP), which provides an estimate of population within each 30-arc-second
(approximately 1 square km) grid cell.  These data are produced in two steps. First, an initial
estimate is taken directly from the Gridded Population of the World version 4 (GPWv4). GPWv4
in turn takes population estimates for administrative regions (polygons), typically from censuses
circa 2010, and allocates them to cells assuming a uniform distribution. Its effective spatial
resolution thus depends on what information individual countries provide, with richer countries
typically providing population data for finer regions, down to enumeration units, or even block
level data. Of 12.9 million input polygons worldwide, 10.5 million are in the United States. There
is substantial variation within countries as well, with higher resolution in more densely populated
regions.7

In the second step, GHS-POP reallocates GPWv4 estimates within administrative polygons
based on a companion dataset, GHS-BUILT, that defines built surface based on Landsat

7 A grid cell crossing a polygon boundary is assigned a population density that is the areally-weighted
average of its constituent polygons.

6 The 5 climate classifications included are thermal climates, thermal zones, classification by thermal
climates and thermal zones, multi-cropping class (rain-fed), permafrost classes, and a thermal
classification used in the fallow requirement function.

5 The 11 crops are the largest in terms of world calorie production: banana, cassava, maize, dryland and
wetland rice, soybean, sweet potato, sorghum, wheat, white potato, and yam. The suitability indexes
assume a subsistence-based farming system, rain-fed conditions, and no CO2 fertilization; they can be
found in Theme 4: Suitability and attainable yield of GAEZv4.

4 These 33 variables comprise the majority of continuous variables from Theme 2: Agro-climatic
resources of GAEZv4. We exclude variables that overlap in definition, are linearly dependent, assume
irrigation, indicate beginning dates, are missing data for a significant area of the world, or have a value of
0 for more than 95 percent of observations. The variables that are dropped under these conditions are:
annual temperature amplitude, quarterly P/PET ratios, net primary production with irrigation, beginning
date of the longest component length of growing period, the beginning date of the earliest growing period,
reference evapotranspiration deficit, snow stock at the end of calendar year, soil moisture condition at the
end of the calendar year, and number of days with a maximum temperature of 45 degrees Celsius. We
further exclude the number of consecutive days with average precipitation greater than 45 mm and the
average annual maximum sum of precipitation on such days; these two variables have an exceptionally
low ratio of the range in the early aggregators to the range in the late aggregators.
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30-meter resolution satellite data circa 2015. In the rare cases where no built areas are visible in
a region, it reverts to the GPWv4 estimates.8

GHS-POP’s use of building cover to redistribute people within census units is very likely to
provide more accuracy than GPWv4’s assumption of uniform density within large administrative
units. We however avoid more heavily modelled population datasets such as LandScan (Rose
and Bright, 2014), primarily due to endogeneity concerns. In the Appendix, we compare these
three datasets in greater detail, including what they say about the key relationship between
GDP per capita and quality-adjusted density.

To calculate conventional population density, we follow GHS-POP and divide population by land
area from GPWv4, but we first aggregate both to quarter-degree grid squares to match the
spatial resolution of our geographic characteristics. We limit the analysis to latitudes between 55
South and 75 North due to data availability. GHS-POP registers 40% of our sample grid squares
as having no people. Non-zero values begin at an implausible value of 3 people per billion
square kilometers. These issues of having many zeroes and some grid squares with very low
recorded population densities guide our choice of estimation strategy discussed towards the
end of the following section.

1.2 Estimating Land Quality

We outline a simple model of population allocation within a country that leads directly to our
econometric specification. Production in region (grid cell) i of country c is given by

(1) 𝑌
𝑖,𝑐

 =  (𝐴
𝑖,𝑐 

𝑍
𝑖,𝑐 

𝐵
𝑐
)1−α 𝐿

𝑖,𝑐
α

where is a measure of land productivity, is the land area, and is a country-level𝐴
𝑖, 𝑐

𝑍
𝑖, 𝑐

𝐵
𝑐

measure of productivity due to non-land factors (institutions, technology, etc.). Differences in9

physical and human capital per worker could also be incorporated into . Similarly, allowing for𝐵
𝑐

agglomeration economies would not affect the key results of the model for our purposes.10

10 If we think that agglomeration economies come from density as in the classic Ciccone and Hall (1996)
paper or more modern papers such as Combes et al. (2017) and Henderson, Kriticos and Nigmatulina
(2020), then there should be a multiplicative argument on the right hand side of (1) equal to (Li,c/Zi,c)η. In
this case, equation (7b) is the same except the Xi,c term is multiplied by (1-α)/(1-α-η). Using  1-α=0.25 or
0.33 from below and η=0.04, which is typical in the literature (see Rosenthal and Strange, 2004, or
Combes and Gobillon, 2015), this factor is 1.19 or 1.14. While this affects the interpretation of the
estimated coefficients in (7b), it does not affect the fitted values from this equation that we focus on below.

9 The exponent on the term with land quality and productivity is simply a normalization.  Land quality is not
observed directly, but rather inferred from a regression. Using a different normalization would lead to
different regression coefficients, but would not change the fitted values that we focus on below.

8 More information about the GHS data can be found in Florczyk et al. (2019). GHS-POP is described in
Schiavina et al. (2019) and Freire et al. (2016). GHS-BUILT is described in Corbane et al., (2018 and
2019). GPWv4 is described in CIESIN (2017).
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Although the regions that we use are all quarter-degree squares of latitude and longitude, they
differ in their land areas both because lines of longitude converge away from the equator and
because parts of some grid squares are covered with water.

Total labor in the country is

(2) ,𝐿
𝑐

=  
𝑖=1

𝑁
𝑐

∑ 𝐿
𝑖,𝑐

where Nc is the number of regions in country c. We assume that workers in a region are paid
their average product

(3) 𝑦
𝑖,𝑐

=  
𝐴

𝑖,𝑐
𝑍

𝑖, 𝑐
𝐵

𝑐

𝐿
𝑖,𝑐

( )1−α

and that labor mobility within a country equalizes income among regions

(4) .𝑦
𝑖,𝑐

= 𝑦
𝑐

We can thus solve for the equilibrium distribution of workers using (2)-(4):

(5) .𝐿
𝑖,𝑐

=
𝐴

𝑖,𝑐
𝑍

𝑖, 𝑐

𝑖=1

𝑁
𝑐

∑ 𝐴
𝑖,𝑐

𝑍
𝑖, 𝑐

𝐿
𝑐

While we cannot observe directly, we do observe a set of land characteristics𝐴
𝑖,𝑐

that we assume affect productivity :𝑋 = [𝑋
1
,  𝑋

2
,...] 11

(6) .𝐴
𝑖,𝑐

=  𝑒𝑥𝑝(𝑋
𝑖,𝑐

β)

Previous work (Nordhaus, 2006; Henderson, et al., 2018) estimated the parameters in equation
(6) by taking logs and plugging into equation (5) with a log-additive error term:

11 It is straightforward to allow these characteristics to also affect the amenity value of a location in
addition to productivity.  Specifically, we can modify (4) so that mobility within a country equalizes the
product of income and amenities, rather than just income.
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(7a) .𝑙𝑛(𝐿
𝑖,𝑐

/𝑍
𝑖, 𝑐

) =  𝐶
𝑐
 + 𝑋

𝑖,𝑐
β + ϵ

𝑖,𝑐

where is a country fixed effect and is a stochastic error term.  There are two key problems𝐶
𝑐

ϵ
𝑖,𝑐 

with this log-linear specification, however.

First, 40% of grid squares in our data have zero reported population. A common approach to
this problem is to replace these zeros with a small non-zero value. Unfortunately, parameter12

estimates can be sensitive to the value used for imputation, and are also sensitive to simply
dropping zeros. Second, as seen in Figures A1.A and A1.B, about 50% of grid squares have
density values less than 0.135 people per square kilometer and about 75% have density less
than 12 people per square kilometer. Thus, beyond the problem of zero reported population
densities, the specification in equation (7a) puts a lot of weight on regions with extremely low
population densities. Given the data construction process described above, it is highly unlikely

that the differences between e.g. 3 x and 0.135 people per square kilometer are10−9

well-measured. Even if they were well-measured, conceptually they are of less interest than
what drives regions to have a density of 12 versus 1000 people per square kilometer. According
to the GHS data, 98.5% of the world’s population lives in grid squares with density above 12
people per square kilometer.

For these reasons we estimate a Poisson model. The specific functional form is

(7b) .𝐸 𝐿
𝑖,𝑐

/𝑍
𝑖, 𝑐

|𝐶
𝑐
, 𝑋

𝑖,𝑐( ) = 𝑒𝑥𝑝 𝐶
𝑐
 + 𝑋

𝑖,𝑐
β( )

The Poisson specification is well-suited for outcome measures with many zeros and tiny values.
In addition, Santos Silva and Tenreyro (2006) show that OLS estimates of (7a) are inconsistent
(and NLS inefficient) in the presence of heteroskedasticity, which is likely in our context. Poisson
estimation solves these problems. As shown in Appendix Figure A.2, predicted values of density
from a Poisson specification are remarkably robust to using the two alternative population
datasets noted above, while log-linear predicted values are not. Similarly our basic results on
the relationship between quality adjusted population density and income per capita discussed in
Section 3.3 are again remarkably similar across the three datasets under the Poisson
specification with or without censoring zeros and tiny values, while estimates of the log-linear
specification are wildly different.

12 For example, Henderson, et al. (2018), which examined lights data, assigned to every reported zero
observation the minimum non-zero value in the dataset. In Nordhaus (2006), where output per square
kilometer is the dependent variable, 3,170 of 17,409 grid squares in the regression sample have zero
values for the dependent variable. Norhaus imputes values for 618 of these cells based on neighbors,
and then assigns the remainder a value of one before taking logs.
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The stochastic component of the Poisson model is crucial for addressing the contingent nature
of human settlement. There is a vast literature on multiple equilibria and accidents of history
with agglomeration (e.g. Krugman, 1991; Arthur, 1989; Davis and Weinstein, 2002).  More
recent work has focused on dynamic development subject to stochastic processes that yield
particular, unique equilibria as a way of encapsulating these accidents (Michaels, Rauch,
Redding, 2012; Desmet and Rappaport, 2017). For example, in a model similar to ours but with
a more complex production process, Desmet and Rappaport envision regions as being subject
to initial large productivity/resource shocks and then to a series of accumulating independent
draws over time. These accidents are important to understanding why, for example, the centre
of Kolkata is not 50 kilometers further up or down the Hugli River or on a completely different
river in historical Bengal. In that particular case, an initial arbitrary choice of a British East India
Company employee, Job Charnock, and then a history of other choices and accumulations over
300 years, anchored that location and induced high density.  Our reduced form specification
summarizes the cumulative impact of such a succession of shocks. Since we are assuming a
Poisson specification overall, we effectively assume that these shocks are a series of Poisson
draws.

We estimate the parameter vector in (7b). The country fixed effects control for factors likeβ
technology and national population relative to national land area. Identification of effects of land
quality comes solely from within-country variation. Under this specification, the estimated
country fixed effect is algebraically

(8) .𝐶
^

𝑐 
= 𝑙𝑛

𝑖∈𝑐
∑

𝐿
𝑖𝑐

𝑍𝑖𝑐

𝑖∈𝑐
∑ 𝑒𝑥𝑝(𝑋

𝑖,𝑐
β)

⎛

⎝

⎞

⎠

Given our expression for in (6), our estimate of grid square i’s land quality is naturally the𝐴
𝑖,𝑐

fitted value from (7b), suppressing country fixed effects:

(9) .𝑄𝑢𝑎𝑙𝑖𝑡𝑦
𝑖,𝑐

=  𝑒𝑥𝑝(𝑋
𝑖,𝑐

β)

2. Cell-level results on land quality

We begin by looking at the explanatory power of equation (7b). Poisson regression has no

perfect analog to the coefficient of determination ( )  in OLS. We follow Cameron and𝑅2

Windmeijer (1996) in reporting , which is based on the concept of deviance, the difference𝑅
𝐷𝐸𝑉
2
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between the model log-likelihood and the highest possible likelihood for a given dependent
variable. It is defined as:

(10) ,𝑅
𝐷𝐸𝑉
2 = 𝑖

∑ 𝑦
𝑖 
𝑙𝑛(µ

𝑖
/𝑦)−(µ

𝑖
−𝑦

𝑖
)⎡⎢⎣
⎤⎥⎦ 

𝑖
∑𝑦

𝑖 
𝑙𝑛(𝑦

𝑖
/𝑦)

where is the value of the dependent variable for observation i, is the predicted value for𝑦
𝑖

µ
𝑖

observation i, and is the average of .𝑦 𝑦
𝑖

13

In Table 1, we report for the basic specification and a set of alternatives for a Poisson𝑅
𝐷𝐸𝑉
2

regression using the GHS-POP data. The first row of the table shows that geography and14

country fixed effects alone each explain similar amounts of variation, but the marginal effect of
each is also very high. In the other rows, we examine the robustness of this result with respect
to three potential concerns. First, we experiment with dropping the six countries with the largest
land area, which contain 54.1% of grid squares and a large share of within-country variation.15

Second, Henderson, et al. (2018) stress that the determinants of agglomeration differed
systematically between early- and late-agglomerating countries.  They show that geographic
characteristics related to agriculture had a proportionally larger impact on urbanization in the
former group, while those characteristics related to trade had a proportionally larger impact in
the latter.  To test whether these considerations affect our analysis, we re-run the population
equation using two complementary sub-samples (early and late agglomerators, based on
urbanization in 1950)  to estimate the weights on geographic factors. Finally, we estimate the
model on a set of countries in which more than 80 percent of the population is descended from
people who lived in the country 500 years ago (“Native” for short), based on data from
Putterman and Weil (2010). This sample comprises about 65% of countries with 82% of world16

population. Throughout the rest of the paper we often focus on these countries and either drop

16In practice, the results reported later are insensitive to using alternative cutoffs or a continuous measure
rather than a dummy. The cutoff of 80 percent native was chosen to maximize the R2 of our basic
regression in column 1 of Table 3B allowing for 5 point intervals from 0.40 to 0.90.

