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To capture the fact that the receiver’s beliefs may depend on her type, let us now
denote as p a posterior function p: © — A(Q) telling us what the posterior belief is
for every type of the receiver. We similarly redefine B to be a set of such posterior
functions, i.e. B C A(2)®. We assume B to be convex, i.e. that p, ' € B implies
A+ (1= € B for all A € [0,1].

To be general, we allow the experiment to condition on the type of the receiver
to some extent. Let P be a partition of © with typical element ©. We now define
an experiment 7 = (5,0), where 0 = (0g)gep, 0o : 8 = A(S). If O is the coarsest
partition of ©, the communication strategy o does not depend in any way on the
type of the receiver. If we instead assume O is the finest partition of ©, this means
the sender can condition the message sent on both the state and the private type of
the receiver.

First of all, we need to characterize the class of distributions over posterior func-
tions that each possible experiment 7 can generate. As the prior may depend on the
type of the receiver, these distributions will be, in a sense, “subjective” and depend
on #. We denote a distribution over posterior functions as a collection G = (Gy)geco,
where Gy € A(B) for all § € ©. We slightly abuse notation by denoting Upcesupp(Gy)
as supp(QG).

Denote as 0¢(s0) = > cq 6 (5|w)po(0)[w] the probability that type 6 € O asso-
ciates to Receiving message s € S according to communication strategy og. Let G(P)
denote the set of distributions over posterior functions G' that can be induced by an

experiment ™ = (5, 0), i.e.

G(P)={G e A(B)® : 37 s.t. Z 1 (s.)=u) 06 (5]0) = Go(p) for all p € B and 6 € O}

seSs



Theorem 1. G € G(P) if and only if:

1o po(0) = 32, csupp(c) Go(r)p(0) for all 6 € ©

2. % = L,ow) for all 0 € O and © € P, w € supp(po(#)) and p €
supp(G).

For any G = (Gy)oco and a € A®, let BS be the set of posteriors for which action

plan a is optimal for the receiver:
BY ={ueB:al9) c argmai‘w(Gg,/L(@),a’,@) for all 6 € O}
a’'e

We then denote as \g : supp(G) — A(AY) any function such that @ € supp(Aa (i)

implies 1 € BY. The average posterior inducing @ (according to \g) is defined as:

@ =Y < Ac(u)[@]Ge(u)Ge(u))u(e)

uesupp(G) Z#GSUPP(GQ) AG(:“’) [C_L]

The subjective distribution H, QAG induced by the direct mechanism is:
H(;\G(,U) = Z 1{#:;2%} Z Aa(W)]alGo(1)
acA® W €supp(G)

We then say that a function v satisfies convex posterior pooling (CPP) whenever
forall G € G, and a, @' € A, 6 and A\g:

v(Hy¢. 20(0),a(6),0) = v(Hy<, 15°(0), ', 6)

Theorem 2. Suppose the receiver’s optimal action depends on her posterior, her
type, and the posterior distributions generated by the experiment. The recommendation
principle holds if and only if v satisfies CPP.



Proofs

Proof of Theorem 1. Suppose G € G(P). Therefore, there exists an experiment 7 =
(S,0) such that for all § € ©:

> Lr(s=m06(sl0) = Go(p)

seS

Where 1™ (1) denotes the set of all s € S such that u”(s,-) = p.
The first item follows from properties of Bayesian updating, as for all w € ,
6 c O, and O e P:

> Golpp(0)w) = Golp)u(0)[w]

uesupp(Gy) weEB

=2 | 2 oelslo) | u@)fw]

reEB \ sen™(u)

=D @)l | Y oelslw)

neB sEN™ (1)
ZB Z )09 slw)
w] (Z 0@(8\&1))
= po(0)[w]

Where the second equality follows from G € G(P), the third equality follows from
the definition of a Bayesian posterior, the fourth equality follows from the fact that
S = U,epn™ (1), and the last equality follows from the definition of o.

