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1 Introduction

When asset markets are incomplete, there are almost always many Pareto improving policy interventions, if

there are multiple commodities and households. Remarkably, these policies do not involve adding any new

markets.

Focusing on tax policy, we create a framework for proving the existence of Pareto improving taxes, for

computing them, and for estimating the size of the improvement.

The protagonist is the price adjustment following an intervention. Its role is to improve on asset insurance

by redistributing endowment wealth across states, as anticipated by Stiglitz (1982). The price adjustment

is determined by how taxes and prices affect aggregate, not individual, demand.

If taxes targeting current incomes are Pareto improving, then they must cause an equilibrium price

adjustment, Grossman (1975). Conversely, we prove that if the price adjustment is sufficiently sensitive to

risk aversion, then for almost all risk aversions and endowments, Pareto improving taxes exist. We show how

to verify this sensitivity test with standard demand theory, which Turner (2003a) extends from complete to

incomplete markets.

To numerically identify the Pareto improving taxes, we give a formula for the welfare impact of taxes. It

requires information on the individual marginal utilities and net trades, and on the derivative of aggregate,

but not individual, demand with respect to taxes and prices.

To bound the rate of Pareto improvement, we define an equilibrium’s insurance deficit. Pareto optimality

obtains exactly when the insurance deficit is zero. If the tax policy targets only current incomes, then the

implied price adjustment determines the best rate, by integration against the covariance of insurance deficit

and net trades across agents. The equilibrium’s insurance deficit arises from the agents’ component of

marginal utility for contingent income standing orthogonally to the asset span.

Many different tax policies generically support a Pareto improvement, because they all pass this one

sensitivity test. These policies include (a) taxes on asset purchases, as in Citanna, Polemarchakis, and

Tirelli (2001), (b) lump-sum taxes on current income plus one flat tax on asset purchases, similar to Citanna,

Kajii, and Villanacci (1998) and to Mandler (2003), (c) asset measurable taxes on capital gains, and (d)
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excise taxes on current commodities, similar to Geanakoplos and Polemarchakis (2002), who emphasize

consumption externality over asset incompleteness.

Some policies fail the sensitivity test and never improve everyone’s welfare. For example, reallocate

current incomes lump-sum and force households to keep original asset demands. If utilities are time separable,

they keep future commodity demands, inducing utilities for current consumption. The First Welfare Theorem

implies this tax policy is not Pareto improving. The example flunks the sensitivity test because the future

price adjustment is zero, independently of risk aversion. For another example, for each asset tax purchases

and subsidize sales at the same rate. Then each asset’s price adjusts to offset the tax, and the final cost of

holding a portfolio of assets stays the same. Demand and welfare stay the same. The example flunks the

sensitivity test because the price adjustment is the negative of the tax, independently of risk aversion.

To ultimately decide whether a tax policy generically supports a Pareto improvement, we give primitives

for the sensitivity of price adjustment. This requires information about the derivatives of aggregate demand

with respect to policy and prices. The price adjustment is sensitive to risk aversion if there is (1) Full

Reaction of Demand to Policy, and (2) Sufficient Independence of the Reactions of Demand (to Policy and

to Prices). That is, if (1) there is high enough rank in the derivative of aggregate demand with respect

to policy, and (2) it is possible to affect the derivative of aggregate demand with respect to prices while

preserving the derivative with respect to policy, by perturbations to risk aversion. The first example violates

(1); the rank is below the number of households by budget balance. The second example violates (2); the

derivatives are each other’s inverses, whatever the risk aversion.

The existence result for a tax policy, that it supports a Pareto improvement at any equilibrium, speaks

not of every economy but only of a generic economy. At some economies the endowments are Pareto optimal,

so that no price adjustment could lead to a Pareto improvement; at equilibria of other economies, everyone

has the same marginal propensity to demand, so that no price adjustment exists.

In turn, to decide whether a tax policy meets primitives (1), (2), we invoke an extension of Slutsky theory

from complete to incomplete markets.

Turner (2003a) develops the Slutsky theory of demand for commodities and assets in incomplete markets.

First, it decomposes the derivative of demand with respect to commodity prices, asset prices, and asset payoffs
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into an income effect and a Slutsky substitution effect. Next, it identifies the properties that every Slutsky

matrix must satisfy, and conversely proves that any matrix satisfying these properties is the Slutsky matrix

of some demand. Finally, it shows that the Slutsky matrix can be perturbed arbitrarily, subject only to

maintaining these properties, by perturbing the second derivative (risk aversion) of the utility generating the

original Slutsky matrix, while preserving demand and the income effect matrix. These results for incomplete

markets mirror exactly those for complete markets derived by Geanakoplos and Polemarchakis (1980).

