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1 Introduction

Fifty years have passed since the publication of Nash’s article “Two Person
Cooperative Games” (Nash (1953)). This important paper set a new entire
research agenda that has been referred to as the Nash program for cooperative
games. Much work in the Nash program has taken place in this half a
century, and with the aid of this time perspective one should make an effort to
summarize what we have learned. In writing this survey, I may be forgetting
inadvertently some valuable contributions, and I do apologize in advance to
their authors.

Similar to the microfoundations of macroeconomics, which aim to bring
closer the two branches of economic theory, the Nash program is an attempt
to bridge the gap between the two counterparts of game theory (cooperative
and non-cooperative). This is accomplished by investigating non-cooperative
procedures that yield cooperative solutions as their equilibrium outcomes.
Nash himself stated his goal eloquently:

“We give two independent derivations of our solution of the two-
person cooperative game. In the first, the cooperative game is re-
duced to a non-cooperative game. To do this, one makes the play-
ers’ steps in negotiations in the cooperative game become moves
in the non-cooperative model. Of course, one cannot represent all
possible bargaining devices as moves in the non-cooperative game.
The negotiation process must be formalized and restricted, but
in such a way that each participant is still able to utilize all the
essential strength of his position. The second approach is by the
axiomatic method. One states as axioms several properties that
would seem natural for the solution to have, and then one dis-
covers that the axioms actually determine the solution uniquely.
The two approaches to the problem, via the negotiation model
or via the axioms, are complementary. Each helps to justify and
clarify the other.”
(Nash (1953, p. 128)).

Supporting Nash’s words, Harsanyi (1974) elaborates on the goals of the
Nash program and writes: “Nash (1953) has suggested that we can obtain a
clear understanding of the alternative solution concepts proposed for coop-
erative games and can better identify and evaluate the assumptions to make
about the players’ bargaining behavior if we reconstruct them as equilibrium
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points in suitably defined bargaining games, treating the latter formally as
non-cooperative games.” The idea is both simple and important: the rele-
vance of a concept (a cooperative solution in this case) is enhanced if one
arrives at it from very different points of view. The purpose of science is to
uncover “relationships” between seemingly unrelated concepts or approaches
(see Aumann (1997)). To cite Nash (1953) again: “It is rather significant
that this different approach yields the same solution. This indicates that
the solution is appropriate for a wider variety of situations than those which
satisfy the assumptions we made in the approaches via the model.”

Indeed, the outcome of a successful result in the Nash program will be an
enhanced understanding of a cooperative solution. Apart from the meaning
attached to its definition and, in many cases, the normative content provided
by the axioms that characterize it, one will have now a better idea of the
institutional arrangements and negotiation protocols that lead to the solution
as a consequence of self-interested -non-cooperative- rational play. As we
shall see, it is very instructive to note the differences in the procedures that
connect with the different cooperative solutions. Although the theory has
not investigated yet necessary conditions on a procedure to arrive at a given
solution, this is a development that may take place in the years to come.
For now, what one can do is to underline some of the salient aspects of the
mechanisms that have been used, trying to extract from them some properties
that may be inherent to the solution. Before discussing the Nash program
itself, I shall begin with a brief section on cooperative game theory.

2 Cooperative or Coalitional Game Theory

A number of authors have provided different definitions of cooperative game
theory. Each of them has its merits, although for most of them we shall
argue that they do not necessarily correspond to an exact definition; this has
sometimes led to misunderstandings. We shall review them briefly here.

• Cooperative game theory has been sometimes portrayed as a theory
about fairness. While this is certainly true for some cooperative solu-
tions, such as the Shapley value or the Nash solution, because of the
symmetry axiom behind them, it does not provide a good definition
of the entire field. For example, the core, which is one of the leading
solution concepts, has nothing to do with fairness, as it describes an
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environment of potential conflict among coalitions. It is not hard to
see how there are core payoffs in many games that one would have
difficulties in describing as “fair” distributions of the surplus.

• Some other times cooperative game theory has been defined as a the-
ory based on an outside enforcement authority. According to this view,
the agreements in the non-cooperative theory are self-enforcing (as in
a Nash equilibrium), whereas payoffs in a cooperative solution are sus-
tained by a binding agreement guaranteed by an outside enforcer. Two
comments are in order here. First, the enforcement of such payoffs
relates to their implementation and hence falls outside of the realm of
cooperative theory: the theory identifies or recommends certain payoffs
following some desirable normative principles, but is silent about how
to impose them. And second, there is a sense in which non-cooperative
theory also relies on outside enforcement. Namely, when the two pris-
oners play “Defect” in the prisoners’ dilemma, a specific outcome takes
place and is enforced. In some sense, I believe that the need of the
enforcer is there for both counterparts of game theory (the entire neo-
classical paradigm in economic theory presumes the existence of a well
defined legal system that protects property rights and upholds and
enforces contracts). To the extent that the Nash program relates to
implementation theory, enforcement issues are always part of the ap-
proach. We shall come back to this in the sequel.

• A third definition is that of a normative theory based on axioms. It is
true that many cooperative solutions have been characterized axiomat-
ically. However, the axiomatic method in economics and game theory is
not confined to this field. For example, the derivation of different non-
cooperative equilibrium concepts (Nash equilibrium, correlated equi-
librium) as consequences of different assumptions on rationality and
knowledge are beautiful examples of applications of axiomatic method-
ology. Other important fields, such as individual decision theory and
the theory of social choice, also employ the axiomatic method to con-
duct their inquiries.

• Is cooperative game theory that part of game theory that studies co-
operation? The name of the field may be misleading in this respect.
First, the cooperative approach in game theory need not assume that
it is always the grand coalition the one that is formed; in general, the
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cooperative solutions can be adapted to accomodate arbitrary coalition
structures, in which different coalitions compete with one another. In
addition, cooperation is also a fundamental topic in the non-cooperative
theory through the important insights provided by the model of re-
peated games. It is perhaps for these reasons that some authors (e.g.,
Aumann (1987)) advocate for the name coalitional instead of coopera-
tive game theory.

• In my opinion, perhaps the most complete definition of cooperative
game theory is that of a theory in which coalitions and the set of payoffs
“feasible” for each coalition are the primitives. When given a strategic
situation, one can begin by describing it in the most informative way
possible, which corresponds to the extensive form representation. This
is a game tree, specifying in great detail the timing and set of moves
available and the information held by each player at each point in
time. One step of abstraction is gained by reducing the extensive form
to its normal form or strategic form representation: in it, we endow
each player with a set of strategies, with independence of whether the
strategy is to be executed following a specific timing of moves and under
some informational constraints.

Yet another step of abstraction is taken if one suppresses information
concerning strategies, and is given simply the set of payoffs that each
player (and each subset of players) can achieve as a function of the
coordination reached by the rest of the players. In the most general
form, the partition function form of a game expresses the set of fea-
sible payoffs to a coalition for each coalition structure -partition- of
the complement. Often a simplifying assumption is made, by which
the set of feasible payoffs to a coalition is independent of the organi-
zation of the complement, and this leads to the characteristic function
form representation. Most of the contributions in the Nash program
have worked with the latter representation, although there are interest-
ing exceptions that have employed the model of the partition function
(e.g., Bloch (1996)). Thus, according to this definition, a coalition is a
“black box.” In identifying it with a set of feasible payoffs, one lacks a
description of the sort of arrangements or procedures that the coalition
is supposed to follow to achieve them. Nonetheless, the approach has
a clear advantage in terms of robustness: indeed, the attempt is to de-
rive recommendations -solution concepts- that are independent of the
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unimportant details of different procedures that underlie the same set
of feasible payoffs. Note also how in this formulation we are silent about
the behavioral assumptions that players obey. In particular, while fair-
ness considerations will be sometimes used, following the imposition of
the symmetry axiom and alike, the approach is also compatible with
fully strategic players that embark in the formation of coalitions.

Thus, we shall talk about non-cooperative game theory as that form
of analysis that uses both the extensive and the strategic form rep-
resentations of games, whereas cooperative game theory utilizes the
partition and characteristic function forms, in which many details of
the interaction have not been described explicitly.

