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1 Introduction

Classic theories of education markets predict that school choice can improve the allocative
efficiency of sorting students to schools (Hoxby, 2003). By improving match quality, choice
policies hold the potential to engineer improved student outcomes. Yet, existing research in
the U.S. fails to find meaningful evidence that student-school match effects exist at all (Ab-
dulkadiroğlu et al., 2020, Mountjoy and Hickman, 2020). Moreover, even substantial changes to
the choice environment can fail to produce meaningful improvements in student-school match
quality (Campos and Kearns, 2022).1

Imperfect information is a leading hypothesis that can rationalize the gap between theory
and data. Families may not know their match quality when choosing schools and only learn
gradually through trial and error (Arcidiacono et al., 2016, Larroucau and Rios, 2020). The
coronavirus disease (COVID-19) pandemic provides an unusual and unique setting in which
families were compelled to assess their relative suitability for a particular schooling option:
remote learning. Although mounting evidence shows that remote learning contributed to sizable
learning losses during the pandemic (Goldhaber et al., 2022, Jack et al., 2022, Singh et al.,
2022), school districts across the country are now planning to offer permanent, expanded remote
options to satisfy ongoing parental demand (Musaddiq et al., 2022). The continued demand
for remote learning underscores the need for a deeper understanding of which students are best
suited for this schooling option.

This paper studies remote learning and the allocative efficiency of students to instructional
modes in the post-pandemic environment. We focus on the second-largest school district in the
U.S., the Los Angeles Unified School District (LAUSD). At the onset of the pandemic, every
student in the district had to participate in virtual learning, with the following year involving
a cycle of in-person and remote periods. This unusual experience allowed families to assess
their students’ relative suitability for remote learning over an extended period and across a
large spectrum of K-12 ages.2 In 2022, LAUSD returned to in-person learning as the dominant
mode of instruction but continued to offer a remote-learning option that was chosen by 14,000
students. Why did so many families continue to prefer the remote option? Evidence on this
question is scarce. Bacher-Hicks et al. (2022) find decreases in bullying during the remote era,
implying demand for safety may play a role. In a higher education context, Aucejo et al. (2020)
find substantial heterogeneity in students’ perceived remote-learning experiences, suggesting
academic success may also be a factor.

Our analysis relies on a novel survey that we designed to learn about family experiences
and preferences for remote learning. Following previous research using choice experiments to
understand preferences for workplace characteristics and flexibility (Mas and Pallais, 2017,
Wiswall and Zafar, 2018), we use a series of medium-stakes hypothetical choices to experimen-
tally identify families’ preferences for the remote option. The hypothetical choices provide rich
information about how families trade off academic quality, travel time, and remote offerings

1Bau (2022) is an exception, providing evidence from Pakistan on the importance of match quality. Bruhn
(2019) finds substantial match effects in terms of sorting between districts.

2This cycle of remote to in-person learning in L.A. is remarkably similar to the experience of other school
districts across the U.S. (Jack et al., 2022). Our setting provides a natural context for studying ongoing selection
into remote learning.
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while holding remaining school attributes fixed.3

The data on parental preferences serve a dual empirical purpose. First, our main empirical
exercise leverages the preferences identified via the choice experiment to account for selection
into remote learning. Intuitively, parents with similar preferences plausibly have a similar
propensity to choose the remote option. More concretely, this strategy relies on the notion that
preference heterogeneity is driving the selection into remote learning. Under this assumption,
we can draw from existing literature on selection corrections built from revealed preferences to
recover unbiased estimates of the causal effect of remote learning on student outcomes (e.g., Ab-
dulkadiroğlu et al., 2020, Einav et al., 2022, Heckman, 1979, Kline and Walters, 2016, Mountjoy
and Hickman, 2020, Rosembaum and Rubin, 1983). Our approach differs in that our preference
estimates come from experimental data rather than observed choices. Second, the preference
estimates also serve as an important measure of demand. This allows us to explore the nature
of selection on levels versus gains in the spirit of Roy (1951) by asking if families with stronger
preferences for the remote option experience greater causal benefits.

Our analysis of the remote-learning survey data begins with a basic descriptive analysis of
parental experiences and demand for remote learning. Although most respondents report having
a negative experience with remote learning during the pandemic, one-third want expanded
remote offerings, and a quarter expect to enroll their children in remote learning in the future.
Moreover, 20 percent feel their children excelled in remote learning relative to traditional,
in-person instruction. These findings suggest there is substantial scope for permanent, post-
pandemic remote offerings to generate improvements in match quality.

Hypothetical choice data allow us to move beyond descriptive facts and experimentally iden-
tify family-specific preference estimates. Consistent with previous literature spanning several
countries, we find that families have a taste for academic quality and a distaste for distance
(Abdulkadiroğlu et al., 2020, Ainsworth et al., 2020, Allende, 2019, Beuermann et al., 2022,
Burgess et al., 2015, Campos and Kearns, 2022, Neilson, 2021). Unsurprisingly, the average
family has a strong distaste for remote learning: they would need to be compensated with a 40
percentage point increase in academic standards to be indifferent between remote and in-person
offerings. Reassuringly, we do not find a distaste for remote learning among families currently
enrolled in remote offerings or among those who indicated they anticipate doing so in the future.
Overall, the survey provides the first rigorous evidence about families’ varying tastes for remote
learning in the post-pandemic landscape.

Next, we use our experimentally derived preference estimates to explore selection into re-
mote learning. The conceptual framework that we propose considers selection bias governed
by students’ preferences for remote learning, which we can estimate directly using our choice
experiments. Our preferred approach is in the spirit of Rosembaum and Rubin (1983) and ac-
counts for selection bias in the impact of remote learning by conditioning on propensity scores
implied by the experimental preference estimates. This strategy balances both baseline achieve-
ment and a summary index of baseline student characteristics, which we show is infeasible when
conditioning on a rich set of covariates alone. In terms of causal impacts, we estimate average

3Prior work finds that preference estimates from similar experiments contain a high degree of external validity
(Wiswall and Zafar, 2018).
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remote-learning effects of −0.14σ on reading and −0.17σ on math. These estimates differ sub-
stantively from simple models: regression adjustment with lagged achievement and standard
covariates generates estimates ranging between −0.28σ and −0.31σ.

Our final analysis studies heterogeneous remote-learning effects. We find evidence of negative
selection on levels, indicating that students with high demand for remote learning perform
poorly regardless of the school they enroll in. In contrast, our analysis also finds evidence of
positive selection on gains, suggesting families choose remote learning, at least partly, using
factors that correlate with their child’s suitability for remote instruction. This has important
policy implications for understanding the efficiency of ongoing efforts to expand remote offerings.
Taking our extrapolation at face value implies that students above the 90th percentile of remote-
learning proclivity fared no worse in remote instruction, while those at the 95th percentile and
above experienced improvements of at least 0.04σ. This suggests that prior estimates of the
impact of remote learning during the pandemic may not accurately predict the future effects
that expanded remote offerings could have on the students who opt in.

