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1. Introduction

We estimate the effect of urban form on driving. To conduct our analysis we exploit the best available travel

survey data for the us and match them to spatially disaggregated national maps that describe, among other

things, population density and demographics, sectoral employment, and land cover. Causal identification of

the relationship between urban form and driving faces two primary obstacles. First, people with particular

preferences for driving may sort into areas of particular density. We pursue a number of strategies to address

this problem. Among them, we develop a novel approach to the sorting problem for a cross-section of

residents that follows from an intuitive definition of sorting and an assumption of imperfect residential

mobility. The second main inference problem arises from unobserved factors correlated with urban form

that may also affect driving behavior. To address this omitted variables problem we rely instrumental

variables estimation using measures of subterranean geology as instruments. These measures predict the

characteristics of surface development and are plausible as sources of quasi-random variation in urban form.

We find that urban density has a small causal effect on individual driving. In most of our estimations

‘urban density’ is the density of residents and jobs within a 10-kilometer radius of where a driver lives.

We find that the elasticity of vehicle kilometers traveled (vkt) with respect to this measure of density is

between -7% and -10%. This result is not sensitive to the particular measure of density, but is sensitive to

the scale at which we measure density. Residents and employment more than 10 kilometers from a driver’s

residence do not have a measurable effect on driving behavior, nor do other measures of urban form. Point

estimates suggest that households that prefer not to drive sort into denser neighborhoods, and that denser

locations often have unobserved characteristics that increase the value of travel. Both effects, however, are

economically and statistically small. We also find larger effects of density at extremely high levels of density

due in part, as we document, to switches from car travel to transit and non-motorized modes of travel.

These estimates allow us to estimate the effects of hypothetical densification policies on aggregate

driving. The decile of us population living at the lowest density occupies about 83% of the area of the

continental us, while the population of the highest density decile occupies about 0.2%. If we consolidate

the entire decile of population living at the lowest density into an area the same size as that occupied by

the densest decile of population, an 867 fold increase in density for this part of the population, we achieve

about a 5% decrease in aggregate driving. Draconian as it is, this example probably overstates the effect

of densification on driving. More plausible densification policies create areas where density increases by

decreasing density in other areas. Provided they remain inhabited, the latter areas experience an increase in

per capita driving while the denser areas experience a decrease. Our estimates suggest that such policies

also cause only modest decreases in aggregate driving. A comparison of the effects of densification policies

with what is known about the effects of gasoline taxes and congestion prices suggests that densification
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policies are unlikely to be a cost effective way to reduce aggregate driving or traffic congestion.

Our econometric framework derives from a simple theoretical description of the utility derived from

driving in different landscapes and our econometric estimates allow us to recover the structural parameters

of this model. This leads to two further conclusions. First, to the extent that we are able to check, our results

are consistent with related results in the literature. Second, as density varies the changes in the utility

derived from driving appear to be small. This is consistent with our finding that sorting does not primarily

explain the relationship between urban form and driving.

Our results are of interest for a number of reasons. First, traffic congestion is an important economic

problem and land use change is a widely proposed policy response to this problem. For example: in a

State of Arizona Department of Transportation professional paper, Kuzmyak (2012) concludes that "greater

adherence to smart growth principles of compact, mixed-land use,..., may result in important reductions in

average trip lengths and vmt [vehicle-miles traveled] demand on local and regional roads"; the us Depart-

ment of Transportation states that "[t]ransportation demand is reduced when residential and commercial

uses are planned to be within close proximity to each other...";1 while the Brookings Institution’s website

states that "[w]e need to make places more efficient by joining up transportation with the housing, real

estate, commercial, and industrial decisions it drives".2 Our results provide a basis for evaluating such

claims.

More generally, the hypothesis that changes in urban form have economically important effects on driv-

ing behavior is the subject of a large literature in urban planning, as we discuss in more detail below. This

literature is based almost entirely on cross-sectional associations, typically calculated from small samples

describing small areas. That is, the current empirical literature does not allow policy makers to use urban

planing to affect driving with any confidence of achieving their desired outcome. We improve on the

existing literature by providing plausibly causal estimates. We also exploit better data than has previously

been available. This permits us to test different measures of urban form against each other and to investigate

the scale at which urban form affects driving. Hence, we can provide some insight into which of the many

correlated characteristics of urban form influence driving and which do not.

Urban planning also plays a prominent role in policy discussions of carbon abatement. The Fourth

Assessment Report of the ipcc discusses land use as a potential policy to reduce the demand for automobile

travel (e.g., section 5.5.1.1 of Intergovernmental Panel on Climate Change, 2007), the more recent Fifth As-

sessment suggests that "[u]rban Densification in the usa over about 50 years could reduce fuel use by 9-16%"

(table 8.3, Intergovernmental Panel on Climate Change, 2014), and California’s Senate Bill 375 (September

7,2006) asserts that "it will be necessary to achieve significant additional greenhouse gas reductions from

1http://www.fhwa.dot.gov/planning/processes/land_use/land_use_tools/page02.cfm#toc380582783, September 17, 2015.
2http://www.brookings.edu/blogs/the-avenue/posts/2015/08/27-urban-traffic-congestion-puentes?rssid=The+

Avenue, September 17, 2015.
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changed land use patterns and improved transportation". Because driving accounts for a large share of

carbon emissions, our analysis helps to inform these sorts of policies by providing causal estimates of how

particular changes to urban form affect driving behavior.

Finally, us households devote 17.5% of their expenditure to transportation and 32.8% to housing (us bts,

2013).3 Given the magnitude of the allocations involved, understanding how the spatial configuration of

structures affects driving behavior is of intrinsic interest. More simply, much of the world’s population lives

in cities and the construction and operation of these cities is costly. Understanding how to better organize

cities is clearly a policy question of the first order.

2. Literature

Three strands of literature are relevant to our inquiry. The first is the large literature on the relationship

between urban form and driving. The second investigates the relationship between the characteristics of a

place and behavior. The third examines the extent to which unobserved attributes of places affect the way

that cities develop in these places.

Urban form and driving

The relationship between urban form and driving is ‘one of the most heavily researched subjects in urban

planning’ (Ewing and Cervero, 2010) and searching for the phrase ’urban form and driving’ yields about

950,000 links on Google Scholar. The problem has also received attention from economists.

This literature is the subject of several surveys, including Ewing and Cervero (2010), Handy (2005),

Cao, Mokhtarian, and Handy (2009), Ewing and Cervero (2001), and Boarnet (2011). The literature is

overwhelmingly based on cross-sectional regressions. Most of the papers surveyed in Ewing and Cervero

(2010) rely on samples of fewer than 1,000 people or households, though Boarnet (2011) describes a few

studies based on samples approaching 10,000. Typically, these samples cover small geographic areas. Bento,

Cropper, Mobarak, and Vinha (2005) is an exception in both regards. It is based on the 2002 wave of the

nhts and therefore exploits a national sample of about 22,000 households, although they restrict attention

to urban form variables measured at the level of the msa.

Research typically revolves around estimating the effect on driving behavior of the ’three D’s’ proposed

in Cervero and Kockelman (1997); ’Density’, ’Diversity’ and ’Design’. That is: the density of residents or

employment; the diversity of activity, in particular the extent to which residential and other uses are mixed;

and, usually, characteristics of various transportation networks. Our data will allow us to investigate two

3However large these figures may appear, they do not account for the importance of commercial property in firms’ production costs
or the time cost of travel. We note that at least 95% of household expenditure on transportation is road transportation.
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of these three, the density and diversity of neighborhood population and economic activity, and to touch on

the third, the characteristics of the neighborhood street network.

The possibility that an individual or household’s location choice may depend on their predisposition to

travel is widely recognized and Cao et al. (2009) survey the econometric techniques that have been applied to

the problem. In short, the literature has yet to identify a good source of random or quasi-random variation

in neighborhood choice. To the extent that the literature implements instrumental variables estimations to

deal with sorting, it relies on variables such as race or housing stock age that seem unlikely to satisfy the

relevant exogeneity condition and are subject to the conceptual problem we describe in section 4. Panel data

sets are almost unknown and those that are available describe small areas and samples. In this light, the

approach to the problem of sorting that we develop below is an advance.

The possibility that the neighborhood characteristics of interest may be correlated with unobserved

characteristics that affect driving, our ’endogenous density’ problem, has been addressed only by Blaudin

de Thé and Lafourcade (2015).

The relationship between urban form and total travel distance by households (e.g., Bento et al., 2005,

Brownstone and Golob, 2009) and the journey to work (e.g., Gordon, Kumar, and Richardson, 1989, Giuliano

and Small, 1993, Glaeser and Kahn, 2004) have been a primary focus of this literature. The literature has also

investigated the relationship between urban form and other travel outcomes, including pedestrian trips

and energy consumption (e.g., Brownstone and Golob, 2009, Glaeser and Kahn, 2008, Blaudin de Thé and

Lafourcade, 2015).

Places and behavior

Differences in individual outcomes across locations are widely observed, and determining whether these

differences reflect causal effects of the location or the sorting of different types of people is a pervasive prob-

lem in economics. The justly famous ‘Moving To Opportunity’ experiment induced a random assignment

of poor households to move to nicer neighborhoods than they would otherwise have chosen. The effects

of this move for teenage children on educational attainment and economic outcomes are small while the

effects for children under the age of 13 appear to be large (Kling, Ludwig, and Katz, 2005, Chetty, Hendren,

and Katz, 2015). These effects are quite different from what we expect from a cross-sectional analysis where

outcomes for individuals are usually strongly positively correlated across space (see Ioannides and Topa,

2010, for a survey).

The urban economics literature has devoted considerable effort to investigating the relationship between

city size and wages. Combes, Duranton, and Gobillon (2008) find that about half of this effect is accounted

for by basic demographic controls and unobserved individual traits and half is causal. Eid, Overman, Puga,

and Turner (2008) find that all of the cross-sectional relationship between obesity and neighborhood char-
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acteristics can be accounted for by individual fixed effects. Dahl (2002) finds that cross-sectional estimates

of the returns to education suffer from a small upward bias caused by the tendency of educated individuals

to migrate to states where the returns to education are high. Currie and Walker (2011) find that automobile

pollution has a causal effect on the health of residents in neighborhoods exposed to pollution and do not

find evidence that this reflects the sorting of unhealthy residents into polluted neighborhoods.

Summing up, cross-sectional differences in outcomes across locations are sometimes due to sorting of

people on the basis of observable or unobservable characteristics, but are also sometimes due to causal

effects of locations on people. Thus, concern about the role of sorting in determining the cross-sectional

relationship between urban form and driving is well founded, but we have little basis for predicting the

importance of sorting for our particular problem.

In addition, we note that extant approaches for dealing with sorting all rely on strong identification

assumptions. Some of the work cited above (e.g. Combes et al., 2008, Eid et al., 2008) relies on panel data

and assumes that mobility is exogenous. Alternatively, the literature often assumes that sorting takes place

for some choices (or particular spatial scales) but not others. For instance, Evans, Oates, and Schwab (1992)

assume no sorting across cities but sorting within cities whereas Bayer, Ross, and Topa (2008) assume sorting

across neighbourhoods but not across blocks within neighbourhoods. The approach we develop below relies

instead on imperfect mobility.

Endogeneity of infrastructure

There is an active literature investigating the role of transportation infrastructure on the way that cities

develop. Baum-Snow (2007) is a pioneering contribution to this literature and investigates the role that the

interstate highway system played in the decentralization of us cities between 1950 and 1990. To address

the possibility that highways were assigned to cities that would otherwise have decentralized, Baum-Snow

(2007) relies on an early plan of the interstate system as a source of quasi-random variation. Duranton

and Turner (2012) use a similar methodology to investigate the extent to which interstate highways caused

population and employment growth in us cities. This literature is now large and is surveyed in Redding

and Turner (2015). Often, but not always, this literature finds evidence that the assignment of infrastructure

to cities is not random. For example, the results in both Baum-Snow (2007) and Duranton and Turner (2012)

suggest that interstate highways are disproportionately assigned to us cities that grow less slowly than

would be predicted from observable characteristics.

The literature on the effects of infrastructure is concerned with city level outcomes such as population

growth or decentralization. The present inquiry is, for the most part, concerned with a smaller spatial

scale. It is also the first to consider the possibility that neighborhood characteristics related to density,

diversity and design may be correlated with unobserved characteristics that affect driving. Our solution
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to this problem involves instrumenting for urban form with underground geology: the pervasiveness of

aquifers, and earthquake and landslide risk. Although our use of these instruments in this context is novel,

the idea derives from Rosenthal and Strange (2008). They use bedrock characteristics as an external predictor

of population density because deep bedrock usually makes construction more expensive and limits the

intensity of development.

3. A simple model of urban form and driving

To illuminate the inference problems that our empirical investigation must overcome, we first present a

simple model of equilibrium driving behavior. Consistent with the regressions below, we focus on total

travel distance by households. This is (arguably) the measure of travel that has received the most attention

from both the academic literature and policy makers because it maps fairly directly into congestion, local

pollution, and carbon emissions.

Consider a location with unit area and population density X. A resident with income W derives utility

from the consumption of a continuum of differentiated varieties Q(.) of measure N and the numéraire good

C,

U = C + θ δ

(∫ N

i=1
Q(i)di

)ρ

, (1)

where θ is a resident-specific term, δ is a location-specific term, and 0 < ρ < 1. To consume a differentiated

variety, the resident must make a dedicated trip. The cost of a unit of variety i is τD(i) where D(i) is the

travel distance to variety i and τ parameterizes the cost of travel.4 We imagine that restaurants and movie

theaters as well as local recreational amenities such as parks or museums would each constitute a ’variety’

in this context.

Residence in a location requires the consumption of a unit of housing at price Ph. The budget constraint

of a resident is thus C + Ph +
∫ N

i=1 τD(i)Q(i)di = W. To keep the problem tractable we assume that: (i)

there are ‘enough’ varieties so that residents never consume the full set of available varieties, (ii) varieties

can only be consumed in unit quantity Q(i) = 1, and (iii) varieties are symmetrically located around the

resident so that D(i) = D for all varieties i.5 The budget constraint simplifies to C + Ph + NτD = W. Next,

we can substitute this budget constraint into the utility function and simplify to obtain

U(N) = W − Ph + θδ Nρ − NτD . (2)

4We impose an ‘iceberg’ (multiplicative) specification for travel costs to keep the consumer program tractable. This type of
specification is extremely standard to model trade in goods (Head and Mayer, 2014). Its gravity implications also appear to describe
commuting patterns extremely well (Ahlfeldt, Redding, Sturm, and Wolf, 2015).