15 The countries are  Russia, Canada, USA, China, Brazil, and Australia.  We choose six as our cutoff
because there is a natural break in the distribution of country sizes between the sixth largest (Australia,
7,692,024 km2) and the seventh largest (India, 3,287,263 km2).

14 In Appendix Table A.1 we report the explanatory power of geographic variables and country fixed
effects for the Poisson and log-linear specifications for GHS-POP, GPWv4 and LandScan, as well as
versions of GPWv4 and GHS-POP that are censored to match the minimum non-zero value in LandScan.

13 This measure applied to Poisson models shares five desirable properties with R2 applied to OLS:  it is
bounded within [0,1];  never decreases with additional regressors;  can be equivalently expressed based
on sum of residual squares or sum of explained squares; relates to joint significance tests of all the slope
parameters; and has an interpretation in terms of information content. Other typical pseudo-R2 measures
for Poisson models do not satisfy all these properties.
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the others or control for a Native<80% indicator. New World countries, where native populations
have largely been replaced over the last 500 years, may not yet have reached a new equilibrium
with replacement populations even if, for some, their demographic transition may be complete.

Table 1 shows that results are similar across these specifications. While row 2, which drops the

six largest countries, has lower overall in each of the columns, considerable explanatory𝑅
𝐷𝐸𝑉
2

power remains. Rows 3 and 4 indicate that geography has a somewhat stronger role for early
agglomerators, but patterns for early and late are similar. Geography also plays a somewhat
stronger role when we exclude countries where the native population was replaced over the last
500 years.

In the Appendix B, we experiment with extended sets of covariates and a formal method for
selecting which ones to include in estimation using Lasso (Tibshirani 1996). We consider three
sets of covariates: the baseline 53 variables, the baseline 53 plus the 66 climate class
indicators, and a second order expansion of the baseline 53. The second order expansion
includes the baseline 53, squared terms for all continuous variables except the 11 crop
suitability indices, and all two-way interactions among the 42 non-crop suitability variables, a
total of 951 variables. We divide the data into random 75% training and 25% test samples,
stratified by country, and run three sets of estimations for each set of covariates on each of
them: standard maximum likelihood Poisson and Lasso Poisson with two different criteria to limit
overfitting (minimum deviance and minimum deviance plus 1 standard error).

Appendix Table B1 Panel A reports mean and mean numbers of covariates across ten runs𝑅
𝐷𝐸𝑉
2

for these 18 regressions (2 samples, 3 covariate sets and 3 estimators), and Panel B reports the
corresponding standard deviations. Adding in the 66 climate indicators adds little explanatory
power in the test samples relative to the baseline set of covariates under each of the three
estimation specifications. The second order expansion increases explanatory power by

9.5-10.6% in the test sample. However test is high even in our baseline, and we proceed𝑅
𝐷𝐸𝑉
2

with the full baseline set of covariates, for several reasons. First, a priori 53 is not a lot of
covariates on a sample as large as ours, suggesting that overfitting is unlikely, and we prefer the
transparency. Second, a penalty value based on the minimum deviance criterion in Lassoλ
dropped very few variables, and plots to depict optimal have large flat regions around theλ𝑠
optimum. Finally, as shown in Panel C of Table B1, these nine variants’ estimates of our key
country-level aggregate average land quality (defined below) are all highly correlated, so the
choice matters little for the remainder our analysis.

Table A3 in the Appendix shows the coefficient estimates from our baseline specification
(column 2), and also coefficients from a specification excluding country fixed effects (column 1),
for comparison. With some exceptions particularly among the crop suitability indices, almost17

17 Reported standard errors relax the “equidispersion” assumption of classical Poisson estimation that the
variance of the dependent variable is equal to its mean, which is rejected in our data. The quasipoisson
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all coefficients are highly significant. As an example quantitative interpretation, in column 2, the
coefficient of 0.43 on the coastal dummy implies that coastal cells have times𝑒𝑥𝑝(0. 43) = 1. 54 
higher population density than non-coastal cells, ceteris paribus. Given the subject of this
paper, we focus our interpretation on fitted values from this equation, rather than coefficients.
Specifically, the fitted values from the column 2 specification, suppressing country fixed effects,
are what we defined in equation (9) as Quality. In our model, if the world were a single country,
with the same technology and institutions (B in equation 1) and with perfect mobility of
population, then population density in each grid cell would be proportional to Quality.

Figure 1A shows actual population density and Figure 1B shows Quality, both at the level of grid
cells. The values are on different color scales because the range of Quality, a fitted value, is
naturally smaller. Visually, there are clear similarities between Quality and actual population
density, with high values for Quality in Europe, northern China, the River Plate basin, and the
Ganges delta, among other places  Not surprisingly, Quality does a worse job of capturing
agglomeration. In Figure 1A, the reader may be able to pick out areas such as Mexico City,
Madrid, Delhi, or Guangzhou, which do not have particularly high values of Quality in Figure 1B
in comparison to surrounding areas.

3. Country-level aggregates

3.1 Quality-adjusted area

Multiplying land quality from (9) by grid cell area produces what we call Quality Adjusted Area of
a grid cell.  We can similarly construct quality-adjusted area at the country level, :𝑄𝐴𝐴

𝑐

(11) 𝑄𝐴𝐴
𝑐
 =  𝑖∈𝑊

∑ 𝑍
𝑖,𝑐

𝑖∈𝑊
∑ 𝑒𝑥𝑝(𝑋

𝑖,𝑐
' β)𝑍

𝑖,𝑐

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

𝑖∈𝑐
∑ 𝑒𝑥𝑝(𝑋

𝑖,𝑐
β)𝑍

𝑖,𝑐

where the term in brackets is a normalization so that sums across countries to the same𝑄𝐴𝐴
𝑐

value as actual area of the world (W). In essence, is a country’s allocation of world land𝑄𝐴𝐴
𝑐

based on its quality of land relative to the world average quality of land.

Figure 2B presents a cartogram in which each country’s area is proportional to its
quality-adjusted area as in equation (11), vs its actual size in Figure 2A.  The corresponding
numbers are listed in Appendix Table C.1, columns 2 and 3.  In comparing with𝑄𝐴𝐴 
conventional area, there are a number of interesting rescalings and rank reversals, many of
which accord with common sense.  For example, in our sample (south of 75 degrees North

model we implement assumes instead that variance is proportional to the mean and estimates the
constant of proportionality.
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latitude) Canada has 97% of the conventional area of the United States, but only 11% of its
quality adjusted area. Overall, the figure is notable for showing that Europe expands greatly in
size, while Africa contracts. The five countries with the highest quality-adjusted area are the
United States, Australia, China, Brazil, and Argentina.

For a corresponding perspective, we ask what each country’s population would be if the  world’s
population were reallocated such that country populations were proportional to quality-adjusted
areas. This involves replacing the numerator of the term in square brackets in equation (11),
world land area, with total world population. Figure 3 shows actual (in blue) and reallocated (in
red) log populations for the 80 countries with the largest quality adjusted areas, with numbers
taken from Table C1.  The distance between the red and blue dots represents the proportional
gain or loss this reallocation would entail.  The five biggest gains in absolute population size
would be in Australia (adding 605 million), Argentina (502 million),  the United States (479
million), Brazil (341 million), and France (129 million).  By contrast, the countries with the
biggest absolute declines following such a reallocation would be India (losing 1.09 billion), China
(903 million), Pakistan (167 million), Nigeria (156 million), and Indonesia (149 million).

3.2 Average Land Quality

Next we can calculate average land quality of a country using normalized :𝑄𝐴𝐴
𝑐

(12) 𝐴𝐿𝑄
𝑐
 =

𝑄𝐴𝐴
𝑐

𝑍
𝑐

where . Average land quality values are in column 1 of Appendix Table C.1. Similar𝑍
𝑐

=
𝑖=1

𝑁
𝑐

∑ 𝑍
𝑖,𝑐

to the thought experiment above, if the world had uniform institutions/technology and there was
perfect international population mobility, then the population density of countries would be
proportional to their average land quality. The five countries with the highest average land
qualities are the Netherlands, Denmark, Uruguay, Belgium and Portugal.

Average Land Quality and Population Density

A natural starting point for assessing our measure of land quality is to look at how it relates to
population density.   Recall that land quality at the grid cell level is constructed from a regression
with country fixed effects, but that these fixed effects are suppressed in forming the fitted values
that measure land quality.  Thus in principle it would be possible for the fitted values to have a
low or even negative correlation with actual population density.  Figure 4 shows that looking
across countries the correlation is in fact positive. Further below (Table 5) we show this result in
regression form and discuss how it has changed historically.
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Average Land Quality and Income per Capita

While a positive relationship between land quality and population density would be predicted by
just about any model, the relationship between land quality and income per capita is more
complicated. The idea that good geography should make a country richer goes back to at least
Smith (1776).   But there has always been a logical problem with this view: Since Malthus
(1798), economists have understood that if population density increases the congestion of
natural resources and if population is endogenous, due to either migration or a feedback from
the standard of living to net reproduction, then better geography should make a country or
sub-national region have more people in it, but not make those people better off.  Looking within
a country like the United States, this phenomenon is obvious.  For example, the states of Idaho
and South Carolina have almost exactly the same levels of Gross State Product per capita, but
differ in average land quality by a factor of 9.5 and in population density by a factor of 7.6.

Empirically, a good deal of the literature supporting the contention that better geography makes
countries  richer (discussed in the introduction to this paper) comes from cross-country
regressions of income per capita on geographic variables. Such evidence is hardly dispositive,
however, because of the well-known correlation of geography with institutions and colonial
history (e.g. Acemoglu Johnson and Robinson, 2001).  Further, as we show below, several
existing measures of land quality that are not constructed from cross-country regressions are
actually negatively correlated with income per capita.  We thus view the relationship between
land quality and income as worthy of both further empirical study and theoretical exploration.

Examining the relationship between income and land quality requires us to reduce the sample
size from 164 to 148 countries.  This is the main sample which we maintain in all of the work
that follows. Figure 5 shows a striking positive correlation between ALQ and income per18

capita.  It is notable that many of the outliers in this figure appear to be special cases such as
hydrocarbon producers (Qatar, Kuwait, Saudi Arabia, United Arab Emirates) or small countries
with large banking sectors (Switzerland, Luxembourg).  Table 2 shows corresponding regression
results.  For the reasons discussed above, we control for a dummy that takes the value one
where Native<0.8. The key finding of Table 2 is that there is a strong, positive relationship19

between ALQ and income per capita. The baseline elasticity of 0.43 in column (1) implies that a
two standard deviation increase in log ALQ is associated with a rise in GDP of 1.01 in log
points, or about 170%.

The other columns in the table look at other ways of measuring average land quality. In column
2, we estimate grid square quality without country fixed effects and then use those coefficients
to calculate ALQ.  Identification is no longer based solely on within-country variation, so

19 All coefficients change by less than 6% with the addition of the Native<80% control.

18 We call the 148 countries our main sample. Eight of 164 countries do not have a GDP measure; 3 have
area under 1500 sq km, approximately two cells, and therefore have no real within-country geographic
variation; and 10 have no Putterman-Weil index of the fraction of the current population descended from
people present 500 years ago, which we emphasize later. Several are missing more than one of these.
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institutions and other fixed factors may drive results. The elasticity shrinks in magnitude but
remains significantly positive. However no positive association exists between GDP per capita
and two alternative measures of land quality: calories of agricultural potential unit per area
(Galor and Ozak 2016; column 3) and land suitability for agriculture per unit area (Ramankutty
et al. 2002; column 4). In fact the Galor-Ozak measure suggests a significant negative20

relationship between caloric potential and GDP per capita. We think that the difference in
outcomes is the result of our measure providing a more nuanced assessment of agricultural
productivity as well as its inclusion of additional geographic variables that go beyond agriculture,
such as ruggedness, elevation, and access to water for transport.

Table 3 probes the robustness of this result that higher average land quality is associated with
higher income today to different specifications of the grid-cell regression that we used to
measure land quality. Column 1 shows our baseline result, where the elasticity of GDP with
respect to ALQ per capita is 0.43. Columns 2-4 correspond to rows 2-4 in Table 1. In column 2,
we drop the 6 largest countries in the grid square regression (equation 7b), but still predict ALQ
for them using the estimated coefficients. In column 3 we estimate land quality parameters in a
grid-cell regression run only in early agglomerating countries and predict ALQ for all countries
from those coefficients.  Column 4 repeats this exercise for late agglomerators, and column 5 for
Native>80% countries.  In all these specifications, the income-ALQ elasticity remains large, from
74% to 101% of the baseline.

The findings of Tables 2 and 3 clearly show that countries with higher quality land are on
average richer.  This in turn raises the question of why the prediction of the simple population
equilibrium model is not borne out, to which we return below.

3.3     Quality Adjusted Population Density

Finally, we can use land quality to create a new measure of population density. We define
Quality-Adjusted Population Density ( ) simply as country population divided by𝑄𝐴𝑃𝐷

𝑐

normalized , or equivalently as conventional population density divided by :𝑄𝐴𝐴
𝑐

𝐴𝐿𝑄
𝑐

21

(13) .𝑄𝐴𝑃𝐷
𝑐
 =  

𝐿
𝑐

𝑄𝐴𝐴
𝑐
  =  

𝐿
𝑐

𝑍
𝑐
𝐴𝐿𝑄

𝑐
   =  

𝑃𝐷
𝑐

𝐴𝐿𝑄
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21 Note that (13) is also similar to the expression inside the parenthesis in equation (8) for country fixed
effects, apart from the normalization in (11). The difference is that (8) divides the items in the numerator
by grid square land area Zi before summing, while in (13) those Zi terms are in the denominator sum. As
noted earlier, these areas vary within a country both due to the convergence of longitude lines away from
the equator and the exclusion of surface water area. If all grid cells in a country had the same area, the
country fixed effect that we estimate would just be the log of quality-adjusted population density, ignoring
the normalization.  In practice, the correlation of the fixed effect and the log of quality-adjusted population
density across countries is 0.98, so that the two measures are almost interchangeable.