We address several concerns with our empirical strategy. First, we replicate our analysis
using observational preference estimates and are unable to balance lagged achievement. This
emphasizes that the balancing nature of our approach is not a spurious consequence of con-
necting any choice data to the reduced-form approach and underscores the importance of our
survey data. Second, we show that our estimates are robust to alternative parameterizations of
the underlying choice model. Last, we adopt empirical approaches that account for selection on
unobserved preference heterogeneity (Abdulkadiroğlu et al., 2020) and find qualitatively similar
evidence, assuaging concerns about selection on unobserved dimensions.

This paper contributes to three broad literatures. A nascent but growing literature has
focused on estimating the effects of remote or virtual learning. Bueno (2020) finds substantial
negative effects of remote learning in the pre-pandemic era but also documents negative trends
before the switch to remote. More recent evidence estimates remote-learning effects during
the pandemic, reaching a consensus that the pandemic caused sizable learning loss (Goldhaber
et al., 2022, Jack et al., 2022, Singh et al., 2022). Jack et al. (2022) and Goldhaber et al.
(2022) emphasize that remote-learning offerings exacerbated learning loss relative to in-person
schools and districts. Our paper looks ahead and considers the post-pandemic landscape and
the implications of expanded remote offerings on the selected group of families freely opting into
remote schooling. To that end, we provide evidence about how the expansion and persistence
of remote learning can affect educational inequality and efficiency.

The second strand of literature we contribute to studies match effects in the context of K-12
schooling and higher education. The notion of academic mismatch has received considerable
attention in the related affirmative action literature, with some evidence pointing to potential
efficiency losses (Arcidiacono et al., 2016, Dillon and Smith, 2020) and more recent evidence
pointing to the opposite (Bleemer, 2021, 2022, Otero et al., 2021). Student-school match qual-
ity has been more elusive in the K-12 space, with some evidence suggesting the importance of
match quality based on observables (Bau, 2022, Bruhn, 2019) and some suggesting the contrary
(Campos and Kearns, 2022). Other papers focus on match effects after accounting for prefer-
ences and tend to find weak evidence of match quality (Abdulkadiroğlu et al., 2020, Mountjoy
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and Hickman, 2020). We complement this literature by collecting preference data and link-
ing preference estimates to reduced-form approaches to assess the empirical relevance of match
quality and add to the growing body of evidence.

Third, an extensive literature has linked choice models to treatment effect estimation (Heck-
man, 1979, Heckman et al., 2006), and more recent advances leverage information on rank-
ordered lists to account for selection bias (Abdulkadiroğlu et al., 2020). Our approach is similar
but infers preferences from hypothetical choices to construct measures of preference intensity or
control functions that account for selection bias. This extends on canonical work in economics
that has used hypothetical choice surveys to learn about preferences for workplace characteris-
tics and flexibility (Mas and Pallais, 2017, Wiswall and Zafar, 2018). In that sense, we bridge
these two seemingly disconnected literatures and create an avenue for future work.

2 Background and Data

2.1 Remote Schooling in Los Angeles

As in most U.S. school districts at the onset of the pandemic, the LAUSD closed their schools
and transitioned to remote learning on March 19, 2020. Swift actions were taken to buffer the
shock, including creating online videos, coordinating meal distribution, distributing laptops and
tablets, and using private donations to provide broadband access and equipment for students.
Students remained at home for the rest of the academic year.

The following academic year (2020–2021) started virtually, with a schedule that included
daily interactions between teachers and students. While in-person tutoring services were offered,
its provision ebbed and flowed with each Covid wave. LAUSD schools remained closed until
the week of April 19, where a staggered reopening commenced and students slowly returned to
in-person schooling, with some caveats. Elementary schools offered classes in three-hour blocks
and adult supervision when students were not in classes. Middle and high school students
reported to campus on alternating days, with similar adult supervision provided. Families had
the option to continue with remote learning.

The LAUSD’s response to the pandemic meant that, for roughly one year, students in
the district remained at home and received instruction virtually. Anecdotal evidence suggests
most families disliked the online experience, and mounting evidence suggests this contributed
negatively to student learning.4 However, there is also evidence that suggests some subset of
families may have preferred remote learning. For example, bullied students may excel without
the mental health costs incurred from in-person schooling (Bacher-Hicks et al., 2022), and others
may benefit from learning at their own pace and reduced disruption (Armstrong-Mensah et al.,
2020).5 This unusual experience provided families and students ample time to assess their
relative suitability for remote learning.

LAUSD returned to full in-person learning for the 2021–2022 academic year.6 To accom-
modate a sizable share of families who continued to prefer remote learning, the district did not

4For example, Williams (2022) discusses student and parental frustration with remote schooling.
5Media accounts also testified to remote-learning benefits for some students (Harris, 2020).
6California mandated that all school districts had to offer a remote option during 2021–2022 due to COVID-

19-related concerns.
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make in-person learning mandatory and created a new online option called the City of Angels.
This option offered self-paced learning with regular interactions with virtual instructors and the
opportunity to receive in-person tutoring. Remote students could transition to in-person learn-
ing at any time. We focus on the cohort 2021–2022 students who could self-select into remote
offerings. These students had at least one year to adapt to remote instruction and assess their
own relative suitability for remote learning.

2.2 Data

Our analysis uses administrative LAUSD data linked to survey data that we collect. The
administrative data are standard, containing student-level demographics and test scores. Our
analysis uses 2018–2019 test scores as measures of lagged achievement7 and relies on 2021–2022
scores as outcomes.

Our key data innovation is a survey of a sample of parents with LAUSD students enrolled in
grades 3–8 and grade 11 in April 2022.8 Invitations for the survey were distributed to a random
sample of 100,000 families through LAUSD’s internal communications system. Because mes-
saging was on behalf of the district, incentives were forbidden; however, families were informed
that their responses could affect future policy decisions by the district.

The survey had two primary sections. The first section quantified experiences and percep-
tions about remote learning through basic descriptive questions. The second section measured
preferences through a series of hypothetical choice experiments that were similar to those used
in other settings (Mas and Pallais, 2017, Moshary et al., 2022, Wiswall and Zafar, 2018). In
the hypothetical choices, parents trade off between preferences for academic quality, distance,
and remote learning while holding all other attributes fixed. Section 3 provides further details
on the preference measures, and Section 4 discusses how we use the estimated preferences as an
input for our empirical strategy. A sample of 3,611 parents completed the basic descriptive sur-
vey questions, and 1,191 parents completed the hypothetical choice component. Respondents
consented to have their responses linked to administrative records.

3 Survey Evidence

Appendix Table A.1 reports mean characteristics for our survey sample. For comparison, Col-
umn 1 reports averages for all LAUSD students enrolled in the relevant grades.9 Survey respon-
dents noticeably differ from the typical student in LAUSD in terms of academic achievement.10

Families who initiated the survey have students performing above district averages, roughly
16–17 percent of a standard deviation. Notably, the academic differences are larger for the
subset of families who completed the hypothetical choice questions. These respondents are also
less likely to be classified as URM or special education students.