For some economies, the price adjustment function does not admit any Pareto improving interventions,

even though the equilibrium allocation is not Pareto optimal. By taking Slutsky perturbations of demand,

we show that for almost all nearby economies the price adjustment function does admit them. Slutsky

perturbations are thus the key to why there exist almost always Pareto improving taxes.

Geanakoplos and Polemarchakis (1986) began the study of generic improvements with incomplete mar-

kets, and introduced the idea of Slutsky perturbations from quadratic utility perturbations. Since they

allowed the central planner to decide the agents’ asset portfolios, they did not need to go beyond perturbing

the Slutsky matrices of commodity demand. To show why weaker interventions may improve welfare, such

as anonymous taxes and changes in asset payoffs, it became necessary to take into account how agents’

portfolio adjustments caused a further price adjustment. Naturally, this required perturbing asset demand

as well as commodity demand. The lack of a Slutsky theory for incomplete markets blocked contributions

for over ten years1, until a breakthrough by Citanna, Kajii, and Villanacci (1998), who analyzed first or-

der conditions instead of Slutsky matrices. Researchers have extended the theory of generic improvements

with incomplete markets to many policies by applying this first order approach; Cass and Citanna (1998),

Citanna, Polemarchakis, and Tirelli (2001), Bisin et al. (2001), and Mandler (2003).

The Slutsky approach has certain advantages. First, to compute the Pareto improving interventions

from my formula the policymaker needs to know the derivative of aggregate, but not individual, demand.

In the first order approach the policymaker needs to know the second derivative of every individual’s utility,

i.e., the derivative of every individual’s demand function. Second, to express the economic intuitions the

economist can keep to the familiar language of demand theory, as in (1), (2), instead of the abstract language
1The sole one is Elul (1995).
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of submersions. Third, every time the researcher thinks a new result via Slutsky perturbations, he saves

himself the work of implicitly reworking demand theory anew via quadratic utility perturbations.

Turner (2003b) adds to the result on the generic existence of Pareto improving financial innovation, by

Elul (1995) and Cass and Citanna (1998). It argues that if the price adjustment to financial innovation passes

the test of sufficient sensitivity to risk aversion, then generically Pareto improving financial innovation exists.

Then Slutsky perturbations reveal that substitution free financial innovation in an existing asset passes this

test indeed.

These results suggest that the reason any policy would generically admit Pareto improving parameter

values, be it fiscal, financial or otherwise, is precisely the passing of the sensitivity test. They also suggest

that Slutsky perturbations are useful in discovering which other policies pass this test.

The paper continues as follows. Section 2 presents a general model of tax policy, and details several

examples of tax policy. Section 3 has the formula for the welfare impact of taxes. Section 4 obtains the

generic existence of Pareto improving taxes from the sensitivity condition on price adjustment, which it then

reinterprets in terms of the Reaction of Demand to Prices and to Policy. Section 5 summarizes the demand

theory in incomplete markets necessary to check the sensitivity in terms of the Reactions, then section 6

checks it for the several tax policies. Section 7 estimates the rate of Pareto improvement. Section 8 derives

the welfare impact formula, and spells out the notation and the parameterization of economies.

2 GEIT model

Households h = 1, ...,H know the present state of nature, denoted 0, but are uncertain as to which among

s = 1, ..., S nature will reveal in period 1. They consume commodities c = 1, ..., C in the present and

future, and invest in assets j = 1, ..., J in the present only. Each state has commodity C as unit of

account, in terms of which all value is quoted. Markets assign to household h an income wh ∈ RS+1++ , to

commodity c < C a price p·c ∈ RS+1++ , to asset j a price qj ∈ R and future yield aj ∈ RS . We call

(p·c)
C
1 = p = (ps·) the spot prices, q = (qj) the asset prices, (aj) = a = (as) the asset structure, and

4



w = (wh) the income distribution, P ≡ R(C−1)(S+1)++ × RJ .2 Taxes are t ∈ T, T some Euclidean space,

negative coordinates corresponding to subsidies. The set of budget variables is

b ≡ (P, a,w, t) ∈ B ≡ P×RJ×S ×R(S+1)H++ × T

and has some distinguished nonempty relatively open subset B0 ⊂ B. B0 is B with T = {0}.