5Besides imposing convenient functional forms, our simple model also ignores many common features of travel such as the
possibility of chaining trips. In addition, we do not explicitly deal with commutes and other work-related trips. Some of these
complications are addressed in our regressions below. Our priority is to develop a tractable framework to underpin our regressions
and to highlight the key econometric challenges that we face.
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Assuming income is high enough, the maximization of utility with respect to the number (mass) of

varieties implies the following number of trips

N =

(
ρθδ

τD

) 1
1−ρ

. (3)

This expression indicates that residents take more trips if they have a greater taste for differentiated varieties,

θ. For instance, some residents may enjoy dining out more than others. More generally, θ captures an

individual resident’s propensity to travel. The number of trips also increases with δ. For instance, a

neighborhood near a nice beach may generate more trips than a neighborhood near a dirty beach. Our

model can capture this by assigning one location a higher value of δ. Residents also make more trips when

they are cheaper. This can occur because the cost of travel, τ, is lower or because trip distance, D, is shorter.

In turn, differences in τ and D across locations arise as locations differ in how congested they are and in

how compact they are. Finally, the number of trips increases with ρ, which measures the (opposite of the)

concavity of the utility function with respect to differentiated varieties.

We are ultimately interested in how travel distance relates to density around a resident. Total travel

distance by a resident is given by,

Y ≡ N D =

(
ρθδ

τ

) 1
1−ρ
(

1
D

) ρ
1−ρ

, (4)

where the last equality results from the use of equation (3). Like the number of trips, travel distance also

increases with θ and δ and decreases with the unit cost of travel τ and trip distance D. The latter effect arises

because the demand for trips is elastic with respect to trip distance.

Density at a location affects the demand for travel through a number of channels. A higher density

reduces trip distance through greater accessibility. In turn, this reduces travel distance for a given number

of trips but it also makes trips cheaper and thus elicits more trips. In addition, a higher density increases

the unit cost of travel through more congestion. The net effect of improved accessibility and increased

congestion on travel distance is ambiguous.

More specifically, to model the reduction in travel distance per trip that comes with greater population

density, we assume

D = X−ζ , (5)

where we refer to ζ as the accessibility elasticity.6 We assume a power function for this relationship (and

others below) to preserve analytical tractability. We show in section 5 that the implied log linear relationship

between travel distance and density fits the corresponding empirical relationship closely.

6As accessibility improves residents face both more and closer options. Our formulation reflects this tradeoff, albeit in a simple,
reduced-form manner. See Couture (2014) for micro-foundations.
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We expect congestion to depend on aggregate travel in the location. To capture this stylized fact in our

model, suppose that travel costs are

τ =
(
X Y

)φ
, (6)

where Y is mean travel distance and φ measures the elasticity of travel cost per unit with respect to aggregate

travel, which we refer to as the congestion elasticity. Consider a location of unit size with parameter δ and a

cumulative distribution of residents F(θ). Mean travel distance is then given by Y = 1
X
∫

Y(θ)dF(θ).

By construction, individuals do not account for their impact on τ. Therefore, equilibrium levels of driving

will be greater than socially optimal levels. Even if changes in urban form reduce congestion and increase

utility, they do not remove the need for congestion pricing. We return to this point below.

Our model describes only automobile travel and ignores the possibility that density might affect mode.

This simplifying assumption is motivated by two features of our data. First, as we will see below, about

89% of all trips are made by a privately-owned vehicle. By excluding non-car travel, we only exclude a

small share of trips. Second, even at high densities, mode choice is not very sensitive to density. As in our

model, the data suggest that the economically important margin of adjustment is the amount of driving, not

substitution between driving and other modes.

After defining θ =
[

1
X
∫

θ1/(1−ρ)dF(θ)
]1−ρ

, an index of the preferences of residents in a location, using

the definition of Y above and inserting equations (5) and (6) into (4) implies

Y = θ
1

1−ρ

(
ρδ

θ
φ

1−ρ

) 1
1−ρ+φ

X−
φ−ζρ

1−ρ+φ , (7)

after simplifications.

Substituting equations (3)-(7) into the utility function (2) leads to:

U = W − Ph + (1− ρ)(θ δ)
1

1−ρ

( ρ

τD

) ρ
1−ρ

= W − Ph + (1− ρ)ρ
ρ

1−ρ+φ δ
1+φ

1−ρ+φ

(
θ

θ
φρ

1−ρ+φ

) 1
1−ρ

X
ρ

1−ρ+φ (ζ(1+φ)−φ) . (8)

We draw a number of conclusions from equations (7) and (8). First, in equation (7), if the congestion

elasticity, φ, is larger than the product of the accessibility elasticity, ζ, and the utility term, ρ, then travel

distance decreases with population density. Two forces are at play. Travel distance increases with population

density because of improved accessibility. This increase in travel distance also depends on how much the

consumption of differentiated goods that require travel is valued in utility terms. At the same time, the cost

of travelling also increases with density because of rising congestion. It is only when φ > ζρ that travel

distance declines with population density.

Second, even if we assume no other cost or benefit from density, the effect of density on equilibrium

utility in equation (8) is ambiguous. In equation (8), the coefficient of density, ρ
1−ρ+φ (ζ(1 + φ) − φ), is
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complicated because aggregate travel distance affects individual driving that occurs through congestion, as

described in equation (6). However, the term in τD in the first line of equation (8) makes it clear that utility

increases with density when it reduces trip distance, D, more than it increases unit travel cost, τ. For ρ < 1,

utility increases with density when the accessibility elasticity is large enough, ζ > φ
1+φ .

Third, we note that it is only when the exponent on X is positive for utility in equation (8) and the

exponent on X for travel distance is negative in equation (7) that travel declines while utility increases

with density. These two conditions require φ
ρ > ζ > φ

1+φ . That is, the accessibility elasticity, ζ, must be

large enough that utility increases with density but not so large that travel also increases. It is only when

parameters satisfy these particular conditions that the model both predicts a widely conjectured empirical

relationship and satisfies a necessary condition to rationalize policies to increase population density.

It is also easy to see from equation (8) that ∂2U
∂θ ∂X ≥ 0 when ∂U

∂X ≥ 0. In words, there is a positive

complementarity between the propensity to take trips and population density when utility increases with

population density. In this case, residents with a greater propensity to make trips benefit more from a

higher population density than residents with a smaller θ. In section 7, we extend our model to solve

for the location choices of residents. In this extension, we show that the single-crossing condition implied

by this complementarity between the propensity to take trips and density leads to the perfect sorting of

residents across locations of different density. More specifically, residents with a greater propensity to make

trips choose to locate in denser locations. The opposite form of sorting occurs when utility decreases with

density. Hence, in general, we expect a non-zero correlation between the propensity to make trips, θ, and

population density, X, to be a feature of our data. Importantly, the direction of the bias is ambiguous. When

increases in population density lead to large improvements in accessibility, we expect residents with a higher

propensity to travel to locate where density is higher. When increases in population density lead instead to

small improvements in accessibility, we expect on the contrary residents with a higher propensity to travel

to locate where density is lower. Hence, an ols regression of distance travelled on population density may

understate or overstate the true effect of density because of the sorting of residents.

In addition, it is also easy to see that in general, ∂2U
∂δ ∂X 6= 0. Hence, we should also expect a non-zero

correlation between how beneficial trips are in a location, δ, and population density, X.

If residential sorting is perfect in equilibrium, then we must have θ = θ. In fact, we expect sorting to be

less precise than this, and our econometric model relies on the fact that residential mobility is imperfect. To

describe such a process parsimoniously, we instead suppose that θ = θν, where ν is an error term.7 Using

this relationship in equation (7) and taking logs then gives,

y =
log ρ

1− ρ + φ
− φ− ζρ

1− ρ + φ
x + ε , (9)

7In regressions reported in table 2, we will see that our data do not allow us to separately identify the effects of individual and
neighborhood average demographic characteristics on household driving. This suggests that ν is small relative to θ.
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where

ε =
log δ

1− ρ + φ
+

1
1− ρ + φ

log θ +
φ

(1− ρ + φ)(1− ρ)
log ν . (10)

and y ≡ log Y and x ≡ log X.

Equation (9) describes a regression of driving on urban form. This regression, typically conducted with

cross-sectional survey data, forms the basis of the large literature described in section 2. Because local

gains from trips, δ, and the propensity to make trips, θ, are not observed, they enter the error term. Given

their expected correlation with population density, the estimated coefficient of x is potentially biased. The

sorting of travellers and the endogeneity of density are the two main identification challenges we face in

our empirical work below.8

4. Econometric model

We would like to estimate the relationship between urban form and driving behavior. We begin by consid-

ering the problem of sorting and then turn to the problem of endogenous urban form.

Each person (household) is assigned to a geographic unit. As we discuss below, these will be regular

grid cells of approximately one kilometer square. For each such unit we construct measures of urban

form, usually a measure of density, which we also discuss below. Let i index individuals and j index

residential locations. We are interested in explaining how driving behavior yij varies with urban form.

More specifically, we are interested in knowing how the driving behavior of a randomly selected person or

household changes when we change urban form in or around their residential location.

Let x0
j denote the urban form variable of interest for geographic unit j at an initial period (density in the

model above), usually around 1990 and let x1
j denote the urban form variable of interest usually around

2010, contemporaneous to y. Define ∆xj = x1
j − x0

j . We observe both contemporaneous and historical

descriptions of urban form at each location, but we observe each driver only once.

Suppose that driving for each person is described by the following equation,

yij = θij + βxj + δj, (11)

so that observed driving for each person is determined by an individual specific intercept, θij, a location

specific intercept, δj, and the urban form in person i’s location j, xj. The parameter of interest, β, measures

the effect of local urban form on distance travelled.

We note that this is equivalent to the equilibrium driving equation (9) derived above, where, in a slight

abuse of notation, we renormalize θij and δj to improve legibility. Importantly, in both equations (9) and (11)

individual taste parameters and location specific effects enter only through the intercept. They do not lead

8The direction of the bias is ambiguous because, as pointed out above, the correlation between density and the taste parameter θ
can be positive or negative, depending on parameter values.
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to individual or neighborhood level differences in β, the rate at which individuals change their behavior

in response to density. This simplifies our econometric task considerably and we appeal to the theoretical

analysis above to justify this restriction. This assumption also finds some empirical support in our results:

we perform our main regression on many different subsamples and do not find measurable differences in β

across samples.

Given equation (11), our two main inference problems are that people do not choose their locations at

random and that observed and unobserved attributes of urban form are correlated with, and may affect

driving. We address each problem in turn.

To begin, suppose that individual specific intercepts are not observed, but are drawn from the real inter-

val Θ, let w denote observable individual characteristics related to location choice and let the distribution of

individual types at each location j be determined by

θij = α0 + α1xj + α2wij + µij, (12)

where µ is a random variable and E(xjµij) = 0. That is, the assignment of types to location j depends

on urban form, on observable individual characteristics, and on unobserved individual characteristics. If

α1 > 0, then drivers with a larger θ to sort into neighborhoods with a larger x and conversely. As µ increases,

residents derive more utility from trips for reasons unrelated to x.

Using both equation (12) and (11), we have that

yij = (α0 + α1xj + α2wij + µij) + βxj + δj

= α0 + (α1 + β)xj + α2wij + εij, (13)

where ε = µ + δ. Thus, if α1 6= 0 or E(εjxj) 6= 0, ols estimates of β will be biased.

Our approach to this sorting problem relies on an assumption of imperfect mobility. We now consider

two time periods t = 0 and t = 1 and suppose that at t = 0 all agents match to locations as described above.

At t = 1 a randomly selected fraction, sj, of these residents relocates and is replaced by agents who sort

on the basis of current conditions. With these assumptions in place, for a location where x1
j = x0

j + ∆xj,

expected driving at t = 1 is

y1
ij = (1− sj)

[
(α0 + α1x0

j + α2wij + µij) + βx1
j + δj

]
+sj

[
(α0 + α1x1

j + α2wij + µij) + βx1
j + δj

]
= α0 + (α1 + β)x0

j + α1sj∆xj + β∆xj + α2wij + εij

= A0 + A1x0
j + A2sj∆xj + A3∆xj + α2wij + εij. (14)

In fact, we will not always observe sj directly. Instead, we observe characteristics that vary systematically

with the mobility rate, e.g., driver age or mean housing tenure in the driver’s home cell. To understand how
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this allows similar tests, denote our mobility proxy by s̃ and suppose that mobility varies with s̃ according

to s = g(s̃). Taking a linear approximation, we have s = γ1 s̃, where γ1 6= 0 is assumed. Substituting this

expression for s into (14) we see that the coefficient on s̃∆x is αγ1. Substituting into (14) gives

y1
ij = A0 + A1x0

j + A2γ1 s̃j∆xj + A3∆xj + A4wij + εj. (15)

Equation (15) suggests two parametric tests of the importance of sorting. First, the difference between

the coefficients of x0 and ∆x is α1. This is the parameter that describes how the unobserved individual

propensity to drive varies with urban form in equation (12). Since α1 = A1−A3, we can reject the hypothesis

that α1 = 0 by rejecting the hypothesis that A1 = A3. Second, we can reject the hypothesis that α1 = 0 by

rejecting the hypothesis that A2γ1 = 0. In fact, our estimates will generally indicate the A2γ1 is tiny and

not significantly different from zero. However, because this test compounds two structural coefficients, we

regard it as less informative than tests based on the difference A1 − A3. Although they are imprecise, point

estimates in our preferred specification suggest that α1 < 0 and is about one sixth the magnitude of β. That

is, individuals with smaller propensity to drive move to dense places, but this sorting most likely makes

only a modest contribution to the observed relationship between urban form and driving.

This methodology requires two comments. Identification rests on the assumption that as urban form

changes, so do the characteristics of the marginal resident. Not only does this seem like a reasonable hy-

pothesis, it also follows a common sense definition of ‘sorting’. While we express the intuition precisely and

in particular functional forms, the underlying intuition seems unrestrictive. Second, as we have described

it, sorting affects only residents moving to a location, not those moving away from it. More realistically,

we might expect a non-random sample of people to move from a location, and in the case of an increase in

density, they should value density less highly than the average current resident, who in turn should value

density less highly the average arrival. We generalize our framework to describe this intuition precisely is

in Appendix A. This leads to a similar empirical strategy.