20 This is the weighted average of the Ramankutty index for each grid square, where the weights are
grid-square areas.

14



Column 7 of Appendix Table C.1 shows values of log QAPD, which is measured in units of
population per quality-adjusted square kilometer. For the world as a whole, QAPD is 56.6, which
is, by construction, the same as conventional population density for our geographic sample
covering most of the world.  The five countries with the highest levels of quality-adjusted
population density (excluding the city-states of Hong Kong and Singapore, as well as countries
with populations of less than one million) are Kuwait (797), Rwanda (683), Burundi (553),
Kyrgyzstan (533),  and Pakistan (517). The five countries with the lowest QAPD are Uruguay
(1.70), Australia (2.14), New Zealand (3.35), Namibia (3.54) and Argentina (4.51). Among the
other interesting findings in this table are that China, with QAPD 2.9 times the world average,
has noticeably lower quality adjusted density than India, which is 5.9 times the world average.
The United Kingdom (37.6) and Germany (33.6) have higher QAPD than the United States
(22.6). However, the United States, despite being in the New World, has higher quality adjusted
density than France (18.8) or Ireland (13.2).

Figure 6 compares conventional population density to QAPD in logs using our main 148-country
sample. The two measures of density are highly correlated, but there are notable differences.
For example, while Mongolia is the lowest density country in the world and the Netherlands is
one of the highest, the two countries have nearly identical levels of QAPD.

Figures 7A and 7B plot the bivariate relationships between GDP per capita and (respectively)
conventional population density and our measure of quality-adjusted population density.
Visually, there is little association between GDP per capita and conventional population density,
while GDP per capita and quality-adjusted density appear to be negatively correlated.  It is also
notable that the largest outliers in Figure 7B are oil producers such as Qatar, Kuwait and the
United Arab Emirates.

Table 4 probes this result further in a regression context.  As above, we control for the
Native<0.8 dummy and present results excluding countries where Native<0.8. The table
confirms that there is no correlation between conventional population density and income per
capita, but a strong negative relationship between QAPD and income per capita. Using the22

coefficient in column (3) of the table, a decrease in the log of quality adjusted density by one
standard deviation (1.29) is associated with an increase in GDP per capita of 57%.

QAPD and Resource Congestion

The idea that diminishing returns to fixed natural resources play a part in determining national
income goes back at least to Malthus. In a modern context, research that argues for an

22 In Table A.2 and the discussion in Appendix A, we explore the result in Table 4, column 3, using the
different sources of population data discussed in Section 1 and comparing a Poisson and log-linear
specification to Equation (7b). Results for the Poisson are similar across data sets and specifications, but
log-linear results differ by data set and specification.
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operative congestion channel, particularly in poor countries, includes Young (2005), Acemoglu
and Johnson (2007), Kohler (2012), and Acemoglu, Fergusson and Johnson (2020).  As noted
by Das Gupta, Bongaarts, and Cleland (2011), discussion of “sustainable development” at the
country level is to a large extent simply a reformulation of the Malthusian concern with the ratio
of population to resources.  At the same time, there is a significant body of work, going back to
Boserup (1965) and Simon (1976), and crystallized in the report of the National Research
Council (1986), arguing that population size does not represent an important barrier to
economic development.23

Resource congestion would seemingly provide a natural explanation for the negative
relationship between QAPD and income per capita in the world today.  If countries differed in
their fertility preferences, or if there were some other exogenous factors that led the response of
population growth to income to vary across countries, then we would expect to see that
countries that were more dense relative to their resources were indeed poorer.

We can pursue this point quantitatively.  Applying the model of Section 1.2, in equation (3), the
level of income per capita in a grid square is a function of population, geographic attributes, and
the country-level productivity term, Under the assumption that people migrate within𝐵

𝑐
.

countries to equalize income across grid cells as shown in equation (4), equation (5) then gives
the number of people per grid cell. Combining equations (3)-(5), we can thus solve for log
income per capita at the country level:
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Ignoring the normalization factor, which is the same for all countries, the second term in the
large brackets on the right hand side in (14) is what we have defined as quality-adjusted
population density.  Thus if QAPD was not correlated with productivity, a regression of the log of
income per capita on the log of QAPD would  return a coefficient equal to the natural resource
share in the production function, (1 − α).

23 See Kohler (2012) for a more extensive review.  The literature discussed here focuses on population
size.  Related literature looks at two other dimensions of population: its growth rate and its age structure.
Ashraf, Weil, and Wilde (2013) discuss the magnitudes and interactions of these various channels.
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Estimates of this share are mostly in the range of one-quarter to one-third. The coefficient on24

log QAPD in column (3) of Table 4, -0.352, is slightly larger in absolute value than is consistent
with this range.  However, in column (4) of the table, focusing on countries where the native
population was not displaced, the coefficient (-0.515) is too large in absolute value to be
consistent with pure resource congestion.

This exercise suggests that while resource congestion can explain part of the relationship
between QAPD and income per capita, something else must be going on as well:  countries that
have high QAPD also have low productivity, which biases the coefficients in Table 4 to be larger
in terms of absolute value. This negative correlation between QAPD and productivity is borne
out in a development accounting exercise we did. This is something of a surprise. If countries25

differed in their levels of productivity for some exogenous reason such as technology or
institutions, then in the simplest macro-demographic model there would be a positive correlation
between QAPD and productivity.

As we explore further below, even if one does believe that resource congestion is the main
source of the observed relationship between QAPD and income per capita, there are still
important questions that arise.  Most notably, why is resource congestion higher in countries
with low land quality?  Put more pointedly: if population were randomly distributed with respect
to land quality, then there would be little surprise that places where population was high relative
to land quality were poorer.  But given that population is generated endogenously, most existing
models would predict that population would be proportional to land quality.  Further, we will show
that the currently observed income-QAPD relationship did not exist historically, and is a result of
population growth over the last several centuries.

25 In an exercise available upon request, we  conduct a development accounting exercise along the lines
of Caselli (2005), decomposing variance of log output per worker across countries in (14) into a piece that
is due to resource congestion, a piece that is due to productivity, and a piece that is due to the covariance
of these two things.  We find that congestion directly explains between 6 and 14% of the variation in
income per capita.  By contrast, the lion's share of variation in income (between 81 and 87%)  is directly
explained by differences in productivity.

24 Kremer (1993) uses one third as an upper-end estimate of land's share for the economy as a whole,
while Hansen and Prescott (2002) assume a value of the fixed factor share of 30% for preindustrial
economies. Caselli and Coleman (2001) derive a value of 0.19 as land's share in  agriculture in the United
States in the twentieth century. All of these papers assume an elasticity of substitution between fixed
factors and other inputs (either for the economy as a whole, or within agriculture) of one.  Ashraf, Lester,
and Weil (2009), using data from Caselli and Feyrer (2007), calculate resources shares in national
income that are as high as 25% in many poor countries, and exceed 30% in a few.  These data also show
that the resource share is strongly negatively correlated with income per capita, suggesting that the
elasticity of substitution between fixed factors, on the one hand, and an aggregate of physical capital,
human capital, and technology, on the other, is greater than one.
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4. Historical Evolution of Population and Income

To assess the historical development of population and income we use data from the Maddison
project. The underlying source for this data is historical national and regional accounts, wages,26

and other records. As an alternative to the Maddison data, we conduct a parallel analysis using
data from the Gapminder project.  This covers a significantly larger number of countries but
relies much more heavily on statistical modeling and interpolation than does the Maddison data.
Corresponding to our Tables 5- 8 are Appendix Tables C2 - C5 using Gapminder data. The
patterns of results are the same in all cases.

4.1 The Effect of Land Quality on Density and Development

Figure 4 showed the relationship across countries between our measure of average land quality
and population density in data for 2010.  Columns (1) and (4) of Table 5 show the same
relationship in regression form.  It is hardly a surprise that the coefficient is highly significant.

The first question we take up in this section is whether the nature of this relationship has
changed over time. Columns (2) and (5) of Table 5 show the regression of conventional density
on ALQ in contemporary data for samples that match the countries for which Maddison’s
historical data are available.  There is little change in the coefficient on ALQ from Columns (1)
and (4).  Columns (3) and (6) then repeat the regression using population density from 1820 as
the dependent variable.

Using the 1820 data on population, the value of the coefficient on the log of land quality is
relatively close to one, and in Column (6) we cannot reject the coefficient being equal to one.
This is the value that we would expect in a simple model where population was proportional to
land quality.  By contrast, the coefficient on land quality when we use modern population data is
much smaller and significantly different from one. In other words, land quality had a bigger effect
on density in the past than it does today.  An additional finding is that the coefficient on the
dummy variable for Native<80% is negative and three times as large in absolute value in the
1820 data as it is in modern data.  This is consistent with the observation that countries in which
native populations were replaced were relatively underpopulated as of that year, and have been
converging to the density pattern of the rest of the world since then.

In a mechanical sense, the results in Table 5 suggest that population growth has been faster in
countries with low ALQ than in those with higher land quality -- something that we will look at
directly in a later section.  More generally, they suggest that there is a relationship between land
quality and the broad processes of economic development and demographic transition which
have produced large increases in population throughout the world.  We probe this issue more
directly in the next section.

26Reported on the Gapminder website ( https://www.gapminder.org/tag/maddison/ ).
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Average Land Quality and the Takeoff into Growth

A common observation is that today’s rich countries began to experience economic growth
before countries that are poorer.  This idea is formalized by Lucas (2000), among many others.
In searching for an explanation of the positive relationship between average land quality and
current income, then, a natural starting point is to look at the relationship between land quality
and the timing of takeoff into modern growth.

To operationalize this idea we start by using the methodology of Costa, Kehoe, and
Raveendranathan (2016) to identify takeoff dates, which we update using data from Maddison
(2020). In their classification scheme, a country moves from stage 0 (Malthusian) to stage 1
(first time sustained growth) when it has experienced a 25 year period of income per capita
growth averaging 1% per year.  Countries can revert from stage 1 to stage 0 if they have 25
years of slow growth, and can then take off again. We look at the first episode of takeoff.
Information on takeoff dates is available for 148 countries, of which 137 are in our main sample.
27

Figure 8 shows that there is a strong negative relationship between takeoff date and log ALQ,
that is, that countries with better land on average took off earlier.   Note that data on the bottom
edge of the figure are truncated at 1845 because that is 25 years after 1820, which is the start
of the income data used by Costa et al. Other horizontally-aligned groups of points in the graph
are also related to the differential availability of income data across countries.

Table 6A reports regression results using this data on takeoff year. Column 1 repeats the
regression of income on ALQ from Column 1 of Table 2, but for the slightly smaller sample of
countries where takeoff dates are available.  The coefficient is almost unchanged.  Column 2
then regresses takeoff dates on ALQ, producing a highly significant negative coefficient.  A one
standard deviation reduction in log of ALQ predicts a delay in the takeoff date of 28 years.
Comparing the country with the highest quality (Netherlands; log ALQ=2.82) to the lowest
(Niger, log ALQ=-3.15), the predicted difference in takeoff dates is 140 years. Column 3 shows
in turn that takeoff date is a strong predictor of current income.  A country taking off into growth
one century earlier predicts current income being larger by a factor of 5.4.  Finally, Column 4
includes both land quality and takeoff date on the right hand side.  Columns 5-8 repeat this
analysis for countries where greater than 80% of the population is descended from people
present 500 years ago.  Looking at the two “horserace” columns (4 and 8), the coefficient on
takeoff date is reduced in magnitude only slightly compared to when it was entered alone on the
right hand side, and it remains highly statistically significant.  The coefficient on ALQ falls by a

27 The takeoff dates that we derive are mostly the same as in the Costa et al. paper. In all but three cases,
differences arise from updates of or extension to the GDP data. In three cases (Kuwait, the Netherlands,
and Qatar), we were unable to match their takeoff dates even using their underlying data.  In the case of
four countries that were subsequently splintered -- the Soviet Union, Ethiopia, Czechoslovakia, and
Yugoslavia -- we calculate takeoff dates for the mother country and assign this date for all of the daughter
countries.
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much greater percentage of its value when entered alone on the right hand side, and is
significant only in the sample that includes countries where This finding is𝑁𝑎𝑡𝑖𝑣𝑒 < 0. 8.
suggestive of a mechanism in which the most important channel by which land quality affects
current income is through its effect on the takeoff date.

Average Land Quality and Economic Development as of 1820

While the data that we use to measure takeoff dates begin in 1820, and thus the first takeoff
date is 1845, we know that in fact modern economic growth began in many places earlier than
that.  One way to get a handle on this earlier growth is simply to look at levels of income per
capita as of that year.  If at some point countries all had the same level of income per capita,
then a country being richer in 1820 is evidence of its having grown faster at some point in
history.  Figure 9 illustrates the relationship between the ALQ and 1820 GDP per capita using
data from Maddison.  There is a strong, positive correlation, as well as significant variation in
income.  This strong correlation relationship holds (although with less variation in income) for
the smaller sample of 14 countries where there is data for 1700.

Panel B of Table 6 pursues this point.  The structure is the same as in Panel A, but this time
using the log of GDP per capita in 1820, rather than the takeoff date, as an indicator of early
development.  Columns (1) and (5) show that there is a strong relationship between average
land quality and current income in this restricted sample.  Columns (2) and (6) in turn show that
average land quality is a good predictor of GDP per capita in 1820.  Columns (3) and (7) show
that GDP per capita in 1820 is a good predictor of GDP per capita in 2010.  Finally, columns (4)
and (8) show that when both 1820 GDP and ALQ appear on the right hand side, the former
remains significant but the latter does not.  Thus the two panels of Table 6 are thus both
consistent with a story in which land quality affects the date of takeoff into growth, but has little
effect on current income through other channels.

