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Abstract2

Test statistics that are suitable for testing composite hypotheses are typically non-pivotal,

and conservative bounds are commonly used to test composite hypotheses.

In this paper, we propose a testing procedure for composite hypotheses that incorporates

additional sample information. This avoids, as n→∞, the use of conservative bounds and
leads to tests with better power than standard tests. The testing procedure satisfies a novel

similarity condition that is relevant for asymptotic tests of composite hypotheses, and we

show that this is a necessary condition for a test to be unbiased.

The procedure is particularly useful for simultaneous testing of multiple inequalities, in

particular when the number of inequalities is large. This is the situation for the multiple

comparisons of forecasting models, and we show that the new testing procedure dominates

the ‘reality check’ of White (2000) and avoids certain pitfalls.
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1 Introduction

Composite Hypothesis are common in econometrics, where budget constraints, presumed

convexities, arbitrage conditions, stochastic dominance, etc., may lead to one or more in-

equalities that characterize a composite null hypothesis. A composite hypothesis does not

point to a unique probability measure to be used in the hypothesis testing, and this makes

it more challenging to test composite hypotheses than simple hypotheses. The ambiguity

in the null distribution is typically solved by applying a conservative bound in hypotheses

tests, see, e.g., Perlman (1969) and Robertson, Wright, and Dykstra (1988). This approach

is known as the least favorable configuration (LFC).

In this paper, we consider asymptotic tests of composite hypotheses, and the paper

makes three contributions. First, we note that the testing problem of composite hypotheses

is closely related to the problem of testing hypotheses in the presence of nuisance parameters.

As there is additional sample information about the nuisance parameters,1 we can exploit this

information to derive an asymptotically exact test that has better power than the LFC-test.

The idea that underlies our results is an asymptotic version of that applied by Dufour (1990),

Berger and Boos (1994), and Silvapulle (1996) to various problems, and our asymptotic

results yield insight about how the idea should be implemented in finite samples.

Second, we formulate a similarity condition that is relevant for asymptotic tests of com-

posite hypotheses, and we show that the condition is necessary for an asymptotic test to be

unbiased in regular problems. We pay special attention to the case where the null hypothesis

is characterized by linear inequalities, which is the most common composite testing problem

in econometrics. In this context, we show that the LFC is increasingly inferior as the dimen-

sion of the testing problem increases. Our result leads to the conclusion that a LFC-based

test is inadmissible for testing multiple inequalities.

Third, our results have important implications for the reality check for data snooping

(RC) by White (2000). In this framework, the question of interest is whether a benchmark

forecast is outperformed by alternative forecasting models, which leads to a composite null

hypothesis. We show the advantages of the new testing procedure and the practical rele-

vance of our theoretical results are confirmed by simulation experiments and an empirical

application. We also characterize some rather unfortunate properties of the RC that can be

avoided by the new procedure. However, a partial pivoting of the RC’s test statistic can

alleviate some of the RC’s problems. Based on these findings it is not advisable to use the

RC in its original form.

Composite hypotheses often arise from inequality constraints, and much of the under-

1 In our framework, it is the parameter of interest that appears as a ‘nuisance’ parameter, so strictly
speaking this is not a nuisance parameter problem. Our problem is not directly related to the problem where
the nuisance parameter is only identified under the alternative.
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lying theory for hypotheses testing, where either the null or the alternative hypothesis is

characterized by linear inequalities, is due to Perlman (1969), see Robertson, Wright, and

Dykstra (1988) for a general treatment. Within the framework of the linear regression model,

Gouriéroux, Holly, and Monfort (1982) and Wolak (1987, 1989b) derived tests of hypotheses

that are given from linear inequalities, and Dufour (1989) derived exact simultaneous tests

in this setting. Composite hypotheses testing in non-linear models has been analyzed by

Wolak (1989a, 1991).

The main complication in testing composite hypotheses is the lack of pivotal quantities

that are suitable for testing. The common solution is to use a quantity, which has a distri-

bution that can be properly bounded over the null hypothesis. This bound is known as the

least favorable configuration, because it employs the distribution ‘in the null’ that is least

favorable to the alternative hypothesis. The motivation for using the LFC is that it leads to

exact tests, however, the LFC method has drawbacks because it often leads to non-similar

tests that are biased and have poor power properties against certain alternatives. It may

have been believed that the LFC approach is the only way to construct tests that are exact

asymptotically, see e.g., Wolak (1989a, p. 10). Our results show that this is not the case and

that the new testing procedure dominates the LFC approach.

In general, the asymptotic similarity condition provides guidance on how to construct

unbiased and powerful tests, if such exist. In the context of testing linear inequalities the

similarity condition has the same implication for tests as the LFC when testing a single

inequality, but differ in dimensions two and higher. Thus the intuition from tests of a single

inequality, e.g., β1 ≥ 0, does not carry over to the situation with two or more inequalities,
e.g., β1 ≥ 0, β2 ≥ 0. This point was also made by Goldberger (1992).
Simultaneous inference and multiple comparison problems sometimes lead to testing prob-

lems of multiple linear inequalities, see, e.g., Gupta and Panchapakesan (1979), Miller (1981),

Savin (1984), and Hsu (1996). One such case is when multiple forecasting models are being

compared to a benchmark model, which is particularly interesting for certain econometric

problems. In this setting White (2000) recently proposed a test, the reality check, which

made two valuable contributions to this problem. First, White suggested a bootstrap im-

plementation of the RC. This approach is very useful because it circumvents an explicit

estimation of a large covariance matrix, which is infeasible whenever the number of compet-

ing forecasts exceeds the sample size. A second contribution is the formulation of the null

hypothesis. Rather than testing for equal predictive ability (EPA), as analyzed by Diebold

and Mariano (1995) and West (1996), the RC is constructed to test for superior predictive

ability (SPA). Indeed, SPA is often more relevant for economic applications than EPA, be-

cause the existence of a better forecasting model is typically of more importance than the

existence of a worse model. For example, testing for SPA is relevant for forecasters who
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want to evaluate whether the forecasting model they currently use is inferior to alternative

models. Also, if an economic theory predicts that a particular forecasting model embodies

all information about the future, then testing for SPA can be used to falsify the theory.

Testing for superior predictive ability leads to a composite hypothesis and our theoretical

results have important implications for the properties of the RC. We find that the RC is

sensitive to the inclusion of poor and irrelevant models in the space of competing forecasting

models, and the power of the RC is unnecessarily low in most situations. These problems are

caused by two aspects, one is that the RC is a LFC-test and the other is that the individual

model-statistics, which enter the test statistic, are non-standardized.

We use the following notation: For x ∈ Rp we define x+ ≡ (max{x1, 0}, . . . ,max{xp, 0})0
and we let kxk2 =

pPp
i=1 x

2
i denote the Euclidian norm of x. The open ball around x with

radius ² > 0 we denote by N²(x) = {y ∈ Rp : ky − xk2 < ²}. For a constant, a ∈ R we let
[a] denote its integer part and let limu%a denote the left limit. For a subset, A, of some

space, S ⊂ Rp, the complement of A is denoted by {A = {a ∈ S : a /∈ A}. Convergence in
probability, distribution, and weak convergence we denote by

p→, d→, and w→, respectively.
The remainder of the paper is organized as follows. Section 2 contains the theoretical

framework with emphasis on simultaneous testing of multiple inequalities and includes a

necessary condition for a test to be unbiased. A simulation study quantifies our theoretical

results and reveals substantial gains in power from using the new testing procedure. Section

3 shows the implications that our theoretical results have for the RC of White (2000). The

improvements that can be achieved by the new testing procedure are emphasized in an

empirical application. Section 4 contains concluding remarks.

2 The Theoretical Framework

We consider a statistical model, (Ω,F ,P), where Ω is the sample space, F is an σ-

algebra on Ω, and P = (Pθ)θ∈Θ is a parametric family of probability measures on (Ω,F).
The parameter space, Θ, defines the maintained hypothesis, which is a non-empty subset of

Rp, for some integer p.

We consider the hypothesis, H0 : θ ∈ Θ0, where Θ0 is a subset of Θ, and we shall

be concerned with the case where Θ0 contains more than a single point, so that H0 is a

composite hypothesis.

2.1 A Simple Illustrative Example

As stated in the introduction, the problem of testing a composite hypothesis is related

to that of testing in the presence of nuisance parameters. We illustrate this with a simple

example that also serves as an illustration of the idea behind our testing procedure.

LetX1, . . . ,Xn be independent and identically distributed N(µ,σ2), where the parameter

space for the unknown parameters, θ = (µ,σ2), is Θ = R× [0,∞). Consider the hypothesis

3



H0 : µ = 0, in which case σ2 is a nuisance, and note that H0 is a composite hypothesis,

because it corresponds to H0 : θ ∈ Θ0, where Θ0 = {0}× [0,∞). We seek to test H0 at some
level, α ∈ (0, 1), and an obvious test is Gosset’s well-known t-test, which has the quality of
being similar as the t-statistic is a pivot.

