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Abstract

This paper develops a uni¯ed growth model that captures the historical evolution

of population, technology, and output. It encompasses the endogenous transition between

three regimes that have characterized economic development. The economy evolves from

a Malthusian regime, where technological progress is slow and population growth prevents

any sustained rise in income per capita, into a Post-Malthusian regime, where technological

progress rises and population growth absorbs only part of output growth. Ultimately, a

demographic transition reverses the positive relationship between income and population

growth, and the economy enters a Modern Growth regime with reduced population growth

and sustained growth of income. (JEL J13, O11, O33, O40)

This paper analyzes the historical evolution of the relationship between population

growth, technological change, and the standard of living. It develops a uni¯ed model that

encompasses the transition between three distinct regimes that have characterized the pro-

cess of economic development: the \Malthusian Regime," the \Post-Malthusian Regime,"
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and the \Modern Growth Regime." We view the uni¯ed modeling of this long transition

process, from thousands of years of Malthusian stagnation through the demographic transi-

tion to modern growth as one of the most signi¯cant research challenges facing economists

interested in growth and development.

The analysis focuses on the two most important di®erences between these regimes

from a macroeconomic viewpoint: ¯rst, in the behavior of income per capita, and second, in

the relationship between the level of income per capita and the growth rate of population.

The Modern Growth regime is characterized by steady growth in both income per capita

and the level of technology. In this regime there is a negative relationship between the

level of output and the growth rate of population: the highest rates of population growth

are found in the poorest countries, and many rich countries have population growth rates

near zero.

At the other end of the spectrum is the Malthusian regime where technological

progress and population growth were glacial by modern standards, and income per capita

was roughly constant. Further, the relationship between income per capita and population

growth was the opposite of that which exists today: \The most decisive mark of the

prosperity of any country," observed Adam Smith (1776), \is the increase in the number

of its inhabitants."

The Post Malthusian regime, which fell between the two just described, shared one

characteristic with each of them. Income per capita grew during this period, although not

as rapidly as it would during the Modern Growth regime. At the same time, the Malthusian

relationship between income per capita and population growth was still in place. Rising

income was re°ected in rising population growth rates.

The most basic description of the relation between population growth and income was

proposed by Thomas R. Malthus (1798). The Malthusian model has two key components.

The ¯rst is the existence of some factor of production, such as land, which is in ¯xed

supply, implying decreasing returns to scale for all other factors. The second is a positive
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e®ect of the standard of living on the growth rate of population. According to Malthus,

when population size is small, the standard of living will be high, and population will

grow as a natural result of passion between the sexes. When population size is large, the

standard of living will be low, and population will be reduced by either the \preventive

check" (intentional reduction of fertility) or by the \positive check" (malnutrition, disease,

and famine).

The Malthusian model implies that, in the absence of changes in technology or in

the availability of land, the size of the population will be self-equilibrating. Further,

increases in available resources will, in the long run, be o®set by increases in the size of

the population. Countries with superior technology will have denser populations, but the

standard of living will not be related to the level of technology, either over time or across

countries.

The Malthusian model's predictions are consistent with the evolution of technology,

population, and output per capita for most of human history. For thousand of years,

the standard of living was roughly constant and it did not di®er greatly across countries.

Angus Maddison (1982) estimates that the growth rate of GDP per capita in Europe

between 500 and 1500 was zero. Ronald Lee (1980) reports that the real wage in England

was roughly the same in 1800 as it had been in 1300. According to Kang Chao's (1986)

analysis, real wages in China were lower at the end of the 18th century than they had been

at beginning of the ¯rst century. Joel Mokyr (1990), Robert E. Lucas Jr. (1999), and

Lant Pritchett (1997) argue that even in the richest countries, the phenomenon of trend

growth in living standards is only a few centuries old. Similarly, population growth was

nearly zero, re°ecting the slow pace of technological progress. Massimo Livi-Bacci (1997)

estimates the growth rate of world population from the year 1 to 1750 at 0.064 percent

per year.

Fluctuations in population and wages also bear out the predictions of the Malthusian

model. Lee (1997) reports positive income elasticities of fertility and negative income
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elasticities of mortality from studies examining a wide range of pre-industrial countries.

Similarly, Edward A. Wrigley and Roger S. Scho¯eld (1981) ¯nd that there was a strong

positive correlation between real wages and marriage rates in England over the period

1551-1801. Negative shocks to population, such as the Black Death, were re°ected in

higher real wages and faster population growth (Livi-Bacci, 1997).

Finally, the prediction of the Malthusian model that di®erences in technology should

be re°ected in population density but not in standards of living is also borne out. As

argued by Richard Easterlin (1981), Lucas (1999), and Pritchett (1997), prior to 1800

di®erences in standards of living among countries were quite small by today's standards.

And yet there did exist wide di®erences in technology. China's sophisticated agricultural

technologies, for example, allowed high per-acre yields, but failed to raise the standard of

living above subsistence. Similarly in Ireland a new productive technology { the potato {

allowed a large increase in population over the century prior to the Great Famine without

any improvement in standards of living. (Livi-Bacci, 1997). Using this interpretation,

Michael Kremer (1993) argues that changes in the size of population can be taken as a

direct measure of technological improvement.

Ironically, it was only shortly before the time that Malthus wrote that humanity

began to emerge from the trap that he described. As is apparent from Figure 1 the process

of emergence from the Malthusian trap was a slow one. The ¯gure shows the growth rate of

total output in Western Europe between the years 500 and 1990, as well as the breakdown

between growth of output per capita and growth of population. The growth rate of total

output in Europe was 0.3 percent per year between 1500 and 1700, and 0.6 percent per

year between 1700 and 1820. In both periods, two-thirds of the increase in total output

was matched by increased population growth, so that the growth of income per capita was

only 0.1 percent per year in the earlier period and 0.2 percent in the later one. In the

United Kingdom, where growth was the fastest, the same rough division between total

output growth and population growth can be observed: Total output grew at an annual
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rate of 1.1 percent in the 120 years after 1700, while population grew at an annual rate of

0.7 percent.

Thus the initial e®ect of faster income growth in Europe was to increase population.

Income per capita rose much more slowly than did total output. And as income per capita

rose, population grew ever more quickly. Only the fact that output growth accelerated

allowed income per capita to continue rising. During this Post-Malthusian regime, the

Malthusian mechanism linking higher income to higher population growth continued to

function, but the e®ect of higher population on diluting resources per capita, and thus

lowering income per capita, was counteracted by technological progress, which allowed

income to keep rising.

Both population and income per capita continued to grow after 1820, but increasingly

the growth of total output was expressed as growth of income per capita. Indeed, while

the rate of total output growth increased, the rate of growth of population peaked in the

19th century and then began to fall. Population growth was 40 percent as large as total

output growth over the period 1820-1870, but only 20 percent as large as total output

growth over the period 1929-1990. Over the next several decades much of Western Europe

is forecast to have negative population growth.

The dynamics of population growth re°ected both changes in constraints and qualita-

tive changes in household behavior induced by the economic environment. The Malthusian

demographic regime had been characterized by high levels of both fertility and mortality.

As living standards rose, mortality fell. Between the 1740s and the 1840s, life expectancy

at birth rose from 33 to 40 in England and from 25 to 40 in France (Livi-Bacci, 1997).

Robert Fogel (1997) estimates that 85 percent of the decline in mortality in France between

1785 and 1870 was due simply to better nutrition. Mortality reductions led to growth of

the population both because more children reached breeding age and because each person

lived for a larger number of years. The initial e®ect of higher income was also to raise

fertility directly, primarily by raising the propensity to marry. Fertility rates increased in
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most of Western Europe until the second half of the nineteenth century, peaking in Eng-

land and Wales in 1871 and in Germany in 1875. (Tim Dyson and Mike Murphy, 1985,

and Ansley J. Coale and Roy Treadway, 1986). Thus, in Malthusian terms, the positive

check was being weakened and the preventive check was being less assiduously enforced.