Using other measures of early economic development or nascent takeoff into modern growth
reinforces the link of these phenomena with land quality.  As stressed by Pomeranz (2000), the
region of the Yangtze River delta was marked by a level of technological and economic
development on par with the most advanced regions of Europe as of 1750.   Defining the delta
region to be the modern provinces of Anhui, Jiangsu, and Zhejiang plus the city of Shanghai
gives an area of  337,264.5 km2, which is ten times the size of the Netherlands.  The log of
average land quality for this region is 1.39, which would place it at the 87th percentile in our
sample of countries. By contrast, the log of ALQ for China as a whole is -0.098. Similarly, in the
late eighteenth century, Bengal was viewed as among the richest, if not the richest, region in
India, although modern economic historians continue to debate exactly where it stood relative to
Europe of the time. The region that was historical Bengal is roughly congruent with modern28

Bangladesh and the Indian state of West Bengal.  The average land quality for this region is

28 Parthasarathi (2005), Roy (2010).
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1.04, which would place it at the 81st percentile of our sample of countries.  By contrast, the
value of log ALQ for modern India as a whole is 0.237.

Using literacy as an indicator of early development paints a similar picture. Reis (2005) gives
values of literacy for males for European countries circa 1800, with the highest values being the
German states of Hesse (91%) and Lower Saxony (80%), the Netherlands (73%),  Scotland
(65%), England (60%), and Belgium (60%).  Land quality for all of these regions and countries is
quite high: Hesse (log ALQ of 1.59), Lower Saxony (2.12), Netherlands (2.82), Scotland (1.27),
England (2.30), and Belgium (2.29).29

Historical Population Density and Income

Recall that in Table 4 we looked at the relationship between current income, on the one hand,
and conventional density and QAPD, on the other. The finding there was that as of 2010, there
was no significant relationship between income and population density, while there was a
significant negative relationship between income and quality adjusted density.

Table 7 repeats this analysis on income and population from 1820, using data from the
Maddison project.  Columns 1-2 cover all countries, while columns 3-4 are restricted to the
sample where Native > 80%.  The results in Table 7 are dramatically different from Table 4.
While modern income is significantly negatively associated with QAPD, there is no significant
association between 1820 income and 1820 QAPD. However, in Table 7 there is a strong
positive association between population density in 1820 and income in 1820. By contrast, in
modern data population density and income are not significantly related.

The emergence of a negative relationship between QAPD and income over the last 200 years is
a significant (and we would argue, underappreciated) aspect of the process of global economic
growth.  In the next section, we look directly at population growth, which is what drove the
change in QAPD, and is thus part of the story of the changing correlation between QAPD and
income.  Then in Section 5 present a model of the joint evolution of income and population that
generates both the historical and contemporaneous correlations observed in the data.

4.2 Population Growth and its Determinants, 1820 to 2010

Finally, we bring together the analysis of the previous two sections to examine the relationship
between average land quality, takeoff dates, and population growth.   Table 8 shows regressions
of the change in log population since 1820 on the year of takeoff in the Madison dataset.  As in
many previous tables, we present results both controlling for Native<.8 and dropping

29 Reis gives the literacy number for “Saxony” rather than “Lower Saxony,” but the source he uses
(Hofmeister et al., 1998) seems to refer to the latter. The log of ALQ for the states of Saxony, Lower
Saxony, and Saxony-Anhalt, taken together, is 2.03.
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observations in which the native population was replaced. The coefficient on Native<.8 is large
and significant, showing that population growth has been faster in countries where the native
population was largely displaced.

Columns (1) and (5) show that there is a strong negative effect of land quality on population
growth.  To interpret the magnitude of the effect, looking at the sample of countries where the
native population was not displaced, the coefficient on log ALQ is -0.341.  An increase of two
standard deviations in log ALQ (for this sample of countries) is associated with a decline in
annual population growth of .46 percentage points per year over this 190 year period, which
would in turn produce a difference in population size of a factor of equivalently, a difference in
population size by a factor of 2.4.

Columns (2) and (6) replicate the finding of Table 6 (for this slightly different sample) that land
quality is also a good predictor of takeoff dates into modern growth, while columns (3) and (7)
show that takeoff dates in turn negatively predict population growth rates.   The coefficient in
column (7), 0.0079, implies that a one century delay in takeoff is associated with population
growth higher by 0.42 percentage points per year over this 190 year period.

Unlike the previous analysis, in Columns (4) and (8), the effect of ALQ remains sizable when
takeoff year is included. This result is different from our analysis of GDP growth, where including
the takeoff year reduced the coefficient on ALQ substantially, rendering it insignificant in some
specifications. To some extent this result is not surprising, since the takeoff year in this table is
defined in terms of income growth.  As will be seen below in Table 9, when we look at an
analogue of  early takeoff that is more appropriate to population, specifically, the speed with
which life expectancy increased, we find that it indeed dominates ALQ as a predictor of
population growth.

5. Pulling Together the Pieces: An Illustrative Model

Sections 3 and 4 establish a number of empirical regularities regarding the interrelationships of
land quality, population growth, and income, both in the world today and historically.  In this
section we develop a stylized economic-demographic model that encompasses these
regularities.  We focus on the following regularities:

● Economic growth took off first in countries with high levels of land quality, and these
countries remain richest today.

● Population growth over the two centuries for which we have data is a negative function
of the level of average land quality.

● Historically, there was a positive relationship between income per capita and population
density, but no significant relationship between income per capita and quality adjusted
density.

● By contrast in the world today, there has been a reversal. There is a strong negative
relationship between quality adjusted population density and income per capita, and no
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significant relationship between conventionally defined population density and income
per capita.

The model is detailed in Appendix D; here we outline its features. The model extends standard
theories of population and economic growth by explicitly taking into account the role of health
technology in the demographic transition.

A starting point for any analysis of the relationship between land characteristics, population, and
economic growth is the Malthusian model.  As argued by Galor and Weil (2000), this model
characterized economic-population equilibrium for most of human history. In the steady state of
a Malthusian model, differences in land quality affect population density but do not affect the
standard of living.  The literature argues that sometime prior to the Industrial Revolution, there
was rough equality of income among countries, compared to the vast income gaps we see
today. We presume that, when time starts in our model, all countries are in Malthusian steady30

states with the same income per capita.

Of course, the Malthusian model no longer characterizes most of humanity.  The departure from
that equilibrium involved the dual processes of economic takeoff and demographic transition.  In
the model of Lucas (2000), the richest countries in the world today are those that took off first
into modern economic growth.  In Lucas (2000), there is a lead country that takes off into
growth, with trailing countries that take off at later dates, a characterization we adopt.  Although
the Lucas model is silent on what factors determine a country’s takeoff into growth, it is not a far
stretch to associate that takeoff with land quality, via the route of population density and its
effect on technological progress.

5.1. Economic growth

Land quality plays two roles in the model.  First, it appears directly in the production function as
in Equation (1).  In the Malthusian steady state prior to takeoff, conventionally defined
population density will just be proportional to land quality. Second, land quality determines the
date of takeoff. Concretely, we set the relationship between and takeoff to be the one𝐴𝐿𝑄 
estimated in the text, with a one log unit decrease in leading to a takeoff that is 26 years𝐴𝐿𝑄 
later.  Although we do not model it explicitly, we assume that the underlying mechanism is
through agglomeration and Marshallian externalities.  Ciccone and Hall (1996) first established
a link between population density and productivity across US states. Recent work has extended
this result at a more microgeographic level, with papers estimating high returns to increased
density in China (Combes et al., 2020; Chauvin et al., 2017) and a set of African countries
(Henderson et al., 2021). A direct link between higher density and increased innovation was
established in Carlino et al. (2007), with a recent work by Roche (2020) showing how dense
urban neighborhoods foster innovation.

30 Bourguignon and Morrisson (2002), Howitt and Weil (2010).
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The next element of the model is technological progress, which we base on Lucas (2000).  Prior
to takeoff in the lead country, technology is stagnant and equal everywhere in the world. We
then assume that, in the lead country, technology grows at a constant rate of 2% per year
following takeoff.  Follower countries experience technological convergence after their own
takeoff dates of that 2% a year, enhanced by the gap between the lead country technology level
and theirs. This spillover is important in narrowing the gap in technology levels over time.

These elements explain why countries with high land quality are the richest today, since they
started growing first, and technological convergence is not yet complete. They also explain the
positive relationship between income per capita and population density at the beginning of our
historical data in 1820.  That year was after some countries (those with higher quality land and
denser populations) had begun their economic takeoffs, but before less dense countries had
done so.

However, the mechanism just described, on its own, cannot explain several facts regarding
population: first, that quality adjusted population density is today higher in poor than rich
countries, and second, that population growth has been faster in countries with low land quality
than in countries with high land quality. One might have expected the population history of
late-takeoff countries (those with lower land quality) to simply parallel that of early-takeoff
countries but starting at a later date.  However, this has not been the case. Further, while a
simple model of resource congestion could theoretically justify the negative correlation of
current income per capita with quality adjusted population density (for example, if countries
differed in their fertility preferences), our analysis of Section 3.3 suggested that more was at
work -- specifically that countries with high QAPD also had low productivity.  And if countries
differed exogenously in productivity, with population responding positively to income, then we
would expect to see a positive correlation between income and quality adjusted density, not the
negative correlation we observe in the data.

5.2 The Demographic Transition

To explain these facts, we need to model the process of demographic transition that has
paralleled economic growth in the last two centuries. Demographic transition refers specifically
to the transition from a regime in which fertility and mortality were both high and roughly equal,
toward one in which both of these vital rates are significantly reduced and again roughly equal.
In early developing countries, this process took about two centuries and is mostly complete. But
in late developers, the process is still ongoing.

5.2.1 Life Expectancy

In the interplay between the fertility and mortality rate, one key feature is that the decline in
mortality temporally precedes the decline in fertility, and the gap between the two is responsible
for the increase in population over the demographic transition, what Chesnais (1990) refers to
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as the population multiplier. Further, the dominant driver of decline in mortality is31

improvements in health technology (Deaton, 2014). In our model we follow Deaton’s32

perspective that improvements in life expectancy primarily flowed from the same scientific
progress that allowed for higher productivity.  We assume life expectancy in all countries starts
at 30 years prior to takeoff. In the lead country, life expectancy then increases in a linear fashion
at a rate of three months per year (Oeppen and Vaupel, 2002).  Over two centuries, life
expectancy rises from 30 to 80 years.

For a follower country, we model life expectancy as a weighted average of life expectancy in the
lead country and life expectancy that would be justified by the follower country’s own productive
technology. This allows for spillover of health technologies from the leader to the follower, and
for life expectancy in follower countries to rise before their economic takeoffs. As in the
literature, our modeling has the spillover from leader to follower of health technologies being
stronger than the spillover of productive technologies. Acemoglu and Johnson (2007) show that
convergence of life expectancy among countries is much faster than convergence of income per
capita.  Similarly, “health miracles” in developing countries have been far more common than
“growth miracles” (Deaton, 2014).

This rapid transfer of health technologies produced a demographic transition in which mortality
fell both more quickly, and at lower income levels, than had been the case in early developing
countries. We can illustrate the importance of this transfer of health technology for population
growth in our data. Figure 10 shows the length of time it took countries to go from life
expectancy at birth of 35 years to 50 years. Richer countries that reached life expectancy of 3533

in the 19th century generally took more than 100 years to reach life expectancy of 50; those that
reached 35 in the middle of the 20th century took less than half as long. This suggests late34

takeoff countries had high rates of health technology transfer and adoption, lowering death
rates.

Table 9 looks at the effect of this faster life expectancy gain on population growth.  The first
column repeats the regression of population growth on average land quality, for the sample of
countries where life expectancy data are available.  The second column then shows the positive
effect of land quality on “life expectancy improvement time” (the variable on the vertical axis of

34 In fact, the data as shown actually understate this effect, since a number of countries had already
passed life expectancy of 35 years by 1800, which is when our data begin. A related fact is that increases
in life expectancy have been achieved at lower and lower levels of income over time.  This is generally
discussed under the rubric of the Preston Curve. See Preston (1975) and Deaton (2014). Weil (2014),
Figure 3.7, shows that over the course of the 20th century, life expectancy at a fixed level of income per
capita rose by approximately 20 years.

33 Source:  Gapminder Life Expectancy (Ola Rosling), Version 9 (October, 2017).

32 Also, a very significant component of fertility decline is a fall in desired family size due to changes in the
structure of the economy, including the return to skill, urbanization, and the gender wage differential as
discussed in Galor and Weil (2000), Dyson (2011), and Galor and Weil (1996).

31 This population multiplier is defined by Chesnais (1990) as “the number by which the population is
multiplied during the transition between the pre-transitional phase (high mortality, high fertility) and the
post-transitional phase (low mortality, low fertility).”
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Figure 10), which is highly statistically significant.  Column (3) shows that life expectancy
improvement time, in turn, has a significant effect on the degree to which population increased
between 1820 and 2010.  Column (4) shows that when both and life expectancy𝐴𝐿𝑄
improvement time are included on the right-hand side, both are significant, although the latter
loses less of its explanatory power than does the former.

Columns 5-8 of the table repeat the exercise for the sample of countries where the native
population was not replaced, thus excluding countries where immigration played an important
role in population dynamics.  Here the effect is even stronger:  Once life expectancy
improvement time is controlled for, average land quality is no longer significant as a determinant
of population growth.   Using the estimate in column (7) of the table, a one century speed-up in
the time it took to get from life expectancy of 35 to life expectancy of 50 led to a population
increase that was larger by a factor of 3.1.35

5.2.2 Fertility

In the model, the fertility rate in the pre-takeoff period is set equal to the mortality rate.
Following Hansen and Prescott (2002), for the lead country, we model the relationship between
income and fertility as being composed of three segments: First, there is an upward sloping
segment, in which higher income raises fertility.  Then there is a downward sloping segment in
which higher income lowers fertility.  Finally, above a fixed level of income, fertility is constant at
the rate consistent with zero population growth.  Hansen and Prescott have specific modeling of
the timing of onset of each segment, based on current income relative to the initial Malthusian
level, which we adopt with minor modifications.