Accepting the latter view, the role of the Nash program can be understood
as opening the “black box” of each coalition. This is done by breaking down
a solution payoff (or set thereof) based on a coalitionally-based definition into
individual decision problems, built in suitably defined negotiation games.

We shall close this section with some definitions that will be used in the
rest of the paper.

Let N = {1, . . . , n} be a finite set of players. Let G = 〈(Mi, ui)i∈N be
an n-player game, where Mi is the set of pure strategies of player i, and
ui :

∏
i∈N Mi 7→ R is player i’s payoff function.1 If the game is one in

extensive form, we would be given the game tre specifying the timing of
moves and information sets for each player, from which one can derive the
strategy sets.

Given a set of outcomes A, a mechanism or game form is defined as a pair
〈(Mi)i∈N , g〉, where Mi is agent i’s strategy set and g :

∏
i∈N Mi 7→ A is an

outcome function. A mechanism can be designed as an institution to govern
the interactions among agents, even if one does not know their preferences
over outcomes. When the agents in N interact in the mechanism, each
agent i will evaluate outcomes according to her payoff function ui : A 7→ R.
Therefore, composing a mechanism with a profile of payoff functions (ui)i∈N

one obtains a game.
A coalition S is a non-empty subset of N . For each coalition S, let V (S) ⊂

RS be the set of payoffs feasible for S. We denote by RS the Euclidean space
with as many dimensions as players in S, which are labeled with the names

1For the most part, mixed strategies have been excluded from the analysis. We shall
also do it here.
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of the players in S. The sets V (S) are assumed to be non-empty and closed.
At times one also assumes boundedness; or in alternative specifications that
allow free disposal of utility, these sets are assumed to be comprehensive,
i.e., if y ∈ V (S), and y′ is such that y′

i ≤ yi for every i ∈ S, then y′ ∈ V (S).
The pair (N, V ), where V assigns a set V (S) to each coalition S is called a
game in characteristic function. In this paper, this is what we shall take as
a cooperative or coalitional game. Let Γ be a class of such games.

A cooperative solution F assigns to each game (N, V ) in the class Γ a
set of payoff profiles F (N, V ) ⊂ RN such that for each x ∈ F (N, V ), there
exists a coalition structure (partition of N) (S1, . . . , Sk), satisfying that for
each j = 1, . . . , k, xSj ∈ V (Sj). Most of the work in the Nash program has
assumed the formation of the grand coalition. Thus, in this paper, we shall
simply work with solutions such that for each x ∈ F (N, V ), x ∈ V (N). We
shall use f to denote single-valued solutions.

3 The Nash Program and Implementation The-

ory

In viewing the Nash program as an agenda within the theory of implemen-
tation, one should at least describe briefly the main elements of this theory.2

Implementation theory is concerned with the design of mechanisms to decen-
tralize the decision-making process in any social choice problem.

A social choice problem consists of four components:

• (1) a set of agents,

• (2) a set of socially feasible alternatives or outcomes,

• (3) agents’ preferences over those outcomes, and

• (4) a social choice correspondence, specifying a set of desirable out-
comes as a function of the agents’ preferences.

Examples of social choice problems include exchange and production
economies, voting problems, and also cooperative games. To see that a

2See Moore (1992), Corchón (1996), Jackson (2001), Maskin and Sjostrom (2002),
Palfrey (2002) and Serrano (2004) for surveys of the theory of implementation; see Hurwicz
(1994) for a brief expository piece.
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cooperative game fits naturally into this definition, one can list down its
components:

• (1) a set of players N ,

• (2-3) a characteristic function V = (V (S))S⊆N , specifying a set of fea-
sible payoff profiles for each coalition, and

• (4) a solution F , assigning a set F (N, V ) of prescribed payoffs to each
cooperative game (N, V ).

It is apparent that the only departures from the definition of a social
choice problem are two: first, the specification of possibilities for each group
of agents, not only for the whole set; and second, the fact that the “black
box” of the characteristic function compresses in it considerations both over
feasible outcomes and preferences over them. Indeed, underlying the set V (S)
one may have different sets of feasible outcomes, such as the redistributions
of the initial endowment of goods among agents in the coalition, a production
set describing the technological possibilities of the group, and so on.

Given a social choice problem, the goal of implementation theory is to de-
sign for the agents (element (1)) a mechanism using the feasible outcomes (2)
so that, regardless of the agents’ preferences (3), one ends up implementing
the desirable outcomes (4) as a consequence of the agents’ rational actions in
the mechanism. What makes the exercise non-trivial is that the mechanism
designer not know the agents’ preferences and therefore, the mechanism itself
cannot depend on that information. Yet the mechanism must “work” over a
reasonably large class of social choice problems to be deemed a success.

Similarly, in the Nash program a mechanism is to be played by the set of
players (1). However, the modeller has now an additional degree of freedom,
since the characteristic function does not imply a fixed structure of feasible
outcomes; one can write down different mechanisms based on different sets
of physical or abstract outcomes (see Serrano (1997a), Dagan and Serrano
(1998), Bergin and Duggan (1999), and Trockel (2002a, b) for different ways
to endow the characteristic function with an outcome structure). Fixing the
structure of outcomes, one would like to design a mechanism that, whatever
the players’ payoffs (i.e., the characteristic function), is capable of yielding
the outcomes that, when evaluated by the players’ payoff functions, lie in the
solution. Again, one way to measure the success of an implementation result
in the Nash program is to assess the class of cooperative games over which
the result is obtained.
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It is true that many contributions in the Nash program write down a
mechanism whose rules depend on the characteristic function, but those
mechanisms become more useful if their rules can be adapted in terms of
outcomes, thereby making them independent of preferences. In particular,
this means that if the characteristic function is known to the designer and
the only goal of the Nash program were seen as suggesting a non-cooperative
game whose set of equilibrium payoffs is F (N, V ), one can achieve this by the
trivial mechanism: if all players agree on a given payoff profile in the solu-
tion, implement it; otherwise, implement a bad outcome. This point, which
was in the folklore of the practicioners of the Nash program for a while,
was fleshed out by Bergin and Duggan (1999, Proposition 1). However, this
mechanism is not useful and does not shed any light on the meaning of the
specific solution (as such, the mechanism “works” for any solution).

A similar objection can be raised in the case of solutions such as the
egalitarian bargaining solution. As explained in Dagan and Serrano (1998),
because this solution fails to be invariant with respect to equivalent represen-
tations of utilities over lotteries, any mechanism used for its implementation
(Bossert and Tan (1995)) must be necessarily changing when one goes outside
the class of bargaining problems over which the physical outcome associated
with the solution is unchanged (e.g., a given bargaining problem and all those
derived from it by multiplying the utility functions of each player by the same
constant). In general, it is desirable that the mechanisms to be used not de-
pend on agents’ preferences; this makes them far more useful. This is one of
the main advantages of liberating the mechanisms of the Nash program from
their dependence on the characteristic function.

It has sometimes been argued that the Nash program and implementa-
tion theory are different agendas because, while the presence of a planner is
necessary in the latter, it is not in the former. I believe this is not a substan-
tial difference. First, it is not true that implementation theory requires the
existence of a planner: the community of n agents involved in the problem at
hand can be the one in charge of the design task. In addition, in undertaking
the Nash program’s endeavor, not only must one specify the details of the
negotiations as moves in a mechanism, but one must also make the assump-
tion that a given profile of moves leads to an outcome that can be some how
enforced. Again citing Nash (1953): “The point of this discussion is that
we must assume there is an adequate mechanism for forcing the players to
stick to their threats and demands once made, for one to enforce the bargain
once agreed. Thus, we need a sort of umpire who will enforce contracts or
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commitments.” That is, the vexed issue of enforcement of outcomes cannot
be overlooked, and one must assume either an enforcement by the designer
or by other vehicles which will typically be left unspecified. Therefore, both
in terms of who designs mechanisms and who enforces their outcomes, the
Nash program does not depart from the assumptions made in the general
theory.