Suppose, for the sake of illustration, that no pivot is available and we instead apply

the test statistic, Tn ≡ n1/2|X̄n|, where X̄n ≡ n−1
Pn
i=1Xi is the sample average. Since

n1/2X̄n ∼ N(0,σ2) we see that the distribution of Tn depends on σ2, so Tn is not a pivot.
We now discuss four approaches to handling the non-pivotalness of Tn.2

1. The first approach is the LFC, which entails finding a bound for the distribution of Tn.

The LFC-test rejects H0 if Tn > supθ∈Θ0
Φ−10,σ2(1−α/2), where Φ−10,σ2 is the inverse cdf

of the normal variable with mean zero and variance σ2. Since Φ−10,σ2(1− α/2)→∞ as

σ2 → ∞, this problem does not have a solution. However, if the parameter space is

given by Θ = R × [0, η2] for some constant η > 0, we have supθ∈Θ0
Φ−10,σ2(1 − α/2) =

Φ−10,η2(1 − α/2), and the LFC-test would reject H0 if Tn/η > 1.96, using the level

α = 0.05.

2. A second approach substitutes a consistent estimator and invokes the asymptotic dis-

tribution of Tn. Thus H0 is rejected if Tn > Φ
−1
0,σ̂2

(1 − α/2), where σ̂2 is a consistent
estimator for σ2.

3. A third approach is based on a (1 − δ) confidence interval for the nuisance para-
meter σ2, I say, where for δ ∈ (0,α). We can define the test that rejects H0 if

Tn > supσ2∈I Φ
−1
0,σ2(1 − (α − δ)/2), and it is easy to verify that this test has level

α.

4. The fourth approach, which illustrates the main result of this paper, is an asymptotic

version of the third approach. Rather than holding δ fixed, we let δn → 0 as n → ∞
at an appropriate rate, and use supσ2∈In Φ

−1
0,σ2(1− (α− δn)/2) as the critical value for

Tn, where In is an (1− δn) confidence interval for σ2.

Although the test of the first approach has the correct size, (equal to the level α), this

approach has obvious drawbacks. The actual rejection probability (Type I error) can be

arbitrarily small, and for σ2 close to zero, this test has very low power compared to the

t-test.

The second approach is widely used in econometrics. However, this approach can pro-

duce misleading results in a number of cases. Obviously, the approach is not suited for a

2None of the four approaches should be viewed as a viable competitor to the t-test in this simple framework.
The simple setting is used for illustration only.
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problem where the nuisance parameters cannot be consistently estimated, as is the case in

the incidental parameter problem. Similarly, the asymptotic approximation can be poor if

the nuisance parameter are poorly estimated, which is the case for IV regressions with weak

instruments. Better alternatives to these problems include the parameter orthogonalization

of Lancaster (2000, 2002) and the tests of Kleibergen (2002) and Moreira (2003). These

solutions share the property that they achieve an exact or asymptotic non-dependence of

the nuisance parameter, which leads to similar tests (like the t-test in our example). The

second approach is also problematic if the asymptotic distribution poorly approximates the

finite sample distribution, however, this problem sometimes be avoided through bootstrap

methods, see Horowitz and Savin (2000). Hypotheses testing using a heteroskedasticity and

autocorrelation consistent (HAC) covariance matrix, in a time-series context, is a case where

the asymptotic distribution can be a poor approximation to the finite sample distribution,

and alternative tests that avoid the use of HAC covariance matrices can have better finite

sample properties, see Kiefer, Vogelsang, and Bunzel (2000) and Jansson (2002).

The second approach, can also be misleading when θ is located on the (relative) boundary

of Θ0, and this is the reason that this approach is not reliable for composite hypothesis

testing. For a discussion on how this can affect the reliability of bootstrap methods, see

Andrews (2000).

The third approach nests the two previous approaches, as they correspond to δ = 0%

and δ = 100%, respectively, although the second approach ignores the δ-term when deriving

the critical value of the test statistic. The idea behind the third approach is not new.

Dufour (1990) used the idea within the linear regression model with autocorrelated errors,

and applied a confidence interval for the autoregressive parameter to make inference about

the regression parameters. The idea can also be found in Berger and Boos (1994) who

constructed valid p-values using confidence sets for nuisance parameters, and in Cavanagh,

Elliott, and Stock (1995) who used a confidence interval for a local-to-unity parameter.

See also Dufour and Kiviet (1996, 1998) and Silvapulle (1996). In the context of model

discrimination, Loh (1985) applied the idea as an alternative to the test of Cox (1961, 1962).

Berger (1996) applied the confidence p-values of Berger and Boos (1994) to test that two

binomial coefficients (from different populations) are equal and concluded that this leads to

better power properties compared to several standard tests. The idea is closely related to

the projection method, where a confidence set for (µ,σ2) is projected onto the parameter

space for µ, see, e.g., Dufour and Taamouti (2001), and sequential testing in instrumental

variable regressions by Staiger and Stock (1997) and Stock and Yogo (2002).

It is the fourth approach that is successful in the context of composite hypothesis test-

ing. Asymptotically this approach emulates the second approach, without compromising the

size. Like the improved method for dealing with the incidental parameter problem, weak

5



instruments, and inference without the use of HAC estimators, this approach achieves a form

of similarity. Compared to the first approach, this test achieves better power by directing

its power towards the ‘relevant’ alternatives. In this example the relevant alternatives are

given by the pairs (µ,σ2) for which σ2 in a neighborhood of σ̂2, and µ 6= 0. So, the power
improvements are achieved in a similar way to that of Andrews (1998) who proposed directed

tests to test a simple null against a restricted alternative.

Currently, there is no theory for choosing δ, except that δ must be smaller than the

significance level, α, for it to be useful for testing. Dufour and Kiviet (1996, 1998) used

δ = 0.025 and δ = 0.05, Berger and Boos (1994) and Berger (1996) use δ = 0.001, and

Silvapulle (1996) use δ = 0.005. Our asymptotic results show that the best properties are

achieved if δn goes to zero at a certain rate, as n→∞, and a bound for this rate shed light
on how δ should be chosen for finite n.

2.2 The Basic Framework

We use the notation, R, to refer to a test of H0, where R ⊂ Ω is the rejection region that
defines the realization that leads to a rejection of H0.3 In order to evaluate the probability

of the event, R, we assume that R ∈ F , and we follow Horowitz (2001) and refer to Pθ(R)
as the rejection probability. Naturally, the objective for constructing a test of H0, is to

determine a rejection region, R, for which Pθ(R) is small for θ ∈ Θ0 and large for θ /∈ Θ0.
As the reader may recall, a test,R, is said to be similar if Pθ(R) is constant onΘ0. Similar

tests are easily constructed from pivots: e.g., the t-statistic in our example is a pivot and

R = {ω : |t(ω)| ≥ c} defines a similar test for any c ≥ 0. However, pivots that are suitable for
hypothesis testing need not exist, see, e.g., Bahadur and Savage (1956) and Dufour (1997),

and when this is the case it is common practice to use the LFC in the hypothesis testing,

which was the first approach in our example. This typically leads to a conservative test, in

the sense that the rejection probability (Type I error), for some θ ∈ Θ0, is strictly smaller
than the level of the test.

Without loss of generality we consider tests that are defined by some test statistic, T :

ω 7→ [0,∞), where large values of T favors the alternative hypothesis. So a test will typical
have the form: R = {ω : T (ω) > c} for some c ∈ R. In what follows, we let T and Tn,

n = 1, 2, . . . denote test statistics that are measurable mappings from (Ω,F) into (R,B),
where B is the Borel σ-algebra under the Euclidian topology. In our asymptotic analysis,
ω ∈ Ω can be thought of as a realization of an infinite sequence of random variables and Tn

can be thought of as a function of the first n coordinates of ω.

In this paper, we shall be less concerned with the problem of choosing a good test statistic.

3To simplify notation, we deviate from the more common notation where a test is represented by a pair,
(A,R), where A = Ω\R is the ‘acceptance’ region that defines the realizations for which H0 is not rejected.
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Rather, we take T as given and show how standard testing procedures can be improved in

the situation where T is non-pivotal. The main complication in composite hypothesis testing

is the lack of pivotal test statistics that are suitable for testing. Nevertheless, it will often be

desirable to employ a test statistic, T, that is ‘close’ to being pivotal. As we shall see in our

discussion of the RC, a partial pivoting of the RC’s test statistic leads to a test with better

properties.

2.3 Asymptotic Tests of Composite Hypotheses

We now study asymptotic tests of composite hypotheses. An asymptotic test is char-

acterized by a sequence of rejection region, Rn, n = 1, 2, . . . , and we let the sequence be

denoted by, {Rn} , and shall refer to {Rn} as an asymptotic test. The asymptotic size is
defined by α ≡ lim supn→∞ supθ∈Θ0

Pθ(Rn).
The boundary of the null hypothesis is particularly interesting for asymptotic tests of

composite hypotheses. See, e.g., Chernoff (1954) who derived the asymptotic properties of

likelihood ratio tests when the parameter is on the boundary. The boundary is denoted

by ∂Θ0 and is defined to be the intersection of the closure of Θ0 and the closure of its

compliment, {Θ0 ≡ {θ ∈ Θ : θ /∈ Θ0}, under the Euclidian topology.