In carrying over the analysis to countries that are not the lead country, we maintain the effect of
income on fertility calibrated to the lead country.  Since these trailing countries have lower
mortality (for a given level of income) than does the lead country, they will in turn experience
faster population growth at any level of income than did the lead country.  We think of this
change as being particularly appropriate for looking at population growth in late-starting
countries, which indeed experienced higher levels of peak population growth than those that
took off first.

5.3 Results

We summarize the results of our model with two figures.  In both of them, the horizontal axis
measures the log of relative to the leader, which is normalized to zero.  The low value on𝐴𝐿𝑄 

35 These findings match results from Chesnais (1990), who showed the relation of the population
multiplier to the speed of transition and the gap between birth and death rates. He notes that countries
and regions that went through the transition later in time tended to reach higher maximal rates of
population growth, and also (in his limited data) showed that on average countries that started the
transition later had larger multipliers.
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the axis is -4.83, corresponding to a value of average land quality that is 1/125 that of the
leader.  This is a slightly smaller range of values than what we found in the data.

Figure 11 A shows QAPD on the vertical axis.  Each line corresponds to a cross section of
countries at the point in time (measured as years since takeoff in the first country) indicated in
the legend.  The figure shows that there is a reversal over time in the relationship between
QAPD and land quality  (there is a similar reversal in the relationship between QAPD and
income).   Prior to any country taking off, quality adjusted density is equal in all countries as a
result of the Malthusian mechanism.  In the early years of the simulation, countries that have
taken off first experience more rapid population growth due both to higher income and lower
mortality than the trailing countries.  As a result, quality adjusted density rises with income.
However, once trailing countries do take off, they experience faster population growth than did
the leaders, as a result of which the relationship between land quality and quality adjusted
population density changes sign.  (For the simulation shown, the peak rate of population growth
in the last country to take off is 2.7% per year, compared to a peak rate of 2% per year in the
first country to take off.)

Given our normalization of initial quality adjusted density to be one, QAPD at any point in time is
equal to the “population multiplier,” that is, current population in a country as a multiple of its
population before the first takeoff.  It is notable that countries that are late to take off have
permanently higher population multipliers.  Since pre-takeoff population in every country was
proportional to land quality, this means that higher population relative to land quality is a
permanent feature of late-starting countries.

Figure 11 B shows the log of income per capita on the vertical axis.  In the early years of the
simulation, income rises only in countries that have taken off.  In countries that have not, income
even falls slightly due to the spillover of health technology that raises population growth without
affecting productivity.  The gap in income between high and low countries reaches its peak𝐴𝐿𝑄 
around 150 years after the first country has taken off.  Growth in late takeoff countries is initially
slowed by resource congestion due to rising population.  However, after a time, income in these
trailing countries rises high enough that population growth is reduced, while the force of
technological catch-up (as in the Lucas model) remains.  However, unlike the Lucas model, late
starting countries do not catch up all the way to early starters.  This is because, as mentioned
above, the population multiplier relating post-transition population to population in the
Malthusian regime is higher in the countries that started later, and thus late starting countries
face a permanently higher level of resource congestion than countries that took off first.

6.  Conclusion

In this paper we construct a new measure of land quality, which we define as the suitability of a
piece of land for human habitation and economic activity.  Our starting point is a Poisson
regression of population density in quarter degree longitude-latitude grid cells on a vector of
geographic characteristics and country fixed effects.   By incorporating fixed effects, we avoid
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bias from any correlation of country-level institutions with geographic characteristics.  The fitted
values from this regression, suppressing the fixed effects, are our measure of quality.  This
measure can then be aggregated to sub-national units, regions, or continents, although for this
paper we focus on countries.

The new country-level measures we create are quality adjusted area (QAA), average land
quality (ALQ) and quality-adjusted population density (QAPD).  The latter is just the total
population of a country divided by QAA. We also establish a number of facts, some of which
are not unexpected and others of which are inconsistent with standard macro-demographic
models of historical economic growth.

Average land quality is highly correlated with population density, which is hardly surprising. More
interesting is that average land quality is correlated with income per capita.  We also find that
income per capita is uncorrelated with conventionally measured population density, but is
strongly negatively correlated with QAPD.  While some of this latter correlation could be due to
resource congestion, our quantitative analysis shows that there is more going on. Specifically,
QAPD is also negatively correlated with productivity.

Turning to historical data, we find that the effect of ALQ on population density in data from 1820
was much stronger than the same effect measured in modern data.  Further, while population
density is uncorrelated with income in modern data, it was positively correlated with income in
historical data, and similarly while there is a negative correlation between income and QAPD in
modern data, there is no correlation in historical data.  The mechanism that ties all of these facts
together is that population growth since 1820 was systematically higher in countries that have
low values of ALQ. Finally, we find that average land quality is a good predictor (with a negative
sign) of the date on which countries took off into modern economic growth, and further that once
one controls for that takeoff date, the statistical effect of ALQ on current income is greatly
diminished.

Taken together, these facts are at variance with the predictions of standard theories of economic
and population growth.  Malthusian models of the pre-industrial period predict that population
will be proportional to natural resources, which is what we find.  Models of agglomeration can
also explain why the takeoff of economic growth and the exit from the Malthsuian equilibrium
took place first in areas with better land and denser populations.  But neither of these
mechanisms gives any reason to expect that population growth since the exit from the
Malthusian equilibrium would have been higher in countries that had lower levels of resources,
as we see in the data, and they thus provide no explanation for the signal fact that quality
adjusted population density is negatively correlated with income.   This negative correlation
could be explained if there were variation across countries in preferences toward children, as in
Lucas (2002), but we show that the magnitude of the effect we find is larger than this channel
would justify.  Finally, if productivity varied among countries (due to e.g. to institutional quality or
technology), standard models predict that there would be a positive correlation between income
per capita and QAPD, rather than the negative correlation that we see in the data.
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To explain all of the observed facts, we present a simple macro-demographic model where the
takeoff into modern economic growth occurred earliest in countries with high land quality, for the
agglomeration reasons just mentioned, and population growth over the course of
industrialization was larger in late-takeoff countries (those with lower land quality) because of
the transfer of health technology from countries that started to grow first. The model predicts
that a high ratio of population to resources will be a permanent feature of late takeoff countries,
even after they have fully caught up with the leaders in terms of productivity.

Beyond the analysis of historical income and population growth that we have undertaken here,
we expect that our new measures of land quality will be useful in many other contexts.  For
example, having estimated the weights on different geographic characteristics in determining
quality, we are in a position to discuss the effects of climate change on quality and thus on the
degree of population pressure on natural resources.  Our measures of average land quality and
quality adjusted area are useful for studying the effects of population pressure on outcomes like
food imports, political conflict or migration both within and between countries, among other
issues.36

We certainly don’t expect that our measure of quality-adjusted population density will displace
conventionally-measured population density; rather, we see it as giving a complementary
perspective.  For example, if one is interested in Marshallian externalities or agglomeration
effects, then a conventional measure of local density is appropriate since that tells us how far
apart people live from each other and how easy it is for them to interact.  The same would be
true if one were concerned about disease transmission.  By contrast, if one is interested in the
ecological services provided by the geo-physical environment, then an adjusted measure like
ours is more useful.

36 In a supplemental analysis (available upon request), we compare the results of regressing net food
imports per capita averaged over the period 2010-2015 on the log of either conventional population
density or QAPD.  Conventional density has an insignificant effect on imports, while quality adjusted
density significantly increases imports, whether or not we also include controls for GDP per capita and
openness  (total trade divided by country GDP). The effects are large: a 2 standard deviation increase in
log QAPD is associated with an increase in net food imports of 85% of 1 standard deviation.

29



References

Acemoglu, Daron, Leopoldo Fergusson, and Simon Johnson. “Population and conflict.” The
Review of Economic Studies 87.4 (2020): 1565-1604.

Acemoglu, Daron, and Simon Johnson. 2007. "Disease and development: the effect of life
expectancy on economic growth." Journal of Political Economy 115.6: 925-985.

Acemoglu, Daron, Simon Johnson, and James A. Robinson. 2001. "The colonial origins of
comparative development: An empirical investigation." American Economic Review 91.5:
1369-1401.

Arthur, W. Brian. 1989. “Competing technologies, increasing returns, and lock-in by historical
events.” The Economic Journal, 99(394): 116–131.

Ashraf, Quamrul, Ashley Lester, and David N. Weil. 2009. “When Does Improving Health Raise
GDP?”  in Acemoglu, Rogoff, and Woodford, eds., NBER Macroeconomics Annual 2008,
Volume 23.

Ashraf, Quamrul H., David N. Weil, and Joshua Wilde. 2013. "The effect of fertility reduction on
economic growth." Population and development review 39.1: 97-130.

Barro, R.J., Sala-i-Martin, X. “Technological Diffusion, Convergence, and Growth.” Journal of
Economic Growth 2, 1–26 (1997)

Binswanger, Hans P., and Prabhu Pingali. 1988. “Technological Priorities for Farming in
sub-Saharan Africa.” World Bank Research Observer 3(1):81–98.

Boserup, Esther. 1965. The Conditions of Agricultural Growth: The Economics of Agrarian
Change under Population Pressure. Chicago, IL: Aldine Publishing.

Bourguignon, François and Christian Morrisson. 2002. “Inequality Among World Citizens:
1820-1992 .” American Economic Review, 92(4):727-744.

Burke, M., S. Hsiang,& E. Miguel, E. 2015. “Global non-linear effect of temperature on economic
production.” Nature 52:, 235–239

Cameron, A. Colin and Frank A. G. Windmeijer. 1996. “ R-Squared Measures for Count Data
Regression Models with Applications to Health-Care Utilization.” Journal of Business &
Economic Statistics 14( 2): 209-220.

Carlino, Gerald A., Satyajit Chatterjee, and Robert M. Hunt. 2007. “Urban Density and the Rate
of Invention.” Journal of Urban Economics 61 (3): 389–419

30



Caselli, Francesco, 2005, “Accounting for Cross-Country Income Differences,” in Philippe
Aghion and Steven N. Durlauf, eds., Handbook of Economic Growth, Volume 1, Part A.,
Amsterdam: Elsevier, Pages 679-741.

Caselli, Francesco, and James Feyrer. 2007. “The Marginal Product of Capital,” The Quarterly
Journal of Economics, 122, ( 20: 535–568.

Caselli, Francesco, and Wilbur John Coleman II. 2001. "The US structural transformation and
regional convergence: A reinterpretation." Journal of Political Economy 109.3: 584-616.

Center For International Earth Science Information Network-CIESIN-Columbia University. 2017.
“Gridded Population of the World, Version 4 (GPWv4): Population Count, Revision 10,”
Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC), DOI:
10.7927/H4PG1PPM.

Chauvin, J.P. , Glaeser, E. , Ma, Y. , Tobio, K. , 2017. What is different about urbanization in rich
and poor countries?  J. Urban Economics 98, 17–49 .

Chesnais, Jean-Claude. 1990. "Demographic transition patterns and their impact on the age
structure." Population and Development Review: 327-336.

Ciccone, Antonio and Robert Hall. 1996. “Productivity and the Density of Economic Activity.”
American Economic Review, 86, issue 1, p. 54-70

Combes, Pierre-Philippe, Gilles Duranton, Laurent Gobillon, and Sébastien Roux. 2010.
“Estimating Agglomeration Economies with History, Geology, and Worker Effects,” in Edward
L. Glaeser, editor, Agglomeration Economics University of Chicago Press, p. 15 - 66.

Combes, P.-P. , Démurger, S. , Li, S. , Wang, J., (2020). “Unequal migration and urbanisation
gains in China.” J. Dev. Econ, 142.

Combes, Pierre-Philippe, and Laurent Gobillon. 2015. “The empirics of agglomeration
economies”. Handbook of Urban and Regional Economics vol. 5, G. Duranton, V.
Henderson and W. Strange (eds.), Elsevier-North Holland, Amsterdam, 247–348 (2015).

Corbane, Christina, Aneta Florczyk, Martino Pesaresi, Panagiotis Politis, and Vasileios Syrris.
2018. “GHS built-up grid, derived from Landsat, multitemporal (1975-1990- 2000-2014),
R2018A,” European Commission, Joint Research Centre (JRC), DOI:
doi:10.2905/jrc-ghsl-10007.

Corbane, Christina, Martino Pesaresi, Thomas Kemper, Panagiotis Politis, Aneta J. Florczyk,
Vasileios Syrris, Michele Melchiorri, Filip Sabo, and Pierre Soille. 2019. “Automated global

31



delineation of human settlements from 40 years of Landsat satellite data archives,” Big Earth
Data, 3: 140–169. DOI: 10.1080/20964471.2019.1625528.

Costa, Daniela, Timothy J. Kehoe and Gajendran Raveendranathan. 2016. “The Stages of
Economic Growth Revisited, Part I: General Framework and Taking Off into Growth.”
Economic Policy Paper, Federal Reserve Bank of Minneapolis.
https://www.minneapolisfed.org/article/2016/the-stages-of-economic-growth-revisited

Das Gupta, Monica, John Bongaarts, and John Cleland. 2011. "Population, poverty, and
sustainable development : a review of the evidence," Policy Research Working Paper Series
5719, The World Bank.

Davis, Donald, R., and David E. Weinstein. 2002. "Bones, Bombs, and Break Points: The
Geography of Economic Activity ." American Economic Review, 92 (5): 1269-1289.

Deaton, Angus. 2014. The Great Escape: Health, Wealth, and the Origins of Inequality,
Princeton University Press.