Suppose now w € supp(o(0)) for 6 € © and © € P. Notice that, for all s € 5™ (1),
wEQ,QEé,and@GP:




It follows that, for all w € Q, § € ©, © € P, and i € supp(Gy):

. so(slf)  (oalsle)
o= ¥ (2t o)

o oalelh) (galsl) o
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Then, for all w € supp(uo(f)), 6 € ©,0 e P, and p € supp(Gy) we can set Lg

such that:
et = T aatoe) = GOk
L,u,@)(w> - U@(‘S‘w) - M0(8>[W]

sen” ()
Concluding the first part of the proof.
As for the converse statement, define an experiment = = (S, o) such that S = B
for all © € P and w € supp(jo(#)) for at least one 0 € O:

To(ilw) = L, o(w)

If w & supp(uo(f)) for all € O, let og(ujw) € A(B) be arbitrary. Notice that if
w € supp(po(0)) for at least one 6 € O, then oy € A(B) as:

s (GOl O]
Sorelite) = o bate) = 3 (FG5) = o)

neEB HEB neB

Moreover, the posterior after observing message s = p is, for all # € © and

w € supp(pio(0)):

Fuol) O]
> ren Lo @) o)
=
> veo Golyu(@) ]
_ Colp)p(8)
Go(p)

= ((0)[w]

(s O)w] =




It follows that 7 induces the posterior distribution

Y 06(s18) = og(ulwo(8)[w]

sen™ () wef
B Go(p)(0) w] .
-2 () w0
= Go(p)p(6)[w]
= Go(p)
Completing the proof. O

Proof of Theorem 2. Suppose v satisfies CPP and that m implements the distribution
d” : Qx O — A(A). Denote as G = (Gy)peco the collection of distributions over
posterior functions induced by 7.

As 7 implements d”, there exists a™ : S x © — A that maximizes v for each
message s and type 6 of the receiver when the distribution of posteriors is Gy, and
that is such that for all s € S and 0 € ©:

d(w,0)[a) = Y Har(s0=a(5)0 (5Iw)
seS
For any a : © — A, let n(a) denote the set of all messages s that induce the
receiver to play according to a. Let n(a) = {s € S : a”(s,-) = a} and consider now

experiment 7% = (A®, ™), where for all w € Q and a € A®:
0f (alw) = Y og(slw)
sen(a)

Notice that for all # € © and a such that n(a) # 0:

23677(&) U@ (8|0)M7T (37 9)

" (a, ) =
) = s oa(slf)

Moreover, 7* induces distribution over posteriors H é\ ¢ such that, for all 8 € © and
i€ B:



A T =
Hy (1) = ) Ly )= 95 (@)

acA?

- Z Lty @)=} Z 0o (sl0)

QI

acA® sen(a)
= Y@= | D AG Go(n)
acAf pnesupp(G

where for all y € supp(G) and a € A®:
Aa(p)la Z Lium(s,)=} 06 (510)-
sen(a)

We now show that the right-hand side of this equality does not depend on € whenever
it is non-zero. If p and 6 are such that p(f)[w] > 0 for at least one w € Q:

T A ( |9) _ Zsen(a) 1{“ﬂ(57'):u}0é(8|g)
e Goln)

567]
_ 2sen(@ L s)=m96(510)
> ses L (s,)=m06(510)

110(0) (]
2sen@ L (s )= (@ ( o (slw) o )

(6
> ses 1{m(s,->:u}( ols \w)W)[Lf)
_ 2sen(@ L s)=m 96 (s1w)

2 ses L (s)=ny 6 (8|w)

where the third equality follows from Bayes’ rule. Otherwise, for all w € €2 such that
p(0)w] = 0 for all w € Q, we have either og(slw) = 0 or py(f)[w] = 0, so that
o(s|d) = 0.



We can then rewrite, for all @ such that n(a) # () and 6 € ©:
2sen@ 96(510)17 (5, 0)
Zsen(a) o5 (s]0)
2 senta) (ZMESUPp(G) l{u”(s):u}%(5|9)ﬂ(9)>
S eerter (Shemni) Lure-oa(510))
z,uEsupp(G) (Zsen((z) 1{u“(s):u}%(3|9)> 1(0)

Z/LGSUpp(G) <Zsen(a) Lium(s)=nyoa (s ’9)>
> pesupp(@) Ac (1) [a] G (1) u(0)
> pesupp(@) Aa(1)[a]G(p)
= [1,5()

l/r* (EL, 0) =

where the fourth equality follows from the definition of A\g. As o™ maximizes v for all
types 60, we have that for all € ©, s € n(a), and o’ € A:

v(G, 1" (s,0),a"(s,0),0) > v(G,u"(s,0),d,0)

so that p™(s) € BY for all s € n(a). Moreover, as By C supp(G), for all u € Bg, there
exists s € S such that u"(s) = u. By CPP, this implies that for all 6 € © and o’ € A:

v(H)¢, 1™ (@,0),a(0),0) = v(H,°, 1™ (a,0),a" (s, 0),0) > v(H,°, u™ (a,0),d,0).