Demand for commodities and assets d = (x, y) : B0 → R
C(S+1)
++ ×RJ is a function on B0. The demand

dh = (xh, yh) of household h depends on own income only, (xh, yh)(P, a,w, t) = (xh, yh)(P, a,w0, t) if

wh = w0h. Tax payment τ : B00× codom(d)→ RS+1×dim(T ) is a function such that τ(b0, d)t is the actual

tax payment, if demand and taxes are d, t. Tax policy (τh)h is anonymous if τh is independent of h,

and tax revenue τ is τ(b0, (d
h)h) ≡ Στh(b0, dh).

An economy (a, e, t, t∗, d) consists of an asset structure a, endowments e, taxes t, distribution rates

t∗, and demands d. For each household h, endowments specify a certain number ehsc > 0 of each

commodity c in each state s, the distribution rates specify a fraction th∗ > 0 with Σth∗ = 1, and

demands specify a demand dh. Let Ω be the set of (a, e, t, t∗, d).3

A list (P, r; a, e, t, t∗, d) ∈ P×RS+1 ×Ω is a GEIT ↔

P
(xh(b)− eh) = 0

P
yh(b) = 0 r − τ(b0, (d

h(b))h)t = 0

and b ≡ (P, a, (whs = eh0s ps + th∗rs)hs , t) ∈ B0

We say (a, e, t, t∗, d) ∈ Ω has equilibrium (P, r) ∈ P×RS . A GEI is a GEIT with t = 0.

Under neoclassical assumptions (a, e, 0, t∗, d) ∈ Ω has an equilibrium4, and then the implicit function

theorem gives conditions for a neighborhood of (a, e, 0, t∗, d) to have an equilibrium.
2The numeraire convention is that unity is the price of sC,s ≥ 0, which P therefore omits. The addition to p of the

sC,s ≥ 0 coordinates, bearing value unity, is denoted p. We use the notation P = (p, q) ∈ P.
3The appendix spells out the parameterization of demand d.
4Geanakoplos and Polemarchakis (1986).
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2.1 Neoclassical demand

Consider the budget function βh : B0 ×RC(S+1) ×RJ → RS+1

βh(b, x, y) ≡ (p0sxs − whs )Ss=0 −

⎡⎢⎣ −q0
a0

⎤⎥⎦ y
Demand dh = (xh, yh) is neoclassical0 if T = {0} and there is a utility function u : R

C(S+1)
+ → R with

u(xh(b)) = max
Xh
0 (b)

u throughout B0 Xh
0 (b) ≡ {x ∈ R

C(S+1)
+ | βh(b, x, y) = 0, some y ∈ RJ}

More generally, demand dh = (xh, yh) is neoclassical if there is a utility function u : R
C(S+1)
+ → R with

u(xh(b)) = max
Xh(b)

u throughout B0 Xh(b) ≡ {x ∈ RC(S+1)+ | βh(b0, x, y)+τh(b0, x, y)tb = 0, some y ∈ RJ}5

If taxes tb = 0 are zero, Xh(b) = Xh
0 (b). Thus neoclassical demand restricts to neoclassical0 demand.

Neoclassical welfare is v : B0 → RH , v(b) = (vh(b)) ≡ (uh(xh(b))).

The interpretation of X is that the cost of consumption x in excess of income w is financed by

some portfolio y ∈ RJ of assets, net of taxes. A portfolio specifies how much of each asset to buy or sell

(yj ≷ 0), and ajs how much value in state s an asset j buyer is to collect, a seller to deliver.

2.2 Four examples of tax policy

We detail T,B0, τh for four tax policies.6

Tax rates on asset purchases t ∈ T = RJ :

τ =

⎡⎢⎣ y0+

0

⎤⎥⎦
B0 = {(P, a,w, t) ∈ B | q + tI ∈ aRS++ for all subsets I , a has linearly independent rows}7

5The functions b→ b0,→ tb are (p, q, a, w, t)→ (p, q, a, w, 0),→ t. Here y is defined by x, if a is full rank.
6For a vector v of reals, v+ is defined by (v+)m = max(0, vm).
7For a subset I ⊂ {1, ..., J} of assets, tI is defined by (tI)j being tj or 0 according as j ∈ I or not.
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Lump-sum taxes on current incomes plus flat tax rate on asset purchases t0 = (l0, f 0) ∈ T = RH ×R :

τh =

⎡⎢⎣ 1h0 10y+

0 0

⎤⎥⎦
B0 = {(P, a,w, t) ∈ B | q + f1I ∈ aRS++ for all subsets I, a has linearly independent rows}

Asset measurable tax rates on future capital gains t ∈ T = a0RJ ⊂ RS . Capital gain is ghs = (p0sxs−whs )+.