7The district did not administer standardized tests during the pandemic year.
8Appendix Section B reproduces the survey instrument.
9Although we sent the survey to 100,000 randomly sampled families, we report mean characteristics for the

population.
10These differences do not appear to be driven by geographic differences in response rates. Appendix Figure

A.1 shows that respondents represent all school district regions.
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3.1 Descriptive Evidence

Our descriptive analysis focuses on responses to four statements on experiences and future
demand for remote learning. Figure 1 illustrates the results by reporting the mean rates of
disagreement (maroon) and agreement (black) for each statement. The results reveal two main
findings. First, most respondents had negative experiences with remote learning during the
2021 academic year when LAUSD was fully remote. For example, 62 percent disagreed with
the statement that their child enjoyed remote learning. These results are broadly consistent
with other research that suggest students struggled with virtual schooling during the pandemic
(Goldhaber et al., 2022, Jack et al., 2022, Loades et al., 2020). Second, a substantial fraction
of respondents reported having positive experiences with remote learning. Most notably, 22
percent reported that their child excelled in remote learning. This latter finding highlights the
possibility that the remote-learning experience may have improved families’ knowledge of their
match quality.

3.2 Experimental Preference Estimates

We experimentally identify preferences using hypothetical choices. Each respondent is sequen-
tially presented with K = 10 hypothetical choices, each involving three schooling options.
Within each option, we randomized three school attributes: distance, peer achievement, and in-
struction mode (remote versus in person). As is standard with this approach, the survey stated
that respondents should believe that the schooling options in each hypothetical were identical
in terms of remaining (unspecified) schooling characteristics. The survey also attempted to
shape respondent beliefs over safety by instructing them to make choices while assuming that
pandemic-related safety conditions were at levels observed before the pandemic in 2019. Con-
sistent with parents following this instruction, Appendix Section C shows that survey responses
do not vary with local Covid-related conditions, outcomes, and predictors.

Our survey allows us to estimate a standard discrete choice model of schools using exper-
imental data. Formally, our estimates are based on a model that assumes student i’s indirect
utility of enrolling in schooling option j is:

Uij = Vij + εij ,

where Vij is the observable component of indirect utility and the term εij captures any remain-
ing unobserved preference heterogeneity. Informed by a robust empirical school choice literature
(Abdulkadiroğlu et al., 2020, Allende, 2019, Beuermann et al., 2022, Burgess et al., 2015, Cam-
pos and Kearns, 2022, Hastings et al., 2005, Neilson, 2021), we let the observable component of
indirect utility be given by:

Vij = ωQQj + ωRRemotej + ωddij , (1)

where Qj is academic quality of school option j, Remotej is a remote schooling indicator, dij

is travel time (set to 0 for remote learning), and εij are idiosyncratic preferences for schooling
option j. A logit distributional assumption on εij allows us to estimate the preference parameters
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using an exploded logit framework (Hastings et al., 2005).
Figure 2a reports estimated mean willingness to travel estimates inferred from the choice

experiments (i.e., -ωQ/ωd). The average family is willing to travel an additional 13 minutes to
enroll their children in a school with a 10 percentage point higher achievement rate. We find
limited heterogeneity based on student grade level. Reassuringly, families currently in remote
offerings or with plans to enroll in them have a lower willingness to travel for higher academic
quality.

Figure 2b extends our analysis by showing the estimated achievement compensation needed
to be indifferent between in-person and remote schooling (i.e., -ωR/ωQ). The average family
would need to be compensated with a 42 percentage point higher achievement rate to be indif-
ferent between in person and remote, implying that the average family has a strong distaste for
remote learning. Importantly, we find that families currently in remote learning or those with
plans to enroll in the future do not need such compensation, suggesting the survey responses
contain an informative signal about preferences for remote instruction.

4 Empirical Strategy

4.1 Conceptual Framework

Our focus is estimating heterogeneous remote-learning effects and studying how selection pat-
terns map to them. Our analytic framework is based on linking a discrete choice model to
a potential outcomes model. Below we detail this framework by beginning with a potential
outcome model.

We index a population of students by i, each of whom either attends school in person or
remotely, which we denote using an indicator as Di = 0 and Di = 1, respectively. We assume
that academic achievement Yi is a function of a vector of observable characteristics, Xi, and a
remote indicator that can be expressed as:

Yi = α+X ′
iγ + βDi + ui,

where ui is an error term that captures family inputs and other unobserved determinants of
achievement. Of course, a key concern is that remote-learning participation is correlated with
unobservable factors (i.e., E[ui|Di] ̸= 0). We now discuss an approach that allows us to move
toward the causal parameters of interest and to study patterns of selection into remote learning.

Our primary empirical strategy leverages rich preference information from the survey to
account for selection into remote schooling. Intuitively, conditioning on the experimentally
identified preferences allows us to compare two families who have a similar propensity to take
up the remote option, with causal identification then following from the logic of Rosembaum and
Rubin (1983). Formally, our approach builds on Equation 1 and the associated distributional
assumptions by assuming there are two schooling options, in-person j = 0 or remote schooling
j = 1, and making the normalization Vi0 = 0. Therefore, the indirect utility of remote learning
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relative to in-person schooling can be compactly represented as:

ui = vi + εi,

where ui = Ui1−Ui0, vi = Vi1−Vi0, and εi = εi1−εi0. This model of school choice summarizes the
information contained in the experimentally identified preferences by constructing the implied
propensity score:

P (vi) = exp(vi)
1 + exp(vi)

.

For our analysis of student achievement, the propensity score summarizing parental pref-
erences serves two purposes. First, as previewed earlier, conditioning on these preferences
accounts for selection into remote schooling. Second, the propensity score serves as a measure
of “preference intensity” that allows us to characterize how selection into remote learning gov-
erns treatment effect heterogeneity. Specifically, we assume the following model of achievement
that allows for heterogeneous effects:

E[Yi|Xi, Di, P (vi)] = α+X ′
iγ + βDi + θP (vi) + ψP (vi) ×Di. (2)

This approach has connections to the causal framework proposed by Rosembaum and Rubin
(1983). If the experimentally identified preferences govern selection into treatment, then causal
estimates follow from conditioning on the implied propensity score. Equation 2 assumes a linear
relationship between the observable preference heterogeneity and potential outcomes, enabling
an analysis of selection patterns in a similar spirit as Kline and Walters (2016), Abdulkadiroğlu
et al. (2020), Otero et al. (2021), and Einav et al. (2022). For example, θ governs selection on
levels, and ψ governs selection on gains, where θ > 0 indicates that students with high tastes
for remote learning do well regardless of the school they enroll in, while ψ > 0 indicates that
those enrolling in remote options do better remotely rather than in person.

4.2 Propensity Score Estimates and Validation

As described above, we use choice experiments to obtain credible preference estimates for the
subset of students with parents who completed our survey. To maximize statistical power,
we use the full sample of LAUSD students.11 As highlighted by Appendix Table A.1, one
challenge with this approach is that our sample of LAUSD respondents differs from the general
population of LAUSD students. To ensure that the preference estimates are representative,
we use an extrapolation approach that assumes preferences vary flexibly with baseline student
characteristics.