But as income continued to rise, population growth fell further below the maximum rate

that could be sustained given the mortality regime. The reduction in fertility was most

rapid in Europe around the turn of the century. In England, for example, live births per

1000 women aged 15-44 fell from 153.6 in 1871-80 to 109.0 in 1901-10 (Wrigley, 1969).

Notably, the reversal of the Malthusian relation between income and population growth

corresponded to an increase in the level of resources invested in each child. For example,

the average number of years of schooling in England and Wales rose from 2.3 for the cohort

born between 1801 and 1805 to 5.2 for the cohort born 1852-56 and 9.1 for the cohort born

1897-1906. (Robert C. O. Matthews, Charles H. Feinstein, and John C. Odling-Smee,

1982).

This historical evidence suggests that the key event that separates the Malthusian

and Post-Malthusian regimes is the acceleration in the pace of technological progress, while

the event that separates the Post-Malthusian and Modern Growth eras is the demographic

transition that followed the industrial revolution. The emergence from the Malthusian trap

and the onset of the demographic transition raise intriguing questions. How was the link

between income per capita and population growth, which had for so long been a constant

of human existence, so dramatically severed? How does one account for the sudden spurt

in growth rates? And is there a uni¯ed framework of analysis the can account for this

intricate evolution of population, technology, and growth throughout human history?

Neoclassical growth models with exogenous population clearly are unable to capture

this intricate transition process. Further, the existing literature on the relation between

population growth and output has tended to focus on only one of the regimes described

above. The majority of the literature has been oriented toward the modern regime, try-
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ing to explain the negative relation between income and population growth either cross-

sectionally or within a single country over time (e.g. Robert J. Barro and Gary S. Becker,

1989). Among the mechanisms highlighted in this literature are that higher returns to

child quality in developed economies induce a substitution of quality for quantity (Becker,

Kevin M. Murphy, and Robert F. Tamura, 1990); that developed economies pay higher

relative wages of women, thus raising the opportunity cost of children (Oded Galor and

David N. Weil, 1996); and that the net °ow of transfers from parents to children grows

(and possibly switches from negative to positive) as countries develop (John W. Caldwell,

1976).1 The negative e®ect of high income on fertility is often examined in conjunction

with a model in which high fertility has a negative e®ect on income due to capital dilu-

tion. Recent papers that are concerned with the Malthusian regime are Kremer (1993)

and Lucas (1999). Lucas presents a Malthusian model in which households optimize over

fertility and consumption, while in Kremer (1993) a feedback loop between technology and

population, generates a transition from the proximity of a Malthusian equilibrium to the

Post-Malthusian regime.2

This paper accounts for the transition from the Malthusian regime, through the

Post-Malthusian regime and the demographic transition, to the Modern Growth regime

in a uni¯ed model. At the heart of our model is a novel explanation for the reduction in

fertility that has allowed income per capita to rise so far above subsistence. Most studies of

the demographic transition focus on the e®ect of a high level of income in inducing parents

to switch to having fewer, higher quality children. In our model, parents also switch out

of quantity and into quality, but do so not in response the level of income but rather in

response to technological progress. The \disequilibrium" brought about by technological

change raises the rate of return to human capital, and thus induces the substitution of

quality for quantity.

The argument that technological progress itself raises the return to human capital

was most clearly stated by Theodore W. Schultz (1964). Examining agriculture, Schultz

7



argued that when productive technology has been constant for a long period of time,

farmers will have learned to use their resources e±ciently. Children will acquire knowledge

of how to deal with this environment directly from observing their parents, and formal

schooling will have little economic value. But when technology is changing rapidly, the

knowledge gained from observing the previous generation will be less valuable, and the

trial-and-error process which led to a high degree of e±ciency under static conditions will

not have had time to function. New technology will create a demand for the ability to

analyze and evaluate new production possibilities, which will raise the return to education.3

Such an e®ect would be a natural explanation for the dramatic rise in schooling in Europe

over the course of the 19th century.

The e®ect of technology on the return to human capital in which we are most inter-

ested is the short run impact of a new technology. In the long run, technologies may be

\skill biased" or \skill saving." But we would argue that the introduction of new technolo-

gies is mostly skill biased.4If technological changes are skill-biased in the long run, then

the e®ect on which we focus will be enhanced, while if technology is skill-saving it will be

diluted.

The second piece of the model is more straightforward: the choice of parents re-

garding the education level of their children a®ects the speed of technological progress.

Children with high levels of human capital are in turn more likely to advance the tech-

nological frontier.5The third piece of our model is that, holding the level of education

constant, the speed of technological progress is also a positive function of the overall size

of the population. Higher population generates a larger supply, larger demand, and more

rapid di®usion of new ideas. The ¯nal piece of our model is the most Classical: as popu-

lation rises, the land to population ratio falls, and the wage falls. If technology is static,

population size is self-equilibrating. But technological progress can undo this mechanism,

allowing wages to rise.

The model produces a Malthusian \pseudo steady state" that is stable over long
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periods of time, but vanishes endogenously in the long run. In this Malthusian regime

output per capita is stationary. Technology progresses only slowly, and is re°ected in

proportional increases in output and population. Shocks to the land to labor ratio will

induce temporary changes in the real wage and fertility, which will in turn drive income

per capita back to its stationary equilibrium level. Because technological progress is slow,

the return to human capital is low, and parents have little incentive to substitute child

quality for quantity. The Malthusian pseudo steady state vanishes in the long run because

of the impact of population size on the rate of technological progress. At a su±ciently high

level of population, the rate of population-induced technological progress is high enough

that parents ¯nd it optimal to provide their children with some human capital. At this

point, a virtuous circle develops: higher human capital raises technological progress, which

in turn raises the value of human capital.

Increased technological progress initially has two e®ects on population growth. On

the one hand, improved technology eases households' budget constraints, allowing them to

spend more resources on raising children. On the other hand, it induces a reallocation of

these increased resources toward child quality. In the Post-Malthusian regime, the former

e®ect dominates, and so population growth rises. Eventually, however, more rapid tech-

nological progress due to the increase in the level of human capital triggers a demographic

transition: wages and the return to child quality continue to rise, the shift away from

child quantity becomes more signi¯cant, and population growth declines. In the Mod-

ern Growth regime, technology and output per capita increase rapidly, while population

growth is moderate.

The rest of this paper is organized as follows. In Section I, we formalize the as-

sumptions about the determinants of fertility and relative wages presented above, and

incorporate them into an overlapping generations model. Section II derives the dynamical

system implied by the model, and analyzes the evolution of the economy along transitions

to the steady state. Section III concludes.
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I. The Basic Structure of the Model

Consider an overlapping-generations economy in which activity extends over in¯nite

discrete time. In every period the economy produces a single homogeneous good using

land and e±ciency units of labor as inputs. The supply of land is exogenous and ¯xed over

time. The number of e±ciency units of labor is determined by households' decisions in the

preceding period regarding the number and level of human capital of their children.

A. Production of Final Output

Production occurs according to a constant-returns-to-scale technology that is subject

to endogenous technological progress. The output produced at time t; Yt; is

Yt = H
®
t (AtX)

1¡®(1)

where X and Ht are the quantities of land and e±ciency units of labor employed in

production at time t; ® 2 (0; 1); and At > 0; represents the endogenously determined

technological level at time t: The multiplicative form in which technology, At, and land, X;

appear in the production function implies that the relevant factor for the output produced

is the product of the two, which we de¯ne as \e®ective resources."