The main question that the general theory of implementation has been
concerned with is the identification of conditions on social choice rules and
domains that allow implementability. Because of this general scope, the
mechanisms proposed there are necessarily abstract. This is bound to change
when the theory turns more to applications. One good example is precisely
the mechanisms in the Nash program. A mechanism in the Nash program,
by targetting a specific cooperative solution whose implementation is sought,
should provide useful information about the types of negotiation protocols
that lead to that solution. The consequence is an increased understanding of
the solution in question, beyond the content of its definition and the axioms
behind it.

On the other hand, one should not overstate the case. A typical result
in the Nash program –say, the finding that a specific bargaining procedure
yields the Nash solution as the unique equilibrium outcome– is sometimes
described as a non-cooperative “foundation” of the cooperative solution; and
some authors have pushed this view further, by stating that the relevance of a
cooperative solution depends mainly upon such a finding (e.g., Muthoo (1999,
Chapter 2)). My use of the quotation marks around the word “foundation”
in the earlier sentence is deliberate. One tends to associate with that word a
sense of robustness and imperturbability that is often lacking in an extensive
form. That is why I am usually reluctant to the use of the phrase “non-
cooperative foundations.” On the other hand, for most cooperative solutions,
an axiomatic system has been proposed that characterizes them. In my
view, the normative principles embodied in the system of axioms behind a
solution fits better the notion of a “foundation.” That is not to say that the
exercise of the Nash program is unimportant: one can learn much from the
uncovery of the negotiation procedures that lead to a solution, i.e., from its
non-cooperative implementation.
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4 Pure Bargaining Problems

In this section we begin to survey specific results in the Nash program, start-
ing with those obtained for the class of pure bargaining problems. A pure
bargaining problem is a cooperative game in which only the grand coalition
N can create a positive surplus with respect to what each player can achieve
if she does not cooperate with anyone. That is, subcoalitions have no power;
the agreement of all parties involved is necessary to the creation of a “pie.” If
the problem involves only two players, these are bilateral monopoly problems,
in older jargon (i.e., a firm and a union bargaining over wages, a buyer and
a seller negotiating over price). If there are more than two players, examples
of pure bargaining problems include cooperatives of workers, all of whom are
part of the firm, or budget negotiations among a group of countries, where
each country may have veto power over agreements.

Let us recall the relevant notation, which we already introduced:

• V (N): utility possibility set for the players in N . Typically, one as-
sumes a lower bound to utility through normalization, so that V (N)
is compact. In addition, if the underlying outcomes space includes the
use of lotteries and one assumes expected utility, the set V (N) will
be convex. These are the assumptions made by Nash (1950) in his
description of a two-player bargaining problem, where N = {1, 2}.

• d = (0, . . . , 0) ∈ V (N) is the disagreement utility point. In our nota-
tion, we have that di = maxui∈V ({i}) ui. That is, d is the utility profile
that will result from no agreement. The fact that one can take d = 0 is
a normalization of all utility functions. This can be done without loss
of generality if preferences can be represented equivalently by utility
functions that differ by an additive constant.

• There are points in V (N) that dominate d, i.e., there exists u ∈ V (N)
such that ui > di for all i ∈ N . This is a particular case of the property
of superadditivity that will be defined later; in this case, it simply says
that there are gains from cooperation in the grand coalition N .

Two major solutions to pure bargaining problems were proposed in Nash
(1950) and in Kalai and Smorodinsky (1975), to which we devote the next
subsections.
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4.1 The Nash Bargaining Solution

Bilateral monopoly problems had been deemed indeterminate by earlier eco-
nomic theorists, including Edgeworth and Hicks. Indeed, standard economic
theory did not offer compelling enough arguments to single out a prediction
from the set of agreements that are both individually rational (i.e., each party
receiving a utility at least equal to her disagreement utility) and collectively
rational (i.e., Pareto efficient). In non-trivial bargaining problems, the set of
agreements with these properties is large.

Nash’s breakthrough was to propose an approach with a sharp prediction.
His idea was to employ the axiomatic method. Consider the class Γ of all two-
player pure bargaining problems, in which the set V ({1, 2}) is compact and
convex. Consider single-valued solutions f : Γ 7→ R2 such that f({1, 2}, V ) ∈
V ({1, 2}) for every ({1, 2}, V ) ∈ Γ. Nash (1950) imposes the following four
properties on the solution f :

• Scale invariance: if one multiplies by arbitrary positive constants and
adds arbitrary scalars to the utility functions of each player, the solution
assigns to the transformed problem the same transformation of the
utility pair originally assigned by the solution. This is justified when
one works with von Neumann-Morgenstern expected utility.

• Symmetry: if the bargaining problem is symmetric so that d1 = d2 and
V ({1, 2}) is such that (a, b) ∈ V ({1, 2}) if and only if (b, a) ∈ V ({1, 2}),
the solution assigns the same utility to both players. The solution must
exhibit equal treatment of equals.

• Efficiency: the solution assigns a point on the Pareto frontier of V ({1, 2}).
It must exploit all available gains from cooperation.

• Independence of irrelevant alternatives (IIA): comparing two problems
that share the same disagreement point, if V ({1, 2}) is a subset of
V ′({1, 2}) and f({1, 2}, V ′) ∈ V ({1, 2}), then the solution must assign
the same point to both problems. Nash justified this property by saying
that there is “no action at a distance” in the determination of the
solution.

Nash (1950) shows that, over the class of problems considered, there exists
a unique solution that satisfies these four properties. It is the function that
assigns to each bargaining problem the point that maximizes the product
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(u1 − d1)(u2 − d2) over all pairs (u1, u2) ∈ V ({1, 2}). This function is what
we refer to as the Nash solution, which has been used in many applications. It
is worth pointing out that the particular functional form of the Nash solution,
i.e., the point that maximizes the Nash product, far from being assumed, is
an implication of the axioms. As it turns out, we will come back to rediscover
the Nash product of utilities as playing an unexpected role in some of the
implementation results.
A demand game: The first mechanism in the Nash program was proposed
in Nash (1953); see Binmore (1987) for a nice presentation. Given a two-
person bargaining problem in which the feasible set of utilities is V ({1, 2})
and d = 0, each bargainer i = 1, 2 is asked to demand a utility level ûi ∈ R+.
These demands (û1, û2) are submitted simultaneously. The outcome enforced
is the one leading to the demand pair if it is feasible; otherwise, there is
disagreement.

One can adapt this mechanism to the framework of implementation the-
ory by formulating it in terms of physical outcomes. For example, suppose
the underlying physical outcomes are the shares of a one-dimensional pie of
size 1 if there is agreement, while no pie is created if there is disagreement.
Then, the demands in the demand game can be formulated in physical terms.
Physical demands are easier to enforce than are utility demands; according
to this formulation, utility only appears in the background (the two bargain-
ers will be evaluating outcomes according to their utility functions). We will
proceed to the analysis of this mechanism.

Formally, in this mechanism, the set of strategies for an agent is the inter-
val [0, 1]. Let x1 and x2 be the two physical demands made by players 1 and 2,
respectively. The outcome (z1, z2) is the split (x1, x2) if x1+x2 ≤ 1; (z1, z2) =
(0, 0) otherwise. An outcome gives rise to a utility pair (u1(z1), u2(z2)), where
the functions ui are concave, strictly increasing, differentiable and normalized
so that ui(0) = 0.

The set of Nash equilibrium outcomes of this mechanism includes the
entire Pareto frontier ((x∗

1, x
∗
2) is a Nash equilibrium whenever x∗

1 + x∗
2 = 1),

as well as disagreement ((x∗
1, x

∗
2) = (1, 1) with outcome (z1, z2) = (0, 0) is also

a Nash equilibrium). However, Nash (1953) proposed a refinement of the set
of Nash equilibria based on the following perturbation of the demand game.

Suppose that bargainers do not know for sure the size of the pie they
will be creating if they reach an agreement. Assume the size of the pie is a
random variable τ , with density f , that includes τ = 1 in its support. Now,
given a pair of demands (x1, x2), the outcome is the pair of shares (x1, x2) if
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the pie realized makes them feasible, or disagreement. Specifically, given a
demand pair, the expected payoff to player i = 1, 2 is

ui(xi)[1 − F (xi + xj)].