Formally, our extrapolation approach assumes that a student’s indirect utility over schooling
choices takes the form:

Uijk = ωQc(Xi)Qj + ωRc(Xi)Remotej + ωdc(Xi)dij︸ ︷︷ ︸
Vijk

+εijk, (3)

11The results based on only students who participated in the survey are qualitatively similar to our headline
estimates but are less precisely estimated.
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where the parameters ωQc(Xi), ωRc(Xi), and ωdc(Xi) are allowed to vary flexibly by covariate
cells, c(Xi), defined by a combination of baseline achievement, gender, grade level, and URM
status. This approach to modeling preference heterogeneity is similar to Abdulkadiroğlu et al.
(2020) but is more limited due to the cell structure we assume.12

We estimate preference models separately for each covariate cell via maximum likelihood
and obtain a vector of coefficients for each cell c. Given that the maintained assumption that
εijk is a Type I extreme value, the likelihood function for a given individual i and hypothetical
scenario k can be written as:

L(Rik|Qj , Remotej , dij , Xi) = exp(ViRi1kk)∑
m∈{Ri1k,Ri2k,Ri3k} exp(Vimk)

exp(ViRi2kk)∑
m∈{Ri2k,Ri3k} exp(Vimk) .

To obtain propensity scores, we use estimates of ωQc(Xi), ωRc(Xi), and ωdc(Xi) to compute
an implied student-specific observable component of indirect utility for remote schooling vi.
Specifically, we construct:

vi = ωRc(Xi) + ωQc(Xi)Qj(i) − ωdc(Xi)dj(i),

where Qj(i) is remote achievement relative to student i’s neighborhood school and dj(i) is the
travel time to student i’s neighborhood school. The implied propensity score is P (vi). Appendix
Table A.2 reports summary statistics for the preference estimates.

To address concerns regarding our extrapolation approach, we perform two exercises. One
concern is that there is not sufficient overlap between the distribution of covariates of the subset
students whose parents completed the choice experiment survey and all students. Appendix
Figure A.2 summarizes baseline characteristics for each student using an index measure and
plots the distribution for the survey and general LAUSD samples.13 The figure shows substantial
overlap, indicating there is ample support to estimate preferences and extrapolate to non-survey
respondents.

Another key concern is the potential possibility that the extrapolation procedure may gener-
ate spurious results given that the preference parameters are estimated from a selected sample.
To address this issue, we employ a split sample procedure that “mimics” our extrapolation ex-
ercise, using only the sample of students for whom we experimentally identify preferences. This
approach is useful as it allows us to diagnose the performance of our extrapolation by directly
comparing extrapolated preferences to actual preference estimates for a subsample where we
can observe both.

Our extrapolation test proceeds as follows. We create an estimation sample through strat-
ified random sampling of one-third of the sample of choice respondents. Our stratification
ensures the resulting estimation sample matches baseline characteristics of the average student
in LAUSD as a whole. Using the estimation sample, we estimate preference parameters and

12Preference extrapolation is common in the literature. For example, estimation relying on stability (Fack et
al., 2019) extrapolates preferences of individuals with larger feasible choice sets to those with smaller choice sets
(Agarwal and Somaini (2020) Otero et al. (2021)).

13The index is the predicted math test score based on a model that includes student covariates such as URM
status, sex, socioeconomic status, English-learner status, special education status, and lagged achievement in
math and English language arts (ELA).
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construct propensity scores. Next, we return to the original survey respondent sample and use
the residual set of respondents who were not included in the estimation sample. In this residual
sample, we use our covariate cell approach to create a second set of preference estimates that
we extrapolate to the estimation sample. Our test is to compare the two propensity scores
to assess extrapolation quality. Appendix Figure A.3 is a plot of the extrapolated propensity
scores against the true propensity scores for the estimation sample. The associated slope is near
1 and the intercept is near 0, indicating the extrapolation is forecast unbiased.14

4.3 Empirical Specification

Our analysis focuses on the following empirical specification:

Yi = αc + γ′Xi + βDi + θP̂ (vi) + ψP̂ (vi) ×Di + ei, (4)

which is based on Equation 2 but includes covariate cell fixed effects αc in addition to a vector
of remaining baseline characteristic controls Xi. We report robust standard errors clustered at
the school and covariate cell level to account for correlation within cells across schools induced
by the preference estimation.

A key component of our analysis centers on β, the average causal effect of remote learning.
To interpret estimates from Equation 4 as causal, identification relies on the idea that students
who do and do not enroll in remote learning have similar unobservables after controlling for
factors that drive selection into this learning mode using our propensity scores.

Our framework provides a test of identification based on assessing balance on baseline stu-
dent characteristics. Specifically, we use measures of lagged academic achievement as dependent
variables in specifications based on Equation 4. Panel (a) of Figure 3 reports estimates of the
coefficient on a remote-learning indicator from these balance tests.

As a benchmark, our balance assessment begins with results on the left (black bars), which
show that conditioning on a rich set of covariates commonly used in the value-added literature
(Koedel and Rockoff, 2015) does not balance lagged ELA or math achievement. The differences
are sizable and range between 18 and 22 percent of a standard deviation. In contrast, the results
in the middle (gray bars) show that the propensity score strategy strongly eliminates differences
in baseline achievement between students who do and do not enroll in remote learning. In addi-
tion to lagged achievement, tests for balance using the index discussed above are also strongly
balanced using the propensity score approach. The ability to balance lagged achievement and
the index is reassuring from a causal perspective (Rosembaum and Rubin, 1983).

Finally, Appendix Table A.3 tests for balance on additional baseline characteristics. Notably,
the ability to achieve balance appears to be unique. In Appendix Table A.3 and Appendix Fig-
ure A.7, we also show results that rely on propensity scores estimated using an observational
approach rather than our survey data. When using the observationally estimated propensity
scores, the resulting remote coefficient estimates for baseline characteristics are large and statis-
tically significant. This lack of balance using observational methods emphasizes the importance
of the experimental preference estimates in our empirical strategy.

14Appendix Figure A.4 reports a histogram of the difference that shows the mean is 0.002, and the distribution
is centered around 0 with standard deviation 0.06.
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5 Main Results

We begin by examining the average effects of remote learning. Panel (b) of Figure 3 reports
average effects for our primary outcome, 2021–2022 academic achievement. On the left, the
canonical value-added estimates that condition on student attributes and lagged achievement
show remote-learning negative effects ranging from 25 to 30 percent of a standard deviation,
consistent with other studies employing alternative quasi-experimental methods that also find
negative selection into remote learning (Bueno, 2020). In contrast to these large effects, our
estimates based on Equation 4 are more moderately negative for the average student. ELA and
math effects for the average student are −0.14σ and −0.17σ, respectively, using the propensity
score approach. These results corroborate recent evidence suggesting that remote learning tends
to produce adverse outcomes for the average student (Bueno, 2020, Goldhaber et al., 2022, Jack
et al., 2022, Singh et al., 2022).