Output per worker produced at time t; yt; is

yt = h
®
t x

(1¡®)
t ´ y(ht; xt);(2)

where yh(ht; xt) > 0 and yx(ht; xt) > 0 8(ht; xt) >> 0; ht ´ Ht=Lt is e±ciency units

of labor per worker and xt ´ (AtX)=Lt is e®ective resources per worker at time t.

Suppose that there are no property rights over land. The return to land is therefore

zero, and the wage per e±ciency unit of labor is therefore equal to its average product:

wt = (xt=ht)
1¡® ´ w(ht; xt);(3)

where wh(ht; xt) < 0 and wx(ht; xt) > 0; 8(ht; xt) >> 0:
We base the modeling of the production side upon two simplifying assumptions.

First, capital is not an input in the production function, and second the return to land is
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zero. Alternatively we could have assumed that the economy is small and open to a world

capital market in which the interest rate is constant. In this case, the quantity of capital

will be set to equalize its marginal product to the interest rate, while the price of land will

follow a path such that the total return on land (rent plus net price appreciation) is also

equal to the interest rate. This is the case presented in Galor and Weil (1998). As discussed

above, capital has no role in the mechanism that we examine, and the qualitative results

would not be a®ected if the supply of capital were endogenously determined.6 Allowing

for capital accumulation and property rights over land would complicate the model to the

point of intractability.

B. Preferences and Budget Constraints

In each period t a generation that consists of Lt identical individuals joins the labor

force. Each individual has a single parent. Members of generation t live for two periods.

In the ¯rst period of life (childhood), t¡1; individuals consume a fraction of their parent's
time. The required time increases with children's quality. In the second period of life

(parenthood), t; individuals are endowed with one unit of time, which they allocate between

childrearing and labor force participation. They choose the optimal mixture of quantity

and quality of children and supply their remaining time in the labor market, consuming

their wages.

The preferences of members of generation t are de¯ned over consumption above a

subsistence level ~c > 0; as well as over the potential aggregate income of their children.

They are represented by the utility function7

ut = (ct)
(1¡°)(wt+1ntht+1)

°(4)

where nt is the number of children of individual t; ht+1 is the level of human capital of

each child, and wt+1 is the wage per e±ciency unit of labor at time t+1: The utility function

is strictly monotonically increasing and strictly quasi-concave, satisfying the conventional

boundary conditions that assure that, for su±ciently high income, there exists an interior
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solution for the utility maximization problem. However, for a su±ciently low level of

income the subsistence consumption constraint is binding and there is a corner solution

with respect to the consumption level.8

Following the standard model of household fertility behavior (Becker, 1960) the

household chooses the number of children and their quality in the face of a constraint

on the total amount of time that can be devoted to child-raising and labor market activi-

ties. We further assume that the only input required to produce both child quantity and

child quality is time.9Since all members of a generation are identical in their endowments,

the budget constraint is not a®ected if child quality is produced by professional educators

rather than by parents.

Let ¿ q + ¿ eet+1 be the time cost for a member of generation t of raising a child

with a level of education (quality) et+1. That is, ¿ q is the fraction of the individual's

unit time endowment that is required in order to raise a child, regardless of quality, and

¿ e is the fraction of the individual's unit time endowment that is required for each unit of

education for each child.

Consider members of generation t who are endowed with ht e±ciency units of labor

at time t: De¯ne potential income, zt; as the amount that they would earn if they devoted

their entire time endowment to labor force participation: zt ´ wtht: Potential income is

divided between expenditure on child rearing (quantity as well as quality), at an opportu-

nity cost of wtht[¿
q + ¿ eet+1] per child, and consumption, ct: Hence, in the second period

of life (parenthood), the individual faces the budget constraint:

wthtnt(¿
q + ¿ eet+1) + ct · wtht:(5)

C. The Production of Human Capital

An individual's level of human capital is determined by his quality (education) as well

as by the technological environment. Incorporating the insight of Schultz (1964) discussed

above, technological progress is assumed to raise the value of education in producing human
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capital. The level of human capital of children of members of generation t; ht+1; is an

increasing function of their education, et+1; and a decreasing function of the rate of progress

in the state of technology from period t to period t+1; gt+1 ´ (At+1¡At)=At: The higher
is children's quality, the smaller is the adverse e®ect of technological progress.

ht+1 = h(et+1; gt+1):(6)

h(et+1; gt+1) > 0; he(et+1; gt+1) > 0; hee(et+1; gt+1) < 0; hg(et+1; gt+1) < 0; hgg(et+1; gt+1) >

0; and heg(et+1; gt+1) > 0 8(et+1; gt+1) ¸ 0: Hence, the individual's level of human capital

is an increasing, strictly concave function of education, and a decreasing strictly convex

function of the rate of technological progress.10Furthermore, education lessens the adverse

e®ect of technological progress. That is, technology complements skills in the production

of human capital.

Moreover, although the number of e±ciency units of labor per worker is diminished

during the transition from one technological state to another - the `erosion e®ect' - the

e®ective number of the e±ciency units of labor per worker, which is the product of the

workers' level of human capital and the economy's technological state (re°ected in the wage

per e±ciency unit of labor), is assumed to be higher as a result of technological progress.

That is, @y(ht; xt)=@gt > 0:

D. Optimization

Members of generation t choose the number and quality of their children, and there-

fore their own consumption, so as to maximize their intertemporal utility function. Sub-

stituting (5)-(6) into (4), the optimization problem of a member of generation t is:

fnt; et+1g = argmaxfwtht[1¡ nt(¿ q + ¿ eet+1)]g1¡°f(wt+1nth(et+1; gt+1)g°(7)

subject to: wtht[1¡ nt(¿ q + ¿ eet+1)] ¸ ~c; (nt; et+1) ¸ 0:

The optimization with respect to nt implies that, as long as potential income at

time t is su±ciently high so as to assure that ct > ~c; the time spent by individual t
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raising children is °; while 1¡ ° is devoted for labor force participation. However, for low
levels of potential income, the subsistence constraint binds. The individual consumes the

subsistence level, ~c; and uses the rest of the time endowment for childrearing.

Let ~z be the level of potential income at which the subsistence constraint is just

binding: That is, ~z ´ ~c=(1¡ °)): It follows that

nt[¿
q + ¿ eet+1] =

8
><
>:

° if zt > ~z

1¡ [~c=wtht] if zt · ~z:
(8)

As long as the potential income of a member of generation t; zt ´ wtht; is below ~z; then

the fraction of time necessary to assure subsistence consumption, ~c; is larger than 1 ¡ °
and the fraction of time devoted for child rearing is therefore below °: As the wage per

e±ciency unit of labor increases, the individual can generate the subsistence consumption

with smaller labor force participation and the fraction of time devoted to childrearing

increases.11

Figure 2 shows the e®ect of an increase in potential income zt on the individual's

choice of total time spent on children and consumption. The income expansion path is

vertical until the level of income passes the critical level that permits consumption to

exceed the subsistence level. Thereafter, the income expansion path becomes horizontal

at a level ° in terms of time devoted for childrearing.12

Regardless of whether potential income is above or below ~z; increases in wages will

not change the division of child-rearing time between quality and quantity. What does

a®ect the division between time spent on quality and time spent on quantity is the rate of

technological progress, which changes the return to education. Speci¯cally, using (8), the

optimization with respect to et+1 implies that independently of the subsistence consump-

tion constraint the implicit functional relationship between et+1 and gt+1 as depicted in
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Figure 3, is derived in Lemma 1 are given by

G(et+1; gt+1) ´ (¿ q + ¿ eet+1)he(et+1; gt+1)¡ ¿ eh(et+1; gt+1)