The first-order condition of expected payoff maximization for player i = 1, 2
is:

u′
i(xi)[1 − F (xi + xj)] = ui(xi)f(xi + xj).

The interpretation of this equation is simple: the marginal utility gain at-
tributed to a marginal increase in one’s demand must be equated to the
marginal utility loss due to the lower probability of the two demands be-
ing compatible. At a Nash equilibrium (x∗

1, x
∗
2), the resulting sum of shares

x∗
1 + x∗

2 must be in the support of the random variable. Also, we can rewrite
both first-order conditions as follows:

1 − F (x∗
1 + x∗

2)

f(x∗
1 + x∗

2)
=

u1(x
∗
1)

u′
1(x

∗
1)

=
u2(x

∗
2)

u′
2(x

∗
2)

.

Note how the Nash product already shows up here: at the Nash equilibrium
(x∗

1, x
∗
2) the slope in the utility plane of the hyperbola u1u2 = u1(x

∗
1)u2(x

∗
2) is

equated to the slope of the ex-post Pareto contour u−1
1 (u1)+u−1

2 (u2) = x∗
1+x∗

2.
Thus, this tangency simply expresses the equality of marginal gains and losses
for each player. Perhaps this is what Nash meant when, in motivating his IIA
axiom, he was talking about “no action at a distance” in the determination
of the bargaining solution. In other words, local considerations, especially
the marginal change in the probability of an agreement being reached, lead
to this tangency. It is worth noting that this feature is a consequence of the
strategic analysis of the perturbed demand game, even before uncertainty is
removed. Finally, it is now easy to see the following result, proved in Nash
(1953).

Proposition 1 If the distribution of possible pie sizes becomes degenerate
around τ = 1, the equilibrium payoff of the perturbed demand game converges
to the Nash bargaining solution payoff of the original problem.

We learn that in negotiations with uncertainty over the size of the pie,
but where beliefs are concentrated around the true size, the Nash equilibrium
logic in a demand game pushes bargainers to equate marginal utility gains
and losses, and these marginal calculations yield an outcome that gravitates
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towards the Nash solution. See also Guth, Ritzberger and van Damme (2004)
for a recent variant of the result.
An alternating offers bargaining game: Consider the procedure pro-
posed in Rubinstein (1982). Players 1 and 2 are bargaining over how to split
one dollar. Negotiations take place in discrete units of time: t = 1, 2, . . .
Player 1 begins the game at time t = 1 by proposing an offer (x, 1 − x) for
x ∈ [0, 1], where x is the share of the dollar that she is asking for herself, and
(1 − x) the share that she is offering to player 2. Next, player 2 accepts or
rejects this offer. If he accepts, the offer is implemented and the game ends.
If he rejects, one unit of time elapses and in period t = 2 player 2 will make a
counteroffer (y, 1−y) for y ∈ [0, 1], to which player 1 must respond. If player
1 accepts this offer, it is implemented; if she rejects, she will make a new offer
in the next period (t = 3), and so on. Players are impatient, and the common
per period discount factor is δ ∈ (0, 1). Thus, if player i receives a share xi

in an agreement reached in period t, player i’s utility is δt−1ui(xi), where we
assume that ui is concave and strictly increasing.3 Perpetual disagreement
has a payoff of 0 for both players.

Consider the following system of equations:

u1(x1) = δu1(x1 + α)
u2(x2) = δu2(x2 + α)

x1 + x2 + α = 1.

The interpretation of the unknowns of this system are simple enough: xi

is a share that player i is offered as a responder, while α is the premium
for being the proposer. By construction, each player is indifferent between
being the responder and the proposer in the next period if the shares obey
these equations. It is not hard to see that the system has a unique solution
(x∗

1, x
∗
2, α

∗).
Furthermore, although the alternating offers game admits a large multi-

plicity of Nash equilibria, it constitutes one of the most striking successes
of subgame perfect equilibrium (SPE) as a refinement of Nash equilibrium.
Indeed, in the alternating offers game where player 1 is the first proposer,
there is a unique SPE outcome, which is the immediate agreement on the

3An alternative interpretation of the model is one in which δ is the probability that
negotiations continue after a rejection. For the subtle differences between the two speci-
fications, the reader is referred to Binmore, Rubinstein and Wolinsky (1986) or Osborne
and Rubinstein (1990, Chapter 4).
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split (x∗
1 + α∗, x∗

2). Similarly, if player 2 is the first to propose, the unique
SPE outcome is the immediate agreement on (x∗

1, x
∗
2 + α∗); see Osborne and

Rubinstein (1990, Chapter 3). This remarkable result also provides a sharp
prediction to the bilateral bargaining problem. But unlike Nash’s approaches,
which rely on either the axioms or uncertainty in a simultaneous-move game,
Rubinstein’s uniqueness is a result of the use of credible threats in negotia-
tions together with the assumption of impatience (or breakdown probabilities
in the negotiations).

At the unique equilibrium, each player in the role of responder is offered
a share that makes him/her exactly indifferent between accepting and reject-
ing the offer to continue bargaining in the next period. Therefore, the role of
proposer is associated with a “premium,” which we have called α∗. Moreover,
the Nash product shows up again, perhaps in an unexpected way. Indeed, the
two equilibrium splits corresponding to the games in which either player 1 or
2 are the first proposer, i.e., (u1(x

∗
1 + α∗), u2(x

∗
2)) and (u1(x

∗
1), u2(x

∗
2 + α∗))

generate the same Nash product. To see this, just use the first two equa-
tions in the above system. Again, it is remarkable that the “Nash product”
property of the unique SPE payoffs prevails for any δ, even far away from
the limit as δ → 1. Here, the constant value of the Nash product at the
two equilibrium splits is an expression of equilibrium play under the use of
credible threats.

The observation in the previous paragraph leads to the following result,
shown in Binmore, Rubinstein and Wolinsky (1986) and Binmore (1987).

Proposition 2 The limit as δ → 1 of the unique SPE payoff of the alter-
nating offers game is the Nash bargaining solution payoff.

One can see this result easily. The previous discussion has established that
the two equilibrium splits (if either player 1 or player 2 are the first proposer)
are characterized in the utility space by the intersections of the Pareto frontier
of V ({1, 2}) -both are agreements with no delay- and a symmetric hyperbola
of equation u1u2 = K. Moreover, as δ → 1, α∗ → 0 (again, see the system
of equations above), which implies that the two splits converge to the same.
That split must correspond in utility space to the point where the Nash
product is maximized over V ({1, 2}).

Note how when δ is close to 1, the “no action at a distance” manifests
itself in the equilibrium strategies of the game: equilibrium proposals and
counterproposals occur in a small neighborhood of the Nash solution. This
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will contrast sharply with the implementation of the Kalai-Smorodinsky so-
lution. That is, if bargainers envision themselves at the negotiation table
and consider unilateral deviations from their equilibrium actions when δ is
near 1, the kind of splits put on the table following those deviations are very
near the final compromise.4

Extensions of this result to n-player pure bargaining problems are found in
Krishna and Serrano (1996) and Chae and Yang (1994). Krishna and Serrano
(1996) propose a procedure in which, while negotiations are multilateral –a
proposal is an n-component split of the pie–, responders are given the option
of signing a side-deal with the proposer and can exit the game by accepting.
The rejectors, on the other hand, continue bargaining with the proposer,
who is the legal representative of the acceptors in these further rounds. This
exit feature proved crucial in obtaining uniqueness of the SPE prediction.5

The flexibility of the bargaining procedure based on exit was inspired by the
axiom of consistency, used by Lensberg (1988) in his characterization of the
Nash solution. This was a good example of the usefulness of the axiomatic
approach for the Nash program: whereas the individual veto power embodied
in the unanimity extension facilitates the existence of a plethora of equilibria
through complex schemes of reward and punishment in negotiations, the
exit feature makes it impossible to punish a player for accepting a proposal.
Following partial acceptances of a proposal, the negotiations can be “sliced”
among fewer remaining parties and one can use mathematical induction and
Rubinstein’s uniqueness result to show uniqueness for any number of players.
The procedure in Chae and Yang (1994), a variant of a game first analyzed
in Jun (1987), is based on a sequence of bilateral meetings involving the
proposer and one responder at a time. In a sense, the same flexibility of
being able to slice the multilateral negotiations into smaller pieces is also key
to their result.
Other mechanisms: All the implementation results of the Nash solution
surveyed so far are approximate results. It is interesting to note other papers

4This will also be a feature of other more general models that, for the case of pure
bargaining, yield the Nash solution (e.g., Hart and Mas-Colell (1996), Serrano (1997b)).
This too happens in Herrero (1989), who analyzes the bargaining problem dropping con-
vexity of the feasible set and finds how the equilibrium payoffs converge to tangency points
between the Nash product hyperbolas and the Pareto frontier.