Measurability has every state’s tax rate ts = a0sL depending linearly on the asset payoffs:8

τh =
£
gh
¤

B0 = {(P, a,w, t) ∈ B | q ∈ aRS++, a has linearly independent rows, ts > −1}

Tax rates on net purchases of current commodities t ∈ T = RC−1. (Excise taxes.) Given endowments9

τh =

⎡⎢⎣ (x0 − eh0)0+

0

⎤⎥⎦
B0 = {(P, a,w, t) ∈ B | q ∈ aRS++, a has linearly independent rows, p0c + tc > 0}

Debreu’s smooth preferences imply neoclassical demand exists, and is smooth in a neighborhood of b if

yj , p
0
sxs − ws, x0c − e0c 6= 0 for all j, s, c. We term active a GEI if it satisfies these inequalities for every

household, in the context of these four examples, or if all demands are locally smooth, in a general context.

3 Welfare impact of taxes

We think of a smooth path t = t(ξ) of taxes through t = 0, and of infinitesimal taxes as its initial velocity

ṫ = ṫ(0). Suppose the active GEI (P, r; a, e, 0, t∗, d) is regular in that such a path lifts locally to a unique

path (P, r; a, e, t, t∗, d) = (P (ξ), r(ξ); a, e, t(ξ), t∗, d) of GEIT through the GEI. Then welfare is v(b(ξ))

with b(ξ) = (P (ξ), r(ξ); a, (whs = e
h0
s ps(ξ) + t

h
∗rs(ξ))

h
s , t(ξ)). Thus taxes impact welfare only via the budget

variables they imply. By the fundamental theorem of calculus the welfare impact is the integral of Dbvh · ḃ,
8Occasionally we view g, t as in RS+1 with g0, t0 = 0. For a point g ∈ R(S+1)k, [g] ∈ R(S+1)k×S+1 denotes the matrix

whose sth column is gs· ∈ Rk in the sth block and zero in all the other k-blocks. If k = 1, as here, this is a diagonal

matrix with g along the diagonal. See ”aggregate notation” in the appendix.
9Occasionally we view t as in RC with tC = 0.
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which by abuse we call the welfare impact. We compute this product in the appendix, using the envelope

theorem for Dbvh and the chain rule for ḃ, where the details of the notation appear.

Proposition 1 (Envelope) The welfare impact v̇ ∈ RH of infinitesimal taxes ṫ at a regular GEI is

v̇ = (λ)0ṁ ṁ = (th∗ ṙ − τhṫ)h| {z } −zṖ|{z}
PRIV ATE PUBLIC

Here (λ)0 collects the households’ marginal utilities of income across states, and ṁ the impact on their

incomes, private and public. The private one is the impact ṙ on revenue distributed at rate t∗ ∈ RH net

of the impact τhṫ on tax payments, and the public one is the impact on the value of their excess demands

z in all nonnumeraire markets, that implied by the impact Ṗ on prices.

Policy targeting welfare must account for the equilibrium price adjustment it causes. The equilibrium

price adjustment undoes the excess aggregate demand that policy causes, and depends on the reactions of

aggregate demand to both policy and prices.

Proposition 2 (Revenue Impact) At a regular GEI ṙ = τ ṫ.

This follows from r = τ t, the chain rule, and t = 0 at a GEI. At a regular GEI there is a price

adjustment matrix dP , smooth in a neighborhood of it, such that Ṗ = dP ṫ. Thus the welfare impact is

dv = (λ)0
¡
(th∗τ − τh)h − zdP

¢
A policy targeting current incomes is (first order) Pareto improving only if taxes cause a price adjustment.

For if τhs≥1ṫ = 0, dP ṫ = 0 then Σ 1
λh0
v̇h = Σ 1

λh0
λh0ṁh = Σṁh

0 = Σ(t
h
∗τ0 − τh0) = 0 so v̇ À 0 is impossible.

Next we prove a converse.

4 Framework for generic existence of Pareto improving taxes

We prove the generic existence of Pareto improving taxes, stressing the role of changing commodity prices over

the role of the particular tax policy. Existence follows directly from a hypothesis on price adjustment. Thus
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the tax policy is relevant only insofar as it meets the hypothesis on price adjustment. Then we reinterpret

this hypothesis on dP in terms of primitives, the Reaction of Demand to Prices and the Reaction of Demand

to Policy.

Pareto improving taxes exist if there exists a solution to dvṫÀ 0. In turn this exists if dv ∈ RH×dimT

has rank H, which in turn implies that tax parameters outnumber household types dimT ≥ H. The key

idea is that if dv = (λ)0(th∗τ − τh)h − (λ)0zdP is rank deficient, then a perturbation of the economy would

restore full rank by preserving the first summand but affecting the second one. Namely, if some economy’s

dP is not appropriate, then almost every nearby economy’s dP is.