Next, we turn to our main analysis of the heterogeneous effects of remote learning. As
motivated in our framework, the preference data allow us to assess how remote-learning selection
patterns interact with treatment effect heterogeneity. Formally, we use Equation 4 to estimate
effects across the distribution of remote-learning propensity scores for the sample of all LAUSD
students. Panel (a) of Table 1 reports point estimates from our preferred specification, while
Figure 4 summarizes these results by plotting the mean treatment effects (i.e., β+ψ̂p̂), calculated
separately for 12 bins of the demeaned propensity score.

These results reveal negative selection on levels alongside evidence of positive selection on
gains. Table 1 demonstrates that students with higher estimated propensity scores tend to
perform worse than those with lower scores regardless of their instruction mode; that is, θ̂ < 0.
The upward slope shown in Figure 4 reflects that the interaction coefficient ψ̂ is positive at
around 0.056 and 0.078 for ELA and math, respectively.

How do we interpret these results? Figure 4 reveals important heterogeneity in remote
effects with respect to preference intensity. For example, students with a one standard deviation
increase in remote-learning demand have a 0.09σ larger remote-learning achievement effect for
math. Moreover, the figure suggests that most students experience learning loss from remote
instruction relative to in-person—consistent with prior evidence (Goldhaber et al., 2022, Jack
et al., 2022). However, there is a small share who experience positive remote-learning effects.
Taking the estimates literally suggests that students in the top decile of the estimated propensity
score distribution do no worse than they would in person and some have positive treatment
effects. These may be students for whom self-pace learning is more adequate (Armstrong-
Mensah et al., 2020) or those who potentially benefit from reduced social pressure or bullying
(Bacher-Hicks et al., 2022).

5.1 Robustness Checks

This section discusses three exercises that demonstrate the robustness of our results. First, our
main estimates and inference do not account for estimation error introduced in the preference
estimation stage. Appendix Table A.4 and Appendix Figures A.5 and A.6 show that accounting
for estimation error in the propensity scores does not qualitatively affect our estimates or infer-
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ence. Second, our preferred results are based on parameterizing preferences for travel time and
academic quality linearly and assuming no interactions with preferences over remote learning.
As robustness checks, we estimate alternative specifications that allow for non-linear travel costs
and various interaction terms with the remote schooling indicator. Panels (b)–(d) of Table 1
reports estimates that are remarkably similar to our preferred estimates.

Third, despite the balance results in Section 4, one may remain concerned with the dis-
tributional assumptions necessary for our model to accurately map experimentally identified
preferences to propensity scores. To provide further robustness to our findings, we use the ex-
perimentally identified preferences in a control function framework, in line with existing work
leveraging revealed preferences to estimate causal effects (e.g., Abdulkadiroğlu et al., 2020).
Specifically, we estimate

E[Yi|Xi, Di, vi] = α+X ′
iγ + βDi + θλ(Xi, Xj(i)) + ψλ(Xi, Xj(i)) ×Di. (5)

where λ(Xi, Di, Xj(i)) = E[εi − µε|Xi, Xj(i)] is an estimate of the unobserved preference het-
erogeneity implied by our choice model (Abdulkadiroğlu et al., 2020, Dubin and McFadden,
1984) and µε is Euler’s constant. While conceptually similar to our preferred model, Equa-
tion 5 imposes a linear relationship between potential outcomes and the unobserved preference
heterogeneity implied by the choice model. Both models capture selection driven by preference
heterogeneity. The estimates based on Equation 5 are similar to our preferred approach and
are reported on the right (maroon bars) of Figure 3.

6 Conclusion

Demand for virtual and remote schooling options has grown substantially during the past
decade. Appendix Figure A.8 shows that enrollment in exclusively virtual charter schools grew
steadily and reached 714,000 total students in the year before the pandemic. After the pan-
demic peaked, this enrollment expanded to 1.1 million in 2022. As a benchmark, the 2022 virtual
learning enrollment was only somewhat smaller than the estimated 1.7 million attendance at
Catholic institutions.

The growth in the virtual schooling and experiences with remote learning during Covid has
motivated an emerging literature on the consequences for students. Before the pandemic, a near
consensus suggested that virtual schools negatively affect learning (Bueno, 2020, Fitzpatrick
et al., 2020, Raymond et al., 2023). More recent studies on pandemic-era remote schooling
similarly document learning losses (Goldhaber et al., 2022, Jack et al., 2022, Singh et al., 2022).
Notwithstanding this evidence, school districts are currently planning to expand remote options
to satisfy continued parental demand (Musaddiq et al., 2022).

This paper provides novel evidence on parental and student experiences and demand for
remote-learning options in Los Angeles. Our evidence is based on a novel survey conducted after
the peak of the COVID-19 pandemic. When responding to our survey, parents and students were
uniquely able to draw on their past experience with remote learning and firsthand understanding
of this mode of instruction.

Overall, we find that an important share of families want expanded remote offerings and
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believe their children excel in remote instruction. Combining information on preferences with a
model of achievement, we show that the subset of students with the highest demand for remote-
learning experience achievement gains relative to in-person instruction. At the same time, our
results corroborate growing evidence showing remote learning contributes to learning losses for
the average student. The heterogeneity in achievement benefits suggests that continued and
expanded remote schooling options can potentially improve match quality in the post-pandemic
K-12 landscape. An outstanding question is why some students appear to benefit from remote
learning while others do not. A deeper understanding of the mechanisms that may promote
remote-learning gains remains an important avenue for future work.
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7 Main Figures and Tables
Figure 1: Experiences and Demand for Remote Learning

0

.2

.4

.6

.8

Enjoyed
remote

Want
expansion

Likely to choose
remote in the future

My child excelled
in remote

 

Disagree Agree

Share of survey respondents

Notes: This figure reports survey results on the share of respondents (N = 3, 611) who agree with four statements
on their experiences and demand for remote learning. Individual responses are weighted to produce means
that correspond to the average family in LAUSD. Specifically, we define the weight for each observation as
wi ≡ P (Survey = 1)/p(Survey = 1|Xi), where p(Survey = 1|Xi) is the estimated propensity to respond to the
survey based on student characteristics Xi using the full sample of LAUSD students, and P (Survey = 1) is the
share of all LAUSD families with survey responses. Appendix Section B reports the complete text for the survey
questions (see question 5).
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Figure 2: Experimental Preference Estimates
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(b) Increase in achievement rate necessary to switch to remote
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Notes: This figure reports willingness to travel estimates for achievement in Panel (a) and the estimated achieve-
ment necessary to make families indifferent between in-person and remote learning in Panel (b). Preference
estimates are from a rank-ordered logit model relating indirect utilities of hypothetical choices to randomized
school attributes, including academic quality, travel time, and remote status. Options that are designated as
remote have travel time equal to zero. Each bar corresponds to estimates from a different sample. For example,
the “All” bar in both panels correspond to estimates for the complete sample with hypothetical choice responses.
The next three bars estimate preferences separately for students in different grade levels. The “Currently remote”
estimates are for the sample of families who have students enrolled in the remote option at the time of the survey.
The “Plans to enroll in future” sample is the subsample of families who indicate they plan on enrolling their
children in remote-learning options in the future. Standard errors are robust and clustered at the respondent
level.
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Figure 3: Baseline Balance and the Average Effects of Remote Learning