Desmet, Klaus and Jordan Rappaport. 2017. “The Settlement of the United States, 1800-2000:
The Long Transition to Gibrat’s Law,” Journal of Urban Economics, 98: 50-68 .

Diamond, J. (1997). Guns, Germs, and Steel: The Fates of Human Societies, New York: Norton.

Dyson, Tim. 2013. Population and development: the demographic transition. Zed Books Ltd.

Florczyk, Aneta, Christina Corbane, Daniele Ehrlich, Sergio Freire, Thomas Kemper, Luca
Maffenini, Michele Melchiorri, Martino Pesaresi, Panagiotis Politis, Marcelo Schiavina, Filip
Sabo, and Luigi Zanchetta. 2019. “GHSL Data Package 2019,”Technical Report EUR 29788
EN, Publications Office of the European Union, DOI: 10.2760/062975.

Freire, Sergio, Kytt MacManus, Martino Pesaresi, Erin Doxsey-Whitfield, and Jane Mills. 2016.
“Development of new open and free multi-temporal global population grids at 250 m
resolution,” in Geospatial Data in a Changing World, Association of Geographic Information
Laboratories in Europe (AGILE).

Galor Oded. 2011. Unified Growth Theory, Princeton, NJ: Princeton University Press.

Galor, Oded, and Ömer Özak. 2016. "The Agricultural Origins of Time Preference." American
Economic Review, 106 (10): 3064-3103.

Galor, Oded, and David N. Weil. 2000. “Population, technology, and growth: From Malthusian
stagnation to the demographic transition and beyond,” American Economic Review 90 (4):
806-828.

32

https://www.minneapolisfed.org/article/2016/the-stages-of-economic-growth-revisited
http://faculty.smu.edu/kdesmet/papers/Gibrat.pdf
http://faculty.smu.edu/kdesmet/papers/Gibrat.pdf


Hansen, Gary D., and Edward C. Prescott. 2002. "Malthus to solow." American Economic
Review 92.4: 1205-1217.

Henderson, J. Vernon, Dzhamilya Nigmatulina, and Sebastian Kriticos, “Measuring urban
economic density,” Journal of Urban Economics 125 (2021)

Henderson, J. Vernon, Tim Squires,  Adam Storeygard and David N. Weil. 2018. "The Global
Distribution of Economic Activity: Nature, History, and the Role of Trade," The Quarterly
Journal of Economics 133(1): 357-406.

Hofmeister, Andrea, Reiner Prass, and Norbert Winnige.  1998. “Elementary Education,
Schools, and the Demands of Everyday Life: Northwest Germany in 1800” Central
European History , Vol. 31, No. 4, pp. 329-384

Howitt P., Weil D.N. (2010) economic growth. In: Durlauf S.N., Blume L.E. (eds) Economic
Growth. The New Palgrave Economics Collection. Palgrave Macmillan, London.

Jones E. L. (1981), The European Miracle: Environments, Economies and Geopolitics in the
History of Europe and Asia, Cambridge: Cambridge University Press.

Kohler, Hans-Peter. 2012. "Copenhagen Consensus 2012: Challenge Paper on ‘Population
Growth.’” PSC Working Paper Series, PSC 12-03.

Korenjak, Martin. 2018. “Humanist Demography: Giovanni Battista Riccioli on the World
Population.” Journal of Early Modern Studies,  7( 2): 73–104.,
doi.org/10.5840/jems20187214.

Kremer, Michael. 1993.  "Population growth and technological change: One million BC to 1990."
The Quarterly Journal of Economics 108.3: 681-716.

Krugman, Paul. 1991. “Increasing Returns and Economic Geography”, Journal of Political
Economy, 99 (3): 483-99.

Lucas, Robert E., Jr. 2000. “Some Macroeconomics for the 21st Century,” The Journal of
Economic Perspectives, 14(1): 159-168.

Lucas Robert E., Jr., 2002. “The Industrial Revolution: Past and Future.” In: Lucas Robert E., Jr,
editor. Lectures on Economic Growth. Cambridge, MA: Harvard University Press. pp.
109–190.

Malthus, Thomas. 1798. An Essay on the Principle of Population (first edition).  London: J.
Johnson.

33



Masters, William A., and Margaret S. McMillan. 2001. “Climate and Scale in Economic Growth.”
Journal of Economic Growth, 6(3): 167–186.

Mellinger, Andrew, Jeffrey D. Sachs, and John Luke Gallup. 2000. "Climate, Coastal Proximity,
and Development," in Clark, Gordon L., Maryann P. Feldman, and Meric S. Gertler, eds.,
The Oxford Handbook of Economic Geography, pp. 169-194.

Michaels, Guy, Ferdinand Rauch, and Steven Redding. 2012. “Urbanization and Structural
Transformation.” Quarterly Journal of Economics, 127(2): 535-586.

National Research Council. 1986. Population Growth and Economic Development: Policy
Questions. Working Group on Population Growth and Economic Development, Committee
on Population, Commission on Behavioral and Social Sciences and Education. Washington,
DC: National Academy Press.

Nordhaus, William D. 2006. “Geography and macroeconomics: New data and new findings,”
Proceedings of the National Academy of Sciences, 103 (10): 3510-3517.

Oeppen, Jim, and James W.Vaupel, “Broken Limits to Life Expectancy,” Science, Volume 296,
May, 2002, pp. 1029-31.

Parthasarathi, Prasannan.  2005. “Agriculture, Labour, and the Standard of Living in
Eighteenth-Century India.” in R.C. Allen, T. Bengtsson, and M. Dribe, eds., Living Standards
in the Past: New Perspectives on Weil-Being in Asia and Europe, Oxford University Press.

Pomeranz, Kenneth, The Great Divergence: China, Europe, and the Making of the Modern
World Economy, Princeton, NJ: Princeton University Press, 2000.

Ramankutty, Navin, Jonathan A. Foley, John Norman, and Kevin McSweeney. 2002. “The
Global Distribution of Cultivable Lands: Current Patterns and Sensitivity to Possible Climate
Change,” Global Ecology and Biogeography, 11: 377–392.

Reis, Jaime. 2005. “Economic growth, human capital formation and consumption in Western
Europe before 1800”  in R.C. Allen, T. Bengtsson, and M. Dribe, eds., Living Standards in
the Past: New Perspectives on Weil-Being in Asia and Europe, Oxford University Press.

Roche, M., Taking Innovation to the Streets: Micro-geography, Physical Structure and
Innovation. December 2020, The Review of Economics and Statistics,  102 (5): 912–928.

Rose, Amy and Eddie Bright. 2014. “The LandScan Global Population Distribution Project:
Current State of the Art and Prospective Innovation.” Paper presented at the Annual Meeting
of the Population Association of America.

34

http://qje.oxfordjournals.org/content/127/2/535.full.pdf
http://qje.oxfordjournals.org/content/127/2/535.full.pdf


Rosenthal, Stuart and William Strange. 2004. “Evidence on the nature and sources of
agglomeration economies” ch. 49, pp. 2119-2171 in Henderson, J. V. and Thisse, J. F. eds.,
Handbook of Regional and Urban Economics, vol. 4, Elsevier

Roy, Tirthankar. “Economic Conditions in Early Modern Bengal: A Contribution to the
Divergence Debate.” The Journal of Economic History, vol. 70, no. 1, 2010, pp. 179–94

Roser, Max and Esteban Ortiz-Ospina. 2016. "Global Education". Published online at
OurWorldInData.org. Retrieved from: 'https://ourworldindata.org/global-education'.

Santos Silva, J.M.C. and Tenreyro, Silvana. 2006. “The Log of Gravity,” The Review of
Economics and Statistics, 88(4), pp. 641-658.

Schiavina, Marcello, Sergio Freire, and Kytt MacManus. 2019. “GHS population grid
multitemporal (1975-1990- 2000-2015), R2019A,” European Commission, Joint Research
Centre (JRC), DOI: doi:10.2905/0C6B9751- A71F-4062-830B-43C9F432370F.

Simon, Julian L. 1976. “Population growth may be good for LDCs in the long run: A richer
simulation model,” Economic Development and Cultural Change 24(2): 309–337.

Smith, A. 1776. The Wealth of Nations, W. Strahan and T. Cadell, London

Tibshirani, Robert. 1996. “Regression Shrinkage and Selection via the Lasso” Journal of the
Royal Statistical Society. Series B (Methodological) 58(1): 267-288.

Tombe, Trevor and Xiaodong Zhu. 2019. “Trade, Migration, and Productivity: A Quantitative
Analysis of China.” American Economic Review, 109(5): 1843-72.

Weil, David N. 2014. "Health and economic growth." Handbook of economic growth. Vol. 2.
Elsevier, 2014. 623-682.

Young, Alwyn. 2005. "The gift of the dying: The tragedy of AIDS and the welfare of future African
generations." The Quarterly Journal of Economics 120.2: 423-466.

35

https://ourworldindata.org/global-education


Appendix A: Comparison of population datasets and cell-level specifications

In this appendix we first compare the distribution of population density in our main population
data source, GHS-POP, to two alternatives (GPWv4 and LandScan). We then compare
regression results using our baseline Poisson specification and a log-linear alternative, using all
three datasets -- a total of six variants.  Specifically, we compare goodness of fit and fitted
values in a regression of population on geographic characteristics. We also show the
robustness of one key result, the negative correlation between Quality Adjusted Population
Density and income per capita, to the choice of dataset and specification.

We consider three global datasets all reporting population counts for 30-arc-second by 30
arc-second pixels in Plate Carrée (latitude/longitude) projection. The area of a pixel is 0.86
square km at the equator, decreasing with the cosine of latitude.

The Gridded Population of the World version 4 (GPWv4; CIESIN 2017) is the simplest of the
three. The underlying data are population estimates for administrative regions (polygons) from
censuses circa 2010. When there is no census in exactly 2010, values are extrapolated or
interpolated from multiple censuses. Population is assumed to be distributed evenly within an
administrative region. GPWv4’s effective spatial resolution thus depends on what information
individual countries provide, with richer countries typically providing data for finer regions, down
to enumeration units, or even block level data . There is substantial variation within countries as
well, with higher resolution in more densely populated regions. Of 12.9 million input polygons
worldwide, only 2.4 million are from outside the United States. A grid cell crossing a polygon
boundary is assigned a population density that is the areally-weighted average of its constituent
polygons.

The European Union’s Global Human Settlements population layer (GHS-POP; Schiavina et al.
2019; Freire et al. 2016) reallocates GPWv4 estimates within administrative polygons based on
a companion dataset, GHS-BUILT (Corbane et al., 2018, 2019) that defines built-up pixels as
seen in Landsat 30-meter resolution satellite data circa 2015. In the rare cases where there is
no built-up area visible in a region, it reverts to the GPWv4 estimates. Its land area measures
are taken directly from GPWv4. More information about the GHS data can be found in Florczyk
et al. (2019).

LandScan uses a proprietary algorithm to provide population estimates based on a much wider
set of inputs that include census population data and satellite imagery at higher resolution than
Landsat. While the algorithm is not publicly documented and changes from year to year, in the
recent past input data have also included information on elevation, slope, and land cover, as
well as locations of road and rail networks, hydrologic features and drainage systems, utility
networks, airports, and populated urban places. LandScan reports estimates of ambient
population averaged throughout the day, whereas the other two datasets report nighttime
(residential) population estimates. A recent explanation of LandScan for an academic audience
can be found in Rose and Bright (2014).
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We rely on GHS-POP as our primary source, and consider GPWv4 and LandScan for
robustness here. GHS-POP’s use of building cover to redistribute people within census units is
very likely to provide more accuracy than GPWv4’s assumption of uniform density within large
administrative units.

LandScan aims to achieve the same goal of redistributing population based on built cover.
However, as noted, it uses other information in making assessments, including higher resolution
satellite imagery. LandScan may thus do a better job of finding the built environment in rural
locations and it may have greater accuracy in dense but low income cities with coarse
population data.

However LandScan has four main drawbacks. First, it has historically used coarse census data
as a benchmark outside of the United States. While better satellite imagery can better define37

the built environment, to convert that to population one still needs fine grained census
population data. Second and more importantly, LandScan’s algorithm uses physical features like
elevation directly to predict population density. This raises the possibility that our regressions will
end up simply predicting LandScan’s algorithm rather than true population density. Third,
LandScan’s algorithm changes from year to year and is not documented. Finally LandScan
measures the ambient population over the 24 hours of a day, making inferences about where
people work and for how many hours of the day, without, as we understand it, much if any
spatial economic census data which are unavailable for many developing countries anyway.
This seems likely to add error without benefit for our purposes.

Figure A.1 Panel A reports the cumulative distribution function (CDF) of log population density
according to the three datasets, with zeros in each dataset replaced with that dataset’s minimum
nonzero value before logging. In this and all other subnational empirical work, our unit of
analysis is a quarter-degree grid square, a 30-by-30 array of 30-arc-second pixels.
The Figure shows that the three data sets treat grid squares with tiny densities very differently
For example GHS-POP registers about 40% of cells as having no people, with nonzero
densities starting at 0.0000000033/km2, while LandScan registers only about 24% of grid
squares at 0, with non-zero densities starting at about 0.0013/km2. By population densities of
about 50/km2 (exp(3.9)), the three lines converge, at which point about 85% of pixels have been
accounted for. Panel B of Figure A.1 analogously reports cumulative population by density. It
shows that less than 10% of the world population lives at a density under 50/km2. However,
since our unit of analysis is the grid square, these tiny densities potentially play an important
role.