Assumption 1 (i) For all θ0 ∈ Θ it holds that θ̂n
p→ θ0 and (ii) uniformly on Θ0 it holds

that θ̂n
p→ θ0 and Tn

d→ Fθ0 , where the cdf, Fθ0 , is continuous for θ0 ∈ ∂Θ0.4

Note that Fθ0 is only required to be continuous for θ0 ∈ ∂Θ0 (Tn must be properly

normalized in n). The motivation for this is that there will not be any asymptotic evidence

against the null, when θ0 ∈ Θ0\∂Θ0, since θ̂n p→ θ0. So in this case Fθ0 should be allowed to

degenerate (e.g., Tn
p→ 0).

For all θ ∈ Θ0 and any α ∈ (0, 1) we define the half-line Iθα = {a ∈ R : limu%a Fθ(u) ≥
1− α}, which can be interpreted as an asymptotic critical region for the test statistic. This
half-line will typically be closed but can be open if Fθ has discontinuities, which is the

reason that we choose to work with Iθα,n rather than a critical value, e.g., infa∈Iθα,n a. For
any D ⊂ Θ0 we define the half-line IDα ≡ Tθ∈D Iθα, (with the convention I∅α ≡ R) and we
define the ‘rejection region’,

RDα,n ≡ {ω ∈ Ω : Tn(ω) ∈ IDα }.

It follows directly that RD1
α,n ⊂ RD2

α,n for D2 ⊂ D1 ⊂ Θ0, since ID1
α ⊂ ID2

α , and we note that

the LFC-test (with asymptotic level α) is given by {RΘ0
α,n}.

4The requirements are: For all ² > 0 there exists an N², such that |Pθ(Tn ≤ aθ) − Fθ(aθ)| ≤ ² for all
n ≥ N² and for all θ ∈ Θ0, where aθ is any continuity point of Fθ. Similarly for all ², δ > 0 there exists an
N²,δ, such that Pθ(|θ̂n − θ| > ²) < δ for all n ≥ N²,δ and for all θ ∈ Θ0. The uniform convergence requires
that N² and N²,δ do not depend on θ.
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Lemma 1 Given Assumption 1 it holds that lim supn→∞ supθ∈Θ0
Pθ(RΘ0

α,n) ≤ α and limn→∞

Pθ0(R{θ0}α,n ) = α for θ0 ∈ ∂Θ0.

If Fθ is continuous and its inverse is well-defined, we have that RΘ0
α,n ≡ {ω ∈ Ω : Tn(ω) ≥

c}, where c ≡ supθ∈Θ0
F−1θ (1 − α) is the critical value. Note that R{θ0}

α,n is not a (feasible)

test, because it depends on the unknown parameter, θ0.

We now show that a simple modification of the LFC-test leads to a test with better

asymptotic properties than the LFC-test.

Lemma 2 For an arbitrary ² > 0 we define C² ≡ N²(θ̂n) ∩Θ0, which is a neighborhood of
θ̂n in Θ0. Given Assumption 1 it holds that: (i)RΘ0

α,n ⊂ RC²
α,n for all n and all θ ∈ Θ; (ii)

lim supn→∞ supθ∈Θ0
Pθ(RC²

α,n) ≤ α, for all θ ∈ Θ0.

The lemma shows that a very simple modification of the LFC approach can yield a

test that has better (or at least as good) power properties than the LFC-test (i), without

compromising the asymptotic size (ii). However, the asymptotic result is not informative

about how large C² should be (define by ²). Clearly, the smaller is the volume of C² the

larger is RC²α,n and the more powerful is the test. However, if C² is chosen too small it may
(for a finite n) only contain θ0 with a small probability, and the size of the test can exceed

α to an extent that is unacceptable. Although this problem vanishes as n increases, we need

some guidance on how to choose C². If Pθ0({Cn) is easy to evaluate (or bound from above),

then for some δn ≥ supθ∈Θ0
Pθ({Cn), one can use the rejection region, RC²α−δn,n, as in the

finite sample tests, (the third approach in our example).5

Assumption 2 Let {Cn} be a sequence of subsets of Θ0 that satisfies (i) Pθ(θ ∈ Cn)→ 1 as

n → ∞ uniformly in θ on Θ0. (ii) For θ0 ∈ Θ0 and ² > 0, it holds that Pθ0({θ0 : θ0 /∈
N²(θ0)} ∩Cn 6= ∅)→ 0 as n→∞.

Assumption 2 (i) is crucial for {RCnα,n} to have correct asymptotic level, whereas (ii) is
necessary (but not sufficient) for the test not to be conservative. For {RCnα,n} to be a feasible
test we must specify a sequence {Cn} that satisfies Assumption 2, without assuming that θ0
is known. This will be addressed in the next subsection.

Assumption 3 For any α ∈ (0, 1) the correspondence θ 7→ {u : Fθ(u) ≤ 1 − α} is upper
semicontinuous on Θ0.

Assumption 3 requires a weak form of continuity of Fθ, see Debreu (1959), and the

assumption is satisfied in our leading example of simultaneous testing of multiple linear

5Naturally, for RC
α−δn,n to be an exact α-level test, knowledge about the finite sample distribution of Tn,

beyond the asymptotic distribution, Fθ0 , is needed.
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inequalities. An alternatively formulation of Assumption 3 is that lim²→0 infθ∈N²(θ0) Fθ(u) =

Fθ0(u) for θ0 ∈ ∂Θ0, such that a test that is based on a shrinking neighborhood of θ0 ∈ ∂Θ0
is not conservative. This is not guaranteed to hold under Assumption 2 alone.

We are now ready to formulate our main result.

Theorem 3 Suppose that Assumption 1 holds and let {Cn} satisfy Assumption 2. Then (i)
RΘ0
α,n ⊂ RCnα,n for all n and all θ ∈ Θ; (ii) lim supn→∞ supθ∈Θ0

Pθ(RCnα,n) ≤ α for all θ ∈ Θ0;
and (iii) Under Assumption 3, limn→∞ Pθ(RCnα,n) = α for all θ ∈ ∂Θ0.

Theorem 3 (i) shows that the shrinking confidence set test, RCnα,n, is more powerful than
(or as powerful as) the LFC-test, and (ii) shows that this test has the correct asymptotic

size. Finally, (iii) states that the test will have an asymptotic rejection probability that

exactly equals the level (and size) of the test if θ0 ∈ ∂Θ0 and Assumption 3 holds. This
result holds for for any test statistic, Tn, that satisfies our regularity conditions.

2.4 Regular Testing Problems

We now turn to a framework that is general enough to include most standard problems.

The advantage of this framework is that we can use the regularity conditions and make

specific suggestions on how {Cn} should be constructed.

Assumption 4 The estimator has the form θ̂n − θ =Mn(θ)n
−1Pn

t=1 st(θ), and uniformly

in θ it holds that, Mn(θ)
p→ Φ for some full rank matrix Φ and that {st(θ)} satisfies

n−1/2
[nu]X
t=1

st(θ)
w→ Σ1/2ss B(u), where Σss ≡ lim

n→∞ var(n
−1/2

nX
t=1

st(θ))

is positive definite and B(u) is a standard k-dimensional Brownian motion.

The uniform convergence is required in order to control the asymptotic size of tests based

on shrinking confidence sets. West (1996) has shown that many common estimators have the

form that is required by Assumption 4, including the OLS, ML, IV, and GMM estimators

under standard regularity conditions. The asymptotic covariance matrix of θ̂n is given by

Σθθ ≡ ΦΣssΦ0.
Under Assumption 4, by the law of the iterated logarithm,

sup
λ
lim
n→∞ sup

1≤t≤n

¯̄̄̄
¯

Pt
τ=1 λ

0sτ (θ)p
λ0Σssλn 2 log logn

¯̄̄̄
¯ = 1, (1)

almost surely, which suggests a bound for the rate at which Cn can shrink to {θ0}.

Assumption 5 Consider a sequence of sets, Cn ⊂ Θ0, n = 1, 2, . . . , and define dn ≡ inf{d ∈
R : Cn ⊂ Nd(θ̂n)}. It holds that (i) limn→∞ dn = 0 almost surely and (ii) Pθ(Bgn ⊂ Cn)→
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1 as n→∞ uniformly in θ, where

Bgn ≡
n
y ∈ Θ0 : n(y − θ̂n)0Σ−1θθ (y − θ̂n) ≤ gn

o
, (2)

where gn = o(n) and satisfies gn →∞ as n→∞.

The assumption characterizes a class of sequences that shrink to a set will zero volume

at a rate that is slow enough to capture Bn, and hence θ0. The advantage of this assumption

is that it gives us some flexibility in our choice of {Cn}, which can be useful whenever it is
difficult to determine Bn, as defined in (2). For example, if Σθθ is unknown and difficult to

estimate. Given (1) it is tempting to set gn = 2 log log(n), but a slower increasing sequence

will suffice, as (1) yields a stronger result that is required for Assumption 2 to hold (the

sup1≤t≤n in (1) is not needed as only θ̂n is required to be close to θ0).

Lemma 4 Let {θ̂n} satisfy Assumption 4 and let {Cn} satisfy Assumption 5. Then As-
sumption 2 holds.