(a) Student baseline characteristics
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(b) Average effects on post-pandemic (2022) ELA and math achievement
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Notes: This figure reports estimates of the average effect of remote learning. Panel (a) reports balance test
results where the dependent variable is set to measures of lagged (2019) achievement scores in ELA and math
as well as a summary index of baseline covariates. To construct the index, we regress 2022 math achievement
on a vector of baseline covariates including URM status, sex, socioeconomic status, English learner status, and
special education status as well as lagged (2019) achievement in ELA and math. The index is defined as the
predicted values from this regression. The black bars on the left correspond to models where the independent
variables are a remote indicator, grade-level indicators, and baseline student characteristics. The gray bars in the
middle correspond to results from models based on Equation 4, which controls for estimated propensity scores.
The maroon bars on the right correspond to results from models based on Equation 5, which include control
function estimates. Panel (b) reports corresponding results where the dependent variable is set to a measure of
post-pandemic (2022) achievement in ELA and math. Standard errors are robust and double clustered at the
school and covariate cell level. Gray bars are estimates of the 95 percent confidence intervals.
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Figure 4: Estimated Match Effects on Post-Pandemic Math Achievement
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Notes: This figure reports estimates of treatment effects on post-pandemic (2022) math test
scores for 12 bins of estimated propensity scores. The points in black are means for each bin
based on Equation 4 and are constructed by summing the coefficient on the remote-learning
indicator (representing the average effect) with the product of the estimated match effect
and (demeaned) propensity score (i.e., θ + ψ ∗ p). The points in maroon are means for each
bin constructed by summing the coefficient on the remote-learning indicator with non-linear
(quadratic) match effects (i.e., θ1 + ψ1 ∗ p + ψ2 ∗ p2). Note that the propensity score is
demeaned so that the estimate at zero corresponds to the average treatment effect for the
average student. The three dashed, gray vertical lines correspond to the 10th, 50th, and
90th percentiles of the propensity score distribution. Standard errors are robust and double
clustered at the school and covariate cell level. Bars surrounding the mean estimate for each
bin are estimates of the 95 percent confidence intervals.
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Table 1: Effects of Remote Learning

(1) (2) (3)
Main

Effect (β)
Selection on
Levels (θ)

Selection on
Gains (ψ)

(a) Baseline

ELA -0.144 -0.176 0.056
(0.024) (0.012) (0.008)

Math -0.168 -0.182 0.078
(0.022) (0.013) (0.008)

(b) Non-linear pref.

ELA -0.0138 -0.147 0.04
(0.024) (0.01) (0.007)

Math -0.17 -0.151 0.067
(0.021) (0.011) (0.007)

(c) Non-linear dist.

ELA -0.154 -0.151 0.062
(0.024) (0.011) (0.008)

Math -0.174 -0.157 0.073
(0.022) (0.012) (0.007)

(d) Non-linear pref. and dist.

ELA -0.136 -0.137 0.037
(0.025) (0.01) (0.009)

Math -0.166 -0.141 0.057
(0.022) (0.011) (0.008)

Notes: This table reports estimates on the effects on ELA and math achievement based on
versions of the model specified in Equation 4. Each panel reports estimates from models
that differ in the underlying model of preferences used to construct propensity scores. Panel
(a) provides results from our preferred (baseline) model with linear distance costs and
preferences for academic quality, and Panel (b) provides results from a model that allows
for non-linear (quadratic) preferences for academic quality. Panel (c) provides results from
a model with non-linear (quadratic) distance costs, and Panel (d) provides results from a
model that allows for both non-linear preferences for academic and distance costs. Columns
1, 2, and 3 report estimates of the main effect of remote learning (β), which represent the
average effect, the selection on levels effect (θ), and the selection on gains coefficient (ψ),
respectively. Propensity scores are in units equal to 10 percent for interpretation reasons.
Standard errors are robust and clustered at the school level.
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ONLINE APPENDIX

A Appendix Figures and Tables

Figure A.1: Spatial Distribution of Remote-Learning Survey Respondents
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Notes: This figure is a map illustrating the spatial distribution of survey respondents. Each shaded polygon
corresponds to a census tract and is shaded according to the number of remote-learning respondents residing in
the census tract. Most of the gray areas in the figure are outside the purview of LAUSD.
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Figure A.2: Distributions of an Index of Baseline Characteristics
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Notes: This figure reports the distribution of a summary index measure for the baseline covariates for students
in the hypothetical choice and the general student samples. The summary index is constructed by regressing
2022 math test scores on an array of student characteristics including lagged (2019) achievement. The summary
index corresponds to the predicted values from this regression. The histogram shows there is sufficient overlap
between the hypothetical choice and the full LAUSD samples used in the empirical analysis.
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Figure A.3: Correlation Between True Estimated Propensity and Extrapolated Propensity
Scores
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Notes: This figure compares two propensity scores that we construct to test the validity of our extrapolation
approach. The two scores are estimated as follows. First, we create an estimation sample through stratified
random sampling of one-third of the sample of hypothetical choice survey respondents. Our stratification ensures
that the resulting estimation sample matches the average student’s baseline characteristics. Using this estimation
sample, we estimate preference parameters and construct propensity scores. Second, we return to the original
survey hypothetical choice sample and use the residual set of respondents who were not included in the estimation
sample. In this residual sample, we use our covariate cell approach to create a second set of preference estimates
that we extrapolate to the estimation sample. The x-axis of the figure shows the “true” propensity scores that we
estimate in the first step using the estimation sample. The y-axis of the figure shows the “predicted” propensity
scores that we estimate for the estimation sample created by extrapolating the preference estimates from the
residual sample.
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Figure A.4: Histogram of the Difference Between True Propensity and Extrapolated Propensity
Scores
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Notes: This figure reports a histogram of the difference between the extrapolated propensity score and the true
propensity score for the estimation sample described in the notes to Appendix Figure A.3.
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Figure A.5: Baseline Balance and the Average Effects of Remote Learning (Bootstrap Version)

(a) Student baseline characteristics
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(b) Average effects on post-pandemic (2022) ELA and math achievement
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Notes: This figure reports estimates similar to those in Figure 3 but instead provides estimates
and confidence intervals obtained through a bootstrapping procedure. To address estimation
error in the propensity score estimation, we use a parametric bootstrap. We draw 250 sets
utility weight estimates for each covariate from the joint normal distribution with the mean
and variance-covariance matrix obtained in the initial estimation step. We then estimate the
corresponding regressions 250 times. Finally, we report the mean parameter estimates and the
95 percent confidence region obtained in the bootstrapping procedure.
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Figure A.6: Estimated Match Effects on Post-Pandemic Math Achievement (Bootstrap Version)
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Notes: This figure reports estimates similar to those in Figure 4 but instead provides estimates
and confidence intervals obtained through a bootstrapping procedure. To address estimation
error in the propensity score estimation, we use the parametric bootstrap. We draw 250 sets
utility weight estimates for each covariate from the joint normal distribution with the mean
and variance-covariance matrix obtained in the initial estimation step. We then estimate the
corresponding regressions and associated linear combination of the parameter estimates 250
times. Finally, we report the mean parameter estimates and the 95 percent confidence region
obtained in the bootstrapping procedure.
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Figure A.7: Balance Results Using Observational Logit Model
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Notes: This figure reports the baseline balance of 2019 achievement (math and ELA) for both a conventional
covariate-controlled and a propensity-controlled model derived from preferences estimated using observational
data. The covariate-controlled model estimates correspond to regressions of 2019 achievement on remote indica-
tors, baseline covariates, and grade indicators. The “Observational Propensity Score” estimates are derived from
a model that augments the model with the implied propensity score from the observational data. Propensity
scores are demeaned so that remote coefficients correspond to average differences.