8
><
>:

= 0 if et+1 > 0

· 0 if et+1 = 0;
(9)

where Ge(et+1; gt+1) < 0 and Gg(et+1; gt+1) > 0 8gt+1 ¸ 0; and 8et+1 > 0:
In order to assure the existence of a positive level of gt+1 such that the chosen level

of education is 0, it is assumed that:

(A1) G(0; 0) = ¿ qhe(0; 0)¡ ¿ eh(0; 0) < 0:

Lemma 1. If (A1) is satis¯ed, then the level of education chosen by members of generation

t for their children is an increasing function of gt+1:

et+1 = e(gt+1)

8
><
>:

= 0 if gt+1 · ĝ

> 0 if gt+1 > ĝ

where, ĝ > 0; and e0(gt+1) > 0 8gt+1 > ĝ
Proof. As follows from (6) and (9), G(0; gt+1) is monotonically increasing in gt+1:

Furthermore, (6) implies that limgt+1!1G(0; gt+1) > 0; whereas (A1) implies that

G(0; 0) < 0: Hence, there exists ĝ > 0 such that G(0; ĝ) = 0; and therefore, as fol-

lows from (9) et+1 = 0 for gt+1 · ĝ: Furthermore, it follows from (9) that et+1 is a single

valued function of gt+1; where e
0
t+1(gt+1) = ¡Gg(et+1; gt+1)=Ge(et+1; gt+1) > 0:

As is apparent from (9), e00(gt+1) depends upon the third derivatives of the production

function of human capital. A concave reaction of the level of education to the rate of

technological progress appears plausible economically, hence it is assumed that13

(A2) e00(gt+1) < 0 8gt+1 > ĝ:

Furthermore, substituting et+1 = e(gt+1) into (8), it follows that nt is:

nt =

8
>><
>>:

°
¿ q+¿ee(gt+1)

´ nb(gt+1) if zt ¸ ~z

1¡[~c=zt]
¿ q+¿ee(gt+1)

´ na(gt+1; zt) if zt · ~z:
(10)
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As follows from (3), (6) and the de¯nition of zt;

zt = wtht = h
®
t x

(1¡®)
t ´ z(et; gt; xt);(11)

where ze(et; gt; xt) > 0; zx(et; gt; xt) > 0; zg(et; gt; xt) < 0 8(et; gt; xt) >> 0:14

The following proposition summarizes the properties of the functions e(gt+1); n
a(zt; gt+1),

and nb(gt+1) and their signi¯cance for the evolution in the substitution of quality for quan-

tity in the process of development:

Proposition 1. Under (A1)-(A2)

(a) Technological progress that is expected to occur between the ¯rst and second periods

of children's lives results in a decline in the parents' chosen number of children and an

increase in their quality (i.e., @nt=@gt+1 · 0; and @et+1=@gt+1 ¸ 0;).

(b) If parental potential income is below ~z (i.e., if the subsistence consumption constraint

is binding), an increase in parental potential income raises the number of children, but has

no e®ect on their quality (i.e., @nt=@zt > 0; and @et+1=@zt = 0 if zt < ~z).

(c) If parental potential income is above ~z; an increase in parental potential income does not

change the number of children or their quality (i.e., @nt=@zt = @et+1=@zt = 0 if zt > ~z).

Proof. Follows directly from Lemma 1, (8)-(10), and assumptions (A1)-(A3).

It follows from Proposition 1 that if the subsistence consumption constraint is bind-

ing, an increase in the e®ective resources per worker raises the number of children, but

has no e®ect on their quality, whereas if the constraint is not binding, an increase in the

e®ective resources per worker does not change the number of children or their quality.

E. Technological Progress

Suppose that technological progress, gt+1; that takes place between periods t and

t+1 depends upon the education per capita among the working generation in period t; et;

and the population size in period t, Lt:
15

gt+1 ´ At+1 ¡ At
At

= g(et; Lt)(12)
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where for Lt > 0 and et ¸ 0; g(0; Lt) > 0; gi(et; Lt) > 0; and gii(et; Lt) < 0; i = et; Lt:

Hence, the rate of technological progress between time t and t+1 is a positive, increasing,

strictly concave function of the size and level of education of the working generation at

time t: Furthermore, the rate of technological progress is positive even if labor quality is

zero.

As will become apparent, the dynamical system of the described economy is rather

complex. Hence, in order to simplify the exposition, the dynamical system is analyzed

initially under the assumption that population size has no e®ect on technological progress.

In particular, let

(A3) gL(et; Lt) = 0 8Lt > 0:

In later stages of the analysis the e®ect of the size of population on the relationship between

technological progress and the level of education as speci¯ed in (12) is considered.

F. The Evolution of Population, Technology, and E®ective Resources

The size of population at time t+ 1; Lt+1; is

Lt+1 = ntLt;(13)

where Lt is the size of population at time t; nt is the number of children per person, and

nt ¡ 1 is the rate of population growth. The size of the population at time 0 is historically
given at a level L0:

The state of technology at time t+ 1; At+1; as derived from (12), is

At+1 = (1 + gt+1)At;(14)

where the state of technology at time 0 is historically given at a level A0:

The evolution of e®ective resources per worker, xt ´ (AtX)=Lt; depends on the

evolution in the technological level and the rate of population growth:

xt+1 =
1 + gt+1
nt

xt;(15)
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where x0 ´ A0X=L0 is historically given.

Substituting (11),(12) and (A3) into (10), and (10),(A3),(12) into (15),

xt+1 =

8
>><
>>:

[1+g(et)][¿ q+¿ ee(g(et))]
°

xt ´ Áb(et)xt if zt ¸ ~z

[1+g(et)][¿ q+¿ ee(g(et))]
1¡[~c=z(et;gt;xt)] xt ´ Áa(et; gt; xt)xt if zt · ~z;

(16)

where as follows from Lemma 1, (11), and (12) Áb
0
(et) > 0; and Áax(et; gt; xt) < 0: 8et ¸ 0:

II. The Dynamical System

The development of the economy is characterized by the evolution of output per

worker, population, technological level, education per worker, human capital per worker,

and e®ective resources per worker. The evolution of the economy, given (A3) is fully

determined by a sequence fet; gt; xtg1t=0 that satis¯es (12), (16), and Lemma 1 in every
period t:

The dynamical system is characterized by two regimes. In the ¯rst regime the sub-

sistence consumption constraint is binding and the evolution of the economy is governed

by a three dimensional non-linear ¯rst-order autonomous system:

8
>>>>>><
>>>>>>:

xt+1 = Á
a(et; gt; xt)xt

et+1 = e(g(et)) if zt · ~z

gt+1 = g(e(gt));

(17)

where the initial conditions e0; g0; x0 are historically given. In the second regime the

subsistence consumption constraint is not binding and the evolution of the economy is

governed by a two dimensional system:

8
><
>:

xt+1 = Á
b(et; xt)xt

if zt ¸ ~z
et+1 = e(g(et)):

(18)

In both regimes, however, the analysis of the dynamical system is greatly simpli¯ed by the

fact that, as follows from Lemma 1, (12), and (A3), the joint evolution of et and gt is
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determined independently of the xt. Furthermore, the evolution of et and gt is independent

of whether the subsistence constraint is binding, and is therefore independent of the regime

in which the economy is located. The education level of workers in period t + 1 depends

only on the level of technological progress expected between period t and period t+1; while

technological progress between periods t and t+ 1 depends only on the level of education

of workers in period t: Thus we can analyze the dynamics of technology and education

independently of the evolution resources per capita.