5The large multiplicity of SPE payoffs in the “unanimity” extension of the two-person
alternating offers game, in which each responder has veto power, are well described in
Osborne and Rubinstein (1990, chapter 3).
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that yield the Nash solution exactly as the result of equilibrium play. In
an approach strongly rooted in standard implementation theory, Howard
(1992) implements the Nash solution in SPE using a multi-stage sequential
mechanism; see also Miyagawa (2002), who proposes sequential mechanisms
to implement a class of bargaining solutions that maximize an increasing
function of utilities, among them the Nash solution. Trockel (2002c) offers
another exact implementation of the Nash solution, in which the message
sets contain bargaining solutions (agents are “bargaining over solutions”);
see also Naeve (1999). In Trockel (2000) a “Walrasian implementation” of
the Nash solution is proposed: the mechanism uses relative utility prices
given by the normal tangents to the frontier of the feasible set V ({1, 2}) of
the bargaining problem.

4.2 The Kalai-Smorodinsky Bargaining Solution

As an alternative to the Nash solution, Kalai and Smorodinsky (1975) pro-
pose a different way to solve bargaining problems. They impose the first
three axioms of Nash’s characterization (scale invariance, symmetry and effi-
ciency), but IIA is dropped. Instead, a different axiom is proposed. To state
it, we should first introduce a previous definition.

Given a two-person bargaining problem in which the disagreement utili-
ties have been normalized to 0, we call player i’s aspiration level ai(·) to the
maximum feasible utility that player ican achieve if player j 6= i receives a
utility of 0. That is, the highest utility player i may aspire to in the bargain-
ing problem is the one corresponding to an agreement where she extracts all
the surplus, her dictatorship outcome. Now we are ready to state the new
axiom for a bargaining solution f :

• Individual monotonicity: if two bargaining problems share the zero dis-
agreement point and if V ({1, 2}) is a subset of V ′({1, 2}) but aj(V ) =
aj(V

′), the solution must assign a utility to player i 6= j in the bigger
problem that is at least as high as in the smaller problem.

Unlike IIA, which incorporates local information around the solution into
the derivation of the settlement, individual monotonicity emphasizes the im-
portance of “global” considerations as expressed in the aspiration levels.
Paraphrasing Nash’s words, this axiom is a way to take “action at a dis-
tance” into account in order to get to the final settlement. Extreme threats
based on the utility derived from dictatorship may be heard now.
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Given a bargaining problem, let a = (a1, a2) be the point whose coordi-
nates are the aspirations of both players. This point will typically be not fea-
sible, but one can scale utilities down proportionally. The Kalai-Smorodinsky
solution is the function that assigns to each bargaining problem the intersec-
tion point of the Pareto frontier of V ({1, 2}) with the straight-line segment
0− a. It is the only solution satisfying scale invariance, symmetry, efficiency
and individual monotonicity over the class of compact and convex bargaining
problems. Note the major role played by the two dictatorship outcomes in
the determination of the solution.
Bidding for fractions of dictatorship: Moulin (1984) proposes a proce-
dure that exactly implements in SPE the Kalai-Smorodinsky solution for any
number of players. For simplicity in the presentation, we shall describe it
only for the bilateral case. Recall that one can normalize the disagreement
utilities to 0.

The mechanism begins with both players making a simultaneous an-
nouncement, a bid pk ∈ [0, 1] for k = 1, 2. The player whose bid is the
highest will make a proposal to the other (if there is a tie, any predeter-
mined tie-breaking rule will choose the proposer –say, player 1). Let player
i be the proposer. Then, player i makes a proposal to player j. If j accepts,
the proposal is implemented; otherwise, player j makes a “take it or leave
it” offer to player i with probability pi, while disagreement happens with
probability (1 − pi). Thus, the bids of the first stage serve to determine the
proposer, but also the winning bid is used as the fraction of dictatorship as-
signed to the non-winning bidder in the event of a rejection. The two forces
create a tradeoff in the size of the bid one should employ. Also, note the
prominent use in the mechanism of subgames in which there is “action at a
distance” (i.e., subgames resolved through dictatorship by making use of the
aspiration levels).

Moulin (1984) shows the following result:

Proposition 3 The unique SPE payoff of the bidding game on fractions
of dictatorship is the Kalai-Smorodinsky solution payoff of the bargaining
problem.

It is easy to see that, given a bid p2 used by player 2, player 1 can
guarantee at least the payoff corresponding to the efficient point in which
player 2 receives a utility equal to p2a2 – player 1 can do this simply by
naming p1 = p2 and making that proposal, which will be accepted by player
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2. Let us call this payoff eff(p2a2). In addition, player 1 can approximate a
payoff of p2a1 simply by bidding p1 = p2 − ε for any arbitrarily small ε > 0.
Thus, player 1 can guarantee the max{eff(p2a2), p2a1}, and therefore, player
2, in trying to minimize player 1’s payoff (recall that all these outcomes
are efficient) will choose p2 so as to equate the two terms in the maximum
expression, i.e., eff(p2a2) = p2a1. But these arguments imply that, while
player 1’s equilibrium payoff is p2a1, player 2’s is p2a2, so their ratio is the
ratio of aspiration levels. Furthermore, the equilibrium is efficient, so the
outcome is the Kalai-Smorodinsky solution.

Once again note how this implementation relies heavily on the extreme
threats embodied in the dictatorship outcomes (“action at a distance”). Ac-
cording to the equilibrium strategies, if the proposal is rejected by the re-
sponder, she would become a dictator in the “take it or leave it” subgame.
As we have seen in the previous subsection, this extreme behavior at the
negotiation table is not part of the equilibrium in the procedures that im-
plement the Nash solution. See Trockel (1999) and Haake (2000) for other
implementations of the Kalai-Smorodinsky solution.

4.3 Two Examples

For a comparison between the implementations of the Nash and the Kalai-
Smorodinsky solutions, consider the following examples, simply meant to
illustrate some of the points already made.

Example 1 Both bargainers are trying to reach an agreement in order to
split one dollar. Let the utility function of player 1 be linear in money:

u1(x1) = x1.

However, player 2’s utility function exhibits a drop in her marginal utility
when she is awarded at least one half of the surplus:

u2(x2) =

{
x2 if x2 ≤ 1/2;
0.5 + ε(x2 − 0.5) otherwise; ε ∈ (0, 1)

It can be shown that the equilibrium splits in the Rubinstein game are

(x∗
1 + α∗, x∗

2) =
(1 − 0.5δ(1 + ε)

1 − δ2ε
,
0.5δ(1 + ε) − δ2ε

1 − δ2ε

)
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if player 1 is the first to propose, and

(x∗
1, x

∗
2 + α∗) =

(δ(1 − 0.5δ(1 + ε))

1 − δ2ε
,
1 − δ − 0.5δ2ε + 0.5δ2

1 − δ2ε

)

if player 2 begins the game. The proposer’s premium, equal for both players,
is α∗ = (1−δ)(1−0.5δ(1+ε))

1−δ2ε
, which goes to 0 as δ → 1. Note how as δ → 1, both

equilibrium splits approximate the equal split of the pie, regardless of ε. In
the differentiable version of this problem, the only point of the Pareto frontier
of the bargaining problem in which the utility elasticity is 1 continues to be
(0.5, 0.5) for any value of ε, and the Rubinstein equilibrium splits, dictated
by the equality of the Nash product, gravitate towards that point.