While the estimation described in equation (15) addresses the problem of sorting by unobserved indi-

vidual characteristics, it does not address the possibility of omitted location variables correlated with urban

form or changes in urban form.9 For example, municipal snow removal may be systematically worse in

dense areas and affect driving. To address this problem, we consider the system of equations,

yij = θi + βxj + δj , (16)

xj = γ0 + γ1zj + ηj . (17)

In the context of this system, our omitted variables problem may be stated as E(xjδj) 6= 0. We resolve

this problem by relying on instrumental variables estimation. As the system above suggests, this requires

9We cannot address the problem of changes in urban form determined simultaneously with driving. Below we address the issue of
urban form variables in levels that are determined simultaneously with driving.
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an instrument that predicts urban form but that does not otherwise affect driving, or more formally, that

γ1 6= 0 and E(zjδj) = 0. In our empirical work, we rely on various measures of subterranean geology as

instrumental variables. As we will see, these measures are important determinants of urban form and it is

difficult to imagine other channels through which they could affect driving behavior than by affecting the

urban form.

Although this is a standard instrumental variables estimation, in our context, it requires two comments.

First, we should not expect our instrumental variables estimation to resolve the problem of sorting. To see

this, let x̂j = γ0 + γ1zj and rewrite equation (13) using (17) as,

yij = α0 + (α1 + β)(x̂j + ηj) + εj ,

= α0 + (α1 + β)x̂j + ((α1 + β)ηj) + εj) .

That is, as long as residents sort on the component of the urban form predicted by underground geology in

the same way as they sort on the residual component, the instrumental variables regression does not lead to

unbiased estimates of β. Thus, instrumental variables estimation can solve the problem of unobserved local

characteristics, but it cannot solve the problem of unobserved individual characteristics.

In light of the intuition above, we would ideally implement our instrumental variables strategy in the

context of equation (15) which explicitly accounts for sorting. In practice, our instruments are not able to

predict changes in urban form, only levels. Thus, in spite of its theoretical appeal, this strategy is beyond

the reach of our data. With this said, the data suggest that neither sorting nor omitted variables cause

economically important biases in our estimates, so we can reasonably conjecture that allowing these two

biases to interact would also be unimportant.

5. Data

Our analysis requires three main types of data; household and individual level travel behavior, a description

of urban form for each household, and finally, a description of subterranean geology. To implement our

response to the sorting problem, we require panel data describing urban form, but only cross-sectional

travel data.

We also require a way of matching survey respondents to landscapes. To accomplish this, we construct a

regular grid of 990-meter cells by aggregating the 30-meter cells that describe land cover. Each household is

matched to the cell which contains the centroid of the household’s census block group. We will refer to this

cell as an individual or household’s ‘home cell’, and in a slight abuse of language, describe cells as having

an area of one square kilometer.10 We convert all data describing urban form to this resolution as described

10Our data are projected onto a flat surface using an Albers Equal Area projection. This projection transforms our approximately
round planet into a plane and preserves area by compressing the North-South dimension of pixels away from the equator. This
preserves pixel area at the expense of pairwise pixel distances. As a practical matter, over the range of distances we consider, i.e. about
10 kilometers, such cartographic details are not important.

13



Table 1: Descriptive statistics for NHTS households, MSA sample

Variable Mean Std. Dev. 5th percentile 95th percentile Observations

Vehicles km travelled (VKT) 37,022 29,826 4,459 87,906 99,875
log VKT 10.17 1.01 8.40 11.38 99,875
Annual VKT 33,014 29,766 3,645 82,620 93,602
Odometer VKT 33,123 24,647 6,388 74,483 71,742
Household daily VKT 73.2 66.8 6.5 208.1 83,313
Household daily travel minutes 98.7 70.0 17 234 83,313
Household daily speed 42.6 38.8 13.9 75.6 83,313
Share of trips by POV 0.889 0.456 1 1 93,198
Distance to work 22.5 34.4 1.6 61.6 95,532
10-km density 1,072 1,559 44.9 3,222 99,875
log 10-km density 6.30 1.31 3.81 8.08 99,875
10-km population density 755 1,027 34.7 2,211 99,875
10-km share developed (%) 4.40 5.61 0.07 15.5 99,875

Notes: Authors’ calculations for 2006-2011. Distances are measured in kilometers and monetary values in current
American dollars. Household age is mean age for the adult members of the household. Household daily VKT, travel
time, and speed are computed for all households with positive travel by summing all trips across the surveyed
members of the household. Household speed is computed by dividing VKT by travel time for each household and
averaging across households. ‘Density’ refers to the sum of jobs and residents unless it is qualified by employment or
residential population. All densities are reported per square kilometer. POV refers to privately-owned vehicles.

below. With this data structure in place, we can construct urban form measures for each household on the

basis of arbitrary geographies by averaging over the relevant sets of grid cells. In particular, we can examine

the square kilometer surrounding each household by reporting the characteristics of its home cell, we can

average over all cells within 10 kilometers of the home cell or over all cells lying in the same msa.

Data on individual travel behavior come from the 2008-2009 National Household Transportation Surveys

(nhts).11 The nhts reports several measures of total annual driving for each household or individual

in a nationally representative sample of households. Our main dependent variable is household annual

vehicle kilometers travelled (vkt) and is reported in the first row of table 1.12 This measure of household

annual mileage is computed by the survey administrators, ‘bestmiles’, and is their preferred measure. In

robustness checks, we consider four other measures of individual and household driving distance, stated

annual vehicle kilometers traveled, a reported odometer measure of kilometers traveled, individual daily

kilometers traveled on the survey day, and distance to work.

Table 1 reports descriptive statistics for several measures of driving from the nhts. The three measures

of total household driving have sample means of 37,022, 33,014 and 33,123 kilometers over slightly different

samples of households. Except where noted otherwise, we restrict attention to households and individuals

who live in msas.13 Aggregating individual vkt and travel time at the household level implies that house-

11U.S. Department of Transportation, Federal Highway Administration (2009).
12Our initial nhts sample contains 150,147 households of whom we can locate 149,638 on our grid. We have a positive measure of

vehicle kilometers traveled for 136,530 households. After restricting our sample to those observations for which we have a full set of
household and individual characteristics, we are left with 126,203 households, 99,875 of whom live in an msa as defined in 1999.

13This is purely for expositional convenience. It allows us to include msa indicator variables in our regressions without changing
our sample.
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holds travel 73.2 kilometers in 98.7 minutes at an average speed of 42.6 kilometers per hour.14 Individual

distance to work is 22.5 kilometers. These values reflect the sample of household members who filled out a

travel diary reporting positive travel and those who reported driving to work. We also note that, on average,

households conduct 89% of their trips with a privately-owned vehicle. The transit share represents less than

2%.15

The nhts survey reports household and individual demographics. These demographic variables provide

a description of household race, size, income, educational attainment, and homeownership status. Mean

household income is $71,257 and the average over households of the average age of household adults is

53.5 years. We also note that nearly 90% of households in our sample are homeowners.

Urban form data are more complicated. To measure the share of developed land cover, we rely on

the 1992, 2002 and 2006 National Land Cover Data (nlcd).16 While the nlcd reports many land cover

classifications, we sum the urban classes in each year to measure the share of urban cover in each grid cell.

Table 1 reports descriptive statistics for our sample. For an average survey respondent, 4.40% of the land

area within 10 kilometers of their home cell is in urban cover in 2006.17

To assign 2000 census data to our grid cells, we distribute block group data to our grid cells using an area

weighting based on a geocoded map of 2000 census block groups. We perform a similar exercise for 1990

and 2010.18 With this correspondence between block groups and grid cells in place, we are able to assign

any block group variable reported in the 1990, 2000 or 2010 census and in the American Community Survey

(acs) to our grid.19 All urban form variables involving demographic characteristics are computed on this

basis. Table 1 reports that for an average survey respondent, the average residential density within a radial

distance of 10 kilometers of their home cell is 755 per square kilometer.

Using acs and census tabulations, we also measure a number of other local characteristics such as an

average length of tenure of 10.3 years and a renter share of 26.0%. We use these variables in estimations

below, and note that there is some variation across households in the mobility and tenure rates of their

neighborhoods.

Employment data are based on zipcode business patterns. These data report both aggregate and sectoral

14This is an average across households. Dividing aggregate vkt by aggregate travel time implies a speed of 44.5 kilometers per hour.
Couture, Duranton, and Turner (2016) report a mean speed per trip of 38.5 kilometers per hour. The differences between those numbers
are due to the fact that shorter trips are slower. Averaging across trip gives them a greater weight than averaging total travel across
households. In turn, a household average will also weight shorter trips more does the ratio of aggregate distance to aggregate travel
time.

15Walking represents 8.4% of all trips but only 4.3% of trips longer than one kilometer and less than 0.1% of household vkt. Biking
trips represent less than 1% of trips.

16United States Geological Survey (2000), United States Geological Survey (2011a) and United States Geological Survey (2011b).
17Note that all densities for rings around a survey respondent’s home are normalized by the number of grid cells for which we have

population and employment information. This prevents us from underestimating density for households who live by the sea, a lake,
or uninhabitable terrain.

18The particular census maps we use are: Environmental Systems Research Institute (1998a), Environmental Systems Research
Institute (2004), U.S. Department of Commerce, U.S. Census Bureau, Geography Division (2010).

19Sources for these data are: Missouri Census Data Center (1990), Missouri Census Data Center (2000), Missouri Census Data Center
(2010) and National Historical Geographic Information System (2010).
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employment by zipcode. We assign these data to our grid on the basis of zipcode maps using the same

procedure that we use for census data.20 We use zipcode business patterns for the years closest to the

nhts survey years, and to reduce measurement error, average over the nominal year of the survey and the

preceding year.

For some of our results, we rely on the 2007 National Highway Planning Network map (Federal Highway

Administration, 2005) to describe the road network. This map is part of the federal government’s efforts to

track roads that it helps to maintain or build. It describes all interstate highways and most state highways

and arterial roads in urbanized areas. To construct measures of road density, for each grid cell containing

a survey respondent, we construct disks of radius 5, 10 and 25 kilometers centered on this cell. For each

such disk, we then calculate kilometers of each type of road network in that disk. In addition to these data

we also use the prism gridded climate data (prism Climate Group at Oregon State University, 2012a,b) to

measure temperature and precipitation in each grid cell.

For much of our analysis, we use the total number of people living or working within 10 kilometers of

each survey respondent to measure urban form and call this measure ‘10-kilometer density’. We sometimes

also work with the corresponding measure based only on the household’s home cell and call this measure

’1-kilometer density’. When the scale of analysis is clear, we sometimes refer to these quantities as ’density’.

Table 1 reports that for an average household survey respondent, the 10-kilometer density is 1,072 per square

kilometer. People and jobs tend to be denser nearer survey respondents’ homes, 1-kilometer density is 1,513.

Figure 1 presents two probability distribution functions, the fine dashed black line for nhts sample

population and the heavy gray line for census population. Both distributions have a mode around 8, which

converting from logs to levels, corresponds to a density of about 3,000 per square kilometer. While the

two distributions of census and nhts people are generally close, they diverge slightly at high densities.

This confirms the slightly higher response rates of the nhts in less dense locations (U.S. Department of

Transportation, Federal Highway Administration, 2009).

Panel (a) of figure 2 illustrates the way that people in the us are exposed to our measure of 1-kilometer

density. In this map, the white area contains the 10% of the us population living at the lowest density. This

region is about 5.8 million square kilometers and 83% of the land area of the continental us. On average, the

about 30 million people living in this region have 6.25 people or jobs in their home cell. The barely visible

black areas in this map contain the 10% of the us population living at the highest densities. This area is less

than 1,5000 square kilometers and about 0.2% of the land area of the continental us. On average, residents

of these areas share their home cells with about 5,421 other people and workers. That is, the decile of us

population living at the highest densities lives at densities about 870 times higher than the lowest density

decile. The medium gray area in this figure houses the residual 80% of the population.

20Sources for our zipcode maps are: Environmental Systems Research Institute (1998b), U.S. Department of Commerce, U.S. Census
Bureau, Geography Division (2010).
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Figure 1: The distribution of population conditional on density
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Notes: The dashed black line describes the distribution of people surveyed by the nhts. We calculate number
of nhts people in each cell and then take the share of the total nhts population living in cells of given
densities and represent this on a log scale. The heavy gray line provides the corresponding information for
census population, i.e., for the whole contiguous continental us. These distributions are based on the whole
sample of the nhts for which we record household vkt, not the msa only sample on which we base most of
our regressions and table 1. Dropping the non-msa observations to be consistent with our regressions only
affects the lower tail of the distribution. The two vertical lines indicate bottom and top density deciles.

In our instrumental variables estimation, we rely on variables constructed from United States Geological

Survey (2001, 2003, 2005). United States Geological Survey (2003) describes the incidence of aquifers in the

continental us. Using this map, we determine which grid cells overlay consolidated or semi-consolidated

aquifers. Panel (b) of figure 2 illustrates these pixels. Burchfield, Overman, Puga, and Turner (2006) find that

an msa level index of aquifer prevalence is a good predictor of an aggregate measure of urban form. We will

also find aquifers are good predictors of local density. Usefully, the map indicates that aquifers are broadly

distributed across the landscape so that instrumental-variables estimates will not be driven by variation

within particular small regions. United States Geological Survey (2005) describes a measure of earthquake

intensity that ranges from 0 to 18. We consolidate to three categories; low, medium or high earthquake

exposure. Panel (c) of figure 2 illustrates these regions. Areas of high earthquake intensity are dark. United

States Geological Survey (2001) describes landslide susceptibility. The source data contains six categories,

which we consolidate to low, medium and high risk. Panel (d) of figure 2 illustrates high risk areas in dark

gray, medium risk areas in light gray and low risk areas in white. Like the aquifers map, neither landslide

nor earthquake risk are concentrated in small geographic areas so that instrumental variables estimates
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Figure 2: Maps

(a) Density deciles of population (b) Aquifers

(c) Earthquake intensity (d) Landslide risk

Notes: Panel(a): White indicates the area inhabited by people living in the bottom decile of density. Black
indicates the area inhabited by people living in the top decile of density. Gray indicates the area inhabited
by the 80% of the people living at intermediate densities. Panel (b): Gray indicates areas overlying
unconsolidated or semi-consolidated aquifers and white indicates the absence of such aquifers. Panel (c):
Darker gray indicates areas subject to larger earthquakes. Panel (d): Darker gray indicates areas subject to
higher landslide risk. 2000 msa boundaries shown in light gray in all four maps.

based on these variables are not driven by small regions of the country.