We have in mind a perturbation of the households’ risk aversion (D2uh)h, which affects nothing but

dP in the welfare impact dv. Now, to restore the rank the risk aversion must map into (λ)0zdP richly

enough. Since this map keeps (λ)0z fixed, we require that (λ)0z have rank H and that dP be sufficiently

sensitive to risk aversion. Cass and Citanna (1998) gift us the first requirement:

Fact 1 (Full Externality of Price Adjustment on Welfare) Suppose asset incompleteness exceeds house-

hold heterogeneity S−J ≥ H > 1. Then generically in endowments every GEI has (λhsz
h
s1)

h≤H
s≤H−1 invertible.

Fact 2 At a regular GEI, dP is locally a smooth function of risk aversion; the marginal utilities λi, tax

payments τ i, and excess demands zi are locally constant in risk aversion.

For k ∈ R(S+1)(C−1)+J we say that a commodity coordinate is one of the first (S + 1)(C − 1).

Definition 1 At a regular GEI, dP is k-Sensitive to risk aversion if for every α ∈ Rdim(T ) there is

a path of risk aversion that solves k0dṖ = α0.10 It is Sensitive to risk aversion if it is k-Sensitive to risk

aversion for all k with a nonzero commodity coordinate.

Figure 1

Assumption 1 (Generic Sensitivity of dP ) If H > 1, then generically in endowments and utilities, at

every GEI dP is Sensitive to risk aversion.

10The appendix spells out a path of risk aversion. Here the dot denotes differentiation with respect to the path’s parameter.
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Figures 2, 3

This assumption banishes the particulars of the tax policy, leaving only its imprint on dP. Of course,

dP is defined only at regular GEI, so implicitly assumed is that regular GEI are generic in endowments.

Theorem 1 (Logic of Pareto Improvement) Fix the tax policy and the desired welfare impact v̇ ∈ RH .

Grant the Generic Sensitivity of dP under dim(T ), S − J ≥ H > 1, C > 1. Then generically in utilities

and endowments, at every GEI v̇ is the welfare impact of some ṫ ∈ T . Hence a nearby Pareto superior

GEIT exists.

Proof. We fix generic endowments, utilities from the fact, assumption, and apply transversality to

1

2

3

4

nonnumeraire excess demand equations

γ0(λ)0
¡
(th∗τ − τh)h − zdP

¢
= 0

r − τt = 0

γ0γ − 1 = 0

Suppose this is transverse to zero and the natural projection is proper. By the transversality theorem, for

generic endowments and utilities, this system of (dim p+dim q)+dim(T )+dim r+1 equations is transverse

to zero in the remaining endogenous variables, which number dim p + dim q + dim r + H. By hypothesis

dim(T ) ≥ H, so for these endowments and utilities the preimage theorem implies that no endogenous

variables solve this system—every GEI has dv with rank H.

This is transverse to zero. As is well known, we can control the first equations by perturbing one

household’s endowment. For a moment, say that we can control the second equations and preserve the top

ones. We then perturb the third equations and preserve the top two, by perturbing r as well as numeraire

endowments—to preserve incomes whs = e
h0
s ps + t

h
∗rs. We control the fourth equation and preserve the top

three, by scalar multiples of γ. So transversality obtains if our momentary supposition on γ0dv holds:

Write k0 ≡ γ0(λ)0z. Differentiating γ0dv with respect to the parameter of a path of risk aversion,

α0 =def
d

dξ
γ0(λ)0

¡
(th∗τ − τh)h − zdP

¢
= −γ0(λ)0z d

dξ
(dP ) = −k0dṖ
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since λ, τ i, z are locally constant. We want to make α arbitrary, and we can if dP is k-sensitive, which

holds by assumption if k has a nonzero commodity coordinate. It has: Full Externality of Price Adjustment

on Welfare, C > 1, γ 6= 0 imply γ0(λ)0z is nonzero in the coordinate m = s1 for some s ≤ H − 1.

That the natural projection is proper we omit. (The numeraire asset structure is fixed.)

We have seen that tax policy targeting current incomes, such as taxes on asset purchases, on net purchases

of current commodities, or lump-sum taxes on current incomes, supports a Pareto improvement only if there is

a price adjustment. Conversely, tax policy generically supports a Pareto improvement if the price adjustment

is sufficiently sensitive to risk aversion. Therefore price adjustment is pivotal.

4.1 Expression for Price Adjustment

Before we can check whether a particular policy meets the Sensitivity of dP to Risk Aversion, we need

an expression for dP. We express dP in terms of the Reaction of Demand to Prices and the Reaction of

Demand to Policy, notions which are well defined at an active GEI.