A. The Evolution of Technology and Education

The evolution of technology and education, given (A3), is characterized by the se-

quence fgt; etg1t=0 that satis¯es in every period t the equations gt+1 = g(et); and et+1 =

e(gt+1). Although this dynamical sub-system consists of two independent one dimensional,

non-linear ¯rst-order di®erence equations, it is more revealing to analyze them jointly.

In light of the properties of the functions e(gt+1) and g(et) given in Lemma 1, (A2)-

(A3) and (12), it follows that in any time period, if population size does play a role in

technological progress, this dynamical sub-system is characterized by three qualitatively

di®erent con¯gurations, which are depicted in Figure 3. The economy shifts endogenously

from one con¯guration to another as population increases and the curve g(et) shifts upward

to account for the e®ect of an increase in population.

In Figure 3A, for a range of small population sizes, the dynamical system is charac-

terized by globally stable steady-state equilibria. For a given population size in this range,

the steady-state equilibrium is (e; g) = (0; gl). As implied by (12), the rate of technological

change in a temporary steady state increases monotonically with the size of population,

while the level of education remains unchanged.

In Figure 3B, for a range of moderate population sizes, the dynamical system is char-

acterized by three steady state equilibria. For a given population size in this range, there

exist two locally stable steady-state equilibria: (e; g) = (0; gl) and (e; g) = (eh; gh); and

an interior unstable steady-state (e; g) ´ (eu; gu): (eh; gh) and gl increase monotonically
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with the size of population.

Finally, in Figure 3C, for a range of large population sizes, the dynamical system

is characterized by globally stable steady-state equilibria. For a given population size in

this range, there exists a unique globally stable steady-state equilibrium: (e; g) = (eH ; gH):

These temporary steady-state levels increase with population.

B. Global Dynamics

This section analyzes the evolution of the economy from the Malthusian Regime,

through the Post-Malthusian Regime, to the demographic transition and Modern Growth.

The global analysis is based a sequence of phase diagrams that describe the evolution of

the system within each regime and the transition between the di®erent regimes in the plain

(et; xt): The phase diagrams, depicted in Figure 4, contain three elements: the Malthusian

Frontier, which separates the regions in which the subsistence constraint is binding from

those where it is not; the XX locus, which denotes the set of all pairs (et; xt) for which

e®ective resources per worker are constant; and the EE locus, which denotes the set of all

pairs for which the level of education per worker is constant.

The Malthusian Frontier

As was established in (17) and (18) the economy exits from the subsistence consump-

tion regime when potential income, zt; exceeds the critical level ~z: This switch of regime

changes the dimensionality of the dynamical system from three to two.

Let theMalthusian Frontier be the set of all triplets of (et; xt; gt) for which individuals

income equal ~z:16 Using the de¯nitions of zt and ~z; it follows from (6) and (11) that the

The Malthusian Frontier, MM; is

MM ´ f(et; xt; gt) : x(1¡®)t h(et; gt)
® = ~c=(1¡ °)g:(19)

Let the Conditional Malthusian Frontier be the set of all pairs (et; xt) for which,

conditional on a given technological level gt; individuals incomes equal ~z: Following the

de¯nitions of zt and ~z; equations (6) and (11) imply that The Conditional Malthusian
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Frontier, MMjgt ; as depicted in each of the parts of Figure 4, is

MMjgt ´ f(et; xt) : x(1¡®)t h(et; gt)
® = ~c=(1¡ °) j gtg:(20)

Lemma 2. If (et; xt) 2 MMjgt then xt is a decreasing strictly convex function of et:

Proof. The lemma follows from (6) and (20).

Hence, the Conditional Malthusian Frontier, as depicted in Figure 4, is a strictly

convex, downward sloping, curve in the (et; xt) space. Furthermore, it intersects the xt

axis and approaches asymptotically the et axis as xt approaches in¯nity. The frontier

shifts upward as gt increases in the transition to a modern growth regime.

The XX Locus

Let XX be the locus of all triplets (et; gt; xt) such that the e®ective resources per

worker, xt; is in a steady-state: XX ´ f(et; xt; gt) : xt+1 = xtg:
Along the XX locus the growth rates of population and technology are equal. Above

the Malthusian frontier, the fraction of time devoted to child-rearing is not dependent on

the level of e®ective resources per worker. In this case, the growth rate of population will

just be a negative function of the growth rate of technology, since for higher technology

growth, parents will spend more of their resources on child quality and thus less on child

quantity. Thus there will be a particular level of technological progress which induces an

equal rate population growth. Since the growth rate of technology is, in turn, a positive

function of the level of education, this rate of technology growth will correspond to a

particular level of education, denoted ê: Below the Malthusian Frontier, the growth rate of

population depends on the level of e®ective resources per capita, x; as well as on the growth

rate of technology. The lower is x; the smaller the fraction of the time endowment devoted

to child-rearing, and so the lower is population growth. Thus, below the Malthusian

frontier, a lower value of e®ective resources per capita will mean that lower values of

technology growth (and thus education) will be consistent with population growth being

equal to technology growth. Thus, as drawn in all of the parts of Figure 4, lower values of
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x will be consistent with lower values of e on the part of the XX locus that is below the

Malthusian Frontier.

Lemmas 3, 4, and 5, derive the properties of this locus. In order to simplify the

exposition without a®ecting the qualitative nature of the dynamical system, the parameters

of the model are restricted so as to assure that the XX Locus is non-empty when zt ¸ ~z:

That is,

(A4) ĝ < (°=¿ q)¡ 1 < f(L0)g(eH(L0)):

Lemma 3. If (A1)-(A4) are satis¯ed, then for zt ¸ ~z; there exists a unique value 0 < ê <

eH ; such that xt 2 XX: Furthermore, for zt ¸ ~z

xt+1 ¡ xt

8
>>>>>><
>>>>>>:

> 0 if et > ê

= 0 if et = ê

< 0 if et < ê

Proof. For zt ¸ ~z; it follows from (16) that xt+1 = xt if and only if Á
b(et) ´ [1+g(et)][¿

q+

¿ ee(g(et))]=° = 1: Since Á
b(et) is strictly monotonic increasing in et and since (A4) implies

that for all Lt > 0; Áb(0) < 1 and Áb(eH) > 1; there exists a unique value 0 < ê < eH ; such

that Áb(ê) = 1 and hence xt 2 XX: Furthermore, since Áb(et) is strictly monotonically
increasing in et; it follows from (16) that xt+1 > xt if and only if Á

b(et) > 1 and hence

et > ê, whereas xt+1 < xt if and only if Áb(et) < 1 and hence et < ê:

Hence, the XX Locus, as depicted in Figure 4 in the space (et; xt); is a vertical line

above the Conditional Malthusian Frontier at a level ê:

Lemma 3 holds as long as consumption is above subsistence. In the case where the

subsistence constraint is binding, the evolution of xt; as determined by equation (16), is

based upon the rate of technological change, gt; the e®ective resources per-worker, xt as
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well as the quality of the labor force, et: Let XXjgt be the locus of all pairs (et; xt) such

that xt+1 = xt for a given level of gt: That is, XXjgt ´ f(et; xt) : xt+1 = xt j gtg:
Lemma 4. If (A1)-(A4) are satis¯ed, then for zt · ~z; and for 0 · et · ê; there exists a

single-valued function xt = x(et) such that (x(et); et) 2 XXjgt : Furthermore, for zt · ~z;

xt+1 ¡ xt

8
>>>>>><
>>>>>>:

< 0 if (et; xt) > (et; x(et)) for 0 · et · ê;

= 0 if xt = x(et) for 0 · et · ê;

> 0 if [(et; xt) < (et; x(et)) for 0 · et · ê; ] or [et > ê]

Proof. As follows from (16), xt+1 = xt if and only if Áa(et; gt; xt) = [1 + g(et)][¿ q +

¿ ee(g(et))]=f1 ¡ [~c=z(et; gt; xt)]g = 1: Since Áa(et; gt; xt) is strictly monotonic decreasing

in xt; there exists a single valued function, xt = x(et); such that Á
a(et; xtj gt) = 1 and

therefore (et; x(et)) 2 XXjgt : Moreover, since Á
a
e(et; gt; xt) is not necessarily monotonic,

x0(et) is not necessarily monotonic as well. Furthermore, since Áa(et; xt j gt) is strictly
monotonic decreasing in xt it follows from (16) that for 0 · et · ê; and for zt · ~z : (a)

xt+1 > xt if and only if

xt < max[x(et); xMt ]; where (et; x
M
t ) 2 MMjgt , and (b) xt+1 < xt if and only if

xt > x(et).