Bringing together our data about travel behavior and urban form, figure 3 describes mean per person

driving as a function of density. Except for extremely high or extremely low levels of density, the logarithmic

scale of the figure shows a clear log linear trend. On this basis, we rely on multiplicative rather than additive

regression equations. The far left part of the figure is noisy but this occurs for levels of log density below

2 and concerns less than 1% of the observations for our preferred sample of households that live in msas.

The far right part of the figure is also noisy but, again, less than 1% of our observations live at a log density

above 9 and only about 260 cells have a log density above 10. Of these 260, about two thirds are in the New

York msa. Despite this noise, the figure suggests that the effect of density on driving may increase at very

high levels of density. We will look for this sort of non-linearity in our regressions but recall that these areas
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Figure 3: Vehicle-kilometers traveled and density
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Notes: We first calculate mean per person vkt for each home cell by dividing household driving by the
count of household members. We then calculate mean vkt conditional on density as density varies. Both
axes are in log scale.

represent a tiny part of the country that may differ from the rest in many ways other than density.

6. Results

We proceed in steps. First, we present ols results showing the relationship between our preferred measures

of driving and urban form, household vkt and the density of residents and jobs within 10 kilometers.

Second, we verify that these relationships are robust to different measures of driving and to the scale at

which we calculate the urban form variable. Third, we consider the problems of sorting and endogeneity.

Finally, we investigate other measures of urban form and examine the extensive margin of travel.

A OLS estimations

Table 2 reports the results of ols regressions of driving on urban form in us msas. Our unit of observation is

a household described by the 2008 nhts. In every column, our dependent variable is the log of household

vkt, reported in the second row of table 1. In all specifications, our measure of urban form is the log of

10-kilometer density, also as described by table 1.

In column 1, we regress log annual household vkt on the log of density to find an elasticity of -8.7%.

Households in locations with a 10% higher density drive 0.87% less and a one-standard deviation increase

in density within 10 kilometers is associated with a 0.11 standard deviation decrease in vkt. At the sample
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Table 2: Driving and density, baseline OLS estimations

(1) (2) (3) (4) (5) (6) (7) (8)

log 10-km density -0.087a -0.098a -0.089a -0.093a -0.091a -0.12a -0.082a -0.075a

(0.0024) (0.0020) (0.0083) (0.0089) (0.013) (0.0075) (0.0051) (0.0050)
White/Asian 0.019b 0.020c 0.024b 0.020b

(0.0088) (0.0100) (0.0094) (0.0090)
Female -0.26a -0.26a -0.26a -0.26a

(0.010) (0.012) (0.011) (0.010)
log household size 0.49a 0.49a 0.49a 0.49a

(0.011) (0.011) (0.011) (0.012)
Single -0.24a -0.24a -0.24a -0.24a

(0.012) (0.013) (0.013) (0.013)
Age 0.045a 0.044a 0.044a 0.044a

(0.0010) (0.00099) (0.00098) (0.0011)
Age2 (/1000)) -0.51a -0.50a -0.50a -0.50a

(0.0098) (0.0095) (0.0097) (0.010)
log income 0.26a 0.25a 0.25a 0.25a

(0.0043) (0.0054) (0.0053) (0.0050)
Education 0.10a 0.095a 0.092a 0.091a

(0.016) (0.014) (0.014) (0.016)
Education2 -0.014a -0.012a -0.012a -0.011a

(0.0024) (0.0020) (0.0020) (0.0024)
log precipitation -0.015 0.051 -0.13b -0.060

(0.053) (0.042) (0.057) (0.079)
log precipitation sd 0.025 -0.036 0.11c 0.090

(0.069) (0.049) (0.063) (0.076)
Temperature 0.062b 0.049b -0.080 -0.021

(0.028) (0.024) (0.060) (0.039)
Temperature sd -0.043b -0.033c 0.052 0.014

(0.019) (0.017) (0.040) (0.027)
Share higher educ. -0.50a -0.18 -0.25a -0.30a

(0.072) (0.11) (0.078) (0.071)
Share higher educ2 -0.020 -0.20b -0.21b -0.12

(0.080) (0.092) (0.091) (0.073)
log local income 0.68a 0.18a 0.23a 0.22a

(0.014) (0.033) (0.014) (0.015)

R2 0.01 0.36 0.01 0.05 0.37 0.02 0.37 0.36
Observations 99,875 99,875 99,875 99,875 99,875 99,875 99,875 99,874

Notes: The dependent variables is log household VKT in all columns. All regressions include a constant including 275
MSA fixed effects in columns 6 and 7 and 837 county fixed effects in column 8. Robust standard errors in parentheses,
clustered by MSA in columns 3-7, and by county in column 8. a, b, c: significant at 1%, 5%, 10%.

mean, this represents about 3,300 kilometers annually. Because the estimated coefficient of density is stable

across specifications, these magnitudes are relevant to most of the tables presented below.

In column 2, we add household characteristics to our specification and estimate a slightly larger effect

of density on household vkt with an elasticity of -9.8%. White and asian households drive about 2% more.

Female households drive less. The coefficient of -0.26 implies that a single female is predicted to drive
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23% less on average than a single male. Large households also drive more, but not proportionately so.

The coefficients on log household size and the indicator for one-person households show that two-person

households will drive about 30% more than one-person households. We also observe that vkt is concave in

age. At age 20, an extra year of age is associated with 2% more driving. Then, vkt peaks around the age of

45 before declining. The elasticity of vkt with respect to income is large at around 26%. vkt increases with

education (which is coded 1 to 5) for low levels of educational achievement and then decreases for the most

educated households. Because the coefficients on households’ characteristics are stable across specifications,

we do not report or discuss them for subsequent tables.

In column 3, we consider geographic characteristics. Relative to column 1, the coefficient on density

changes little. The results of this column indicate that vkt is higher where temperature is on average higher

and varies less over the year. We find no significant effect of precipitation or its variation over the year. In

other specifications like in column 7, we sometimes find that vkt is higher in places with less precipitation

and more variation over the year.

In column 4, we consider neighborhood socio-economic characteristics. We find that driving declines

with the share of university educated workers and increases with average local income. Because richer

neighbourhoods are also on average denser, the coefficient on density also increases marginally in mag-

nitude relative to the one estimated in column 1. In column 5, we consider all the controls together and

estimate an elasticity of vkt with respect to density of -9.1%. Relative to column 4, we note that the

magnitudes of neighbourhood characteristics drop sharply and lose significance. This is unsurprising.

Richer and more educated households tend to live in richer and more educated neighbourhoods and the

resulting co-linearity makes it difficult to separately estimate the effects of household and neighborhood

income.

In column 6, we return to the specification of column 1 but also include a fixed effect for each Metropoli-

tan Statistical Area (msa). Estimating the elasticity of vkt with respect to density within msas yields a

coefficient larger in magnitude relative to column 1. This is because richer and more educated households,

both drive more and tend to locate in denser msas. Consistent with this, including all the household,

geographic, and neighbourhood characteristics in column 7 gives a coefficient on density close to that of

column 5 and, in spite of the extra fixed-effects, does not improve the fit of the regression. This specification

is our benchmark ols specification.21 Finally, column 8 introduces a fixed effect for each of the 837 counties

where metropolitan households are located. At -0.075, the coefficient on local density is marginally lower

but statistically indistinguishable from our preferred coefficient in column 7 or from the coefficient obtained

in column 1, the simplest estimation.

21In alternative specifications we also used the distance to the cbd as explanatory variable. Adding it in log to the specification of
column 7 makes the coefficient on density marginally smaller in absolute value at -0.074. The elasticity of vkt with respect to distance
to the cbd is small at 0.015.
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Table 3: Robustness of baseline OLS estimations to measures of travel

(1) (2) (3) (4) (5) (6) (7) (8)
Dependent: stated odometer ind. day dist. to ind. day speed number mean trip
variable: km km km work minutes of trips distance

log 10-km density -0.11a -0.095a -0.13a -0.18a -0.026a -0.11a 0.014a -0.15a

(0.0054) (0.0055) (0.0066) (0.0097) (0.0036) (0.0040) (0.0020) (0.0061)

R2 0.42 0.43 0.18 0.11 0.12 0.14 0.33 0.10
Observations 93,602 71,742 83,313 86,387 85,996 82,849 83,313 83,313

Notes: All regressions include controls for household demographics, geography, local socio-economic characteristics,
and 275 MSA fixed effects. Robust standard errors clustered by MSAs in parentheses. a, b, c: significant at 1%, 5%, 10%.
The dependent variables and explanatory variables of interest are in log in all columns except for the number of trips
in column 7. Demographic controls include a white/asian indicator, log income, log household size, a single indicator,
age, age squared, gender, education, and education squared. Geographic controls include average precipitation and its
standard deviation, and average temperature and its standard deviation. Local socio-economic controls include the
share of residents with higher education and its square and log local income.

Our choice of explanatory variables in table 2 controls for obvious determinants of household travel,

like household demographics or the geography of where they live. We also include controls for the neigh-

borhood socio-economic characteristics, in spite of the fact they are maybe correlated with urban form and

capture some of its effect. Given our concern about the sorting of households on the basis of unobserved

tastes for driving, we prefer the larger set of control variables.22 As it turns out, once we control for basic

household demographics, including further controls does not measurably affect the coefficient of urban

form.

We postpone more careful analysis, but we note that the elasticity of distance traveled with respect to

density seems economically small. In table 2, 10% increase in density corresponds to a less than 1% decline

in distance traveled. Over the period 1990 to 2010, in only 1% of pixels housing an nhts respondent does

density increase by more than a factor of 4.8. Given the coefficient of -0.082 estimated in column 7 of table 2,

this implies that if the density of every residential location were to increase by this factor the corresponding

decline in distance traveled is only of about 12%.

B Robustness to measure of driving and urban form

In table 3 we assess the stability of the results of table 2 as we vary our dependent variable. In each column

of this table we estimate a specification similar to that of column 7 of table 2, with controls for households

demographics, neighbourhood socio-economic characteristics, and geography as well as a full set of msa

fixed effects. In column 1, we replace our preferred measure of vkt with a stated measure of vkt. We find

a density elasticity of -11% instead of -8.2%. Measuring vkt through odometer readings by households in

22We experimented with many characteristics and included all those that are ‘often’ significant in the preliminary regressions we
estimated. For instance, we include an indicator variables for households that are white or asian. As can be seen in table 2 below,
this variable is often significant but the magnitude of its effects is small. We grouped white and asian households because differences
between them were minimal. Similarly we grouped all other minorities together because the differences between them were also
minimal.
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column 2, we estimate a density elasticity of -9.5%. Using a measure of daily vkt for individual drivers

aggregated at the household level in column 3, the elasticity is again slightly larger at -13%. Using instead,

distance to work in column 4 yields an even larger elasticity of -18%.

These elasticities for alternative measures of kilometers traveled are estimated on slightly different

samples of households. In supplemental results we restrict attention to the about 37,000 households for

whom we observe our preferred measure of travel and the four alternatives from columns 1-4 of table

3, we find the following elasticities: -9.2% for our preferred measures of travel, -12% for stated miles,

-11% for odometer miles, -14% for daily travel, and -18% for distance to work. The differences from the

corresponding elasticities reported in tables 2 and 3 are small.

We find some differences across different measures of travel, but note that these differences are small

and that these measures are conceptually distinct. For instance, daily vkt is measured at the individual

level whereas odometer vkt is measured for vehicles regardless of the number of household members who

travel. Distance to work is more sensitive to local density. This is not surprising because commutes often

take place when congestion is at its worst. Importantly, commutes represent 27% of household vkt and the

density elasticity is -18% for commute distance. Hence, commutes account for (0.27× 0.18)/0.092 ≈ 53% of

the density elasticity of -9.2% that we estimate for all travel.

In column 5, our dependent variable is a measure of travel time, household daily travel minutes, that

corresponds to kilometers traveled in column 3 and is directly measured by the survey. For this measure

of travel time, we estimate an elasticity of -2.6%, much lower than for travel distance. In column 6, we

use travel speed as the dependent variable and estimate an elasticity of -11%.23 Although residents in

denser locations travel fewer kilometers, their travel time is only marginally lower because travel is slower.

In column 7, we use the number of trips as the dependent variable and estimate a small positive density

elasticity of 1.4%. Finally, in column 8, we estimate an elasticity of mean trip distance to 10-kilometer

density of -15%. This shows that the lower vkt of residents in denser locations is exclusively explained by

shorter trips not by fewer trips. If anything, residents of denser locations tend to travel more often.

In table 4, we assess the stability of the results of table 2 as we vary our explanatory variable of interest.

In column 1, we use 1-kilometer density to measure urban form instead of 10-kilometer density. Relative

to the -8.2% elasticity we estimate with 10-kilometer density, the estimate here is modestly lower at -6.7%.

Columns 2 and 3 use the number of residents and the number of jobs within a 10 kilometer radius to estimate

comparable elasticities. We estimate a smaller elasticity in column 4 when using the share of developed

land within a 10 kilometer radius as measure of urban form. We return to these measures below when we

consider several measures of urban form in the same regression.

23Although our approach is very different from that developed in Couture et al. (2016), they estimate a comparable elasticity of travel
speed with respect to population of -13% across the largest 100 us msas.
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Table 4: Robustness of baseline OLS estimations to measure of density

(1) (2) (3) (4) (5) (6) (7) (8)
Sample restriction None None None None No NY No high Non-MSA No high-

density HH VKT HH

Urban form: 1-km 10-km 10-km 10-km 10-km 10-km 10-km 10-km
density pop. den. emp. den. land cover density density density density
-0.067a -0.083a -0.065a -0.055a -0.080a -0.078a -0.081a -0.067a

(0.0036) (0.0052) (0.0046) (0.0033) (0.0045) (0.0035) (0.0046) (0.0050)

R2 0.37 0.37 0.37 0.36 0.37 0.37 0.38 0.34
Observations 99,875 99,875 99,870 99,423 94,970 74,864 26,328 90,662

Notes: All regressions include controls for household demographics, geography, local socio-economic characteristics,
and 275 MSA fixed effects. Robust standard errors clustered by MSAs in parentheses. a, b, c: significant at 1%, 5%, 10%.
The dependent variables and explanatory variables of interest are in log in all columns. Demographic controls include
a white/asian indicator, log income, log household size, a single indicator, age, age squared, gender, education, and
education squared. Geographic controls include average precipitation and its standard deviation, and average
temperature and its standard deviation. Local socio-economic controls include the share of residents with higher
education and its square and log local income.