28



Figure A.8: Enrollment Trends for Exclusively Virtual Schools (NCES)
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Notes: This figure presents statistics on annual enrollment in exclusively virtual schools from
the Common Core of Data, provided by the National Center for Education Statistics (NCES).
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Table A.1: Respondent Descriptive Statistics

(1) (2) (3)

All
Students

Survey
Respondents

Hypothetical
Choice

Respondents

Lagged ELA 0.01 0.17 0.45
(0.99) (1.05) (1.03)

Lagged Math 0.01 0.16 0.44
(0.99) (1.01) (1.00)

Female 0.49 0.51 0.49
(0.50) (0.50) (0.50)

Special Education .13 .1 .07
(0.34) (0.3) (0.26)

URM 0.82 0.77 0.68
(0.38) (0.42) (0.47)

N 230,347 3,611 1,191

Notes: This table provides summary statistics for all LAUSD students and samples of survey respondents.
Column 1 presents averages for every student in the relevant grades. We recruited a sample of survey respondents
by randomly contacting 100,000 families through the LAUSD’s internal communication system in April 2022.
Column 2 reports averages for every family who completed at least one question on our survey. Column 3 reports
averages for every student who completed the hypothetical choice experiment questions within the survey.
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Table A.2: Summary Statistics for Preference Estimates

(1) (2) (3) (4)
Mean SD P5 P95

Academic Quality (ωQ) 0.10 0.22 0.01 0.89

Remote (ωR) -5.06 13.03 -35.77 0.22

Travel Time (ωd) -0.07 0.17 -0.12 -0.01

(-ωQ/ωd) 1.53 1.20 0.48 3.81

(ωr/ωQ) 37.66 35.17 -6.91 74.23

Number of Cells 45

Notes: This table reports summary statistics for preference parame-
ters that were estimated separately for each covariate cell. Columns
1–4 report the mean, standard deviation, and the 5th percentile and
95th percentiles of the respective row variable, respectively. The last
two rows report the willingness to travel for an extra percentage point
in academic proficiency and the amount of compensation in achieve-
ment units necessary to make respondents choose the remote option.
We omit two outlier observations in the statistics presented for the
final row as they skew the mean and standard deviation.

31



Table A.3: Comparing Remote and In-Person Students

(1) (2) (3) (4) (5)

Remote
in 2022

In Person
in 2022 Mean Diff.

Mean Diff.
Obs.
p-score

Mean Diff.
Exp.
p-score

Lagged (2019) ELA Scores -0.141 0.001 -0.142 -0.217 -0.078
(0.016) (0.017) (0.075)

Lagged (2019) Math Scores -0.185 0.002 -0.187 -0.254 -0.106
(0.019) (0.02) (0.093)

Female 0.508 0.483 0.025 -0.039 0.001
(0.017) (0.015) (0.049)

Special Education 0.151 0.141 0.01 -0.012 0.009
(0.016) (0.007) (0.021)

URM 0.843 0.824 0.02 0.071 0.01
(0.011) (0.012) (0.018)

# Students 12,902 257,877

Notes: This table reports an analysis of baseline (pre-pandemic) student characteristics for students who
selected remote and in-person learning options in the 2021–2022 academic year. Columns 1 and 2 report
averages for remote and in-person students, respectively. Column 3 reports the corresponding difference in
average characteristics based on Columns 1 and 2. Column 4 reports mean differences based on a regression
that controls for an estimated propensity score based on an observational model. Specifically, the observa-
tional propensity score is estimated in a logit model predicting remote enrollment based on remote relative
achievement, remote relative travel time, and baseline student characteristics. Column 5 reports mean differ-
ences based on a regression that controls for an estimated propensity score based on the experimental survey
data. The difference in the estimates in Column 5 with those reported in Figure 3a is that estimates in Figure
3a further condition on cell strata. Column 5 demonstrates that conditioning on the propensity score alone
is sufficient to eliminate baseline differences in achievement. Standard errors are reported in parentheses.
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Table A.4: Effects of Remote Learning (Bootstrap Version)

(1) (2) (3)
Main

Effect (β)
Selection on
Levels (θ)

Selection on
Gains (ψ)

(a) Baseline

ELA -0.097 -0.236 0.101
(0.024) (0.015) (0.01)

Math -0.128 -0.243 0.119
(0.025) (0.016) (0.009)

(b) Non-linear pref.

ELA -0.142 -0.142 0.038
(0.024) (0.01) (0.006)

Math -0.163 -0.148 0.049
(0.023) (0.01) (0.006)

(c) Non-linear dist.

ELA -0.159 -0.156 0.052
(0.025) (0.011) (0.006)

Math -0.177 -0.161 0.058
(0.024) (0.012) (0.006)

(d) Non-linear pref. and dist.

ELA -0.152 -0.131 0.041
(0.025) (0.009) (0.006)

Math -0.17 -0.137 0.047
(0.024) (0.01) (0.006)

Notes: This table reports estimates similar to those in Table 1 but instead provides estimates
and standard errors obtained through a bootstrapping procedure. To account for estimation
error in the propensity score estimation, we use a parametric bootstrap. We draw 250 sets
utility weight estimates for each covariate from the joint normal distribution with the mean
and variance-covariance matrix obtained in the initial estimation step. We then estimate
the corresponding regressions and associated linear combination of the parameter estimates
250 times. Last, we report the mean parameter estimates and the standard errors (in
parentheses) obtained in the bootstrapping procedure.

33



B Remote-Learning Survey Instrument

LAUSD Remote Learning Survey

(untitled)

Kindergarten
1
2
3
4
5
6
7
8
9
10
11
12

1. Are you a mother, father, or guardian of a K-12 student? *

Mother

Father

Guardian

2. In what grade is your oldest child currently enrolled? *

3. Is your oldest child currently enrolled in a virtual schooling option?

Yes

No
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(untitled)

Agree Disagree

My child excelled academically
with the virtual experience
compared to in-person
instruction.

I would like the district to expand
its virtual offerings in the future.

I am likely to opt for virtual
schooling in the future.

I enjoyed the virtual schooling
experience during the pandemic.