Consider o™ : A® x © — A is such that o™ (a,0) = a(f), and for all 9 € 0. As
o™ still induces action distribution d™ given communication strategy og , and the
obedience constraint is satisfied, we conclude the proof.

As for the converse statement, suppose the recommendation principle holds. Take
any G, \g : supp(G) — A(A®) and a € A®, and prior 1o(f) = > pesupp(y) MO)Gop)
for all # € ©. Notice that py € B as B is convex and supp(Gy) C B for all § € ©.
Consider now experiment 7 = (supp(G) x A®, o) such that for all (u,a) € (supp(G) x

A®) and w € Q with pg(0)[w] > 0 for at least one 6 € ©:

a6((p, a)lw) = A(p)[a]Le(w)

For w with po(0)[w] = 0 for all # € ©, let instead og(-|w) be any distribution over



messages A(5).
We first show that og(-|w) € A(S) for any w such that py(0)[w] > 0 for some
¢ € ©. Notice that, by substituting for Lg:

(.UGQ
Y Y oswal) = Y Z( w)

pesupp(G) ac A® p€supp(G) ac A©
_ ) HOIGo()
=, (Z e ]> oL
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pesupp(Gy)
1
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=1,
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where the fourth equality follows from the fact that Gy(p) = 0 for p € supp(G)/supp(Gs)
and the first statement of Theorem 1.A similar argument delivers og(-|w) € A(S) for
w € Q with po()w] =0 for all § € ©.

Notice moreover that, for all € ©, u € supp(G), and a € A°:

= > oel(ma)w)ue(®)w] = > u(6)] Golp) = A [alGo(p),
we weN
where the third equality follows from the definition of o4 and the fact that p(0)jw] =0
whenever u(0)[w] = 0.
We now observe that the Bayesian posterior upon observing message (i, a) with
positive probability coincides with u, as for all § € ©, w € Q, u € supp(Gy) and
a € A(p)[al, we have by Bayes’ rule:

1 (@), 0)w] = = p(0)[w].




Therefore, for each 6§ € ©, 7 induces distribution over posteriors Gy as:

> oelpald) = > Aw) = Go(n).

acA® acA®

Consider now a” such that o™ ((u,a),0) = a(f). As the recommendation principle
holds, we can implement the action distribution d™ induced by 7 and o™ via a direct
recommendation experiment 7*, pooling together all messages in S that induce the

same action:

of (@w)= Y osllma)w).

pesupp(G)

This implies:

og (@)=Y osl(na)e)

pesupp(G)
_ (Zaé((u,a)wuo(9)[w]>
pesupp(G) \wef
= > alwlalGop).

pesupp(G)

Therefore, 7* induces the posterior distribution

Hyo () = Z L (a0)=m 06 (al6)

acAf

- Z Liue (@)=} Z Aa(W)]alGo(1)
acA? u' €supp(Q)

- Z 1{#aG_ } Z )‘G(M/)[&]GG(IMI) )
acA? ' €supp(G)

where the last equality follows from the fact that the posterior that the receiver holds



after observing message a with positive probability is, for all w € €2 and 6 € ©:

ol (alw)

@ 0] = O

2 pesupp(@) 96 (1 @) |w) o (0)[w]

Z;LEsupp(G) a(p)lalG(p)
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= [, (0) ],

l
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where the fourth equality follows again from the fact that og((p, a)lw)uo(8)w] =

1(0)[wlog (1, @) = p(0)[wlhe(p)[alG () for s such that 47 (s,-) = p and that
> ses Lium(s,)=py 06 (5]0) = Go(p) for all y1 € supp(Gy).

As o™ is such that o™ (@,-) = @, we then have that for all ' € A and 6§ € ©:

v(Hy®, 3¢ (8),a(6),0) = v(Hy®, u™ (a,0),a(6),0) > v(Hy¢, u (a,0),d’,0) = v(Hy®, 13°(6),d', 6).

This concludes the proof. O
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