In columns 5 to 8, we consider various sample restrictions to confirm that our results are not driven by a

small subgroup of locations or drivers. In column 5, we estimate our preferred ols estimation of column 7

of table 2 without the New York msa. Although travel behavior in New York is dramatically different from

the rest of the country in many ways, surprisingly, the elasticity of vkt with respect to density is unchanged

when we exclude it. In results not reported here, we estimate the same specification for only the New

York msa and obtain an elasticity of -14%. In column 6, we eliminate all observations in the top density

quartile and still estimate an elasticity of -7.8%. In column 7, we consider only the non-msa residents who

are excluded from most of our specifications and estimate an elasticity of -8.1%. Finally, in column 8, we

eliminate the 10% of households with the highest vkt. Collectively, these households are responsible for

more than 20% of aggregate vkt. As these high vkt households are more often located in low density areas,

we are bound to estimate a lower elasticity of vkt with respect to density. We do but, interestingly, the

change is modest. We still estimate an elasticity of -6.7%.

Overall, these results suggest that our findings are broadly consistent across a variety of measures of

driving and landscape, but that particular measures of driving may be more or less sensitive to urban form.

C Sorting

We now turn attention to the possibility that households and individuals in dense areas are different from

those in less dense areas.

To assess this possibility, we consider a variety of strategies. Following prior investigations of urban form

and driving, we first consider the possibility of sorting into high-density residential areas in the context

of Heckman selection models. We now estimate two equations. The first equation is probit regression

24



Table 5: Heckman selection models (one-step maximum likelihood estimation)

(1) (2) (3) (4) (5) (6) (7) (8)
Sample: All All All MSA MSA MSA MSA MSA
Selection into: Above median density Top density decile

log 10-km density -0.12a -0.13a -0.11a -0.12a -0.13a -0.11a -0.21a -0.16a

(0.0058) (0.0064) (0.010) (0.0059) (0.0064) (0.010) (0.022) (0.026)Controls:
Demographics Y Y Y Y Y Y Y Y
Geography N Y Y N Y Y Y Y
Local socio-econ. N Y Y N Y Y Y Y
MSA fixed effects N N Y N N Y N Y
Observations 126,203 126,203 126,203 99,875 99,875 99,875 99,875 99,875

Notes: Results reported for the main regression using log household VKT as dependent variable. The selection equation
regards above median MSA density in columns 1-6, and selection into the highest density decile in columns 6-8. The
sample is all driving households in columns 1-3 and all MSA households in column 4-8. In columns 1-3, median density
is defined relative the entire population of driving households whereas in columns 4-6, it is defined relative to driving
households that live in MSAs. Robust standard errors in parentheses. a, b, c: significant at 1%, 5%, 10%. Demographic
controls include a white/asian indicator, log income, log household size, a single indicator, age, age squared, gender,
education, and education squared. Geographic controls include average precipitation and its standard deviation and
average temperature and its standard deviation. Local socio-economic controls include the share of residents with
higher education and its square and log local income.

estimating the probability that a household lives in a high density area. The second equation duplicates the

vkt regressions estimated so far but also includes among its explanatory variables a transformation of the

predicted probability to live at higher density, as estimated in the first equation.

The results are reported in table 5. In columns 1 to 6, we consider selection into neighborhoods with

above median 10-kilometer density. Depending on the specification, we control for household demograph-

ics alone, add geography and socioeconomic controls, or also add msa fixed effects. These first six columns

of table 5 estimate a density elasticity of vkt between -0.11 and -0.13. These elasticity are slightly larger in

magnitude than those estimated in table 2, but by only two or three percentage points. In columns 7 and

8, we consider a selection equation for a density threshold corresponding to the top decile of density for

msa households. The estimated density elasticity of vkt is now larger in magnitude, reaching -0.16 in a

specification including msa fixed effects.

A problem with this type of estimation is that it does not consider any exclusion restriction. That is, iden-

tification does not rely on a variable that would explain residential density but be otherwise uncorrelated

with vkt. Instead, in table 5 the variables that drive the choice to locate at high density are the same as those

that are assumed to determine driving behavior. Hence, the possible sorting of households into high-density

neighborhoods is only identified out of functional forms. As a result, it is unclear how we should interpret

the elasticities estimated in table 5. We are nonetheless reassured that the results for selection into above

median density are close to those obtained before. We return to driving behavior at the top density decile

below.

Our second approach to selection also follows standard ideas in the literature. In table 2, we control
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for an increasingly rich set of observable individual characteristics. Intuitively, if such controls change

the estimate of the coefficient of interest, then we worry that other unobserved variables might also be

important. We see in table 2 that this does not occur. Oster (2016) refines this intuition and points out that

observed control variables do not generally inform us about the importance of unobserved controls unless

the observed controls improve the R2 of the regression. In addition, Oster (2016) provides a parametric

test for bias caused by sorting on unobservables, conditional on an assumption about the extent to which

unobserved controls are ‘like’ observed controls. Performing this test on the regressions of columns 2 and 5

suggests that unobserved controls must satisfy an implausible condition in order to bias our estimates while

columns 3 and 4 are uninformative about this issue.

Our third strategy for addressing the possibility of sorting, revolves around variants of equation (15).24

Consistent with the discussion of section 3, we proxy for the mobility rate in a given neighborhood with

the mean tenure of a resident in the survey respondent’s home cell.25 We multiply by minus one so that

increases in our proxy correspond to increases in mobility.

Equation (15) offers two parametric tests of sorting. One of these tests involves the coefficient of the

interaction of a mobility proxy with the change in urban form, and the second involves the difference

between the coefficients of the level and of the change in the measure of urban form.

All of the specifications in table 6 contain these three terms. In addition to the controls from our preferred

specification in column 7 of table 2 (household, neighbourhood and geographic characteristics, and msa

fixed effects), column 1 also controls for the 1990 level of the density within 10 kilometers, the change in this

measure between 1990 and 2010, and the interaction of the change in density with minus one times mean

tenure. In order to address the possibility that driving behavior varies with tenure, column 2 also controls

for the level of the mobility proxy. This specification closely approximates equation (15) and is our preferred

specification. Column 3 also controls for the mobility rate interacted with the initial level of density. Column

4 restricts attention to bottom and top quartile of density growth in a 10-kilometer radius (excluding the top

and bottom percentiles). Column 5 considers the complementary sample of households located in locations

at the second and third quartile of density change. Column 6 restricts attention to survey respondents with

household age below 50. Columns 7 and 8 consider the ten-year periods from 1990 to 2000 and from 2000

to 2010.

In every case, we find that the coefficient on initial density and that on the change in density are

statistically close. Except for columns 1 and 8, the coefficient on the change in density is less than a standard

deviation from the coefficient on density. With this said, point estimates are different and, from equation

24Our modeling in section 4 assumes, for simplicity, that the initial period is at a long-run equilibrium. We conjecture that an
extension of our approach to an initial situation that is not at a long-run equilibrium would work like the generalization to different in-
and out-migrants proposed in Appendix A.

25Our information on residential tenure comes from the acs block group data (National Historical Geographic Information System,
2010). We impute this variable to grid cells as described in section 5.
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Table 6: Selection and mobility using information about local mobility measured through the tenure length
of local residents

(1) (2) (3) (4) (5) (6) (7) (8)
Period 90 to 10 90 to 10 90 to 10 90 to 10 90 to 10 90 to 10 00 to 10 00 to 10
Household sample All All All Big ∆ Small ∆ Age <50 All All

Initial log 10-km density -0.080a -0.075a -0.046a -0.084a -0.069a -0.080a -0.076a -0.076a

(0.0052) (0.0055) (0.014) (0.0073) (0.0060) (0.0072) (0.0055) (0.0054)
∆ log 10-km density -0.12a -0.063b -0.030 -0.061 -0.056 -0.033 -0.014 -0.014

(0.025) (0.029) (0.033) (0.054) (0.060) (0.035) (0.043) (0.044)
Mobility ×∆ log density 0.0077b -0.0033 -0.00059 0.0014 -0.0048 0.0023 -0.00014 -0.00014

(0.0034) (0.0036) (0.0038) (0.0067) (0.0072) (0.0044) (0.0057) (0.0057)
Mobility rate -0.0099a -0.040a -0.0056 -0.016a -0.010a -0.010a -0.010a

(0.0029) (0.013) (0.0043) (0.0044) (0.0033) (0.0027) (0.0027)
Mobility × log density 0.0026b

(0.0011)
Past ∆ log 10-km density -0.0017

(0.022)

F-test 1 p-value 0.061 0.0020 0.24 0.82 0.44 0.13 0.0011 0.0055
F-test 2 p-value 0.073 0.65 0.54 0.71 0.88 0.16 0.14 0.15
R2 0.37 0.37 0.37 0.36 0.37 0.26 0.37 0.37
Observations 99,875 99,875 99,875 46,942 48,939 39,253 99,875 99,875
Number of MSA 275 275 275 263 272 275 275 275

Notes: The dependent variable is log household VKT in all columns. Mobility is measured as - average tenure length in
of residents of the same home cell (sample mean, 10.3 years and standard deviation 2.4 years). All regressions are
estimated with OLS and include 275 MSA fixed effects with demographic controls (a white/asian indicator, log income,
log household size, a single indicator, age, age squared, gender, education, and education squared), geographic
controls (average precipitation and its standard deviation, and average temperature and its standard deviation) and
local socio-economic controls (the share of residents with higher education and its square and log local income). Robust
standard errors clustered by MSA in parentheses. a, b, c: significant at 1%, 5%, 10%. F-test 1 is a joint test of the equality
of the coefficients on initial log 10-km density and ∆ log 10-km density and of the coefficient on mobility ×∆ log density
being zero. F-test 2 is a test of the equality of the coefficients on Initial log 10-km density and ∆ log 10-km density.

(15), the difference between these two coefficients is α1, our measure of selection. Hence, while we cannot, in

a majority of cases, reject the hypothesis that α1 = 0, point estimates suggest it is negative. In our preferred

specification in column 2, we have α1 = −0.075 − (−0.063) = −0.012 and β = −0.063, so that sorting

accounts for about one sixth of the effect of density on driving. In equation (15), we can also implement

the second test for α1 = 0 by rejecting the hypothesis that the coefficient of Mobility × log(10-kilometer

density)= 0. In every specification, we see that this coefficient is small, precisely estimated and usually

indistinguishable from zero. This also suggests that α1 is small.

We note that, in the same spirit as equation (15), we can also compare the coefficient on initial density in

high-mobility locations (column 4) and low-mobility locations (column 5). In addition, we can even compare

the coefficient obtained when estimating our preferred specification on a sample of more mobile residents

(those below 50 as in column 6) to the overall sample in column 2. In both cases, the differences are close to

zero and the coefficients are precisely estimated.

More generally, and in light of the hypothesis tests developed in section 3, table 6 suggests that as density
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changes the driving behavior of people who leave is not statistically distinguishable from that of the people

who arrive. With this said, point estimates indicate a modest amount of sorting.

In the remainder of this section, we report a number of robustness tests for this result. First, appendix

table 13 replicates our preferred estimation from column 2 of table 6 under various sample restrictions, with

a purely residential population based measure of density, and using alternative dependent variables. These

results are consistent with our findings so far. Excluding high-density locations or high-vkt households

makes no difference. Focusing more narrowly on more mobile households in locations facing greater

changes in population or on less mobile households in more stable locations yields elasticities of vkt

with respect to density that are of the same magnitude. Using only population instead of population and

employment to measure density makes no difference. We also confirm the results of table 3. That is, the

elasticity of daily vkt is slightly larger than the annual measure, the elasticity of travel time is close to zero,

and this difference is still explained by the difference in travel speed.

Second, appendix table 14 presents a series of regressions that are identical to those of table 6, except

that we proxy for the mobility rate with the share of renters in the cell of the survey residents. These results

are qualitatively similar to those of table 6 except that the interaction terms are marginally larger and are

estimated somewhat less precisely. In spite of this, these results suggest the same conclusion as does table

6. That is, as the landscape changes, the driving behavior of arrivals is like that of those who leave.

We next use age as a proxy for mobility. However, given that the relationship between age and residential

mobility is unlikely to be linear, we use a vector of decadal age dummies to describe the age of drivers.

Then, consistent with the intuition developed in equation (15), we interact these indicators with changes

in landscape. We include these interactions in regressions that also contain the 1990 level of urban form

and changes in urban form. Table 7 reports these results. Column 1 includes only the log level and

change of density within 10 kilometers of a survey respondent’s home cell, along with an extensive set

of control variables. Column 2 includes the interaction terms. Columns 3-8 repeat column 1 on a variety

of subsamples. The results of this table are striking. In every specification the coefficient of the level and

change in urban form are statistically indistinguishable and coefficients do not vary across specifications.

This does not allow us to reject α1 = 0 in equation (15), and as above, in most specifications point estimates

suggest that α1 is a small negative number.

Table 8 reports the interaction terms for column 2 of table 7. On the basis of equation (15) the coefficients

of the last set of interaction terms, the interaction of decade of life with change in urban form, should inform

us about α1 for that subgroup. We see that these coefficients are all small relative to the effect of density on

driving and are indistinguishable from zero. We note that the table includes a complete set of interaction as

controls. We are concerned that driving behavior may vary by age or that relationship between driving and

density was different in places with different initial demographics.
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Table 7: Sorting on age OLS estimations

(1) (2) (3) (4) (5) (6) (7) (8)
Household sample All All Age<50 Age>60 Big ∆ Small ∆ Big ∆ Small ∆

Age<50 Age>60

log 10-km density 1990 -0.082a -0.085a -0.086a -0.074a -0.087a -0.080a -0.087a -0.073a

(0.0053) (0.0063) (0.0073) (0.0053) (0.0068) (0.0068) (0.0086) (0.0076)
∆1990−2010 log 10-km density -0.071a -0.068a -0.080a -0.058b -0.091a -0.093 -0.092a -0.13

(0.013) (0.019) (0.022) (0.025) (0.019) (0.057) (0.027) (0.096)

Controls:
Demographics Y Y Y Y Y Y Y Y
Geography Y Y Y Y Y Y Y Y
Local socio-econ. Y Y Y Y Y Y Y Y
Decade indicators N Y N N N N N N
Decade × log density N Y N N N N N N
Decade ×∆ log density N Y N N N N N N

F-test 1 p-value . 0.0028 . . . . . .
F-test 2 p-value 0.31 0.32 0.71 0.51 0.80 0.81 0.81 0.52
R2 0.37 0.37 0.26 0.26 0.36 0.37 0.25 0.27
Observations 99,875 99,875 39,253 40,421 46,942 48,939 18,710 19,980
Number of MSA 275 275 274 274 263 272 247 257

Notes: All regressions include MSA fixed effects. Robust standard errors clustered by MSA in parentheses. a, b, c:
significant at 1%, 5%, 10%. The dependent variables and explanatory variables of interest are in log in all columns.
Demographic controls include a white/asian indicator, log income, log household size, a single indicator, age, age
squared, gender, education, and education squared. Geographic controls include average precipitation and its
standard deviation, and average temperature and its standard deviation. Local socio-economic controls include the
share of residents with higher education and its square and log local income. When decade effects are introduced,
households in their 40s are used as reference. See table 8 for the detailed results of column 2. F-test 1 is a joint test of
the equality of the coefficients on log 10-km density in 1990 and ∆ log 10-km density and of the coefficients on decade
indicators interacted with ∆ log density all being zero. F-test 2 is a test of the equality of the coefficients on Initial log
10-km density and ∆ log 10-km density.