It should be observed that Assumption 2 will hold under weaker assumptions than those of

Assumptions 4 and 5. It will suffice that n1/2(θ̂n−θ0) converges uniformly in distribution, but
Assumption 4 motivates a particular rate at which Cn could shrink to {θ0}, and prescribed
by (1). Further, these results can also be derived in situations where the rate of convergence

is different from
√
n and where the limit distribution is non-Gaussian. Such cases would

require a different construction of Cn and will not be explored in this paper.

It is easy to construct a data dependent sequence of sets, Cn, that satisfies Assumption

5, such as the sets in the following example.

Example 1 Suppose that {δn} is such that (i) limn→∞ δn = 0; and (ii) there exists an

N ∈ N, such that δn ≥
p
gn/n for all n ≥ N. Then C1,n = {y ∈ Θ0 : (y − θ̂n)0Σ̂−1θθ

(y− θ̂n) ≤ δ2n}, satisfies Assumption 5 provided that Σ̂θθ p→ Σθθ uniformly in θ; and so does

C2,n = {y ∈ Θ0 : sup1≤i≤p |yi − θ̂i,n|/σ̂i ≤ δn}, provided that σ̂2i p→ σ2i , i = 1, . . . , p, where

θ̂i,n is the ith element of θ̂n, and where σ2i is the ith diagonal element of Σθθ.

Sequences, {δn} , that satisfy conditions (i) and (ii) include {δn = κ0 + κ1n
γ−1/2 :

γ ∈ (0, 1/2) and κ1 > 0}, e.g., δn = n−1/4, and {δn = κ0+κ1(logq(n)/n)1/2 : κ1 > 0, q ∈ N},
e.g., δ2n = 2 log(log(n))/n.

2.5 Similarity and Unbiased Tests

Next, we introduce a similarity condition that is relevant for asymptotic tests of composite

hypotheses. The equivalent condition for finite sample tests is well known, see, e.g., Cox and

Hinkley (1974, p. 150) and Gourieroux and Monfort (1995, chapter 16). The conditions is

expressed in terms of the boundary of the null hypothesis, ∂Θ0.
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Definition 1 (Similar on the boundary) An asymptotic test, {Rn}, is asymptotically
similar on the boundary of the null hypothesis if limn→∞ Pθ (Rn) = α for all θ ∈ ∂Θ0,

where α is the asymptotic size of {Rn}.

Definition 2 (Unbiased) An asymptotic test, {Rn} , is asymptotically unbiased if

lim infn→∞ Pθn (Rn) ≥ α for any sequence of alternatives, θn /∈ Θ0, where α is the as-

ymptotic size of {Rn} .

Next, we consider local alternatives (Pittman drifts) that have the following form. For

θ0 ∈ ∂Θ0 and a y ∈ Rp that is such that (θ0, θ0 + y] ⊂ Θa = Θ\Θ0, the local alternative
(local to θ0 in the direction y) is given by θ0 + n−1/2²y for ² > 0.

Assumption 6 For any local alternative, θ0 + n−1/2²y, the rejection probability ρ(²) ≡
limn→∞ Pθ0+n−1/2²y(Rn) is continuous in ², for ² ≥ 0.

Assumption 6 typically holds under Assumption 4 for test statistics that are continuous

in θ̂n.

Theorem 5 Let Assumption 6 hold. A necessary condition for {Rn} to be asymptotically
unbiased is that {Rn} is asymptotically similar on the boundary of Θ0.

The existence of an unbiased test is not guaranteed, even if a sequence, {Cn} , that
satisfies our assumptions is available. However, the resulting test will dominate the LFC-

test as formulated in the following corollary.

Corollary 6 Let Assumptions 1 and 3 hold and suppose that the LFC-test is non-similar on

∂Θ0. If there exists a sequence, {Cn}, that satisfies Assumption 2 then the LFC-test, RΘ0
α,n,

is asymptotically inadmissible.

Note that the corollary does not claim that {RCn
α,n} is unbiased or admissible, and in

fact {RCnα,n} need not have any of these properties without additional assumptions. In fact,
an admissible test in the class of tests, {RCn

α,n}, that satisfies our assumptions is unlikely to
exist, as a Cn that is constructed using a slower rate of gn (e.g. log(gn)) will have unit power

against a larger class of local alternatives, without compromising the asymptotic size.

2.6 p-values

Given a realization of the test statistic, Tn(ω) = τ , we define Dn,τ ≡ {ω0 : Tn(ω0) > τ}
and the probability of this event is given by p{θ0}n (τ) ≡ Pθ0(Dn,τ ), which we may refer to
as the ‘true’ p-value. The conventional p-value is defined by pΘ0

n (τ) ≡ supθ∈Θ0
Pθ(Dn,τ ) and

is closely related to the LFC-test, as the rejection region, Rn = {ω : pΘ0
n (τ) ≤ α}, defines

the LFC-test with asymptotic level α. Our testing procedure also yields a p-value, which is

given by pCnn (τ) ≡ supθ∈Cn Pθ(Dn,τ ).
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Corollary 7 Let Assumptions 1 and 2 hold. (i) The p-values, pΘ0
n (τ) and p

Cn
n (τ), are

asymptotically valid, and (ii) if, in addition, Assumption 3 holds, then pCnn (τ)
p→ p

{θ0}
n (τ)

for θ0 ∈ ∂Θ0.

So the p-value of the new testing procedure possesses a consistency for the true p-value,

which is not the case for the conventional p-value in general.

2.7 Simultaneous Testing of Multiple Linear Inequalities

Consider a null hypothesis that is given by linear inequalities, in which case Θ0 is a

convex cone. This problem has been analyzed Perlman (1969) in a general framework, and

by Judge and Yancey (1986) and Wolak (1987) in the context of the linear regression models.

A related testing problem is that in Gouriéroux, Holly, and Monfort (1982) and Andrews

(1998), who considers the case with a simple null hypothesis against a restricted alternative.

Goldberger (1992) compares of the tests of Wolak (1987) and Gouriéroux, Holly, and Monfort

(1982), and provides valuable insight to the power properties of these tests through graphical

illustrations of the tests’ rejection regions.

Suppose that n1/2(X̄n− θ0) d→ Nm(0,Σ), and consider the hypothesis Rθ− r ≤ 0, where
R is a full rankm×m matrix and r is am×1 vector. Thus Θ0 = {θ : Rθ−r ≤ 0} in this case.
Wolak (1987) proposed the quadratic test statistic, Tn = minθ∈Θ0 n(θ − X̄n)0Σ−1(θ − X̄n),
for testing H0. It is easy to verify that the point least favorably to the alternative is given

by θLFC = R−1r, which is the unique value of θ for which all inequalities are binding, see

Wolak (1987) and Robertson, Wright, and Dykstra (1988, pp. 68—69). So the asymptotic

distribution of Tn is bounded by the distribution, FθLFC , which can be shown to be a mixture

of χ2 distributions,
Pm
i=0 ωiχ

2
(i), where

Pm
i=0 ωi = 1, and ωi, i = 0, . . . ,m are positive

constants that depend on R and Σ, see Wolak (1987). It is well-known, that the LFC-test

is conservative if any of the inequalities are non-binding (θ0 6= θLFC), see Wolak (1989b,

p. 220). In fact, the discrepancy between Fθ0 and FθLFC increases with the number of

non-binding inequalities, where Fθ0 is the asymptotic distribution of Tn and FθLFC is that

employed by the LFC-test. The reason is that only the binding inequalities matter for the

asymptotic distribution, Fθ0 . Since Assumption 3 is satisfied in this framework, the LFC-test

is inadmissible and will be inferior to the test based on shrinking confidence sets.

One of the conclusions of this paper is that the LFC approach is not necessary in order

to construct asymptotically exact tests.6 In fact, the approach of this paper yields tests

that will dominate the corresponding LFC-tests in terms of power. The reason that the

LFC approach can be improved (without compromising the asymptotic size) is that there

6The literature appear to suggest otherwise, e.g., Wolak (1989a, p. 10) writes: “A least favorable value of
θ ∈ Θ0 must be found to construct an asymptotically exact size test of the inequality constraints” [formulated
in our notation].
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is sufficient information to determine exactly which inequalities that are non-binding, (as

n → ∞). A second advantage of the new testing procedure is that it produces unbiased

tests, because they will be asymptotically similar on the boundary of Θ0.

2.8 Simulation Experiment

To quantify the potential gains from the new testing procedure we consider a simple

simulation experiment, where we have generated pseudo random numbers, n1/2(X̄n − θ) ∼
Nm(0, I), for various choices of θ. We consider the null hypothesis, H0 : θ ≤ 0, and cases

where the null hypothesis is true are labelled by (type I error) whereas cases where θ · 0

are labeled by (power). We evaluate the actual rejection probabilities in both cases through

simulations.

In the study of type I error, we let the [ρm] first coordinates of θ be θi = 0, (the binding

inequalities) and the remaining m − [ρm] coordinates be θi = −1
4 < 0 (the non-binding

inequalities), where ρ ∈ (0, 1]. So θ is consistent with the hypothesis H0 : θ ≤ 0. The power
study is identical to that of the type I error, with the modification that θ1 = 1

4 , such that

the first inequality is violated and the null hypothesis is false in these simulations.