Let an underbar connote the omission of the numeraire in each state, define

d : B0 → R
(C−1)(S+1)
++ ×RJ d = Σdh

and the aggregate demand of (a, e, t, t∗) ∈ Ω

da,e,t,t∗(p, q, r) ≡ d(p, q, a, (whs = eh0s ps + th∗r)hs , t)

with domain Pa,e,t,t∗ ≡ {(p, q, r) ∈ P×RS+1 | (p, q, a, (whs = eh0s ps + th∗rs)hs , t) ∈ B0}.11

Now define

∇ ≡ Dp,qda,e,t,t∗ the Reaction of Demand to Prices

∆ ≡ Drda,e,t,t∗ · τ +Dtda,e,t,t∗ the Reaction of Demand to Policy12
(1)

Suppose a path of GEIT (P (ξ), r(ξ), a, (eh0s ps(ξ) + t
h
∗rs(ξ))

h
s , t(ξ)) through an active GEI. Then

da,e,t,t∗(P, r) =

⎡⎢⎣ P
eh

0

⎤⎥⎦
11Pa,e,t,t∗ is open, as the preimage by a continuous function of the open B0. Recall the notation P 0 = (p0, q0).
12Clearly Drda,e,t,t∗ = ΣDwhd

hth∗ .
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is an identity in the path’s parameter ξ. Differentiating with respect to it,

∇Ṗ +Drda,e,t,t∗ · ṙ +Dtda,e,t,t∗ · ṫ = 0

Substituting for ṙ = τ ṫ from the Revenue Impact proposition,

∇Ṗ +∆ṫ = 0

An active GEI is regular if ∇ is invertible. By the implicit function theorem, a regular GEI lifts a local

policy through t = 0 to a path of GEIT through itself, such as the one just above.

Proposition 3 (Price Adjustment) At a regular GEI the Price Adjustment to infinitesimal taxes is

dP = −∇−1∆ (dP )

where the Reactions ∇,∆ are defined in (1).

4.2 Primitives for the Sensitivity of Price Adjustment to Risk Aversion

Given the Logic of Pareto improvement, we want to check whether a policy meets the Generic Sensitivity of

dP . We provide primitives for the Sensitivity of dP , thanks to expression (dP )13 :

dṖ = −∇−1∆̇+∇−1∇̇∇−1∆

Recall equation k0dṖ = α0 from definition 1. If ∆̇ = 0 and k̃0 ≡def k0∇−1 then the equation reads

k̃0∇̇∇−1∆ = α0. If ∆ has rank dim(T ) then there is a solution β to β0∇−1∆ = α0 so it suffices to solve

k̃0∇̇ = β0. Thus dP is k-Sensitive if (1) ∆ has rank dim(T ), (2) k̃ is nonzero everywhere, (3) whenever K̃

is nonzero everywhere and β ∈ R(S+1)(C−1)+J , there is a path of risk aversion that solves ∆̇ = 0, K̃0∇̇ = β0.

(Take k̃ = K̃.) Thus Generic Sensitivity of dP follows from the following (independently of the k̃ defined):

Lemma 1 (Activity) If H > 1, generically in endowments every GEI is active and regular.14

13Applying the chain rule to JJ−1 = I gives d
dξ
J−1 = −J−1( d

dξ
J)J−1.

14We do not argue this relatively simple statement. For these endowments, both ∆ and dP are defined.
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Assumption 2 (Full Reaction of Demand to Policy) If C > 1, generically in utilities and endow-

ments, at every GEI ∆ has rank dim(T ).

Lemma 2 (Mean Externality of Price Adjustment on Welfare is Regular) Generically in utilities,

at every regular GEI, whenever k is nonzero in some commodity coordinate, k̃0 ≡ k0∇−1 is nonzero every-

where.

Assumption 3 (Sufficient Independence of Reactions) If H > 1, then generically in endowments

and utilities, whenever k̃ ∈ R(S+1)(C−1)+J is nonzero everywhere and β ∈ R(S+1)(C−1)+J , at every GEI

there is a path of risk aversion that solves ∆̇ = 0, k̃0∇̇ = β0.

These primitives for the Generic Sensitivity of dP and the Logic of Pareto Improvement yield

Theorem 2 (Test for Pareto Improvement) Fix the tax policy and the desired welfare impact v̇ ∈ RH .

Say the policy passes the Full Reaction of Demand to Policy and the Sufficient Independence of Reactions

under dim(T ), S−J ≥ H > 1, C > 1. Then generically in utilities and endowments, at every GEI v̇ is the

welfare impact of some ṫ ∈ T . Hence there is a nearby Pareto superior GEIT.