Table 8: Detailed results for column 2 of table 7

Age 20-29 30-39 40-49 (ref.) 50-59 60-69 >70

Decade indicators -0.057 0.087 0 0.034 -0.22a -0.13
(0.098) (0.10) (0.075) (0.082) (0.087)

Decade × log 10-km density 1990 0.0033 -0.0073 0 -0.0039 0.014b 0.0035
(0.0079) (0.0085) (0.0060) (0.0068) (0.0067)

Decade × ∆90−10 log 10-km density -0.010 -0.0097 0 0.027 0.022 -0.053
(0.022) (0.020) (0.020) (0.028) (0.036)

Notes: This table reports the coefficients on decades of age, interactions between decades of age and log 10-km density
in 1990, and interactions between decades of age and log density changes between 1990 and 2010.

We have now completed five distinct tests of the role of sorting. First, we report the result of Heckman-

type corrections for residential selection into high density. These estimates suggest that the relationship

between urban form and driving does not reflect sorting of individuals across places on the basis of their

propensity to drive. Second, in our ols results, we control for observable characteristics. We find these

controls have only a tiny effect on our estimates of the effect of density on driving and the more formal test
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Table 9: IV regressions

(1) (2) (3) (4) (5) (6) (7) (8)

log 10-km density -0.13b -0.100c -0.12a -0.076a -0.080a -0.075c -0.069a -0.075a

(0.060) (0.054) (0.032) (0.026) (0.025) (0.041) (0.025) (0.024)

Controls N Y Y Y Y Y Y Y
MSA effects N Y Y Y Y Y Y Y

Instruments:
Aquifers Y Y N N Y Y N Y
Earthquakes N N 18 N N 3 3 3
Landslides N N N Y Y N Y Y

Overidentification p-value . . 0.14 0.27 0.39 0.60 0.38 0.45
First-stage statistic 202 32.6 24.2 81.3 82.4 29.5 87.6 83.8

Observations 99,874 99,874 99,874 99,874 99,874 99,874 99,874 99,874
Number of MSA 275 275 275 275 275 275 275 275

Notes: All regressions TSLS regressions with a constant. Controls are demographic controls (a white/asian indicator,
log income, log household size, a single indicator, age, age squared, gender, education, and education squared),
geographic controls (average precipitation and its standard deviation, and average temperature and its standard
deviation) and local socio-economic controls (the share of residents with higher education and its square and log local
income). In column 3, we use all 18 values of earthquake intensity as dummy variables. In columns 6 to 8, we group
them into three groups (intensity below 2, between 3 and 14, and above 15.) a, b, c: significant at 1%, 5%, 10%. Robust
standard errors clustered by county in parentheses. Clustering is by county to have a sufficient number of clusters to
compute robust covariance matrices more reliably than when clustering by MSA. The dependent variables and
explanatory variables of interest are in log in all columns. We do not report first-stage results here given that we use 25
different variants for our instruments (most of them to measure earthquakes). We nonetheless note that lower
exposures to landslide or earthquakes and higher presence of aquifers are (conditionally) positively associated with
greater density within 10 kilometers.

of Oster (2016) indicates that unobservables are unlikely to bias our estimates. Finally, we also develop a

parametric test for the role of sorting and implement it using three different proxies for the mobility rate of

residents. In each case, we find little support for the idea that sorting is an important determinant of the

relationship between density and driving.

D Endogeneity

Table 9 reports the results of a series of instrumental variables estimations. These regressions are all variants

of equation (16) in which we rely on permutations of three types of instruments. These instruments measure

the share of the 10-kilometer disk surrounding a respondent’s home cell that overlays an aquifer that can

provide residential water. This variable is well known to predict urban form (Burchfield et al., 2006). In

addition, we construct variables measuring a respondent’s exposure to earthquakes and landslides. These

variables have a remarkably strong ability to predict surface employment and residential density, and it

is not easy to see how they might influence driving through any other channel given that we control
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extensively for local geographic and socio-economic characteristics.26

In column 1 we present an instrumental variables regression using our aquifers instrument but do not

include other controls. In the second column, we add msa indicators and the same long list of controls that

we use in column 7 of table 2. In the subsequent columns we experiment with the different instruments and

with permutations of these instruments. The coefficient of density is stable across specifications. In every

case our instruments are not weak according to conventional tests, and in regressions including more than

one instrument, we comfortably pass over-id tests.

Most importantly, coefficient estimates are statistically indistinguishable from those in our table of ols

estimations. This suggests that omitted variables correlated with driving and urban form are not causing

economically important bias in our estimates of the relationship between urban form and driving.27

E Other urban form variables

On the basis of our work so far, it appears that neither sorting nor omitted variables cause bias in ols

estimates. Given this, we now turn to an investigation of the effects of different measures and spatial scales

of urban form on driving using ols regressions.

Tables 10 reports results for a series of ‘horse races’ between measures of urban form. Three main

conclusions emerge from this table. The first is that, although population and employment appear to play

a role in explaining vkt, once we use our preferred measure of density of both jobs and residents within 10

kilometers, other measures such as the ratio of jobs to residents have no measurable effect on vkt despite

small standard errors. This conclusion holds more broadly than for the specifications we reported here.

We experimented extensively with measures of job vs. residential locations. The effect we estimate for our

preferred measure of 10-kilometer density is robust to the inclusion of many alternative measures of urban

form and none of these alternative measures of urban form appears to systematically affect vkt.

Our second conclusion concerns roads. We estimate a small positive association between roads within

a 25-kilometer radius of a household’s place of residence and household vkt. We acknowledge that roads

may be simultaneously determined with vkt. This said, we note that the small effects of roads that we

estimate are conditional on density and many other variables. Such small effects are not inconsistent with

new major arterials and highways eliciting a lot of traffic as households may choose to locate closer to roads

26One may imagine that these variables may affect vkt indirectly through the road infrastructure. In results not reported here, we
verify that adding measures of the lane kilometers of major roads does not affect our results. This is consistent with the weak effect of
nearby highways and major roads on household vkt uncovered below.

27Including measures of topography in our results does not change the coefficients on landscape variables in either ols or iv results.
However, it does change our first stage. In particular, our underground geology variables do not generally pass weak instrument tests
if we include topographical variables as controls.
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Table 10: Driving and urban form, extended OLS estimations

(1) (2) (3) (4) (5) (6) (7) (8)

log 10-km density -0.082a -0.082a -0.088a -0.089a -0.084a

(0.0055) (0.0065) (0.0061) (0.0054) (0.0059)
log 10-km job ratio -0.0020

(0.0066)
log 10-km corrected density 0.0036

(0.0065)
log 10-km land cover -0.0051

(0.0064)
log 10-km population -0.050a

(0.013)
log 10-km employment -0.024a

(0.0068)
log 10-km weighted density -0.043a

(0.0024)
log 1-km density -0.026a

(0.0066)
log 1-to-5 km density -0.044a

(0.0099)
log 5-to-10 km density -0.0042

(0.0078)
log 10-to-25 km density -0.0091

(0.0080)
log 1-km roads -0.00086c

(0.00048)
log 25-km roads 0.018b

(0.0082)
log 25-km arterials 0.022a

(0.0057)
log 25-km highways 0.0015

(0.0011)

R2 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37
Observations 99,870 99,423 99,423 99,861 99,861 99,875 99,875 99,875
Number of MSA 275 275 275 275 275 275 275 275

Notes: The dependent variable is log household VKT in all columns. All regressions are OLS regressions with MSA fixed
effects. Controls are demographic controls (a white/asian indicator, log income, log household size, a single indicator,
age, age squared, gender, education, and education squared), geographic controls (average precipitation and its
standard deviation, and average temperature and its standard deviation) and local socio-economic controls (the share
of residents with higher education and its square and log local income). Corrected density in column 2 measures
residential population and employment within a 10-kilometer radius relative to developed land. Weighted density in
column 4 is a weighted sum of density within one kilometer (weight=1), density from one to five kilometers
(weight=0.5), density from five to 10 kilometers (weight =0.25), and density from 10 to 25 kilometers (weight=0.125).
Robust standard errors clustered by MSA in parentheses. a, b, c: significant at 1%, 5%, 10%.

(Baum-Snow, 2007) or substitute across roads.28

28In Duranton and Turner (2011), we regress log highway vkt on highway lane kilometers and estimate an elasticity close to unity.
Despite their apparent similarity with the estimations reported here, the regressions of Duranton and Turner (2011) are very different
because they consider vkt for road segments, not households. Three features are associated with this difference. First, highway
vkt represents only about a quarter of aggregate vkt. Second, there is likely a lot of potential substitution between local roads and
highways. Third, we only consider driving by people who live nearby, thus ignoring vkt by households who live further away,
households who relocate, and commercial traffic.
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Our third conclusion is that most of the effect of density takes place within 10 kilometers of a household’s

place of residence. The results of column 5 are even suggestive that it is density within 5 kilometers that is

most important. In spite of this, when used ‘alone’ 10-kilometer density is often more precisely estimated

than 5-kilometer density, and so we rely more heavily on 10-kilometer density in reported results.

In regressions not reported here, we have also used the msa fixed effects estimated in our preferred

ols regression from column 7 of table 2 and regressed them on variables that describe msas. We found no

effect of msa population, area, education, income, or geography. We also found no effect of measures of

msa employment concentration, residential concentration, and mismatch between jobs and residents. We

found weak effects for some measures of segregation and the share of manufacturing employment. As we

experimented with a large number of msa characteristics, we expect the coefficients of a small proportion

of them to be significant. We interpret this large majority of insignificant coefficients as an absence of msa

effects after controlling for the characteristics of households and their immediate landscape. This absence

of metropolitan effect is consistent with the fact that the insertion of msa fixed effects in table 2 does not

improve the R2 of the regressions. That most of the effect of the landscape on vkt should take place within a

reasonably short range may not be surprising given that mean trip distance is slightly less than 13 kilometers

in our data.

F Non-linearities and mode choice

We now return to a feature first apparent in figure 3, the possible non-linearity of the relationship between

log household vkt and log density. Column 1 of table 11 enriches our baseline ols regression of column

7 of table 2 with a quadratic term for log density and suggests that the effects of density within a 10

kilometer radius becomes stronger at higher levels of density. Economically, the increase in the magnitude

of the density elasticity of vkt is modest. The coefficient on squared log density of -0.070 implies a 2.3

percentage point difference between the bottom and top density deciles relative to a baseline estimate of

-8.2%. This finding is confirmed in column 2 where we instead consider two density thresholds. The results

of this column indicate that the density elasticity of vkt is slightly less than one percentage point higher for

densities above the 95th percentile and another 1.5 percentage point higher for densities in the top percentile

(where only 1% of households in our sample reside). Although there is a ‘high density’ effect, it remains

modest.

In the rest of table 11, we turn to the extensive margin of urban travel and examine the possible substitu-

tion across modes. For this, we return to the information about individual trips and consider three types of

trips, privately-owned vehicles, any form of transit, and walking or biking trips. The results from our logit

estimations indicate that the propensity to use privately-owned vehicles for a trip declines with density but

most of the effect appears concentrated at the top density percentile. For transit, the relationship is non
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Table 11: Non-linearities and mode choice

(1) (2) (3) (4) (5) (6) (7) (8)
Regression OLS OLS logit logit logit logit logit logit
Dep. var. VKT VKT trip trip trip trip trip trip

POV POV transit transit walk/bike walk/bike

log 10-km density -0.0056 -0.078a -0.037a 0.0024 -0.041a -0.089a 0.046a 0.014a

(0.030) (0.0041) (0.0042) (0.0043) (0.010) (0.010) (0.0047) (0.0048)
log 10-km density2 -0.0070b

(0.0029)
log 10-km density, -0.0083a -0.037a 0.030a 0.031a

above 95th pctl (0.0028) (0.0021) (0.0063) (0.0022)
log 10-km density, -0.015a -0.081a 0.13a 0.057a

above 99th pctl (0.0048) (0.0032) (0.0076) (0.0035)

R2 0.37 0.37 0.03 0.03 0.12 0.13 0.03 0.03
Observations 99,875 99,875 837,647 837,647 827,685 827,685 837,606 837,606
Number of MSA 275 275 275 275 211 211 266 266

Notes: The dependent variable is log household VKT in columns 1 and 2, a trip indicator variable taking a value of 1 for
trips with privately owned vehicles in column 3 and 4, a trip indicator variable taking a value of 1 for transit trips in
columns 5 and 6, and a trip indicator variable taking a value of 1 for walking or biking trip in columns 7 and 8. OLS
regressions in columns 1 and 2 and logit regressions in columns 3-8. Odds ratios reported for all logit regressions. All
regressions include MSA fixed effects. Controls are demographic controls (a white/asian indicator, log income, log
household size, a single indicator, age, age squared, gender, education, and education squared), geographic controls
(average precipitation and its standard deviation, and average temperature and its standard deviation) and local
socio-economic controls (the share of residents with higher education and its square and log local income). Standard
errors in parentheses. a, b, c: significant at 1%, 5%, 10%.

monotonic and this mode of transportation is more prevalent at low and high density. Finally, the share of

walking and biking trips increases with density but the relationship is only significant in the top five density

deciles.