In contrast, the unique SPE payoff in the Moulin game is

(u∗
1, u

∗
2) =

( 1

1 + 0.5(1 + ε)
,

0.5(1 + ε)

1 + 0.5(1 + ε)

)
,

which is the Kalai-Smorodinsky solution payoff. This utility pair, which co-
incides with the shares of the dollar, is of course sensitive to ε: the larger
the drop in 2’s marginal utility the lower her aspiration level, which reflects
itself in lower equilibrium shares. Moulin’s equilibrium continues to use the
extreme threats in the dictatorship subgames, but 2’s dictatorship threat be-
comes less effective when her marginal utility for getting the entire surplus is
lower.

Example 2 Consider again the split of a dollar between two players. Again
player 1’s utility function is

u1(x1) = x1,

whereas player 2’s is

u2(x2) = xε
2, ε ∈ (0, 1).

For any ε, no change in the aspiration level of player 2’s takes place. Because
of this, in utility terms, the unique SPE payoff of the Moulin game yields a
point on the 45 degree line of the positive orthant, u1 = u2. Of course, risk
aversion hurts player 2 when ε goes down: her equilibrium share of the dollar
is 0.5

1
ε .

However, the point on the Pareto frontier in which u1 = u2 does not have
a unit utility elasticity. It can be checked that the “Nash product property”
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of the Rubinstein equilibrium splits places them below the diagonal of the
orthant when δ is large enough, at points in which u1 < u2: in response to
the change in local conditions, player 2 is less well treated by this bargaining
(when compared to the Moulin procedure).

5 Coalitional Games

Now we shall consider the class of general coalitional games (N, V ) in which
subcoalitions have power. Examples include the coalition formation facing
the different political parties in the parliament, negotiations among countries
in an international context, or the disputes among creditors over the estate
of a bankrupt firm. Recall that V (S) represents the set of feasible utility
profiles for coalition S. An important subclass of coalitional games is that of
transferable-utility (TU) games, in which the sets V (S) are half-spaces whose
Pareto frontier is the hyperplane of equation

∑
i∈S xi = v(S), where the real

number v(S) is referred to as the worth of S. Abusing notation slightly, we
shall refer to the pair (N, v) as a TU game, where v is the characteristic
function that assigns the number v(S) to each coalition S; without loss of
generality, we assign 0 as the worth of the empty coalition, and we can
also normalize to 0 the worth of each individual player: v({∅}) = 0 and
v({i}) = 0 for every i ∈ N . TU games are a representation of a situation in
which utility is transferable at a one-to-one rate among players, for example,
because utility is expressed in units of a nummeraire.

Some properties of TU games that are often used are the following. We
list them from weaker to stronger:

• Monotonicity: larger coalitions are worth more, i.e., whenever S ⊆ T ,
v(S) ≤ v(T ).

• Superadditivity: not only is the worth of a larger group larger, but it
exceeds the sum of its parts. That is, any two disjoint subcoalitions
always find it profitable to cooperate: whenever S ∩ T = ∅, v(S) +
v(T ) ≤ v(S ∪ T ).

• Convexity: not only are there gains from cooperation, but those are
increasing in the size of the groups, i.e., for every S ⊆ T and every
i /∈ T , v(S ∪ {i}) − v(S) ≤ v(T ∪ {i}) − v(T ).
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In this section we shall focus mainly on the two major single-valued so-
lutions that have been proposed for TU games: the Shapley value and the
nucleolus. We will deal more briefly with set-valued solutions in a final sub-
section.

5.1 The Shapley Value of a TU Game

We are interested in single-valued solutions f . That is, for each TU game
(N, v), the question posed now is whether one can always find a single payoff
vector f(N, v) that will represent a “fair” retribution to each player, when
one takes into account the worths of all coalitions. Shapley (1953) imposes
the following four properties on a solution f :

• Efficiency: in the sense of budget-balance for the grand coalition, i.e.,
for all games (N, v),

∑
i∈N fi(N, v) = v(N).

• Symmetry: two players that are identical in terms of their contributions
to all coalitions should be paid the same by the solution.

• Additivity: if one defines a sum game (N, [v + w]), where for each S
[v + w](S) = v(S) + w(S), we impose that f(N, [v + w]) = f(N, v) +
f(N, w).

• Dummy: if a player contributes 0 to each coalition that she joins, the
solution should pay her 0.

Shapley (1953) shows that, over the entire class of TU games, there exists
a unique function satisfying these four properties. It is the function Sh(N, v)
that assigns to each player i in the game (N, v) the amount

Shi(N, v) =
∑

S,i∈S

(|S| − 1)!(|N | − |S|)!
|N |! [v(S) − v(S \ {i})].

That is, the Shapley value awards to each player the average of her marginal
contributions to each coalition. In taking this average, all orders of the
players are considered to be equally likely.

In Young (1985), a marginality axiom serves to characterize the Shapley
value, together with efficiency and symmetry – Shapley’s and Young’s the-
orems are to be viewed in parallel: while the former derives the marginal
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formula from additivity, the latter obtains the linear dependence on the mar-
ginal contributions from the marginality axiom. Hart and Mas-Colell (1989)
arrive at the Shapley value from the concept of a potential function – another
instance of marginality, since the Shapley value happens to be the gradient of
the unique potential function associated with a game. The content of these
axioms is present in the different implementation results that we survey now.
“If my offer is rejected today, I may not be around tomorrow”:
Based on a simpler procedure studied in Mas-Colell (1988), Hart and Mas-
Colell (1996) propose the following mechanism. At every round, there is a
set of active players and the proposer is chosen at random among them with
equal probability (in the first round all players in N are active). Once a
player is appointed as the proposer, she makes a feasible proposal to the set
of active players. Responses are sequential according to some specified order.
If all accept the proposal, it is implemented. If at least one responder rejects
it, a random device is used. While with probability ρ ∈ [0, 1) the set of
active players is unchanged and a new round starts, with probability (1− ρ)
the proposer is removed from the set of active players: she is left to use her
individual resources, and the others become the new set of active players in
a new round.

The result shown in Hart and Mas-Colell (1996) for TU games is the
following:

Proposition 4 Let (N, v) satisfy monotonicity. For any ρ, the unique sta-
tionary SPE payoff of the bargaining game with random removal of proposers
is the Shapley value payoff.

The restriction to stationary strategies is not new; in fact, it was already
explored in certain multilateral extensions of the Rubinstein game. In the
Hart and Mas-Colell game, stationarity amounts to the proposals taking into
account only the current active set of players, and responses being made in
terms of the payoff offered to a player in the given offer, thereby disregarding
other aspects of history.6

The intuition is perhaps most clear when ρ = 0. Start analyzing a sub-
game where the set of active players consists of only two players. Clearly, the
proposer can extract in the offer that she makes her marginal contribution

6Krishna and Serrano (1995) remove the stationarity assumption and show that the
uniqueness result remains as long as ρ ≤ 1/(|N | − 1). This is reminiscent of a result in
Herrero (1985) for the pure bargaining unanimity game.
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to the other player. Since the proposer is chosen at random, the unique SPE
of this bilateral subgame yields the Shapley value payoff. By induction, sup-
pose this much is true for subgames consisting of (|N |−1) players. Since the
proposer and her resources will be removed if her offer is rejected, she can
extract in it her marginal contribution to the remaining coalition. Again, the
random choice of proposers ensures that the final payoffs are the ones given
by the Shapley value of the game. The same intuition carries over when
ρ ∈ (0, 1).

Note a few salient features of this procedure. First of all, the presence
of randomness is important, both in the choice of proposers and in the de-
termination of the active set of players. Randomness is usually defended as
a way to preserve anonymity in the procedure. Second, if players drop out,
their resources go with them. As outlined above, this is the way in which
marginal contributions of players to coalitions become crucial. And third,
rejected proposals cause players to drop out, but the proposal itself is not
essential to the ensuing outcome: it is not used at all in the continuation.
As such, one could say that it is the worth of coalitions in the characteris-
tic function, and not the specifics of a given proposal, what determines the
final outcome of negotiations. When an offer is rejected and the proposer is
removed as an active player, the payments that she proposed and the inter-
action of her resources with those of others are completely ignored for the
rest of the bargain.