37 LandScan has not released details about its current census data, but as of its 2009 version "Globally,
LandScan uses 8,285,172 census inputs, whereas GPW v.3 uses 399,747 units.... Outside the USA
LandScan used 79,590 administrative units for ambient modeling. By contrast, GPWv3 uses  338,863
units outside of the US." Source:
https://sedac.uservoice.com/knowledgebase/articles/41665-what-are-the-differences-between-gpw-grump
-and-la
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We now further flesh out the log-linear specification, in order to compare it to our main Poisson
specification. Given the log-linear  specification from (7a) ,

, the corresponding OLS estimate of the country𝑙𝑛(𝐿
𝑖,𝑐

/𝑍
𝑖, 𝑐

) =  𝐶
𝑐
 + 𝑋

𝑖,𝑐
'β + ϵ

𝑖,𝑐 
constant is

(A.1) .𝐶
𝑐

^
= 1

𝑁
𝑐 𝑖∈𝑐

∑ 𝑙𝑛
𝐿

𝑖,𝑐

𝑍
𝑖,𝑐

( ) −
𝑖∈𝑐
∑ 𝑋

𝑖,𝑐
' β

𝑂𝐿𝑆( )( )
Our OLS estimate of cell i’s log population density when setting all the country fixed effects to

zero to equalize all factors that vary at the country level is . The𝑙𝑛
𝐿

𝑖,𝑐

𝑍
𝑖,𝑐

( ) = 𝑋
𝑖,𝑐

' β
𝑂𝐿𝑆

analogous estimate of population density level is where is
𝐿

𝑖,𝑐

𝑍
𝑖,𝑐

 = 𝑒𝑥𝑝 𝑋
𝑖,𝑐

' β
𝑂𝐿𝑆

+ 𝑠
2

2( ) 𝑠
2

the variance of the error term in the estimated equation (which we assume to be homoskedastic
across countries).  Fitted national population is then:
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Finally, we can calculate the ratio of actual to expected population, where the latter is based on
the fitted value suppressing country fixed effects.  This is what we have been calling
quality-adjusted population density.
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An obvious problem with this approach is that, as discussed above, there are a significant
number of grid cells with zero measured population in our data.  In implementing the log-linear
specification, we assigned to such cells the population density of the least dense non-zero cell
in the dataset before logging. We also experimented with creating versions of the logged
GPWv4 and GHS-POP datasets in which cells with zero density are assigned the minimum
nonzero density value in LandScan.  As shown in Figure A.1, LandScan’s minimum value is
much larger than the minimum non-zero density in the other two datasets.

Figure A.2 compares cell-level predicted values across the three datasets. Using the Poisson
specification (Equation 7b), Panel A shows that all three data sets give very similar predicted
values. This is because the Poisson specification makes little distinction between cells that have
moderately low density and those that have extremely low density. By contrast, in Panel B, there
are large differences across datasets when using the log-linear specification (Equation 7a),
driven by the differing treatments of low density regions.
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Table A.1 reports goodness of fit measures for geographic variables, country fixed effects, and
both, analogously to Table 1, Row 1, for the six variants. In the first 3 rows zeros are assigned
their dataset-specific minimum non-zero value. In rows 4 and 5 zeros in GHS-POP and GPWv4
are assigned the LandScan minimum value. Results across all data sets and specifications are
generally similar.

Table A2 reports ten variants of Table 4, column 3, each corresponding to a variant reported in
Table A.1. Log-linear results in columns 1, 3 and 5 vary enormously across datasets, while
Poisson results in columns 2, 4 and 6 do not. Columns 7-10 censor at the Landscan  minimum.
Poisson results (columns 8 and 10) are also insensitive to this, while log-linear results (columns
7 and 9) are much more sensitive.

Finally Table A3 reports the main grid square Poisson estimation of equation (7b), column 1
without country fixed effects and column 2, the main results, with country fixed effects.

Appendix B. Choice of geographic variables

GAEZ provides more than a hundred variables that may be relevant to predicting land quality or
population density; the baseline specification adopted in the main text includes only a limited
subset of such variables. We verify that the baseline specification performs sufficiently well
compared to alternate combinations of covariates using the Least Absolute Shrinkage and
Selection Operator (Lasso) estimator.

Lasso is a regularization technique that adds a penalty term to coefficients. In the Poisson
context, it solves the following minimization problem (Friedman et al., 2010):

(A.4) 𝑚𝑖𝑛
β

− 1
𝑁 𝑙(β|𝑋, 𝑌) +  λ

𝑖=0

𝑁

∑ |β
𝑖
|

Where the log likelihood is

(A.5) 𝑙(β|𝑋, 𝑌) =
𝑖=0

𝑁

∑ (𝑦
𝑖
β𝑇𝑥

𝑖
) −  𝑒

β𝑇𝑥
𝑖

We fit Poisson models with Lasso on three sets of possible covariates: baseline specification,
expanded baseline specification, and fully interacted specification. The baseline is identical to
the specification used in the main text and includes 53 variables; the expanded baseline adds to
the baseline 66 climate class indicators for a total of 119 variables; and the fully interacted
specification adds to the expanded baseline the squares of all continuous non-crop suitability
variables as well as all nonzero two-way interactions between such variables for a total of 951
variables.
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In order to allow for random samples to be stratified by country, we restrict the sample to
countries that include more than 10 grid cells; this excludes Hong Kong, Liechtenstein,
Luxembourg, Palestine, and Singapore. The country grid data are then randomly split into
training and testing data so that we can assess the out-of-sample performance of each
specification. 10 sets of 75% training and 25% testing samples were generated.

We identify optimal values of and fit Poisson models via 5-fold cross-validated Lasso for eachλ
specification on the 10 training sets. The folds are stratified by country, and country fixed effects
are not allowed to be excluded from the set of covariates. Two s are defined as “optimal”: theλ λ
that yields minimum deviance and the largest with deviance within one standard error of theλ
optimum (1SE ). The latter is used to select more parsimonious models against overfitting, asλ
per the “One Standard Error Rule.” Once the appropriate s are found, the fitted models forλ

each specification are applied to the corresponding test set to calculate the of𝑅
𝐷𝐸𝑉
2

out-of-sample predictions for each specification. Final fitted values were then generated by
using the optimal to refit the models on the full grid-cell dataset that excludes countries withλ
fewer than 10 grid cells. To generate comparison out-of-sample predictions, we also fit each
specification using the standard maximum-likelihood Poisson regression on the 10 training sets.

Panels A and B of Appendix Table B1 shows summary statistics for and the number of𝑅
𝐷𝐸𝑉
2

covariates chosen from each specification over 10 sets of training and test splits. We find that

the out-of-sample for either s in all specifications are not notably different from that of the𝑅
𝐷𝐸𝑉
2 λ

baseline regression estimated with standard Poisson. Compared to the baseline out-of-sample

of 0.563, the maximum out-of-sample from Lasso is 0.587, not a substantial𝑅
𝐷𝐸𝑉
2 𝑅

𝐷𝐸𝑉
2

improvement, given the exponential increase in the number of covariates. It must be noted that
plotted deviations were extremely flat near the beginning of the tested sequences for mostλ
Lasso regressions; it may be that the dimensions of our data are insufficient for Lasso.

The final fitted values generated for each specification are then aggregated on the country level.
10 variant ALQs are thus generated for each Lasso specification, for which we calculate the
pairwise correlation with the baseline ALQ. We further generate ALQs for each specification
fitted with the standard maximum likelihood Poisson, which do not differ across the 10 runs.
Panel C of Table B1 displays the mean and standard deviation of these pairwise correlation
coefficients; these alternate specifications and use of Lasso yield results that are highly
correlated with the baseline specification ALQ used in the main text.

Appendix C: Other results

Table C.1 reports log Average Land Quality (ALQ), log conventional area, log Quality-adjusted
Area (QAA), log conventional population density, and log Quality-adjusted population density
(QAPD), for each country in the grid-cell-level estimation (Tables 1 and 2). It also reports
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whether they appear in the country-level sample and the 1820 sample, and their value of
1(Native<0.8). Finally, in Tables C2-C5, it repeats Tables 5-8 in the text using the Gapminder
data.

Appendix D: Illustrative Model

We present a simple macro-demographic model that captures the main mechanisms that we
think explain the data.   Countries differ exogenously only in their levels of land quality.  As in
Lucas (2000), there is a lead country that takes off into growth, with trailing countries that take
off at later dates.  Unlike the Lucas model, where takeoff into growth is stochastic, we model
takeoff dates as a deterministic function of land quality.

Productivity in the lead country grows at a constant rate, while trailing countries, once they
experience takeoff themselves, benefit from a productivity spillover that leads to long-run
convergence of productivity levels.  In addition, as discussed in the text, we allow for a spillover
of health technology from leaders to followers that is faster than the spillover of productive
technology.

Population growth is just the difference between fertility and mortality rates, both of which are
endogenous.   Countries move from a Malthsuian equilibrium in which mortality and fertility are
both high while income per capita and the size of the population are both constant, through a
demographic transition in which fertility and mortality fall while population growth increases, into
a post-transition equilibrium of constant population and constantly growing income.

Land Quality and the Takeoff into Growth

Countries differ exogenously in their land quality, which is constant over time.  Land𝐴𝐿𝑄
𝑖
 ,  

quality plays two roles in the model.  First, it appears directly in the production function.  As will
be seen below, the determinants of population growth are such that prior to takeoff all countries
are in Malthusian steady states with income per capita normalized to one.  In this setting,
conventionally defined population density will just be proportional to land quality.

The second role of land quality is in determining the date of takeoff.  In the text, we show that
there is a strong empirical relationship between these variables.  Although we do not model it
explicitly, we assume that the underlying mechanism here is through agglomeration and
Marshallian externalities.  Concretely, we set the relationship between and takeoff to be the𝐴𝐿𝑄 
one estimated in the text, with  a one log unit decrease in leading to a takeoff that is 26𝐴𝐿𝑄 
years later.

We normalize the time of takeoff of the country with highest to be date zero.  In the figures𝐴𝐿𝑄
below, we normalize the log of in the first country to take off to be zero, and consider values𝐴𝐿𝑄
of log ALQ in trailing counties as low as -4.83 (consistent with land quality differing by a factor of

41



125.  Recall that in our data, the log of ranges from a high of 2.82 (Netherlands) to a low of𝐴𝐿𝑄
-3.15 (Niger).

Technology and Production

The model of technological progress is based on Lucas (2000) and Barro and Sala-i-Martin
(1997).  Prior to takeoff in the lead country, technology is stagnant and equal everywhere in the
world.  We normalize this level of technology as In the lead country, technology grows at𝐵 = 1.
a constant rate of following takeoff.  Follower countries experience technological𝑔

𝐵

convergence after their own takeoff dates:

 (1)                                  
𝐵

𝑖, 𝑡+1

𝐵
𝑖, 𝑡

= (1 + 𝑔
𝐵

) ×
𝐵

𝑙, 𝑡

𝐵
𝑖, 𝑡

( )β

                                                        β > 0

Where is the level of technology in the leading country.𝐵
𝑙

In every country, output is produced with labor and a fixed quantity of quality adjusted land.
From equations (3) and (5) in the main text, the level of GDP per capita in a country is given by

(2)                                      𝑦
𝑖, 𝑡

 =  𝐵
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where is quality adjusted population density. Population growth is given by the difference𝑄𝐴𝑃𝐷
between fertility and mortality rates.  We do not explicitly consider the age structure of the
population or the ages at which childbirth and mortality take place.  Life expectancy ( ) is just𝑒

0

the inverse of the mortality rate ( ). The growth of population is thus given by the equation𝑚

(3)                                                    𝐿
𝑡+1

= 𝐿
𝑡
 (1 + 𝑓 − 𝑚)

Mortality

We model life expectancy in the lead country as a function of time since takeoff.  Pre-takeoff life
expectancy is set to 30 years.  Oeppen and Vaupel (2002) show that in the period since 1840,
life expectancy at birth in the country with the greatest longevity has increased at a constant
linear pace of 3 months per year.  We implement this in equation (4):

(4)                                                   𝑒
0,𝑙

= 30 +  0. 25 * 𝑙𝑛(𝐵
𝑙
)/𝑙𝑛(1 + 𝑔

𝐵
) 

Given the constant exponential growth of , there will be corresponding linear growth of life𝐵
expectancy.  Over 200 years, life expectancy in the lead country rises from 30 to 80, which is
quite close to historical experience.
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For trailing countries, we model life expectancy as being based on a combination of life
expectancy in the lead country and life expectancy that would be justified by productive
technology in the country itself, where the latter relationship is the same as in the lead country:

(5)                                            𝑒
0, 𝑖

 =  ω [30 +  0. 25 * 𝑙𝑛(𝐵
𝑖
)/𝑙𝑛(1 + 𝑔

𝐵
)] +  (1 − ω)𝑒

0, 𝑙

The parameter embodies the spillover of health technologies from the leader to the follower,ω
and specifically, the extent to which this spillover of health technologies exceeds the spillover of
productive technologies that is embodied in .𝐵

𝑖

Fertility

The fertility rate in the pre-takeoff period is set so that when income per capita is equal to 1,
fertility is equal to mortality, which in turn was set so that life expectancy was 30 years.
Specifically this implies .    Following Hansen and Prescott (2002), we model 𝑓 = 𝑚 = 0. 03333
the relationship between income and population growth as being composed of three segments:
First, there is an upward sloping segment, in which higher income raises fertility.  Then there is a
downward sloping segment in which higher income lowers fertility.  Finally, above a fixed level of
income, fertility is constant at the rate consistent with zero population growth.  Hansen and
Prescott model the transition from the first to the second regime as occurring when income is
twice the level of the Malthusian steady state, and the transition from the second to the third
regime as occurring when income is 18 times the Malthusian steady state, with all segments of
the function being linear.  They also model the peak population growth rate (when income is
twice the Malthusian level) as being 2% per year (or a doubling every 35 years, which is the
time period in their model).

We copy this structure, with minor modifications.  In our model, population growth is a function
of both fertility and mortality, with mortality changing following takeoff, as described above.  We
then model the fertility function as having the same three segments as in Hansen and Prescott,
specifically choosing the slope parameters so that in the leading country population growth is
2% when income per capita is (approximately) twice the Malthusian level and 0% when income
per capita is 18 times the Malthusian level.