These results about the extensive margin of travel do not alter our conclusions so far. For residents

of us metropolitan areas, the share of trips by privately-owned vehicles is about 89% while the share of

transit is less than 2%. Biking or walking trips represent about 9% of trips (but only a trivial share of

kilometers travelled). Although the coefficient (an odds ratio) on privately-owned vehicles at the top centile

of residential density in column 4 of table 11 and that on transit in column in column 6 should not be

dismissed as tiny, it is important to keep in mind that even for the 1% densest households, the share of

transit trips is only 6.4%. At best, the mode switches we observe at high density can only explain the higher

elasticity of vkt with respect to density that we observe at the same high levels of density in columns 1 and

2 of table 11.29

29Interestingly, in results not reported here where we additionally control for trip distance in the same logit estimations, most of the
effect of density disappears as walking and biking trips are in their overwhelming majority short trips while transit trips are either
short or long. This is consistent with the notion that density reduces driving by increasing accessibility as documented in table 3.
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7. Discussion

A Using the model: driving and welfare

First consider the case when α1 = 0 and there is no sorting. We also find no evidence of an important

role for unobserved local characteristics suggests that δ is uncorrelated with X, conditional on controls.

Together these two conditions imply that the coefficient β estimated from a regression of log vkt on log

density identifies − φ−ζρ
1−ρ+φ as per equation (7) of our model. The ols estimate of β in column 7 of table 2 is

-0.082. Taking alternative measures of travel distance, the first 3 columns of table 3 estimate slightly larger

magnitudes for β between -0.095 and -0.13. To ease calculation, say β = −0.1, and we have,

β = − φ− ζρ

1− ρ + φ
= −0.1 . (18)

By dividing travel distance in equation (7) by mean trip distance in equation (5), we obtain the number of

trips. Hence, regressing the log number of trips on log density provides an estimate of ζ + β. Column 7 of

table 3 provides such an estimate. It suggests that ζ = −β + 0.014 = 0.114.30

From equations (6) and (7), regressing speed – an inverse measure of travel cost – on density, provides

an estimate of (1 + β)φ. Hence, our value of -0.1 for β and the estimated density elasticity of speed of -0.107

in column 6 of table 3 imply φ = 0.119. Knowing β, ζ, and φ, it is now easy from equation (18) to provide a

value for ρ, the concavity of utility: ρ = 0.5.

We note that the implied values of ζ, and φ are not sensitive to the exact choice of β. By contrast, the

implied value of ρ is sensitive to β. A value of -0.09 for β implies ρ > 1 whereas a value of 0.11 implies

ρ < 0. This is because the value of ρ in equation (18) results from dividing a small numerator by a small

denominator.

While the absence of sorting is a good first-order approximation, we now verify that considering sorting

explicitly does not affect these conclusions. Hence, we now consider situations with sorting. We assume

above that θ = θν. Using this in equation (7) and the parameterization of sorting in equation (12) implies

that the density elasticity of vkt is now α1
1−ρ+φ + β = −0.1. We can obtain an estimate of the sorting term

α1
1−ρ+φ from the difference between the coefficient on density and that on the change in density in table 6.

Our preferred estimate from column 2 of table 6 indicates α1
1−ρ+φ = −0.012. Hence we have β = −0.112

when we consider sorting instead of−0.1 when we do not. From equations (4) and (7), the density elasticity

of the number of trips is now α1
1−ρ+φ + β + ζ. This implies ζ = 0.126. From equations (5) and (7), the density

elasticity of speed is now
(

1 + β + α1
1−ρ+φ

)
φ which leaves the value of φ = 0.119 unchanged as sorting

30We can also obtain a value ζ + β by taking the difference between the density elasticity of mean trip distance in column 8 of table
3 and the density elasticity of daily vkt in column 3 of the same table. These two measures are directly comparable as they rely on the
same measure of vkt. They imply that the sum ζ + β is very much the same: 0.151− 0.134 = 0.017 instead of 0.014 when this quantity
is estimated directly in column 7 of table 3.
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affects travel distance and travel time in the same manner and thus disappears when estimating speed as

function of density.31

While there is a large literature that estimates congestion effects through traffic flows and traffic speed

(Small and Verhoef, 2007), most of it is concerned with estimating effect of the (endogenous) number of

vehicles on traffic speed for a particular segment of roads or groups of road segments. Attempts to measure

congestion for an area depending on its population are extremely rare. Couture et al. (2016) estimate the

effect of msa vehicle travel time on a measure of msa speed and find an elasticity of -0.13 for the largest

100 us msas. With the caveat that msa population and the density of residents and workers are different

objects, we nonetheless note that this estimated value of φ of 0.13 in Couture et al. (2016) is very similar to

our implied value of 0.119 despite a very different methodology.32

We know of no alternative estimate of the accessibility elasticity ζ in the literature that could be directly

compared with ours. Couture (2014) estimates the (constant) elasticity of substitution between restaurants

using a logit model of travel demand. His framework imposes a constant trip time, which is consistent

with the extremely small elasticity we estimate in table 3. His estimates of the elasticity of substitution

are about nine which are consistent with accessibility benefits associated with the number of restaurants of

about (9/8-1=)0.125. Although this comparison is somewhat of a stretch, this value is remarkably close to

our estimate of ζ = 0.126 with sorting.

Although they do not explicitly model travel behaviour, Ahlfeldt et al. (2015) estimates the consumption

benefits from greater population density with a structural model that they implement using detailed data

for the city of Berlin. Their structural model estimates an elasticity of block-level amenities with respect

to a discounted measure of nearby residential density of 14%. This measure of consumption spillover is

probably best interpreted as a measure of the importance of accessibility to nearby amenities and goods. To

repeat, this does not directly correspond to our measure of accessibility ζ but it is nonetheless suggestive of

a similar magnitude.

As another check on the consistency of our results, we can return to equilibrium utility as given by

equation (8). As made clear by this equation, the elasticity of utility (which maps directly into consumption

expenditure) with respect to density is ρ
1−ρ+φ (ζ(1 + φ)− φ) ≡ b. Using our implicit value of the congestion

elasticity φ of 0.119, our implicit value of the accessibility elasticity ζ of 0.126, and our preferred value of

ρ = 0.5, we obtain an elasticity of utility with respect to density below 0.02. This implies that equilibrium

utility is fairly insensitive to density.33 In turn, this is consistent with little sorting being detected in our

31We note that ρ is no longer separately identified from α1 in this context unless further assumptions are being made.
32Geroliminis and Daganzo (2008) attempt to measure speed-flow relationships for larger spatial units. They estimate elasticities of

speed with respect to the number of vehicles that are much larger in magnitude, in the order of -0.5. A strong distinction needs to be
made between the number of vehicles at a particular point in time and population density. Put differently, the estimates of Geroliminis
and Daganzo (2008) are for ‘peak-hour’ congestion which represents only a small fraction of all kilometers driven.

33As a caveat, we note that the elasticity of utility with respect to density increases with ρ. For ρ = 0.8, it is equal to 0.06 and rises to
0.18 for ρ = 1.
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data.

If we also specify the relationship between housing prices and density, then we can derive an additional

check of quantitative importance of sorting. Assume that the price of housing Ph increases with density X:

Ph = Xγ. We can then use the utility function (8) and solve for the optimal choice of density depending

on the propensity to travel θ. In equilibrium, perfect sorting occurs and θ = θ.34 It is easy to show that

in equilibrium the elasticity of θ with respect to density X is (γ− b) 1−ρ+φ
1+θ . Then the bias ζ + β caused by

sorting in our ols estimation can be directly computed from equation (10). It is equal to α1 = (γ−b)
1+θ . To

quantify this bias we need an estimate of γ. Combes, Duranton, and Gobillon (2012) estimate an elasticity

of housing costs with respect to urban density of about 4% in France. Their approach is replicated on us

data by Albouy and Ehrlich (2013) who also estimate a similar value of about 4%. For γ = 0.04, ζ = 0.126,

φ = 0.119, and ρ = 0.5, we can compute a value of 0.020 for α1, which is close to our preferred estimated

value of α1 = 0.014 used above to start these computations.35

The simple model proposed in section 3 was first used to derive an empirical specification and discuss

identification concerns. In this section, we connect our empirical results to our model. This leads to three

conclusions. Our empirical results imply estimates of the accessibility and congestion elasticities which are

consistent with previous literature. In line with our empirical results about the weakness of sorting, these

structural parameters also imply weak effects of density on utility. In turn, a reasonable parametrisation of

the housing costs associated with greater density combined with our structural estimates of the accessibility

and congestion elasticities predict nearly exactly the amount of sorting we estimate.

B Some simple equilibrium implications

Table 12 describes the way that people, driving and density are distributed. The top panel describes

the continental us and the bottom panel restricts attention to the approximately 20% of area and 80% of

population within msa boundaries, the sample on which our regressions are primarily based. The rows of

each panel describe ‘density deciles of population’. For example, the first row of the top panel describes the

10% of the nhts population living in the least dense parts of the us while the second row describes the 10%

of the nhts population living in the densest parts of the country. These are the subsets of the population

that live in the white and black regions of figure 2a.36

Calculating density deciles of population requires calculating threshold values of density that divide

the nhts population into tenths. The second column of the table describes the share of land area occupied

34Adding idiosyncratic preferences for locations, it would be easy to generate the type of imperfect sorting assumed in our empirical
work above.

35The elasticity of unit housing prices is arguably larger than 0.04 but we expect residents to substitute away from housing as it
becomes more expensive.

36While most of our results so far were derived for msa households to be able to include msa fixed effects, we verified that
similar results are obtained for non-msa households including in column 7 of table 4. We now work with the entire country for
our counterfactual computations.
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Table 12: Driving and population by density decile.

(1) (2) (3) (4) (5) (6)
Decile Area share Density VKT pp Area VKT Area VKT

(%) share (%) (109 km)

Continental US:

1 83.26% 6.25 19,329 12.2% 620.86
10 0.21% 5,421.04 12,497 7.9% 401.44

MSA only:

5 1.94% 816.19 15,175 9.9% 391.14
9 0.82% 2,741.09 13,779 9.0% 355.14

Notes: Top panel describes first and tenth density deciles of US population. 2010 census and 2008 NHTS populations are
3.08 million and 321,000, the total area of the continental US is 7.03 million km2, and total NHTS VKT is 5.08 trillion
kilometers. The bottom panel describes the fifth and ninth density deciles of MSA population. Census and NHTS MSA
populations are 2.47 million and 257,000, the total area of the continental US MSAs is 1.66m km2, and total NHTS VKT is
3.94 trillion kilometers.

at the densities intermediate between these thresholds. For example, 83% of us land area is occupied at

lower densities than the threshold density for the bottom density decile of the nhts population. Moving

across columns to the right; the average density of these pixels is 6.25 people or jobs per square kilometer,

the average travel per person for nhts people living in these pixels is 19,329 vehicle-kilometers, and the

population of this decile accounts for 12% of all driving in the nhts, as measured by household odometer

readings. Finally, column 7 gives aggregate driving in each decile in billions of km per year.

Table 12 permits calculations to assess the impact of policies to change density on aggregate driving. For

example, consider a policy which relocates the bottom density decile of us population into an area whose

density is equal to the average density occupied by the top density decile of population. To implement

such a policy we would take population dispersed across 83% of the country’s land area and settle them in

about 0.2% of the country’s land area, concentrating the population resident in the white area of the map

in figure 2a into an area the size of the barely visible black area. From column 3 of table 12, this involves

an 867 fold increase in density, from 6.25 to 5,421. From our estimate in column 7 of table 2, this results in

about a (1− (5421/6.25)0.082 =)43% decrease in driving for this decile of the population. Since this decile of

population accounts for about 12% of total driving, this gives about a 5.1% decrease in aggregate driving.

It is also useful to consider a more plausible densification policy. For example, a policy that moves 1% of

the msa population and employment from the area inhabited by the fifth population decile of density to the

ninth. Although only 1% of the population moves, the entire 20% of the msa population in the source and

destination regions experiences a change in density. Thus, to calculate the aggregate change in vkt we must

calculate the change in aggregate driving for three groups; the 9% of the population that stays in region five,

the 10% of population initially in region nine and the 1% of the population that moves from region five to

region nine. The group that stays in region five is initially responsible for 0.9× 391.14 billion vkt. They
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experience a 10% reduction in density. Using our preferred density elasticity of -0.082, this causes driving to

increase by a factor of 1.0087, an increase of 3.06 billion vkt. The population of region nine initially drives

355.14 billion vkt. They experience a 10% increase in density which causes their driving to decrease by a

factor of 0.9922, for a total decrease of 2.77 billion vkt. Finally, the group of movers initially accounts for

0.1× 391.14 billion vkt. Their residential density increases by a factor of 3.69 from the initial level in region

five, 861.14, to the final level in region nine, 1.1× 2,741.09. This causes their driving to decrease by a factor of

0.90, for a total decrease of 3.91 billion vkt. Summing, this relocation causes a change in aggregate driving

of 3.06− 2.77− 3.91 = −3.62 billion vkt. Since aggregate driving is about 5.08 trillion vkt, this is a decrease

of 0.07%.

Note that the decrease in driving by the initial residents of region nine is slightly smaller than the increase

in region five. This reflects the fact that the population of region five initially drove more than those in region

nine. Thus, this densification policy results in a small net increase in driving by the stationary population.

This partly offsets the decrease in driving by the people who move. This result appears to be general and

suggests that the sort of extreme relocation policy we considered first will have a slightly larger impact on

driving than we might expect from more realistic densification policies.

This hypothetical reallocation involves 1% of the total msa population, about 2.5 million people. It is

difficult to assess the costs of this policy. To get a sense for this, note that relocating 2.5 million people

ultimately requires the abandonment of about 1 million houses. At 200,000 dollars per unit, this is 200 billion

dollars worth of housing. Using a 5% interest rate, the annualized value of this housing is about 10 billion

dollars. Presumably, densification policies would allow housing to depreciate before being abandoned, so

this we might expect this cost to be somewhat lower. On the other hand, with a 1 trillion dollar annual

expenditure on road transportation, a 0.07% decline yields annual savings of 700 million dollars. Moreover,

according to Parry, Walls, and Harrington (2007), the external cost associated with car driving is about seven

cents per kilometer. Multiplying, the gain from less congestion, fewer accidents, and less pollution from a

0.07% reduction in driving is only 25 million dollars. Comparing these two results suggests that the value

of reductions in driving is unlikely to be large relative to the costs of densification.

C Densification vs. gas taxes and congestion pricing

Assessing the wisdom of using urban planning to manage traffic requires that we evaluate the effects of

urban form on driving, as we do above, and also that we compare urban planning to other policies that we

might use to manage driving, gasoline taxes and congestion pricing in particular.