Next we illustrate how to check whether a tax policy passes this test via demand theory in incomplete

markets, as developed by Turner (2003a). We show that the four tax policies in the introduction pass this

test, and therefore generically admit Pareto improving taxes, owing to the unifying logic of a sensitive price

adjustment. At a GEI ∇ will turn out to be independent of the policy, so we will verify the lemma on the

Mean for one and all policies.

5 Summary of demand theory in incomplete markets

We must check whether each policy meets the Full Reaction of Demand to Policy and the Sufficient Indepen-

dence of Reactions. For this we report the theory of demand in incomplete markets as developed by Turner

(2003a). The basic idea is to use decompositions of ∆,∇ in terms of Slutsky matrices, and then to per-

turb these Slutsky matrices by perturbing risk aversion, while preserving neoclassical demand at the budget

variables under consideration. We stress that this theory is applied to, but independent of, equilibrium.
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5.1 Slutsky perturbations

Define H : RC
∗×C∗ → RC

∗+J+(S+1)×C∗+J+(S+1) as

H(D) =

⎡⎢⎢⎢⎢⎣
D 0 −[p]

0 0 W

−[p] W 0 0

⎤⎥⎥⎥⎥⎦
where p,W = [−q : a] ∈ RJ×S+1 of rank J are given, and C∗ = C(S + 1). In other notation,

H(D) =

⎡⎢⎣ M(D) −ρ

−ρ0 0

⎤⎥⎦ where M(D) =

⎡⎢⎣ D 0

0 0

⎤⎥⎦ , ρ =
⎡⎢⎣ [p]

−W

⎤⎥⎦
In showing the differentiability of demand, the key step is the invertibility of H(D2u). Slutsky matrices

are H(D2u)−1. If D is symmetric, so are H(D),H(D)−1 when defined. Thus we write

H(D)−1 =

⎡⎢⎣ S −m

−m0 −c

⎤⎥⎦
where S, c are symmetric of dimensions C∗ + J, S +1 and m = (mx,my) is C∗ + J × S +1. A Slutsky

perturbation is ∇ = H(D)−1 − H(D2u)−1, for some symmetric D ≈ D2u that is close enough for

the inverse to exist. A Slutsky perturbation is a perturbation of Slutsky matrices rationalizable by some

perturbation of the Hessian of utility. Being symmetric, we write

∇ =

⎡⎢⎣ Ṡ −ṁ

−ṁ0 −ċ

⎤⎥⎦
and view a Slutsky perturbation as a triple Ṡ, ṁ, ċ. We identify Slutsky perturbations, without reference to

the inversion defining them, in terms of independent linear constraints on ∇ :

on Ṡ ρ0Ṡ = 0 and Ṡ is symmetric

on ṁ ρ0ṁ = 0 and ṁxW
0 = 0

on ċ ċW 0 = 0 and ċ is symmetric

(constraints)

Theorem 3 (Identification of Slutsky perturbations, Turner 2003a) Given u smooth in Debreu’s

sense and b in B0 with t = 0, consider the Slutsky matrices H(D2u)−1. Every small enough Slutsky
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perturbation ∇ satisfies (constraints). Conversely, every small enough perturbation ∇ that satisfies

(constraints) is Slutsky: H(D2u)−1+∇ is the inverse of H(D) for some D that is negative definite and

symmetric.

We use only Slutsky perturbations with ṁ, ċ = 0 by choosing Ṡ as follows. A matrix Ṡ ∈

R(C−1)(S+1)+J×(C−1)(S+1)+J is extendable in a unique way to a matrix Ṡ ∈ RC∗+J×C∗+J satisfying

ρ0Ṡ = 0; we call Ṡ the extension of Ṡ. It is easy to verify that if Ṡ is symmetric, so is its extension. In

sum, any symmetric Ṡ defines a unique Slutsky perturbation with ṁ, ċ = 0.