                       𝑓
𝑡
     =   . 03333 + γ

1
(𝑦

𝑡
− 1)                                         𝑖𝑓    𝑦

𝑡
< 𝑦* 

(6)                         =   . 03333 +  γ
1
(𝑦* − 1) + γ

2
(𝑦

𝑡
− 𝑦*)          𝑖𝑓       𝑦* ≤ 𝑦 ≤ 18 

                               =    𝑚
𝑡
                                                                             𝑖𝑓      𝑦

𝑡
> 18
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The level of income at which fertility begins to decline, , is not set to 2, as in Hansen and𝑦*

Prescott, because falling mortality leads population growth to continue to rise with income over

a range even as fertility is falling.  Rather, we choose , along with the other parameters of the𝑦*

model, to hit a maximum population growth rate of 2% at an income level close to 2.

In carrying over the analysis to countries that are not the lead country, we maintain the effect of
income on fertility calibrated in the lead country.  Since these trailing countries have lower
mortality (for a given level of income) than does the lead country, they will in turn experience
faster population growth at any level of income than did the lead country.  We think of this
change as being particularly appropriate for looking at population growth in late-starting
countries, which indeed experienced higher levels of peak population growth than those that
took off first.

Parameterization

We set the weight on land in the production function to 0.25.

The three parameters that describe fertility are chosen with the following values:

𝑦* =          1. 5
γ

1
=         0. 02

γ
2

=  − 0. 0018

Together these yield a maximum population growth rate of 2% when income is equal to 3.5
times its Malthusian level in the lead country.  This doesn’t exactly match the Hansen and
Prescott specification, but it is as close as we could manage to come.  These parameters are
also chosen so that there is no discontinuity in fertility in the lead country when income crosses
the threshold of 𝑦 = 18.38

The parameter , which gives the weight on a country’s own technology vs. that of the worldω
leader in determining the mortality rate, is set at 0.25.  We had no firm basis for choosing this
value, but did so in order to produce an increase in population in trailing countries that seemed
reasonable.

The value of , the growth rate of technology in the lead country, is chosen such that in the𝑔
𝐵

 

steady state, with constant population, GDP grows at 2% per year.  The final parameter in our
model is in equation (1), which determines the speed of technological catch up (for bothβ

38 In trailing countries mortality rates are lower for any given level of income than in the leader, but we
model the fertility process in these countries as being the same as in the leader.   Thus there is a discrete
downward jump in fertility in trailing countries when they cross the threshold of 18 times Malthusian
income.
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productivity and health) among trailing countries.  In Lucas (2000), the analogous parameter
has a value of 0.025  In our view, this value was too high, even for the setting that Lucas was
trying to describe.  It implies that a country that takes off 200 years after the leader will have an
initial growth rate (of GDP per capita in his model; technology in ours) of 12% per year.  Lucas
seems to have been swayed by the experience of a few countries that had episodes of
spectacular growth in the second half of the 20th century, but these are unusual.  In any case, to
fit our model to the data, we choose a much lower value of 0.005, implying slower catchup after
takeoff.

The results of the model are presented in Figures 11 A and B.
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Tables

Table 1. Goodness of Fit Under Alternative Samples

Country Only Geography Only Both N

Full Sample 0.344 0.464 0.566 237, 023
Exclude Six Large Countries 0.317 0.366 0.486 108, 872
Early Agglomerators Only 0.328 0.526 0.571 134, 211
Late Agglomerators Only 0.264 0.443 0.530 102, 619

Native >80% 0.338 0.523 0.578 131, 555

Note: All regressions use the GHS dataset and Poisson specification. Goodness of fit measure is R2
DEV .

1



Table 2. Land Quality Measures and Income

(1) (2) (3) (4)
Dependent variable: log GDP per capita

Land quality measure: log ALQ
log ALQ, no
fixed effects

log calories
per hectare

log land
suitability

Land quality measure 0.430∗∗∗ 0.259∗ -0.673∗∗∗ -0.0222
(0.0716) (0.125) (0.168) (0.0462)

Native<80% 0.241 0.312 0.250 0.277
(0.194) (0.202) (0.191) (0.204)

Constant 8.946∗∗∗ 8.903∗∗∗ 14.96∗∗∗ 8.638∗∗∗

(0.114) (0.132) (1.501) (0.662)
Observations 148 148 146 148
R-squared 0.180 0.0478 0.0911 0.0133

Notes: Column (2) uses the analogue of our ALQ measure, but constructed from a grid-cell regression
that does not include county fixed effects. Column (3) is the log of million calories of agricultural
production potential per hectare per year at intermediate input technology, from Galor and Ozak (2016).
Column (4) calculates the log of land suitability divided by land area, from Ramankutty et al. (2002).
Standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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Table 3. Robustness of ALQ and Income Relationship

(1) (2) (3) (4) (5)
Dependent variable: log GDP per capita

Grid cell regression Baseline
Drop 6
Largest

Only Early
Agglomerators

Only Late
Agglomerators

Native >0.8

ALQ measure 0.430∗∗∗ 0.340∗∗∗ 0.320∗∗∗ 0.422∗∗∗ 0.436∗∗∗

(0.0716) (0.0820) (0.0533) (0.0486) (0.0732)

Native<80% 0.241 0.204 0.216 0.271 0.239
(0.194) (0.205) (0.190) (0.185) (0.195)

Constant 8.946∗∗∗ 8.951∗∗∗ 9.103∗∗∗ 9.071∗∗∗ 8.964∗∗∗

(0.114) (0.120) (0.128) (0.0996) (0.111)
Observations 148 148 148 148 148
R-squared 0.180 0.108 0.175 0.278 0.190

Note: We restrict the sample in these regressions to exclude countries with areas below 1,500 km2. Standard errors
in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 4. GDP per Capita, Population Density, and QAPD in 2010

(1) (2) (3) (4)
Dependent Variable log 2010 GDP per Capita
log Population 0.0360 0.0905
Density (GHS) (0.0840) (0.116)

log QAPD (Poisson -0.352∗∗∗ -0.515∗∗∗

GHS) (0.0868) (0.0959)

Native<80% 0.299 0.0259
(0.212) (0.227)

Constant 8.787∗∗∗ 8.553∗∗∗ 10.46∗∗∗ 11.17∗∗∗

(0.373) (0.503) (0.387) (0.420)
Observations 148 96 148 96
R-squared 0.0128 0.00648 0.138 0.212

Standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. Columns (2) and (4) restrict
the sample to countries where Native is greater than or equal to 80%.
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Table 5. ALQ and Conventional Population Density

(1) (2) (3) (4) (5) (6)
Sample all exclude native< 80%
Dependent Variable log Population Density
Year 2010 2010 1820 2010 2010 1820
log ALQ (Poisson 0.463∗∗∗ 0.515∗∗∗ 0.768∗∗∗ 0.498∗∗∗ 0.561∗∗∗ 0.891∗∗∗

GHS) (0.0716) (0.114) (0.119) (0.0730) (0.110) (0.0896)

Native<80% -0.668∗∗ -0.611∗ -2.190∗∗∗

(0.202) (0.281) (0.344)

Constant 4.311∗∗∗ 4.241∗∗∗ 2.217∗∗∗ 4.311∗∗∗ 4.224∗∗∗ 2.172∗∗∗

(0.0960) (0.150) (0.156) (0.0959) (0.151) (0.152)
Observations 148 77 77 96 50 50
R-squared 0.254 0.289 0.563 0.313 0.385 0.577

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 7. GDP per Capita, Population Density, and QAPD in 1820

(1) (2) (3) (4)
Dependent Variable log 1820 GDP per Capita, Maddison
log 1820 Population 0.119∗∗ 0.200∗∗∗

Density, Maddison (0.0406) (0.0465)

log 1820 QAPD, -0.0321 0.00760
Maddison (0.0449) (0.0981)

Native<80% 0.290 -0.164
(0.152) (0.158)

Constant 6.742∗∗∗ 6.515∗∗∗ 7.146∗∗∗ 7.059∗∗∗

(0.105) (0.112) (0.133) (0.237)
Observations 49 33 49 33
R-squared 0.159 0.354 0.0150 0.000194

Standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. Columns (2) and (4) restrict
the sample to countries where Native is greater than or equal to 80%.
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Figure 2. Country Level Quality Adjusted Area

A. Countries by Land Area

B. Countries by Quality Adjusted Area
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Figure 3. Top 80 Countries by Fitted Population
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Figure 4 log Conventional Density and log ALQ
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Figure 5. log GDP and log ALQ
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Figure 6. Conventional and Quality Adjusted Population Density Across Countries
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Figure 7. Density and GDP per Capita

A. Conventional Population Density and GDP per Capita

B. Quality Adjusted Population Density and GDP per Capita
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Figure 8. Takeoff Year and log ALQ
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Figure 9. ALQ and Historical GDP per Capita
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Figure 10. Time to Get from Life Expectancy of 35 to 50
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Years 
Since
First 
Takeoff

Years 
Since 
First 
Takeoff

Figure 11: Model Results  

A.  Quality Adjusted Population Density 

B.   Income per Capita



Appendix Tables

Table A.1. Goodness of Fit for Grid Cell Level Regressions

Log-linear Specification Poisson Specification
Country Only Geography Only Both Country Only Geography Only Both

GHS 0.359 0.537 0.597 0.344 0.464 0.566
GPW 0.551 0.520 0.758 0.390 0.504 0.620

LandScan 0.482 0.630 0.738 0.364 0.479 0.593
GHS Censored 0.411 0.574 0.658 0.344 0.464 0.566
GPW Censored 0.557 0.606 0.800 0.390 0.504 0.620

Note: The table reports R2 values for the log-linear regressions and R2
DEV for the Poisson specification.
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Table B.1. Lasso Summary

A. Mean of Results from 10 Draws.

Nonlasso Min. Dev. Lasso 1SE Lasso
Specification Train Test Full # Coef. Train Test # Coef. Train Test # Coef.
Baseline 0.565 0.558 0.563 53 0.563 0.558 44.3 0.526 0.525 16.7
Expanded Baseline 0.574 0.566 0.572 119 0.572 0.566 79.2 0.536 0.536 28.4
Fully Interacted 0.693 0.616 0.674 951 0.644 0.587 265 0.588 0.568 83.6

Note: The Fully Interacted specification only includes 9 out of the 10 draws; the training-test split for one
draw generated nonsensical out-of-sample R2

dev results. Results of individual train-test draws are available
upon request.

B. Standard Deviation of Results from 10 Draws.

Nonlasso Min. Dev. Lasso 1SE Lasso
Specification Train Test Full # Coef. Train Test # Coef. Train Test # Coef.
Baseline 0.00666 0.0222 0.00144 0 0.0064 0.0214 1.77 0.013 0.0187 2.58
Expanded Baseline 0.00635 0.0216 0.00152 0 0.00632 0.0211 9.25 0.0124 0.0195 3.53
Fully Interacted 0.00283 0.0316 0.0104 0 0.00644 0.0467 35.5 0.0164 0.0214 23.3

Note: The Fully Interacted specification only includes 9 out of the 10 draws; the training-test split for one draw gener-
ated nonsensical out-of-sample R2

dev results. Results of individual train-test draws are available upon request.

C. Summary Statistics of Pairwise Correlation with Baseline log ALQ

Specification Mean Standard deviation

Nonlasso
Baseline 1.000 0.000
Expanded baseline 0.992 0.000
Fully Interacted 0.817 0.000

Min. Dev.
Baseline 0.999 0.000
Expanded baseline 0.992 0.000
Fully Interacted 0.922 0.015

1SE Dev.
Baseline 0.891 0.030
Expanded baseline 0.918 0.019
Fully Interacted 0.952 0.007

Note: Pairwise correlations are of country-level log ALQ for the main sample
with baseline log ALQ in the main text. All specifications were estimated on
the grid-cell dataset excluding countries with 10 or fewer observations.
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Table C.2. ALQ and Conventional Population Density, Gapminder

(1) (2) (3) (4) (5) (6)
Sample all exclude native< 80%
Dependent Variable log Population Density
Year 2010 2010 1820 2010 2010 1820
log ALQ (Poisson 0.463∗∗∗ 0.434∗∗∗ 0.713∗∗∗ 0.498∗∗∗ 0.488∗∗∗ 0.854∗∗∗

GHS) (0.0716) (0.0751) (0.0863) (0.0730) (0.0777) (0.0643)

Native<80% -0.668∗∗ -0.633∗∗ -1.667∗∗∗

(0.202) (0.207) (0.239)

Constant 4.311∗∗∗ 4.309∗∗∗ 2.174∗∗∗ 4.311∗∗∗ 4.308∗∗∗ 2.172∗∗∗

(0.0960) (0.0992) (0.102) (0.0959) (0.0990) (0.101)
Observations 148 139 139 96 93 93
R-squared 0.254 0.236 0.485 0.313 0.294 0.551

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table C.4. GDP per Capita, Population Density, and QAPD in 1820, Gapminder

(1) (2) (3) (4)
Dependent Variable log 1820 GDP per Capita, Gapminder
log 1820 Population 0.0979∗∗ 0.173∗∗∗

Density, Gapminder (0.0318) (0.0381)

log 1820 QAPD, -0.0582 -0.0144
Gapminder (0.0335) (0.0563)

Native<80% 0.185∗ -0.0711
(0.0801) (0.0909)

Constant 6.608∗∗∗ 6.444∗∗∗ 6.948∗∗∗ 6.853∗∗∗

(0.0681) (0.0809) (0.0853) (0.124)
Observations 139 93 139 93
R-squared 0.0858 0.240 0.0222 0.000767

Standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. Columns (2) and (4) restrict
the sample to countries where Native is greater than or equal to 80%.
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Appendix Figures

Figure A.1. Population Distributions by Grid Square Worldwide
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Figure A.2. Predicted Values

A. Poisson Fit Across Datasets
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B. Log-linear Fit Across Datasets
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