We compare two tests that are based the test statistic of Wolak (1987), which simplifies

to Tn = n
Pm

i=1

¡
X̄+
i,n

¢2
due to the simple (and known) covariance structure. The first test

is based on the new testing procedure, which invokes the ‘confidence’ set Cn = {y ∈ Rm :

yi ∈ [θ̂i,n − cn, θ̂i,n + cn], i = 1, . . . ,m}, where θ̂n ≡ X̄+
n and cn =

p
(2 log logn)/n, for

n = 1, 2, . . . . Note that {Cn} satisfies Assumption 5. The other test is the LFC-test and the
tests are labelled by “log2” and “LFC”, respectively.

Tables 1 and 2 report the results for all possible combinations of m = 10, 40, 100 (the

number of inequalities); ρ = 0.1, 0.2, 0.5, 0.8, 0.9, or 1.0 (the ratio of binding inequalities);

and for n = 40, 100, 500, and ‘∞’ (the sample size, ‘∞’ corresponds to the results for the
largest value of n allowed by the software (n > 10300)).7 Table 1 contains the results at the

5% level and Table 2 reports the results at the 10% level. As can be seen, the distortions

from non-binding inequalities can be enormous. When the null is true and less than 20%

(ρ = 0.2) of the inequalities are binding, the LFC-test has a rejection probability that is

close to zero, and this hurts the LFC-test substantially in terms of power. For example

for (ρ, n,m) = (0.1, 200, 40), the log2-test is quite powerful against this alternative, whereas

LFC test hardly has any power. The estimated rejection probabilities are 69.2% and 2.1%,

respectively, for the tests at the 5% level. An extreme case is (ρ, n,m) = (0.1, 500, 100)

where the log2-test almost has unit power whereas the LFC-test has power close to zero.

It can be seen that the distortion of the LFC-test increases with the dimensionality of the

7 In each simulation, we generate one draw from the multivariate standard Gaussian distribution, which
is scaled by n−1/2 and recentered about θ, to yield a draw of X̄n.
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null hypothesis, m, and as can be expected, the distortion is reduced as ρ get closer to

one. However, even for ρ = 0.9 we note that the LFC-test is clearly inferior to the log2-

test. For example the estimated rejection probabilities for the 5%-level tests are 31.6%

and 18.3%, respectively, for the configuration (ρ, n,m) = (0.9, 200, 100). The case ρ = 1

corresponds to the situation where the true parameter is the point least favorably to the

alternative. In this situation, one might be concerned about the finite sample properties

of the log2-test. However, as can be seen from the tables the size distortion of the log2-

test is small and vanishes with the sample size, as predicted by the theory. For m = 10

the rejection probabilities of the log2-test never exceeds the intended level by more than

0.5%. Not surprisingly, the log2-test becomes more liberal as the number of inequalities

increases (for the case ρ = 1), and it may be desirable to modify cn to depend on m, e.g.,

cn,m =
p
(2 log(log(mn))/n to reduce the distortion, however, such aspects are beyond the

scope of this paper.

3 The Reality Check for Data Snooping

White (2000) proposed a test for superior predictive ability, which amount to testing

the hypothesis that a benchmark model is not dominated by a set of alternative models in

terms of predictive ability. The framework of White considers m + 1 competing models,

where the benchmark model is indexed by k = 0 and the alternative models are indexed by

k = 1, . . . ,m. Model k produces a sequence of forecasts, Ŷk,1, . . . , Ŷk,n of some sequence of

random objects, Y1, . . . , Yn, and the forecasts are evaluated with an additive loss function

L(Yt, Ŷk,t), from which the relative performance variables

fk,t = L(Yt, Ŷ0,t)− L(Yt, Ŷk,t), k = 1, . . . ,m, t = 1, . . . , n,

are defined. White (2000) makes assumptions that ensure that n1/2(f̄n − µ) d→ Nm(0,Ω),

where f̄n = n−1
Pn
t=1(f1,t, . . . , fm,t)

0, µ = (µ1, . . . , µm)
0, and µk = E(fk,t), k = 1, . . . ,m,

and where Ω is the asymptotic covariance matrix.

A positive µk corresponds to model k having a better predictive ability than model 0, so

the null hypothesis is given by H0 : µ ≤ 0. An equivalent formulation of the null hypothesis
is maxk=1,...,m µk ≤ 0, which motivates the test statistic, T rcn ≡ maxk=1,...,m n1/2f̄k,n, that is
employed by the RC. The asymptotic distribution of T rcn depends on the nuisance parameters

µ and Ω.White (2000) proposes to use the stationary bootstrap to handle the dependence on

Ω,8 whereas a bound is applied to control for the dependence on µ, (approach 1 in the example

of Section 2). So, in this respect, the RC is a LFC-test and the bound is given from µ = 0.

8Based on theoretical results of Lahiri (1999) there is reason to believe that other bootstrap techniques
may preform better in this context. For an overview on bootstrap techniques for dependent time series, see
Härdle, Horowitz, and Kreiss (2002).
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This implies that the RC asymptotically derives critical values from maxk=1,...,m Zk, where

Z is a Gaussian m-dimensional vector with mean zero and variance Ω. It is easily verified

that the true asymptotic distribution is given by the distribution of Zmax ≡ maxj=1,...,m0 Zj ,

where (Z1, . . . , Zm0
)0 ∼ Nm0

(0,Σ), m0 is the number of models with µk = 0, and Σ is the

m0 ×m0 submatrix of Ω that contains the (i, j)’th element of Ω if µi = µj = 0. All models

are worse than the benchmark when m0 = 0 and in this case T rcn
p→ −∞, whereas T rcn p→∞

under the alternative (maxk µk > 0). The latter confirms that the asymptotic power of the

RC is one.

3.1 Some Unfortunate Properties of the RC

As shown in our theoretical analysis, it is only the binding constraints (µk = 0) that

matter for the asymptotic distribution when applying the test statistic of Wolak (1987).

This is also the case for the test statistic, T rcn , which implies that the RC is conservative

whenever m0 < m. This is highlighted by the following example, where m = 2 and m0 = 1.

Example 2 Consider the case with a benchmark forecast and two alternative forecasts, m =

2. Suppose that f(t) is iid N2(µ,Ω), where µ = (0, γ)0, γ < 0 and Ω is a 2×2 diagonal matrix,
Ω = diag(1,ω2). Thus, the first alternative forecast is as good as the benchmark, whereas the

other is worse. The exact distribution of f̄n is given by n1/2f̄n ∼ N2
¡
n1/2µ,Ω

¢
, and since

the two relative performance variables, f1(t) and f2(t), are independent, the distribution of

T rcn ≡ n1/2maxk=1,2 f̄k,n is given by

F0(x) = P (T
rc
n ≤ x) = Φ(x)Φ(x− n

1/2γ

ω
),

where Φ denotes the cdf of the standard normal.

If γ is small (very negative) and ω2 = |γ|, then −n1/2γ is large and Φ ¡(x− n1/2γ)/ω¢ ≈ 1
for positive values of x. So the critical value will almost entirely be determined from the

distribution of n1/2f̄1,n, whereas n1/2f̄2,n is almost irrelevant for the distribution of T rcn .

Asymptotically, the RC derives critical values frommaxk=1,2 Zk, where (Z1, Z2)0 ∼ N2(0,Ω)
to derive critical values, and the distribution of maxk=1,2 Zk is given by

FLFC(x) = P (Zmax ≤ x) = Φ(x)Φ(x
ω
).

Since ω is large, the upper tail of FLFC(x) is dominated by Φ( xω ), which is the distribution

of Z2, thus the critical value will almost entirely be determined from the distribution of Z2.

The example illustrates the sensitivity of the RC to irrelevant alternative models, a role

played by f̄2,n in this case. Although the probability that f̄2,n > f̄1,n is negligible, the RC
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allows f̄2,n−γ to define the critical values. Another implication is that a poor model reduce
the power of the RC.

The example also confirms the result of Theorem 5, that the RC is a biased test. In

a situation where some forecasts are better than the benchmark whereas other are worse,

there will exists local alternatives µn, with both positive and negative elements, for which

limn→∞ Pµn(RC rejects H0) < α, where α = limn→∞ Pµ=0(RC rejects H0).

A situation where a poor model can severely distort the RC is when the (relative) per-

formance is bounded from above, but not necessarily from below. For example if the models

are compared using the mean squared prediction error, L(Y, Ŷ ) = (Y − Ŷ )2. The variable
of interest is here denoted by Y and Ŷ represents a prediction of Y. In this case, the ex-

pected (relative) performance of model k is given by µk ≡ E(Y − Ŷ0)2 − E(Y − Ŷk)2, and
the sample equivalent is f̄k,n ≡ n−1

Pn
t=1[(Y (t) − Ŷ0(t))2 − (Y (t) − Ŷk(t))2]. Given a real-

ization of (Y (1), . . . , Y (n)) and benchmark forecasts, (Ŷ0(1), . . . , Ŷ0(n)), the relative sample

performance, f̄k,n, takes values in (−∞, c], where c = n−1
Pn
t=1(Y (t)− Ŷ0(t))2. For a test to

have any power at all, its critical value (for the test statistic T rcn ) must be less than n
1/2c.