(untitled)

4. Did you choose a remote option mostly for academic or safety (COVID)
reasons? *

Mostly academic reasons

Mostly safety reasons

Academics and safety were equally important

5. For the following, please tell us if you agree or disagree. *
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Type of
Instruction In Person In Person In Person

Percent of
students

meeting state
academic
standards

50 30 90

Travel time to
school

(minutes)
15 30 45

Best    

Worst    

(untitled)

6. You will now see a sequence of scenarios, each with three school options
that the school district could offer you in Fall 2022. For each set of three,
indicate the one you prefer the most (Best) and the one you prefer the least
(Worst). 

Recall that a fully remote option is entirely virtual (100% remote) and
traditional in-person instruction is 0% remote. 

Travel time corresponds to the commute time in minutes from your home to
the school. For traditional in-person instruction, students make the trip to
school every day. 

Assume pandemic-related safety issues are as they were in 2019 before
COVID. 

Besides the characteristics shown, assume that these schools are
otherwise identical in terms of their academic instruction and quality.

There are no right or wrong answers to these questions. We only want to
know which of the options you would most prefer.
  *
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(untitled)

(untitled)

Agree Disagree

I am likely to opt for virtual
schooling in the future.

I excelled academically with the
virtual experience compared to
in-person instruction.

I would like the district to expand
its virtual offerings in the future.

(untitled)

7. Do you think your choices will be similar in Fall 2023? *

Yes

No

8. Thank you for taking the time to answer these questions! We now ask that
you let your student in grade 8 through 11 answer the remaining questions, so
we can learn more about their experience with remote learning.

Will your child be answering the remaining questions? *

Yes

No

9. For the following, please tell us if you agree or disagree. *
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Type of
Instruction In Person In Person In Person

Percent of
students

meeting state
academic
standards

90 60 30

Travel time to
school

(minutes)
75 30 15

Best    

Worst    

10. You will now see a sequence of scenarios, each with three school options
that the school district could offer you in Fall 2022. For each set of three,
indicate the one you prefer the most (Best) and the one you prefer the least
(Worst). 

Recall that a fully remote option is entirely virtual (100% remote) and
traditional in-person instruction is 0% remote. 

Travel time corresponds to the commute time in minutes from your home to
the school. For traditional in-person instruction, students make the trip to
school every day. 

Assume pandemic-related safety issues are as they were in 2019 before
COVID. 

Besides the characteristics shown, assume that these schools are
otherwise identical in terms of their academic instruction and quality.

There are no right or wrong answers to these questions. We only want to
know which of the options you would most prefer.

  *
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(untitled)

11. Do you think your choices will be similar in Fall 2023?  *

Yes

No
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C Survey Responses and Covid Experience Heterogeneity
Although we asked survey respondents to remove the influence of Covid-related concerns from
their stated choices, our preference estimates could still partly reflect residual COVID-19-related
concerns. To assess this possibility, we generated new preference estimates by splitting the
sample of choice survey respondents at the zip code level and generating geographic-specific
estimates of willingness to pay measures. We correlate these zip-code-level preference estimates
with measures from the COVID-19 Vulnerability and Recovery Index produced by Los Angeles
County. For each area, the three index measures are intended to measure the risk, severity, and
recovery need due to COVID-19.15 In addition, we correlate the zip-code-level preferences with
measures of local area case counts and deaths due to COVID-19.16

Appendix Figure C.1, Panels (a), (b), and (c) provide scatterplots of each zip code’s esti-
mated willingness to travel for academic quality and the three COVID-19 index measures. Each
point’s size is proportional to the number of respondents used to estimate preference parameters.
To supplement these results, Panels (a) and (b) of Appendix Figure C.2 report similar plots
for willingness to travel and measures of cases and deaths due to Covid. We report analogous
results for estimated measures of preferences for remote schooling (i.e., the amount by which
achievement would need to change to make a respondent indifferent between the remote and in-
person options) in Appendix Figures C.3 and Figure C.4. Overall, there is little visual evidence
of a systematic relationship between preference parameters and either the Covid-related index
measures or health outcomes at the zip code level. This provides reassuring evidence against
the possibility that Covid-related concerns influence respondent choices in our survey.

15These measures were defined as follows. The risk measure is based on American Community Survey data from
the U.S. Census Bureau on the share of individuals without U.S. citizenship, the share of the population below 200
percent of the federal poverty line, the share of overcrowded housing units, and the share of essential workers. The
severity index is based on asthma hospitalization rates, the share of the population below 200 percent of the federal
poverty line, the share of seniors aged 75 and over in poverty, the share of the population who is uninsured, heart
disease hospitalization rates, and diabetes hospitalization rates. The recovery need index is based on the share of
single-parent households, gun injury rates, the share of the population below 200 percent of the federal poverty
line, the share of essential workers, the unemployment rate, and the share of the population who is uninsured.
The data used for these analyses were downloaded from https://geohub.lacity.org/datasets/lacounty::covid-19-
vulnerability-and-recovery-index/about.

16The data used for these analyses were downloaded from http://publichealth.lacounty.gov/media/coronavirus/data.
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Figure C.1: Preferences for Academic Quality and Covid Index Measures for Risk, Severity, and
Recovery Need

(a) Covid risk index
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(b) Covid vulnerability index
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(c) Covid recovery need index
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Notes: This figure presents scatterplots of zip-code-level mean willingness to travel for academic achievement
(y-axis) and three measures from the COVID-19 Vulnerability and Recovery Index produced by Los Angeles
County (x-axis). Panels (a), (b), and (c) present indices for the risk, severity, and recovery need due to COVID-
19, respectively. Each point’s size is proportional to the number of respondents used to estimate preference
parameters.
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Figure C.2: Preferences for Academic Quality and Covid-Related Health Outcomes

(a) Covid cases
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Notes: This figure presents scatterplots of zip-code-level mean willingness to travel for academic achievement
(y-axis) and two measures of the severity of the COVID-19 pandemic on health outcomes in an area (x-axis).
Panels (a) and (b) measure Covid health impact severity using case count and death measures, respectively. Each
point’s size is proportional to the number of respondents used to estimate preference parameters.
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Figure C.3: Preferences for Remote Learning and Covid Index Measures for Risk, Severity, and
Recovery Need
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(a) Covid risk index

(b) Covid vulnerability index
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(c) Covid recovery need index
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Notes: This figure presents scatterplots of zip-code-level measures of mean preferences for remote learning (y-
axis) and three measures from the COVID-19 Vulnerability and Recovery Index produced by Los Angeles County
(x-axis). Panels (a), (b), and (c) present indices for the risk, severity, and recovery need due to COVID-19,
respectively. Preferences for remote learning are measured as the change in achievement needed to make a family
indifferent between the remote and in-person schooling options. Each point’s size is proportional to the number
of respondents used to estimate preference parameters.
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Figure C.4: Preferences for Remote and Covid-Related Health Outcomes
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(b) Covid deaths

Notes: This figure presents scatterplots of zip-code-level measures of mean preferences for remote learning (y-axis)
and two measures of the severity of the COVID-19 pandemic on health outcomes in an area (x-axis). Preferences
for remote learning are measured as the change in achievement needed to make a family indifferent between the
remote and in-person schooling options. Panels (a) and (b) measure Covid health impact severity using case
count and death measures, respectively. Each point’s size is proportional to the number of respondents used to
estimate preference parameters.
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