Hence, without loss of generality, the locus XXjgt is depicted in Figure 4, as an

upward slopping curve in the space (et; xt); de¯ned for et · ê: XXjgt is strictly below the

Conditional Malthusian Frontier for value of et < ê; and the two coincides at ê:

Lemma 5. let (ê; x̂) 2 MMjgt : If (A4) is satis¯ed, then (ê; x̂) = XXjgt \MMjgt \XX

Proof. Let (ê; x̂) 2 MMjgt : It follows from the de¯nition of MMjgt that z(ê; x̂jgt) = ~z:

Hence, Lemma 2 implies that (ê; x̂) 2 XX: Furthermore, since Lemma 2 and 3 are both
valid for zt = ~z; it follows that x(ê) = x̂ and hence (ê; x̂) 2 XXjgt :
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Hence, the Conditional Malthusian Frontier, the XX Locus, and the XXjgt Locus,

as depicted in Figure 4 in the (et; xt) space, coincide at (ê; x̂):

The EE Locus

Let EE be the locus of all triplets (et; gt; xt) such that the quality of labor, et; is in a

steady-state: EE ´ f(et; xt; gt) : et+1 = etg: As follows from the analysis in section II.A,

the steady-state values of et are independent of the values of xt and gt: The locus EE

evolves through three phases in the process of development, corresponding to the three

phases that describe the evolution of education and technology depicted in Figures 3A,

3B, and 3C.

In early stages of development, when population size is su±ciently small, the joint

evolution of education and technology is characterized by a globally stable temporary

steady-state equilibrium, (e; g) = (0; gl); as depicted in Figure 3A. The corresponding EE

Locus, depicted in the space (et; xt) in Figure 4A, is vertical at the level e = 0; for a range

of small population sizes. Furthermore, for this range, the global dynamics of et in this

con¯guration are given by:

et+1 ¡ et

8
><
>:

= 0 if et = 0

< 0 if et > 0:
(21)

In later stages of development as population size increases su±ciently, the joint

evolution of education and technology is characterized by multiple locally stable temporary

steady-state equilibria, as depicted in Figure 3B. The corresponding EE Locus, depicted

in the space (et; xt) in Figure 4B, consists of 3 vertical lines corresponding the three steady-

state equilibria for the value of et: That is, e = 0; e = eu; and e = eh: The vertical lines

e = eu; and e = eh shift rightward as population size increases. Furthermore, the global

dynamics of et in this con¯guration are given by:
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et+1 ¡ et

8
>>>>>><
>>>>>>:

< 0 if 0 < et < eu or et > eh

= 0 if et = (0; e
u; eh)

> 0 if eu < et < eh:

(22)

In mature stages of development when population size is su±ciently large, the joint

evolution of education and technology is characterized by globally stable steady-state equi-

librium at the point (e; g) = (eh; gh); as depicted in Figure 3C. The corresponding EE

Locus, as depicted in Figure 4C in the space (et; xt), is vertical at the level e = eh:

This vertical line shifts rightward as population size increases. Furthermore, the global

dynamics of et in this con¯guration are given by:

et+1 ¡ et

8
>>>>>><
>>>>>>:

> 0 if 0 · et < eh

= 0 if et = e
h:

< 0 if et > eh:

(23)

C. Conditional Steady-State Equilibria

In early stages of development, when population size is su±ciently small, the dynam-

ical system, as depicted in Figure 4A in the space (et; xt); is characterized by a unique and

globally stable conditional steady-state equilibrium.17It is given by a point of intersection

between the EE Locus and the XX Locus. That is, conditional on a given technolog-

ical level, gt; the Malthusian steady-state (0; x(gt)) is globally stable.
18In later stages of

development as population size increases su±ciently, the dynamical system as depicted

in Figure 4B is characterized by two conditional steady-state equilibria. The Malthusian

conditional steady-state equilibrium is locally stable, whereas the steady-state equilibrium

(eu; xu) is a saddle point.19In addition for education levels above eu the system converges

to a stationary level of education eh and possibly to a steady-state growth rate of xt: In

mature stages of development when population size is su±ciently large, There system con-
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vergence globally to an educational level eh and possibly to a steady-state growth rate of

xt:

D. Analysis

The transition from the Malthusian regime through the Post-Malthusian regime to

the demographic transition and a Modern Growth regime emerges from Proposition 1

and Figures 2-4. Consider an economy in early stages of development. Population is low

enough that the implied rate of technological change is very small, and parents have no

incentive to provide education to their children. As depicted in Figure 3A in the space

(et; gt); the economy is characterized by a single temporary steady-state equilibrium in

which technological progress is very slow and children's level of education is zero. This

temporary steady-state equilibrium corresponds to a globally stable conditional Malthusian

steady-state equilibrium, drawn in Figure 4A in the space (et; xt). For a given rate of

technological progress, e®ective resources per capita, as well as the level of education

are constant, and hence as follows from (2) and (6) output per capita is constant as

well. Moreover, shocks to population or resources will be undone in a classic Malthusian

fashion. Population will be growing slowly, in parallel with technology. As long as the

size of the population is su±ciently small, no qualitative changes occurs in the dynamical

system described in Figures 3A and 4A. The temporary steady-state equilibrium depicted

in Figure 3A gradually shifts vertically upward re°ecting small increments in the rate of

technological progress, while the level of education remains constant at zero. Similarly, the

conditional Malthusian steady-state equilibrium drawn in Figure 4A for a constant rate

of technological progress, shifts upward vertically. However, output per capita remains

constant at the subsistence level.

Over time, the slow growth in population that takes place in the Malthusian regime

will raise the rate of technological progress and shift the g(et+1; Ll) locus in Figure 3A

upward so that it has the con¯guration shown in Figure 3B. At this point, the dynamical

system of education and technology will be characterized by multiple, history-dependent
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steady states. One of these steady states will be Malthusian, characterized by constant

resources per capita, slow technological progress, and no education. The other will be

characterized by a high level of education, rapid technological progress, growing income

per capita, and moderate population growth. For the story that we want to tell in this

paper, however, the existence of multiple steady states turns out not to be relevant. Since

the economy starts out in the Malthusian steady state, it will remain there. If we were to

allow for stochastic shocks to education or technological progress, it would be possible for

an economy in the Malthusian steady state of Figure 3B to jump to the Modern Growth

steady state, but we do not pursue this possibility.

Figure 3C shows that the increasing size of the population continues to raise the rate

of technological progress, re°ected in a further upward shift of the g(et+1; Lt) function. At

a certain level of population, the steady state vanishes, and the economy transitions out

of the Malthusian regime. Increases in the rate of technological progress and the level of

education feed back on each other until the economy converges to the unique, stable steady

state.