It is therefore reasonable to require that a critical value lies in the interval (−∞, n1/2c].
However, a critical value of the RC can be greater than n1/2c, because it is derived from a

vector of random variables with the same distribution as n1/2
¡
f̄n − µ

¢
. Since f̄k,n − µk can

have a substantial amount of its probability mass to the right of c if µk < 0, this can result

in a critical value that is larger than n1/2c. Naturally, this is a small sample phenomenon,

because as n→∞, the distribution of f̄k,n − µk will be concentrated about zero.
We can summarize the unfortunate properties of the RC as follows:

1. The RC is asymptotically biased.

2. The RC is sensitive to the inclusion of poor models that can create an artificial non-

rejection of a false null hypothesis. This applies to a situation where it is possible to

add forecasting models that are worse than the benchmark model.

3. If forecast are evaluated by a loss function that is bounded from below, then the critical

values of the RC can be so large that it requires an unobtainable performance in order

to reject the null hypothesis. In this case the RC may have no power, although the

problem vanishes as n→∞.

4. The p-values of the RC are typically inflated.

3.2 Studentization of the Test Statistic

We propose to use a different test statistic than that of the RC. The usual way to combine

multiple tests involves a standardization of the individual test statistic or a transformation
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to p-values. Several ways of combining (independent) p-values are discussed in Folks (1984),

one being the Tippett method, which is based on the smallest p-value, see Tippett (1931).

Combining p-values using resampling techniques is discussed in Westfall and Young (1993),

and Dufour and Khalaf (2002) analyze a problem where dependent p-values are combined

to construct exact tests for contemporaneous correlation in seemingly unrelated regressions.

In the light of the literature, the test statistic, T rcn ≡ n1/2maxk=1,...,m f̄k,n, is non-

standard, and we shall take a different approach, which is similar to using the smallest

p-value. Specifically we suggest to use tests statistic, T smn ≡ maxk=1,...,m
n1/2f̄k,n

ω̂k
, where

ω̂2k is a consistent estimate of var(n
1/2f̄k,n).

9 This test statistic takes supremum over the m

standardize statistics, (the t-statistics for relative forecast performance), whereas the test

statistic of the RC takes supremum over non-standardized statistics.

It is well known that bootstrapping (asymptotically) pivotal quantities is better than

bootstrapping non-pivotal quantities, see, e.g., Babu and Singh (1983) and Singh and Babu

(1990). We are considering a situation where a ‘good’ estimate of Ω is unavailable, so it is not

possible to combine the statistics, f̄1,n, . . . , f̄m,n into a useful statistic that is asymptotically

pivotal. Nevertheless, there may benefits from a partial pivoting, and this is what the

substitution, T smn is place of T rcn , amounts to. The standardization removes part of the

nuisance dependence on Ω, in the sense that the asymptotic distribution of T smn depends on

(µ, %) where % is the asymptotic correlation matrix of n1/2f̄n. So the asymptotic distribution

of T smn has fewer nuisance parameters than that of T rcn , which depends on (µ,Ω).

As will be evident from the empirical application, some of the RC’s problems are allevi-

ated by using T rcn instead of T rcn .

3.3 An Empirical Illustration

We illustrate the problems of the RC by revisiting the empirical application of White

(2000). The question of interest is whether a linear regression models, which is based on

technical indicators, is capable of predicting daily returns of the S&P 500 index better than

the sample average of historical returns. The comparison of models is made with the mean

squared prediction error criterion and we analyze two sample periods. Our first sample is

identical to the one analyzed by White (2000), which spans the period from March 29, 1988

through May 31, 1994, and the second is an extended sample, which spans the period, March

29, 1988 through November 15, 2000.

We denote the one-day ahead return of the S&P 500 index by Y (t), t = −R + 1, . . . , 0,
1, . . . , n, where R = 803 is the number of observations used for estimation before the first

prediction is made. This leaves us with n = 758 daily observation for the forecast compar-

9The supscript, ‘sm’, refers to standardized maximum. In our empirical analysis we estimate ω̂2k with the
bootstrap, k = 1, . . . ,m.
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ison. The competing linear models are constructed by taking all possible combinations of

3 out of the 29 technical indicators as regressors, in addition to a constant. This leads to

m = 3, 654 models.10 The 29 technical indicators are the following: lagged returns (Z1(t)),

momentum measures (Z2(t), . . . , Z11(t)), local trends (Z12(t), . . . , Z15(t)), relative strength

indices (Z16(t), . . . , Z19(t)), and moving average oscillators (Z20(t), . . . , Z29(t)). The indica-

tors, Zi(t), i = 1, . . . , 29, are observable at time t− 1, see White (2000) for more details on
the technical indicators.

The forecasts are given by

Ŷk(t+ 1) = β̂
0
k,tXk(t+ 1), t = 0, . . . , n− 1, k = 1, . . . ,m,

where Xk(t) = (Zi1k(t), Zi2k(t), Zi3k(t), 1)
0, and β̂k,t is the least squares estimator from

regressing Y on Xk, using past observations up to time t.

The benchmark model corresponds to a regression model that only includes a constant.

This model is nested in any of the competing models and under the null hypothesis it holds

that βk = 0, k = 1, . . . ,m. So in this case the null hypothesis µ ≤ 0 is equivalent to the

simple hypothesis, µ = 0, and the RC does not suffer from non-binding inequalities. However

to illustrate how the RC is affected by a poor model we consider three additional model-sets.

The empirical results are presented in Table 3,11 where M† and M∗ refer to a ‘poor’

and a ‘good’ model, respectively. These were constructed as follows. The forecast errors of

the benchmark model are given by ε0,t = Yt − Ŷ0,t, t = 1, . . . , n, and the sequence of ‘poor’
forecasts is defined by Ŷp,t = Yt − (12 + 2υt)ε0,t and the sequence of ‘good’ forecasts is given
Ŷg,t = Yt − (0.9 + 0.15ηt)ε0,t, where υt, ηt ∼ iiduniform(0, 1), t = 1, . . . , n. So the forecast
errors of M† are, on average, 150% larger than those of the benchmark, whereas the average

sized ofM∗’s forecast errors are 97.5% times those of the benchmark. In Table 3, the original

set of forecasting model is denoted by Morg and the set that also includes the poor model

is denoted byMorg +M
†. In our analysis of the power properties we consider the original

set plus the ‘good’ forecast, which is denoted byMorg +M
∗, and the set that includes both

the ‘poor’ and the ‘good’ forecast, which is denoted by,Morg +M
† +M∗.

The short sample with the original set of forecasting models,Morg, corresponds to that

investigated by White (2000), and we arrive at the same conclusion as White and find no

evidence against the null hypothesis in either of the two samples.12 There is no difference

10 Some of these models are identical, due to colinearity of the 29 technical indicators.
11The analysis was made using Ox, version 3.00, see Doornik (1999). For the sake of comparability we

employ the same bootstrap techniques as in White (2000), and p-values are derived using the stationary
bootstrap, with a dependence-parameter q = .5 and B = 1, 000 bootstrap resamples. The resamples are used
to estimate both ω̂2k and the distribution of the test statistic.
12There are unimportant differences between the results in Table 3 and those reported by White (2000).

These can be explained by numerical issues, the random number generator used for the bootstrap implemen-
tation, and different sources of data.
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between the log2-test and the LFC-test in this case, as can be expected since µ equals zero

if the null hypothesis is true. However, the second set of forecasting models, Morg +M
†,

shows that the p-value of the RC is severely distorted by the inclusion of a single poor model.

The p-value of the original RC jumps from 27.3% to 59.4% (48.0% to 74.7% in the extended

sample), whereas the log2-test is unaffected. Since the analysis of the original set of models,

led to a non-rejection of the null hypothesis, the inflated p-value of the RC does not affect

the conclusion of the test in this case. However, in our analysis of the power we see that the

RC is blinded by the inclusion of the poor model. In the set of models that does not include

the ‘poor’ forecast, the null hypothesis is clearly rejected by the RC, as the p-value is 0.0%.

So the RC is capable of detecting the ‘good’ model in this case. When the set of models also

includes the poor forecast the p-value jumps to 35.9%, and the RC is no longer capable of

detecting the ‘good’ forecasting model! Even in the extended sample the RC does not get

close to rejecting the false null hypothesis. The log2-test is unaffected by the inclusion of

the poor model, which shows the strength of this testing procedure.

The lower half of Table 3, presents the result for the second test statistic, T smn , which

performs much better than the RC. The standardization of the individual performance sta-

tistics reduces the influence of the ‘poor’ model, and this test leads to the correct conclusion

in both cases — regardless of the way the nuisance parameter, µ, is treated (log2 or LFC).

The LFC approach inflates the p-value by 1.0% in the short sample and by 0.2% in the

extended sample, when the null hypothesis is (presumed to be) true, and there are no no-

ticeable differences in the results with the sets of forecasting models that address the power

of the tests.

Although the partial pivoting of the test statistic led to the correct conclusion in this

applications, it does not control the (nuisance) dependence on µ. In general, there will be

additional gains from using the methods of shrinking confidence sets, such as the log2-

approach. This is clear from our simulation study, where µ was the only nuisance parameter

(θ in the previous notation), and where the test statistic was in a standardized form. Our

recommendation for the testing problem considered by White (2000), is to use the (partially)

standardized test statistic and the methods of shrinking confidence sets for hypothesis testing.