These features are also found in other implementation results of the Shap-
ley value. Pérez-Castrillo and Wettstein (2001) study a procedure similar to
that of Hart and Mas-Colell’s, but in which the random choice of proposers is
replaced with a bidding stage. Something similar happens in Winter (1994a),
who obtains an implementation result for the Shapley value of convex games.
The game in Gul (1989) differs from the ones just described mainly in that
the encounters at the negotiation table are always bilateral: if a proposal
is accepted, the acceptor “sells” her resources to the proposer and negoti-
ations continue in which the player who has “bought off” the resources of
other players effectively controls them. There is discounting across periods.
Gul’s result is that every stationary SPE that exhibits immediate agreements
yields payoffs that are close to the Shapley value payoffs when discounting is
removed (see also Hart and Levy (1999) and Gul (1999)).

One important direction for the Nash program is also suggested in Hart
and Mas-Colell (1996). Namely, the attempt is to apply the same extensive
form to larger domains of coalitional games beyond the TU class. This can
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potentially shed light on two questions: (a) to establish connections among
already known solution concepts that arise via the bargaining procedure, and
(b) to uncover extensions of solution concepts to domains where the theory is
less settled. Indeed, as already indicated in the previous section, they showed
that as ρ → 1 the average stationary SPE payoff converges to the Nash
solution of a pure bargaining problem. Furthermore, when the underlying
environment is a general non-transferable (NTU) game, the stationary SPE
payoffs of the procedure converge to the payoffs prescribed by the consistent
value of Maschler and Owen (1989, 1992).

Following this agenda, but in a different procedure, de Clippel (2004)
also obtains the Shapley value as its unique SPE payoff over the class of
TU games. However, his procedure yields a different solution when applied
to pure bargaining problems and a new value concept over the class of NTU
games: in bargaining problems, de Clippel’s procedure converges to the Raiffa
solution –more similar to Kalai-Smorodinsky’s–, and in general NTU games
to what he calls the “procedural” value, different from the other known
extensions of the Shapley value. In the de Clippel mechanism, bargaining
lasts R rounds for each given set of active players. In round r < R the Hart
and Mas-Colell procedure is played for the case of ρ = 1, whereas at round
R the ρ = 0 version of the Hart and Mas-Colell game is activated. In words,
when r < R a rejection is followed by a new random choice of proposer among
the current set of active players, while at round R the rejected proposer and
her resources are removed from the game, and the game continues with the
new set of active players. The result is obtained as R → ∞.

Finally, in a similar endeavor, but this time considering extensions to
games in partition function form, Maskin (2003) studies a procedure that
yields the Shapley value over some classes of characteristic functions, and a
new solution is proposed as the SPE outcome of the same game in the case
of partition functions that allow externalities.

5.2 The Nucleolus of a TU Game

A different single-valued solution concept for TU games is the nucleolus.
Suppose one is interested in the notion of coalitional stability as formalized
by the core, but wishes to insist on a solution that: (a) is always non-empty;
and (b) prescribes a single payoff vector for each game. The nucleolus is
one such core selection. The nucleolus was characterized by making use of
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different axioms.7

• Covariance: if one multiplies by the same arbitrary positive constant
and adds arbitrary scalars to the utility functions of each player, the
solution assigns to the transformed problem the same transformation
of the utility profile originally assigned by the solution. This is justified
when one works with von Neumann-Morgenstern expected utility and
one wishes to remain in the TU class after the transformation.

• Consistency: the predictions of the solution should be invariant to
the number of players in the game. Specifically, given a payoff vec-
tor x ∈ RN and a game (N, v), one can define the Davis-Maschler
(DM) reduced game for coalition S ⊆ N , (S, vxS), as follows: vxS(S) =
v(N)−

∑
j /∈S xj, while for non-empty proper subsets T of S, vxS(T ) =

maxQ⊆N\S{v(T ∪Q)−
∑

j∈Q xj}. Then, for every (N, v), every S ⊆ N
and every i ∈ S, f is consistent whenever fi(N, v) = fi(S, vxS).

A brief explanation regarding consistency is in order (see Thomson (1990)).
The idea is that the solution should be invariant to any subset of players
leaving the room and, after making use of some interactions between their
resources and those of the rest of the players, trying to apply the same solu-
tion. The DM reduced game, first proposed in Davis and Maschler (1965),
presupposes a payoff vector that is tentatively considered as the final payoff.
This reduced game stipulates that while the entire group that leaves the room
(coalition S) is left with v(N)−

∑
j /∈S xj for feasibility reasons, subcoalitions

T of S can threaten each other to determine their “virtual bargaining power”
by choosing optimally the subset of N \S with whom they wish to cooperate.
It is important to note that, apart from the nucleolus, the core and the kernel
also satisfy consistency in this sense.

In the first use of a consistency axiom to characterize a game theoretic
solution, Sobolev (1975) characterizes the nucleolus as the unique single-
valued solution satisfying symmetry, covariance and consistency (see Peleg
and Sudholter (2003, Chapter 6)). For completeness, we provide at present
the definition of the nucleolus (Schmeidler (1969)).

7Here I am using the term “nucleolus” to refer to what is sometimes termed the “prenu-
cleolus.” The difference between the two is that the former imposes individual rationality,
while the latter does not. In superadditive games, the ones we shall discuss, the prenucle-
olus is individually rational, so both prescribe the same payoff.
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For every vector x ∈ RN , and for every coalition S ⊆ N , we define a
number eS(x) to be the excess of coalition S at the payoff vector x, that is,
eS(x) =

∑
i∈S xi − v(S). We interpret this excess as a measure of welfare of

coalition S if the proposed vector is x. The bigger is eS(x), the bigger the
welfare of coalition S at x (that is, the less S would gain by departing from x).
Suppose we have a preestablished order for the coalitions S1, . . . , S2n. Then,
we call e(x) the vector of all excesses, that is, e(x) ∈ R2n

, with generic element
ei(x) =

∑
j∈Si

xj − v(Si), i = 1, . . . , 2n. The nucleolus of the game (N, v) is

the set of payoff vectors x ∈ RN such that
∑

i∈N xi = v(N) and satisfying
that there does not exist y,

∑
i∈N yi = v(N) such that e(y) is leximin superior

to e(x). (A vector is leximin superior to another if, when the coordinates of
both are arranged in increasing order, the former is lexicographic superior to
the latter). It turns out that the set of vectors satisfying this definition is
always a singleton.
“If my offer is rejected today, renegotiations with the rejectors are
called for”: In the context of bankruptcy problems, Aumann and Maschler
(1985) find an amazing application of the nucleolus. Given a bankruptcy
problem (E, d), where E ≥ 0 is an estate to be divided among n creditors,
and di ≥ 0 is creditor i’s claim, E ≤

∑
i∈N di, one can define a game in

characteristic function (N, v). In it, N is the set of creditors, and for every
coalition S, v(S) = max{0, E −

∑
i/∈S di}. Then, as argued in Aumann and

Maschler (1985), the nucleolus of this game coincides with the splits of the
estate recommended in the Jewish Talmud to solve bankruptcy problems. In
particular, the nucleolus of a two-player game so constructed is the split given
by the Talmudic “contested garment” (CG) rule to a two-creditor problem:

CGi(E, (di, dj)) = max{0, E − dj}+
E − max{0, E − di} − max{0, E − dj}

2
.

For bankruptcy problems, Serrano (1995a) proposes the following bar-
gaining procedure. Choose one of the creditors with the highest claim to
make an offer to the other creditors. Let the proposer be creditor 1 and
her offer be x = (x1, . . . , xn). Responses are sequential according to some
arbitrary order. If creditor j accepts the offer, she receives xj from the
proposer and leaves the game. Let A be the set of acceptors of the pro-
posal. If creditor j is the first to reject the proposal according to the order,
she receives zjCGj(x1 + xj, (d1, dj)) and creditor 1’s share is modified to
zj
1 = x1 + xj − zj. After this renegotiation with j, creditor 1 takes up the
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other rejectors in similar bilateral renegotiations. Say the next one is credi-
tor k. Then, creditor k receives zk = CGk(z

j
1 + xk, (d1, dk)) and 1’s share is

adjusted to zk
1 = zj

1 +xk −zk, and so on. Creditor 1’s final payoff is her share
after the bilateral renegotiation with the last rejector.