While the evolution of education and technological progress traced in Figure 3C

are monotonic once the Malthusian steady state has been left behind, the evolution of

population growth and the standard of living, which can be seen in Figure 4C are more

complicated. The reason for this complication is that technological progress has two e®ects

on the evolution of population, as shown in Proposition 1. First, by inducing parents

to give their children more education, technological progress will ceteris paribus lower

the rate of population growth. But, second, by raising potential income, technological

progress will increase the fraction of their time that parents can a®ord to devote to raising

children. Initially, while the economy is in the Malthusian region of Figure 4, the e®ect of

technology on the parent's budget constraint will dominate, and so the growth rate of the

population will increase. This is the Post-Malthusian regime.20The positive income e®ect

of technological progress on fertility only functions in the Malthusian region of Figure 4,
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however. As the ¯gure shows the economy eventually crosses the Malthusian frontier.

Once this has happened, further improvements in technology no longer have the e®ect of

changing the amount of time devoted to child-rearing, while faster technological change

will continue to raise the quantity of education that parents give each child. Thus once

the economy has crossed the Malthusian frontier, population growth will fall as education

and technological progress rise.

In the modern growth regime, resources per capita will rise, as technological progress

outstrips population growth. Figure 3C shows that the levels of education and technological

progress will be constant in the steady state, provided that population size is constant (i.e.,

population growth is zero). This implies that the growth rate of resources per capita, and

thus the growth rate of output per capita, will also be constant. However, if population

growth is positive in the Modern Growth regime, then education and technological progress

will continue to rise, and, similarly, if population growth is negative they will fall. In fact,

the model makes no ¯rm prediction about what the growth rate of population will be in

the Modern Growth regime, other than that population growth will fall once the economy

exits from the Malthusian region. It may be the case that population growth will be zero,

in which case the Modern growth regime would constitute a global steady state, in which e

and g were constant. Alternatively, population growth could be either positive or negative

in the Modern Growth regime, with e and g behaving accordingly.21

III. Concluding Remarks

This paper develops a uni¯ed endogenous growth model in which the evolution of

population, technology, and output growth is largely consistent with the process of de-

velopment in the last millennia. The model generates an endogenous take-o® from a

Malthusian regime, through a Post-Malthusian regime, to a demographic transition and

a Modern Growth regime. In early stages of development - the Malthusian regime - the

economy remains in the proximity of a Malthusian trap, where output per capita is nearly

stationary and episodes of technological change bring about proportional increases in out-
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put and population. In the intermediate stages of development - the Post-Malthusian

regime - the intensi¯ed pace of technological change that is caused by the increase in the

size of population during the Malthusian regime permits the economy to take o®. Produc-

tion takes place under a state of technological disequilibrium in which the relative return

to skills rises, inducing the household to shift its spending on children toward quality and

away from quantity. Output per capita increases along with an increase in the rate of pop-

ulation growth and human capital accumulation. Eventually, rapid technological progress

which results from high human capital accumulation triggers a demographic transition in

which fertility rates permanently decline.

One of the signi¯cant components of our model is the e®ect of technological change

on the return to education. Speci¯cally, technological transitions, in and of themselves,

are assumed to raise the return to education. An alternative assumption which would

produce many of the same results is that the return to education rises with the level of

technology so that, for example, a technologically stagnant economy with a high level of

technology would have a higher return to education than a similarly stagnant economy

with a low level of education. A model incorporating this assumption would produce

a technological takeo® that was not related to the size of population: even if population

were constant, technological progress would eventually raise the rate of return to education

su±ciently to induce parents to give their children more schooling, and this would in turn

feed back to raise the rate of technological progress. Making this assumption, however,

would be equivalent to assuming that changes in technology were skill-biased throughout

human history. Although on average technological change may have been skilled biased,

our mechanism allows us to consider those periods in which technological change was

unskilled-biased in the long-run (most notably, elements of the industrial revolution).

The model abstracts from several factors that are relevant for economic growth.

Di®erences between countries in the determination of population growth or in the process of

technological change (due to cultural factors, for example) would be re°ected in their ability

29



to escape the Malthusian trap and in the speed of their takeo®. Similarly, di®erences in

policies, such as the public provision of education, would change the dynamics of the model.

One interesting possibility that the model suggests is that the in°ow of grain and other

commodities as well as the out°ow of migrants during the Nineteenth century may have

played a crucial role in Europe's development. By easing the land constraint at a crucial

point - when income per capita had begun to rise rapidly, but before the demographic

transition had gotten under way - the \ghost acres" of the New World provided a window

of time which allowed Europe to pull decisively away from the Malthusian equilibrium

(Kenneth Pomeranz, 1999).

While our model presents a uni¯ed description of the development process followed

by Europe and its o®shoots, it is clearly not fully applicable to countries that are devel-

oping today. For currently developing countries, a large stock of pre-existing technology

is available for import, and so the relationship between population size and technology

growth, which helped trigger the demographic transition in Europe, is no longer relevant.

Similarly, the relationship between income and population growth has changed dramat-

ically, due to the import of health technologies. Countries that are poor, even by the

standards of Nineteenth Century Europe, are experiencing growth rates of population far

higher than those ever experienced in Europe.

We wish to end by stressing the importance of the construction of uni¯ed models

of population and development that encompasses the endogenous transition between the

three fundamental regimes that have characterized the process of development.22Imposing

the constraint that a single model would account for the entire process of development is a

discipline that would improve the understanding of the underlying phenomena, and would

generate superior testable predictions and more accurate analysis of the e®ects of policy

interventions.
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1 See Isaac Ehrlich and Fracis Lui (1997), James A. Robinson and T.N. Srinivasan (1997),

and Paul T. Schultz (1997) for surveys of the literature in this area, and Momi Dahan and

Daniel Tsiddon (1998) for an alternative mechanism.
2 To generate a demographic transition, Kremer assumes that population growth increases

with income at low levels of income and then decreases with income at high levels of income.

Another strand of literature (Marvin Goodfriend and John McDermott, 1995, and Daron

Acemoglu and Fabrizio Zilibotti, 1997) has attempted to model the acceleration of output

growth at the time of the Industrial Revolution without considering the determinants of

population growth. See also Zvi Eckstein, Steven Stern, and Kenneth Wolpin (1988).
3 Schultz (1975) cites a wide range of evidence in support of this theory. Similarly, Andrew

Foster and Mark Rosenzweig (1996) ¯nd that technological change during the green revo-

lution in India raised the return to schooling, and that school enrollment rates responded

positively to this higher return.
4 See Galor and Tsiddon (1997) and Claudia Goldin and Lawrence F. Katz (1998).
5 This link between education and technological change was ¯rst proposed by Richard R.

Nelson and Edmund S. Phelps [1966]. For supportive evidence see Easterlin (1981) and

Mark Doms, Timothy Dunne, and Kenneth R. Troske (1997).
6 An alternative mechanism to deal with land in the model would be to assume that land

is owned by a small fraction of the population which consumes the rents that it receives
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and which has a negligible impact on the evolution of population.
7 The second component of the utility function may represent either intergenerational al-

truism, or implicit concern about potential support from children in old age. The interpre-

tation that emphasizes intergenerational altruism re°ects an implicit bounded rationality

on the part of the parent. Alternative formulations according to which individuals gener-

ate utility from the utility of their children, or from the actual aggregate income of their

o®spring would require parental predictions about fertility choices of their dynasty. These

approaches would greatly complicate the model and we conjecture that they would not

a®ect the qualitative results.
8 As will become clear below, the presence of a subsistence consumption constraint provides

the Malthusian piece of our model. The formulation that we use implicitly stresses a

\demand" explanation for the positive income elasticity of population growth at low income

levels, since higher income will allow individuals to a®ord more children. However, one

could also cite \supply" factors, such as declining infant mortality and increased natural

fertility, to explain the same phenomenon. See Nancy Birdsall (1988) and Randall J. Olsen