4 Summary and Concluding Remarks

In this paper, we considered asymptotic tests of composite hypotheses and proposed a

testing procedure that avoids the use of conservative bounds as n → ∞. The new testing
procedure is superior to standard tests that are based on the least favorable configuration,

because it leads to asymptotically unbiased tests that are more powerful than LFC-tests.

The new testing procedure applies to the simultaneous testing of multiple inequalities,

and is particularly useful when the number of inequalities is large. Through simulations, we
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studied a particular alternative to the LFC-test, the log2-test, and showed that this leads to

a substantial gain in power. In some cases the difference in power was close to 99%.

We introduced an asymptotic similarity condition and showed that it is a necessary

condition for a test to be unbiased. In the problem of testing multiple inequalities we

showed than it is simple to derive a test that satisfies the similarity condition, and that this

test will dominate the corresponding LFC-test.

Testing for superior predictive ability is a test of a composite hypothesis and the new

testing procedure will dominate tests that are based on the LFC, such as the reality check

of White (2000). In fact, we concluded that the RC does not satisfy a relevant similarity

condition and showed that this led to several unfortunate properties. The RC is a biased

test and the RC is sensitive to the inclusion of irrelevant alternatives, in the sense that

the inclusion of a poor model leads to loss of power. The p-value of the RC is typically

inflated and poor models can cause an ‘artificial’ non-rejection of a false null hypothesis.

This adds a high degree of subjectivity to hypotheses testing when the RC is used, because

it is possible to ‘avoid’ a rejection of the null hypothesis by including poor models. One

important exception, where the RC need not be affected by these problems, is when the

null hypothesis implies that none of the competing models are worse than the benchmark.

In this case the null hypothesis reduces to a simple hypothesis, which eliminates the mean

parameter, µ, as a nuisance parameter.

The conclusion is that the RC should not be applied to compare forecasting models

if there is reason to believe that some of the models could be worse than the benchmark

forecast. Given these results, it might be appropriate to revisit the empirical studies that

applied the RC. The reason being that a failure to reject the null hypothesis may have been

caused by poor forecasting models in the set of competing forecasts. The testing procedure

of composite hypotheses, which was introduced in this paper, can greatly improve the power

properties, however a partial pivoting of the test statistic is also very advantageous, as can

be seen from our empirical application.

The new testing procedure is applicable to several other econometric problem, besides

that of comparing forecasting models. When testing inequality constraints, the largest gains

in power can be expected when the number of non-binding inequalities is large. The proce-

dure may be particularly useful when testing a null hypothesis that is defined by a continuum

of inequalities. This is the case when testing for first or second order stochastic dominance,

see McFadden (1989) and Klecan, McFadden, and McFadden (1991), and when testing for

a structural change with an unknown change point, Andrews (1993).

Tests of inequality constraints are, perhaps, most frequently used in linear regression

models, where the number of constraints is typically a small number. The power improve-

ments in this framework are yet to be seen, and we leave this for further research.
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Appendix: Proofs

Proof of Lemma 1. Given the convergence in distribution we have that Pθ(Tn ∈ Iθα) con-
verges to a number less than α for θ ∈ Θ0. The uniform convergence in distribution of Tn (As-
sumption 1.ii), ensures that lim supn→∞ supθ∈Θ0

Pθ(Tn ∈ IΘ0
α ) ≤ lim supn→∞ supθ∈Θ0

Pθ(Tn ∈
Iθα) ≤ α. Finally, limn→∞ Pθ0(R{θ0}

α,n ) = α for θ0 ∈ ∂Θ0 follows by the convergence in distri-
bution and the continuity of Fθ for θ ∈ ∂Θ0.
Proof of Lemma 2. (i) follows from the fact that C² ⊂ Θ0, and to prove (ii) we de-

fine Cn ≡ {ω ∈ Ω : θ0 ∈ N²(θ̂n) ∩ Θ0}, such that (RC²
α,n ∩ Cn) ⊂ R{θ0}α,n . This leads to the

inequality Pθ0(RC²
α,n) = Pθ0(RC²α,n ∩ Cn) + Pθ0(RC²

α,n ∩ {Cn) ≤ Pθ0(R{θ0}
α,n ) + Pθ0({Cn), and

since θ̂n
p→ θ0 (uniformly in θ0 on Θ0) we have that limn→∞ supθ∈Θ0

Pθ({Cn) = 0, such that
lim supn→∞ supθ∈Θ0

Pθ(RC²
α,n) ≤ lim supn→∞ supθ∈Θ0

Pθ(R{θ0}
α,n )+lim supn→∞ supθ∈Θ0

Pθ({Cn)
= α, where we have used Lemma 1.

Proof of Theorem 3. (i) follows from Lemma 2. To prove (ii) we define Cn ≡ {ω ∈ Ω :
θ0 ∈ Cn}, such that (RCnα,n ∩ Cn) ⊂ R{θ0}α,n . This leads to the inequality

Pθ0(RCn
α,n) = Pθ0(RCn

α,n ∩ Cn) + Pθ0(RCn
α,n ∩ {Cn) ≤ Pθ0(R{θ0}

α,n ) + Pθ0({Cn).

From Lemma 1 we have that limn→∞ supθ∈Θ0
Pθ(R{θ0}

α,n ) = α and by Assumption 2 (i) we

have that limn→∞ supθ∈Θ0
Pθ({Cn) = 0, which proves that lim supn→∞ supθ∈Θ0

Pθ0(RCnα,n) ≤
α.

To show (iii) we use the identity, Pθ0(RCn
α,n) = Pθ0(RCn

α,n) − Pθ0(R{θ0}
α,n ) + Pθ0(R{θ0}

α,n ) −
α+ α, which shows that

|Pθ0(RCn
α,n)− α| ≤ |Pθ0(RCn

α,n)− Pθ0(R{θ0}
α,n )|+ |Pθ0(R{θ0}

α,n )− α|.

The last term equals |Pθ0(Tn ≥ a)−α|, where a ≡ F−1θ0 (1−α), since Fθ0 is continuous under
Assumption 1, and the convergence in distribution guarantees that this term converges to

zero. Since (RCn
α,n ∩ Cn) ⊂ (R{θ0}α,n ∩ Cn) the other term can be bounded by

|Pθ0(RCn
α,n)− Pθ0(R{θ0}α,n )| ≤ Pθ0(Tn ∈ [a, bn)) + Pθ0({Cn),

where bn = inf{b : b ∈ ICnα ∪ Iθ0α }. Given Assumptions 2 and 3 it follows that bn → a and

from the continuity of Fθ0 it follows that Pθ0(Tn ∈ [a, bn)) → 0 as n → ∞. This completes
the proof.

Proof of Lemma 4. We have Bn ⊂ Cn and θ0 ∈ Bn for n sufficiently large. Since the
latter is assumed to hold uniformly in θ (Assumption 4) we have shown Assumption 2 (i).

The relation,
T∞
k=1

S∞
n=k Cn ⊂

T∞
k=1

S∞
n=kNdn(θ0) =

T∞
k=1Ndk(θ0) = {θ0} almost surely,
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proves Assumption 2 (ii).

Proof of Theorem 5. Suppose that Rn is non-similar on the boundary, such that there
exists θ0 ∈ ∂Θ0 for which limn→∞ Pθ0(Rn) < α, where α is the size of the test. Then for some

local alternative, θn = θ0 + n−1/2²y where ² > 0, it holds that ρ(²) ≡ limn→∞ Pθn(Rn) < α,

given the continuity of the normalized rejection probability. This shows that the test is

biased.

Proof of Corollary 6. From Theorem 3 it follows that RΘ0
α,n and RCn

α,n have the same

asymptotic size (α) and that RCn
α,n is at least as powerful as RΘ0

α,n. If RΘ0
α,n is non-similar on

the boundary of the null hypothesis, there will exist local alternatives to some point on the

boundary, θ0 ∈ ∂Θ0, for which RCn
α,n is more powerful than RΘ0

α,n, which shows that RΘ0
α,n is

asymptotically inadmissible.13

Proof of Corollary 7. From Theorem 3 (ii) we have that pΘ0
n (τ) ≥ pCnn (τ) and limn→∞

pCnn (τ) ≥ limn→∞ p
{θ0}
n (τ), which shows that the p-values are valid, and similar to the last

result of Theorem 3 (ii), it follows that pCnn (τ)
p→ p

{θ0}
n (τ) for θ0 ∈ ∂Θ0.
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Table 1: Type I Error and Power Properties (α = 0.05)

Type I Error Power

ρ n m = 10 m = 40 m = 100 m = 10 m = 40 m = 100

log2 LFC log2 LFC log2 LFC log2 LFC log2 LFC log2 LFC

0.1

40 0.002 0.000 0.000 0.000 0.000 0.000 0.078 0.035 0.001 0.000 0.000 0.000
100 0.006 0.000 0.000 0.000 0.000 0.000 0.450 0.178 0.070 0.001 0.002 0.000
200 0.023 0.000 0.009 0.000 0.002 0.000 0.924 0.544 0.692 0.021 0.330 0.000
500 0.049 0.000 0.048 0.000 0.049 0.000 1.000 0.987 0.999 0.514 0.995 0.008
‘∞’ 0.050 0.000 0.050 0.000 0.050 0.000 1.000 1.000 1.000 1.000 1.000 1.000