Proposition 5 For bankruptcy problems, in the bargaining procedure with
bilateral renegotiation appeals, if the proposer is one of the creditors with
the highest claim, the unique SPE payoff is the nucleolus of the associated
characteristic function game.

It is instructive to compare the salient features of this procedure to those
outlined for the Shapley value implementations. First, the procedure allows
for “partial agreements,” inspired by consistency. Implicitly, the proposer is
given more power, since she can release a creditor from further negotiations
simply by getting her to accept the offer. Second, when a rejection takes
place, the proposal itself is essential to the ensuing outcome: it is used to
determine the estate of each bilateral renegotiation, in which a “fair” alloca-
tion between proposer and rejector is sought. Finally, the proposer must be
chosen carefully. Far from being chosen at random, only when the proposer
is one with the highest claimant does uniqueness of the SPE obtain. It is
interesting to see how an important feature of the solution seems to show up
in the way one must choose proposers: while the randomness of the Shapley
value manifests itself in the random choice of proposers, in the nucleolus, an
outcome of maximization of some sort, the identity of the proposer is also
the solution to some “maximization” problem. Interestingly, Aumann and
Maschler (1985, Section 5) describe a coalitional procedure that also yields
the nucleolus: in this procedure, the only coalitions that form are the set
of holders of the (n − 1) highest claims and the lowest claimant (different
coalitions in that procedure would not yield the nucleolus shares).

Serrano (1993) provides a related implementation result of the nucleolus
of all 3-player superadditive games. Developing a variant of a model in Okada
(1996), Yan (2002) supports in stationary SPE a single-valued core selection
different from the nucleolus. Vidal-Puga (2004) proposes a backward induc-
tion implementation of a new single-valued solution concept, which he terms
the “selective value.” The selective value incorporates aspects of the DM
reduced game, which as already noted is of importance for the nucleolus.
Finally, Sonmez (1999) provides a remarkable result relating single-valued
cores and implementation in dominant strategies.
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5.3 An Example

As we already saw in the pure bargaining section, it will be instructive to look
at an example as a way to draw a comparison between the implementations
of the Shapley value and the nucleolus:

Example 3 Consider a 3-player game (N, v), in which v(N) = 60, v({1, 2}) =
v({1, 3}) = 54, while v(S) = 0 for all other coalitions S.

The reader can calculate that the Shapley value awards the split (38, 11, 11),
obtained in the Hart and Mas-Colell’s (1996) game when ρ = 0 as the average
of the following three vectors: (60, 0, 0) made when player 1 is the proposer,
(27, 6, 27) when it is player 2, and (27, 27, 6) when player 3 makes the offer.
Note the prevalence of the logic of marginal contributions to coalitions. When
player 1 proposes, she is aware that a rejection of her proposal would destroy
all possibilities of positive surplus between 2 and 3, and hence, she can get
away with a proposal where she extracts all the joint surplus. On the other
hand, if either player 2 or 3 propose, a rejection would lead to a symmetric
subgame between the two active players, who would have to split a surplus
of 54; this is why each responder must be offered 27. In this example, the
Shapley value is not in the core (coalitions {1, 2} and {1, 3} improve upon
it) because the proposals made by either player 2 or 3 take much power away
from player 1 in favor of the other responder.

On the other hand, the nucleolus awards the shares (54, 3, 3). Expressing
the game in terms of a bankruptcy problem, the estate to be shared is 60
and the vector of claims is (60, 6, 6). The nucleolus is obtained in Serrano’s
(1995a) procedure when the power of making the proposal is given to player
1 (this will avoid the power loss that she suffered in the Shapley value pro-
cedure). In thinking what offer to make, creditor 1 may reason as follows:
“well, the offer will be (x1, x2, x3). Creditors 2 and 3 are symmetric, so I’ll
offer x to each, and x = x2 = x3 should satisfy the bilateral renegotiation
equation x = CGi(x1 + x, (60, 6)) for i = 2, 3. The solution to this is x = 3.”
The unique SPE outcome is the nucleolus of the associated characteristic
function game, which of course is in the core. The reader can check that
making this offer maximizes creditor 1’s payoff, if she assumes that credi-
tors 2 and 3 respond optimally to her proposal. To establish this step, it is
important that the nucleolus of games generated by bankruptcy problems is
monotonic in the estate. However, the nucleolus is not monotonic in gen-
eral, and this fact has created difficulties for its implementation by means of
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consistency-based mechanisms.

5.4 Set-Valued Solution Concepts

In this final subsection, we mention contributions to the Nash program con-
cerning set-valued solution concepts. We briefly outline the insight achieved
by the non-cooperative analysis into each of these solutions.
The core: Together with the Shapley value, the core is probably the most
popular of the different cooperative solution concepts. This has translated
in a large number of contributions to its non-cooperative implementation.
The message that emerges from these different mechanisms that implement
the core is that coalitions can be put together by a leader who takes the
initiative of making proposals. To get the entire core as the set of equi-
librium payoffs, one needs to restore some “anonymity” to the mechanism,
neutralizing the advantage of the first mover. This has been accomplished
through randomness in the choice of proposer, stationarity in the solution
concept, or by making use of other devices by which proposals are not made
by anyone in the set of players in the game (they are made by either extra
players or are exogenously found as status quo situations). A partial list of
these and related contributions includes the following papers: Alcalde, Pérez-
Castrillo and Romero-Medina (1998), Banks and Duggan (2000), Baron and
Ferejohn (1989), Bergin and Duggan (1999), Bloch (1996), Chatterjee et
al. (1993), Evans (1997), Kalai, Postlewaite and Roberts (1979), Lagunoff
(1994), Moldovanu and Winter (1994, 1995), Montero (1999), Okada (1996),
Pérez-Castrillo (1994), Perry and Reny (1994), Selten (1981), Selten and
Wooders (1991), Serrano (1995b), Serrano and Vohra (1997), Wilson (1978),
Winter (1994b, 1996), Young (1998).
The bargaining sets: The different definitions of bargaining sets are an
attempt to model the credibility of the objections raised by coalitions (see
Aumann and Maschler (1964), Davis and Maschler (1967), Mas-Colell (1989),
Dutta et al. (1989)). From the point of view of implementation, the objec-
tion/counterobjection infeasibility implicit in these definitions can be solved
via sequentiality of moves. A useful trick to this effect, proposed in Ser-
rano and Vohra (2002a, b), is for the proposer to have to ratify a coalitional
agreement after she makes the proposal and the rest of the coalition ac-
cepts it. Other papers get around this difficulty by either allowing infeasible
off-equilibrium outcomes (Einy and Wettstein (1999)) or extra players in
the mechanism (Pérez-Castrillo and Wettstein (2000)); see also Morelli and
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Montero (2003) for a different definition of the bargaining set. All these
contributions help to clarify these different versions of bargaining sets, but
more work is needed to better capture notions of credible objections in non-
cooperative coalitional bargaining.
The kernel: The kernel was introduced in Davis and Maschler (1965) and
axiomatized by Peleg (1986) using the DM reduced game. Inspired by this,
Serrano (1997) proposes a non-cooperative model that yields the kernel in
stationary equilibria. The way bilateral negotiations are portrayed between
any pair of players generalizes the ideas expressed for the implementation
of the nucleolus. In addition, the kernel is reinterpreted, shown to be free
from cardinal interpersonal utility comparisons. In Montero (2002), a non-
cooperative bargaining model is developed to support the kernel of apex
games.
The stable sets: The stable sets were proposed by von Neumann and Mor-
genstern (1944). One problem with the definition, which disregards indirect
dominance, was highlighted in Harsanyi (1974), who arrived at this criticism
as a consequence of his non-cooperative analysis.
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