(1994).
9 If both time and goods are required in order to produce child quality, the process we

describe would be intensi¯ed. As the economy develops and wages increase, the relative

cost of a quality child will diminish and individuals will substitute quality for quantity of

children.
10 Strict convexity with respect to gt+1 is not essential. It is designed to assure that the level

of human capital will not become zero at high rates of technological progress. Alternative

assumptions will not a®ect the qualitative analysis.
11 John D. Durand (1975) and Goldin (1994) report that, looking across a large sample

of countries, the relationship between women's labor force participation and income is U-

shaped. The model presented here explains the negative e®ect of income on labor force

participation for poor countries, and further predicts that this e®ect should no longer be

operative once potential income has risen su±ciently high. It does not, however, explain

the positive e®ect of income on participation for richer countries. See, however, Galor and

Weil (1996) for a model that does explain this phenomenon.
12 An alternative way of generating a qualitatively similar result would be to assume a
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Stone-Geary utility function of the form ut = (ct ¡ ~c)(1¡°)(wt+1ntht+1)°: In this case the

income expansion path would be nearly vertical for low levels of potential income and

asymptotically horizontal for high levels of potential income. Adopting this formulation

would raise the dimensionality of the system, however.
13 Alternatively, if e(gt+1) is strictly convex we may assume that for physiological or other

reasons, the maximum amount of education that a child can receive is bounded from above.

In the model we ignore integer constraints on the number of children, so that absent a

constraint on the quality per child, parents might choose to have an in¯nitesimally small

number of children with in¯nitely high quality. Thus the existence of integer constraints

may be taken as one justi¯cation for an upper bound on level of education.
14 It should be noted that while the partial derivative of zt with respect to gt is negative

(holding xt and thus At constant), the total derivative of zt with respect to gt (holding

At¡1 constant) may positive.
15 We consider a modi¯cation of equation (12) along the lines suggested by Jones (1995)

in Section 3.2.2.
16 As was shown in Proposition One, below the Malthusian Frontier, the e®ect of income

on fertility will be positive, while above the frontier there will be no e®ect of income on

fertility. Thus the Malthusian Frontier separates the Malthusian and Post-Malthusian

regimes, on the one hand, from the Modern Growth regime, on the other.
17 Since the dynamical system is discrete, the trajectories implied by the phase diagrams

do not necessarily approximate the actual dynamic path, unless the state variables evolve

monotonically over time. As shown in section 3.1 the evolution of et is monotonic, whereas

the evolution and convergence of xt may be oscillatory. Non-monotonicity may arise only

if e < ê: Non-monotonicity in the evolution of xt does not a®ect the qualitative description

of the system. Furthermore, if Áax(et; gt; xt)xt > ¡1 the conditional dynamical system is

locally non-oscillatory. The phase diagrams in Figures 4A-C are drawn under the assump-

tions that assure that there are no oscillations.
18 The local stability of the steady-state equilibrium (0; x(gt)) can be derived formally. The

eigenvalues of the Jacobian matrix of the conditional dynamical system evaluated at the

conditional steady-state equilibrium are both smaller than one (in absolute value) under

(A1)-(A3).
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19 Convergence to the saddle point takes place only if the level of education is eu: That

is, the saddle path is the entire vertical line that corresponds to et = e
u:

20 Literally, income per capita does not change during the Post-Malthusian regime. It

remains ¯xed at the subsistence level. This is an artifact of the assumption that the

only input into child quality is parental time, and that this time input does not produce

measured output. If child-rearing, especially the production of quality, requires goods or

time supplied through a market (e.g., schooling), the shift toward higher child quality

that takes place during the post-Malthusian regime would be re°ected in higher market

expenditures (as opposed to parental time expenditures) and rising measured income.
21 Charles I Jones (1995) has argued for a model of technology creation in which the steady

state growth rate of technology is related to the growth rate of population, rather than to

its level. Under such a speci¯cation, our model would have a steady state modern growth

regime in which the growth rates of population and technology would be constant. Further,

such a steady state would be stable: if population growth fell, the rate of technological

progress would also fall, inducing a rise in fertility.
21 For a description of alternative uni¯ed models see Galor and Weil (1999).
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Figure Titles and Captions

Figure 1: Output Growth in Western Europe, 500-1990

Note: Data from 500-1820 are from Angus Maddison (1982) and apply Europe as a whole.

Data for 1820-1990 are from Maddison (1995), Table G, and apply to Western Europe.

Figure 2: Preferences, Constraints, and Income Expansion Path

Note: The ¯gure depicts the households indi®erence curves, budget constraints, as well as

the subsistence consumption constraint, c ¸ ~c. The income expansion path as derived in

Proposition 1, is vertical as long as the subsistence consumption constraint, is binding and

horizontal at a level ° once it is not binding.

Figure 3A: The Evolution of Technology and Education for a Small Population

Note: The ¯gure describes the evolution of education et and the rate of technological

change gt for a constant small population Ll: The curve labeled gt+1 = g(et;Ll) shows the

e®ect of education on the growth rate of technology as presented in Equation 21. The

curve labeled et+1 = e(gt+1) shows the e®ect of expected technological change on optimal

education choices derived in Lemma 1. The point of intersection between the two curves

is the globally stable steady-state equilibrium (0; gl): In early stages of development, the

economy is in the vicinity of this steady-state where education is zero and the rate of

technological progress is slow.

Figure 3B: The Evolution of Technology and Education for a Moderate Population

Note: The ¯gure describes the evolution of education et and the rate of technological change

gt once the size of the population has grown to reach a moderate size, Lm. The system

is characterized by multiple steady-state equilibria. The steady-state equilibria (0; gl) and

(eh; gh) are locally stable, whereas (eu; gu) is unstable. Given the initial conditions, in

the absence of large shocks the economy remains in the vicinity of the low steady-state

equilibrium (0; gl); where education is still zero but the rate of technological progress is

moderate.

Figure 3C: The Evolution of Technology and Education for a Large Population

Note: The ¯gure describes the evolution of education et and the rate of technological change

gt once the size of the population grows to a high level, Lh: The system is characterized by a
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unique globally stable steady-state equilibrium (eh; gh). In mature stages of development,

the economy converges monotonically to this steady state with high levels of education

and technological progress.

Figure 4A: The Conditional Dynamical System for a Small Population

Note: This ¯gure describes the evolution of education et and e®ective resource per worker

xt for a constant small population, Ll: The curve et+1 = et is the set of all pairs (et; xt); for

which education is constant over time. The curve xt+1 = xt is the set of all pairs (et; xt);

given gt; for which e®ective resource per worker is constant over time (Lemmas 3, 4, and 5).

The point of intersection between the two curves is a unique globally stable steady-state

equilibrium. In early stages of development, the system is in the vicinity of this conditional

Malthusian steady-state equilibrium. The Conditional Malthusian Frontier as de¯ned in

equation (20) is the set of all pairs (et; xt); given gt; below which the subsistence constraint

is binding.

Figure 4B: The Conditional Dynamical System for a Moderate Population

Note: This ¯gure describes the evolution of education et and e®ective resource per worker

xt; once the size of the population has grown to reach a moderate size, Lm. The system

is characterized by multiple steady-state equilibria. Given the initial conditions, in the

absence of large shocks, the economy remains in the vicinity of the conditional Malthusian

steady state equilibrium.

Figure 4C: The Conditional Dynamical System for a Large Population

Note: The ¯gure describes the evolution of education et and the rate of technological change

xt; once the size of the population has reached a high level, Lh: The dynamical system

changes qualitatively and the conditional Malthusian steady state vanishes. The economy

evolves through a Post-Malthusian Regime until it crosses the Conditional Malthusian

Frontier, converging and enters the Modern Growth regime.
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