There is a large literature on the relationship between gasoline prices and consumption. Hughes, Knittel,

and Sperling (2015) survey this literature, while Coglianese, Davis, Kilian, and Stock (2011) provide recent

contributions to the literature. Broadly, the short run price elasticity of gasoline appears to be about 0.3,
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while the long run elasticity is estimated at about 0.8. Hughes et al. (2015) find evidence that this short

run elasticity has declined, to around 0.1, over the last decade. In the short run, we expect that gasoline

consumption and driving will move together closely. Over the long run it is less clear: in response to higher

gasoline prices we expect consumers to use more fuel efficient cars. Since these two adjustments operate

in opposite directions, it is difficult to forecast how the long run response of driving to changes in gasoline

prices will diverge from that of gasoline consumption.

With this said, on the basis of the available estimates of the gasoline price elasticity, it seems reasonable to

imagine that the elasticity of driving with respect to gasoline price is at least 0.1. In this case, a fifty percent

increase in gasoline price causes a 5% reduction in total driving. This is about the same decrease in aggregate

driving as was accomplished by the extreme relocation policy described above, but it is accomplished with

price variation that is well within the range of prices experienced in the us between 2010 and 2015. If the

objective of policy is to reduce aggregate driving, it is hard to imagine that gasoline taxes do not accomplish

this objective at a lower cost than urban planning.

Congestion pricing schemes are also used as a tool to manage traffic in urban areas and involve time

of day, area specific road tolls. These programs are relatively recent so our understanding of their effects

is based on just a few cities and roads. The three best known examples of congestion pricing are London,

Singapore and Stockholm, although Murray (2012) lists a number of others, most often highway segments

in California and Minnesota.

The London congestion charge began in 2003 and required the payment of about 8 usd to enter central

London, an area of about 22 square kilometers, during working hours. This policy led to a dramatic reduc-

tion in travel, about 34% for cars and 12% for all vehicle types, an increase in peak hour travel speeds from

14.3 to 16.7 kilometers per hour and a dramatic decrease in delay relative to free-flow travel speeds (Leape,

2006). The Singapore congestion charge began in 1975 and was about 2.5 usd per day. It converted from a

paper-based to electronic enforcement system in 1999 with somewhat lower charges. At its beginning, this

program was responsible for about a 45% reduction in peak area vehicle travel in the affected area and an

increase in travel speeds from 19 to 36 kilometers per hour (Santos, 2005). Borjesson, Eliasson, Hugosson,

and Brundell-Freij (2012) describe Stockholm’s experience with congestion pricing. Begun in 2006, with a

time of day charging that peaks at about 3 usd at peak hours and tapers to zero during off peak times,

this program caused about 30% reduction in vehicles in the affected areas and a dramatic decrease in travel

times.

Relative to the marginal and uncertain reductions in driving that appear to result from densification

policies, it is hard to imagine that congestion pricing is not a more cost effective way to reduce urban
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congestion than is urban planning.37

8. Conclusion

Urban density appears to have a small causal effect on driving. Our estimates of the density elasticity are

generally between -7% and -10% and is about -8% in our preferred specification. The literature on this

issue is large. Our estimates improve on those in the literature in four ways. First, we use better data. We

are the first to use a data set as large as the nhts to estimate the effect of urban form on driving using

individual level landscape data. Second, we develop a parametric test for sorting. Although the literature

has long been aware that cross-sectional differences in driving behavior across locations may reflect sorting,

it has yet to develop a persuasive quasi-experimental design. Given this, our ability to test for sorting using

cross-sectional travel survey data and panel landscape data is an advance. Third, we implement a quasi-

experimental design for dealing with the possibility of endogenous determination of density. Specifically,

we use subterranean geology to instrument for surface density. Fourth, our econometric model is motivated

by a theoretical foundation. Ultimately, this means that we are able to recover the structural parameters

governing the way that travel behavior responds to density. To the extent that we are able to check, these

structural parameters appear to be consistent with related estimates in the literature. This structural model

also highlights that, even if densification is welfare improving, it does not remove the need for congestion

pricing. Whether neighborhoods are high density or low, without congestion pricing, drivers do not account

for their contribution to congestion without an explicit pricing program.

Our estimates of the relationship of driving to urban form allow us to assess the cost effectiveness of

densification as a policy response to excessive driving. These estimates suggest that urban form is not

cost effective compared to explicit pricing programs. In particular, even concentrating the population

residing in 83% of the area the continental us into an area of about 1500 square kilometers would result

in only about a 5% decrease in aggregate driving, and this policy appears to describe the upper envelope

of what densification policies can accomplish. On the other hand, existing estimates of the gasoline price

elasticity of driving suggest that a similar decrease in driving would be accomplished with a gas tax that

is no larger than gasoline price fluctuations observed over the past five to ten years. Congestion pricing

programs appear to have even larger effects. In sum, while dense urban development may well be desirable

because it provides a residential environment where people want to live and that make them work more

productively (e.g., Rosenthal and Strange, 2008), it is probably more costly to manipulate driving behavior

through densification policies than through congestion pricing or gasoline taxes.

37While congestion pricing appears to have dramatic effects on the volume and speed of travel, there is some debate over whether
such programs are welfare improving. The central issue is that the demand for travel appears to be very elastic, so that deadweight
loss from congestion is small, while the costs of implementing congestion pricing plans can be large. See Prudhomme and Bocarejo
(2005) for a nice illustration of these issues, which are also discussed in Couture et al. (2016).
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Appendix A. Generalization of sorting model

The econometric model of sorting developed in section 4 assumes that the propensity to drive of immigrants

to location j depends on the density of the region, but that emigrants are a representative random subset of

current residents. We here generalize this model to allow the populations of both immigrants and emigrants

to be systematically different from the population of current residents.

We maintain the same basic framework. Driving of a resident in location j is given by equation (11),

the propensity to drive of an incumbent resident of location j is given by (12) and we continue to consider

the movement of an exogenous share of residents, s. However, we now allow the propensity to drive of

immigrants and emigrants to diverge and to depend on density. In particular, using an E superscript to

denote emigrants and an I for immigrants, suppose that the propensity to drive for these two populations

are

θ I = ζ I
0 + ζ I

1xj + µij (a1)

θE = ζE
0 + ζE

1 xj + µij, (a2)

and let ∆ζk = ζ I
k − ζE

k . If share s of the population emigrates from j and is replaced according to this process,

then we have the following analog to equation (14),

y1
ij = [(α0 + α1x0

j + µij) + βx1
j + δj] + s[∆ζ0 + ∆ζ1x1

j ] (a3)

= α0 + (α1 + β)x0
j + δs∆xj + β∆xj + ∆ζ0s + ∆ζ1sx0

j + δj + µij. (a4)

All of the terms in this expression, except ∆ζ0s and ∆ζ1sx0
j also appear in the corresponding expression

in the main text, equation (14). The first is simply the level term in share of migrants. We include this term

in our regressions anyhow. The second is a two way interaction. We include something very close to this

term in some of our robustness checks, ∆ζ1sx1
j (column 3, table 5).

Informally, this more general model of migration and sorting involves tripling the number of parameters

that relate density to propensity to drive (from two to six). Not too surprisingly, when people migrate

and density changes this leads to more interaction terms. This suggests that we should be cautious in our

interpretation of the coefficients of the various interaction terms.

With this said, the basic intuition that motivates our approach appears robust. When people with

different propensities to drive systematically choose different densities and density directly affects how

much people drive, then we should expect that changes in density will have different effects than lagged

levels.
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Appendix B. Robustness checks

Table 13: Robustness of selection estimations using local tenure length to measure mobility

(1) (2) (3) (4) (5) (6) (7) (8)

No high den. No high Big ∆ Small ∆ population ind. day ind. day speed
location VKT hh & <50 & >60 density km as DV mn as DV as DV

log 10-km density 1990 -0.070a -0.060a -0.084a -0.054a -0.074a -0.12a -0.018a -0.10a

(0.0039) (0.0055) (0.0098) (0.0088) (0.0056) (0.0079) (0.0043) (0.0049)
∆90−10 log 10-km density -0.029 -0.028 0.023 -0.030 -0.067b -0.15a 0.00072 -0.15a

(0.030) (0.033) (0.063) (0.45) (0.026) (0.041) (0.031) (0.023)
Mobility ×∆ log density -0.00041 -0.00049 0.012c -0.0048 -0.0053 -0.019a -0.0050 -0.013a

(0.0038) (0.0037) (0.0068) (0.040) (0.0035) (0.0047) (0.0034) (0.0030)
Mobility -0.010a -0.0094a -0.0094 -0.024c -0.011a -0.0087b -0.0068b -0.00096

(0.0038) (0.0037) (0.0068) (0.040) (0.0035) (0.0047) (0.0034) (0.0030)

F-test 1 p-value 0.00022 0.017 0.21 0.75 0.000092 0 0.000017 0
F-test 2 p-value 0.17 0.31 0.082 0.96 0.76 0.39 0.52 0.042
R2 0.37 0.34 0.25 0.27 0.37 0.18 0.12 0.14
Observations 74,864 90,662 18,711 19,979 99,875 83,313 85,996 82,849
Number of MSA 275 275 248 252 275 275 275 275

Notes: All regressions include 275 MSA fixed effects. Robust standard errors clustered by MSA in parentheses. a, b, c:
significant at 1%, 5%, 10%. The dependent variable and explanatory variables of interest are in log in all columns.
Demographic controls include a white/asian indicator, log income, log household size, a single indicator, age, age
squared, gender, education, and education squared. Geographic controls include average precipitation and its
standard deviation, and average temperature and its standard deviation. Local socio-economic controls include the
share of residents with higher education and its square and log local income. F-test 1 is a joint test of the equality of the
coefficients on initial log 10-km density and ∆ log 10-km density and of the coefficient on Mobility ×∆ log density
being zero. F-test 2 is a test of the equality of the coefficients on initial log 10-km density and ∆ log 10-km density.
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Table 14: Selection and mobility using information about the renter/homeowner status of the households

(1) (2) (3) (4) (5) (6) (7) (8)
Period 90 to 10 90 to 10 90 to 10 90 to 10 90 to 10 90 to 10 00 to 10 00 to 10
Household sample All All All Big ∆ Small ∆ Age<50 All All

Initial log 10-km density -0.081a -0.080a -0.082a -0.085a -0.078a -0.084a -0.080a -0.080a

(0.0053) (0.0052) (0.0051) (0.0067) (0.0067) (0.0072) (0.0052) (0.0050)
∆ log 10-km density -0.057a -0.071a -0.074a -0.089a -0.081 -0.083a -0.053a -0.043b

(0.013) (0.012) (0.012) (0.018) (0.061) (0.022) (0.017) (0.019)
Renter ×∆ log density -0.20a 0.013 0.040 -0.010 -0.087 0.040 0.033 0.032

(0.030) (0.036) (0.038) (0.046) (0.16) (0.035) (0.050) (0.050)
Renter -0.15a -0.33a -0.14a -0.12a -0.14a -0.15a -0.15a

(0.013) (0.094) (0.020) (0.040) (0.018) (0.011) (0.012)
Renter × log density 0.015b

(0.0073)
Past ∆ log 10-km density - -0.032

(0.023)

F-test 1 p-value 0 0.60 0.37 0.95 0.84 0.49 0.10 0.13
F-test 2 p-value 0.026 0.38 0.44 0.80 0.97 0.93 0.078 0.020
R2 0.37 0.37 0.37 0.36 0.37 0.26 0.37 0.37
Observations 99,875 99,875 99,875 46,942 48,939 39,253 99,875 99,875
Number of MSA 275 275 275 263 267 274 275 275

Notes: The dependent variables is log household VKT in all columns. All regressions are estimated with OLS and
include 275 MSA fixed effects with demographic controls (a white/asian indicator, log income, log household size, a
single indicator, age, age squared, gender, education, and education squared), geographic controls (average
precipitation and its standard deviation, and average temperature and its standard deviation) and local socio-economic
controls (the share of residents with higher education and its square and log local income). Robust standard errors
clustered by MSA in parentheses. a, b, c: significant at 1%, 5%, 10%. F-test 1 is a joint test of the equality of the
coefficients on Initial log 10-km density and ∆ log 10-km density and of the coefficient on Mobility ×∆ log density
being zero. F-test 2 is a test of the equality of the coefficients on initial log 10-km density and ∆ log 10-km density.
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Table 15: Robustness checks for sorting on demographics OLS estimations

(1) (2) (3) (4) (5) (6) (7) (8)
Period 00 to 10 00 to 10 00 to 10 90 to 10 90 to 10 90 to 10 90 to 10 90 to 10
Household sample All <50 >60 All All Indiv. All All
Dependent var.: an. km an. km an. km stated kmodometer ind. day km an. km an. km
Density: 10 km 10 km 10 km 10 km 10 km 10 km 1 km NLCD 10 km

Initial log density -0.082a -0.087a -0.075a -0.12a -0.094a -0.14a -0.053a -0.040a

(0.0053)(0.0072)(0.0054) (0.0075) (0.0060) (0.0083) (0.0037) (0.0046)
∆ log density -0.050a -0.049c -0.036 -0.066a -0.077a -0.066b -0.047a -0.039a

(0.017) (0.028) (0.035) (0.024) (0.024) (0.029) (0.0060) (0.0069)
Past ∆ density -0.037 -0.015

(0.028) (0.039)
Controls:
Demographics Y Y Y Y Y Y Y Y
Geography Y Y Y Y Y Y Y Y
Local socio-econ. Y Y Y Y Y Y Y Y
Decade indicators N N N Y Y Y Y Y
Decade × log density N N N Y Y Y Y Y
Decade ×∆ log density N N N Y Y Y Y Y

F-test 1 p-value . . . 0.0001 0.027 0 0.0034 0.0033
F-test 2 p-value 0.039 0.10 0.27 0.015 0.40 0.0062 0.22 0.91
R2 0.37 0.26 0.26 0.42 0.43 0.09 0.37 0.37
Observations 99,875 39,253 40,421 93,602 71,742 121,808 99,874 99,423
Number of MSA 275 274 274 275 275 275 275 275

Notes: All regressions include 275 MSA fixed effects. Robust standard errors clustered by MSA in parentheses. a, b, c:
significant at 1%, 5%, 10%. The dependent variables and explanatory variables of interest are in log in all columns.
Demographic controls include a white/asian indicator, log income, log household size, a single indicator, age, age
squared, gender, education, and education squared. Geographic controls include average precipitation and its
standard deviation, and average temperature and its standard deviation. Local socio-economic controls include the
share of residents with higher education and its square and log local income. When decade effects are introduced,
households in their 40s are used as reference. F-test 1 is a joint test of the equality of the coefficients on initial log 10-km
density and ∆ log 10-km density and of the coefficients on decade indicators interacted with ∆ log density all being
zero. F-test 2 is a test of the equality of the coefficients on initial log 10-km density and ∆ log 10-km density.
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