0.2

40 0.004 0.001 0.000 0.000 0.000 0.000 0.087 0.044 0.002 0.000 0.000 0.000
100 0.009 0.001 0.001 0.000 0.000 0.000 0.444 0.200 0.087 0.003 0.006 0.000
200 0.030 0.001 0.015 0.000 0.006 0.000 0.905 0.568 0.640 0.037 0.315 0.000
500 0.049 0.001 0.050 0.000 0.050 0.000 1.000 0.988 0.997 0.582 0.981 0.024
‘∞’ 0.050 0.001 0.050 0.000 0.050 0.000 1.000 1.000 1.000 1.000 1.000 1.000

0.5

40 0.016 0.008 0.003 0.001 0.001 0.000 0.125 0.084 0.018 0.005 0.002 0.000
100 0.024 0.008 0.010 0.000 0.004 0.000 0.438 0.283 0.141 0.025 0.035 0.001
200 0.041 0.008 0.031 0.000 0.025 0.000 0.846 0.655 0.556 0.138 0.302 0.006
500 0.050 0.008 0.052 0.000 0.052 0.000 0.999 0.993 0.986 0.762 0.921 0.173
‘∞’ 0.050 0.008 0.050 0.000 0.050 0.000 1.000 1.000 1.000 1.000 1.000 1.000

0.8

40 0.035 0.027 0.024 0.014 0.016 0.006 0.168 0.141 0.067 0.042 0.032 0.014
100 0.041 0.027 0.033 0.014 0.024 0.006 0.443 0.373 0.204 0.117 0.101 0.033
200 0.048 0.027 0.045 0.014 0.042 0.006 0.805 0.725 0.514 0.322 0.306 0.101
500 0.052 0.027 0.052 0.014 0.055 0.006 0.998 0.995 0.963 0.890 0.837 0.543
‘∞’ 0.050 0.027 0.050 0.014 0.050 0.006 1.000 1.000 1.000 1.000 1.000 1.000

0.9

40 0.044 0.038 0.036 0.027 0.031 0.020 0.182 0.167 0.092 0.072 0.061 0.039
100 0.047 0.037 0.042 0.026 0.038 0.020 0.445 0.406 0.224 0.167 0.136 0.077
200 0.050 0.037 0.049 0.026 0.050 0.020 0.787 0.747 0.505 0.398 0.316 0.183
500 0.052 0.037 0.053 0.026 0.055 0.020 0.997 0.996 0.954 0.921 0.815 0.667
‘∞’ 0.050 0.037 0.050 0.026 0.050 0.020 1.000 1.000 1.000 1.000 1.000 1.000

1.0

40 0.053 0.050 0.056 0.050 0.061 0.050 0.200 0.193 0.125 0.112 0.102 0.087
100 0.052 0.050 0.054 0.050 0.058 0.050 0.448 0.440 0.242 0.226 0.173 0.154
200 0.052 0.050 0.054 0.050 0.057 0.050 0.775 0.771 0.496 0.479 0.318 0.299
500 0.052 0.050 0.053 0.050 0.056 0.050 0.996 0.996 0.945 0.941 0.793 0.781
‘∞’ 0.050 0.050 0.050 0.050 0.050 0.050 1.000 1.000 1.000 1.000 1.000 1.000

This table shows the properties of the log2-test and the LFC-test of H0 : θi ≤ 0, i = 1, . . . ,m for
various configurations. The proportion of binding inequalities is ρ and the power simulations are
based on a violation of the first inequality. The rejection probabilities are estimated from 10,000
simulations.
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Table 2: Type I Error and Power Properties (α = 0.10)

Type I Error Power

ρ n m = 10 m = 40 m = 100 m = 10 m = 40 m = 100

log2 LFC log2 LFC log2 LFC log2 LFC log2 LFC log2 LFC

0.1

40 0.005 0.001 0.000 0.000 0.000 0.000 0.131 0.065 0.003 0.000 0.000 0.000
100 0.014 0.001 0.001 0.000 0.000 0.000 0.573 0.268 0.125 0.003 0.005 0.000
200 0.044 0.001 0.020 0.000 0.006 0.000 0.959 0.658 0.788 0.042 0.446 0.000
500 0.097 0.001 0.099 0.000 0.096 0.000 1.000 0.994 1.000 0.625 0.998 0.019
‘∞’ 0.100 0.001 0.100 0.000 0.100 0.000 1.000 1.000 1.000 1.000 1.000 1.000

0.2

40 0.009 0.003 0.000 0.000 0.000 0.000 0.149 0.080 0.007 0.001 0.000 0.000
100 0.022 0.003 0.004 0.000 0.000 0.000 0.569 0.299 0.150 0.007 0.013 0.000
200 0.060 0.003 0.035 0.000 0.017 0.000 0.949 0.686 0.747 0.070 0.429 0.000
500 0.100 0.003 0.101 0.000 0.099 0.000 1.000 0.994 0.999 0.689 0.992 0.045
‘∞’ 0.100 0.003 0.100 0.000 0.100 0.000 1.000 1.000 1.000 1.000 1.000 1.000

0.5

40 0.036 0.020 0.010 0.002 0.002 0.000 0.207 0.143 0.041 0.013 0.005 0.001
100 0.055 0.019 0.025 0.002 0.010 0.000 0.566 0.398 0.231 0.054 0.070 0.002
200 0.082 0.019 0.065 0.002 0.049 0.000 0.913 0.763 0.680 0.220 0.430 0.014
500 0.101 0.019 0.103 0.001 0.105 0.000 1.000 0.997 0.993 0.847 0.958 0.268
‘∞’ 0.100 0.019 0.100 0.001 0.100 0.000 1.000 1.000 1.000 1.000 1.000 1.000

0.8

40 0.074 0.059 0.053 0.033 0.034 0.016 0.268 0.231 0.127 0.085 0.065 0.033
100 0.085 0.059 0.068 0.031 0.055 0.014 0.574 0.503 0.314 0.195 0.179 0.066
200 0.097 0.059 0.092 0.031 0.087 0.014 0.884 0.826 0.646 0.450 0.440 0.171
500 0.101 0.059 0.104 0.031 0.107 0.014 0.999 0.998 0.983 0.940 0.908 0.666
‘∞’ 0.100 0.059 0.100 0.031 0.100 0.014 1.000 1.000 1.000 1.000 1.000 1.000

0.9

40 0.089 0.077 0.078 0.058 0.066 0.042 0.290 0.265 0.167 0.133 0.114 0.077
100 0.094 0.077 0.087 0.058 0.080 0.041 0.583 0.538 0.341 0.263 0.222 0.140
200 0.099 0.077 0.099 0.058 0.100 0.041 0.876 0.844 0.640 0.531 0.442 0.288
500 0.102 0.077 0.104 0.058 0.108 0.041 0.999 0.998 0.980 0.959 0.889 0.781
‘∞’ 0.100 0.077 0.100 0.058 0.100 0.041 1.000 1.000 1.000 1.000 1.000 1.000

1.0

40 0.105 0.100 0.111 0.100 0.118 0.100 0.310 0.301 0.209 0.193 0.184 0.157
100 0.104 0.100 0.108 0.100 0.114 0.100 0.582 0.572 0.364 0.347 0.273 0.254
200 0.103 0.100 0.106 0.100 0.112 0.100 0.864 0.860 0.622 0.607 0.450 0.429
500 0.103 0.100 0.105 0.100 0.110 0.100 0.999 0.999 0.974 0.972 0.875 0.866
‘∞’ 0.100 0.100 0.100 0.100 0.100 0.100 1.000 1.000 1.000 1.000 1.000 1.000

This table shows the properties of the log2-test and the LFC-test of H0 : θi ≤ 0, i = 1, . . . ,m for
various configurations. The proportion of binding inequalities is ρ and the power simulations are
based on a violation of the first inequality. The rejection probabilities are estimated from 10,000
simulations.
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Table 3: Empirical Results:

True Null Hypothesis False Null Hypothesis

Morg Morg +M
† Morg +M

∗ Morg +M
∗ +M†

Test stat. n log2 LFC log2 LFC log2 LFC log2 LFC

T rcn
758 0.273 0.273 0.273 0.594 0.000 0.000 0.000 0.359

2, 392 0.480 0.480 0.480 0.747 0.000 0.000 0.000 0.285

T smn
758 0.591 0.592 0.591 0.602 0.001 0.001 0.001 0.001

2, 392 0.414 0.420 0.414 0.422 0.000 0.000 0.000 0.000

This table contains the p-values of four tests, applied to eight testing problems. The four tests are
the combinations of the test statistics, T rcn and T smn , and the two ways to derive critical values,
log2 and LFC. The eight testing problems are the combination of two samples and four sets of
forecasting models, whereMorg is the original set with 3,654 models that were analyzed by White
(2000).
The reality check corresponds to the combination with T rcn and LFC, and it can be seen that the
p-value of the RC is severely distorted by the inclusion of a poor (and for the hypothesis irrelevant)
model.
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