5.2 Decomposition of demand

The relevance of Slutsky perturbations is that they allow us to perturb demand functions directly, while

preserving their neoclassical nature, without having to think about utility. This is because Slutsky matrices

appear in the decomposition of demand Dp,qd at b with t = 0 :

Dp,qd
h = ShLh+ −mh · ([xh]0 : yh0) (dec)

Here Lh+ a diagonal matrix displaying the marginal utility of contingent income

Lh+ ≡

⎡⎢⎣ Lh 0

0 λh0IJ

⎤⎥⎦ Lh ≡

⎡⎢⎢⎢⎢⎣
· 0

λhs IC−1

0 ·

⎤⎥⎥⎥⎥⎦
mh = Dwhd

h, and ([xh]0 : yh0) is the transpose of d
h : 15

[xh]0 =

⎡⎢⎢⎢⎢⎣
· 0 0

0 xh0s 0

0 0 ·

⎤⎥⎥⎥⎥⎦
(S+1)×(C−1)(S+1)

yh0 =

⎡⎢⎣ yh0

0

⎤⎥⎦
S+1×J

Writing (eh0s ps)s as [eh]0p, we have Dp,q[eh]0p = ([eh]0 : 0), so from (1) we have

∇ = ΣDp,qdh +Dwhdh · ([eh]0 : 0)
15We view p as one long vector, state by state, and p, q as an even longer one; (∗ : #) denotes concatenation of ∗,#.
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Inserting decomposition (dec),

∇ = ΣShLh+ −Dwhdh · ([xh − eh]0 : yh0)

Writing zh0 ≡ ([xh − eh]0 : yh0) this reads

∇ = ΣShLh+ −Dwhdh · zh0 (∇)

This decomposition of the aggregate demand of (a, e, t, t∗) ∈ Ω generalizes Balasko 3.5.1 (1988) to

incomplete markets.

One implication of the decomposition is that ∇ is independent of the policy. So let us now provide

Proof that Mean Externality of Price Adjustment on Welfare is Regular. Consider the

manifold of regular GEI and a k that is nonzero in some commodity coordinate. Fix a coordinate n ≤

(S + 1)(C − 1) + J and apply transversality to

nonnumeraire excess demand equations

(k0∇−1)n = 0

This is transverse to zero. The burden of the argument is to control the bottom equation independently of

the top ones. Consider a Slutsky perturbation with ṁ1, ċ1 = 0 and Ṡ
1
symmetric. Then with k̃0 ≡ k0∇−1

d

dξ
(k0∇−1)n = −(k0∇−1∇̇∇−1)n = −(k̃0∇̇∇−1)n

Since ∇−1 is invertible, there is α such that α0∇−1 is the nth basis vector, so it suffices to solve

k̃0∇̇ = α0. From decomposition (∇) ∇̇ = Ṡ1L1+, so we want to solve k̃0Ṡ
1
L1+ = α0 or k̃0Ṡ

1
= α0(L1+)

−1 ≡ β0

for symmetric Ṡ
1
. Since k̃ 6= 0, say k̃p 6= 0. Let column o 6= p of Ṡ

1
be 1p

βo
k̃p

so that (k̃0Ṡ
1
)o = βo. To

preserve symmetry, let column p of Ṡ
1
be βo

k̃p
in coordinate o 6= p and arbitrary x in coordinate p, so

that (k̃0Ṡ
1
)·p = Σo6=pk̃o

βo
k̃p
+ k̃px. We can set this to βp and solve for x since k̃p 6= 0.

By the transversality theorem, for generic utilities in Debreu’s setting, the system of dim p+ dim q + 1

equations is transverse in the remaining dim p+dim q variables. By the preimage theorem, for these generic

utilities every regular GEI with nonzero k has k̃n 6= 0. Taking the intersection over the finitely many

coordinates n, for generic utilities every regular GEI with nonzero k has k̃ nonzero everywhere.
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6 Four policies generically admitting Pareto improving taxes

We check for each policy the Full Reaction of Demand to Policy and the Sufficient Independence of Reactions.

In computing

∆ = Dtda,e,t,t∗ + (ΣDwhd
hth∗) · τ

we use the following notation for Sh, where Ah, Bh are symmetric of dimensions (C − 1)(S + 1), J :

Sh = [Shp : S
h
q ] =

⎡⎢⎣ Ah Ph

Ph0 Bh

⎤⎥⎦ (Sh)

We can perturb Ph arbitrarily and get a Slutsky perturbation.

Remark 1 In checking the Sufficient Independence of Reactions, the Ṡ
h
Slutsky perturbations affect only

the Jacobian ∇̇ = ΣṠhLh+ in (∇). Also, we solve k̃0∇̇ = β0 piecemeal, solving k̃0∇̇p = β0p, k̃
0∇̇q = β0q by

splitting β0 = (β0p,β
0
q), ∇̇ = [∇̇p : ∇̇q].

6.1 Tax rates on asset purchases

Corollary 1 (Citanna-Polemarchakis-Tirelli 2001) Fix the desired welfare impact v̇ ∈ RH . Assume

J, S − J ≥ H > 1, C > 1. Then generically in utilities and endowments, at every GEI v̇ is the welfare

impact of some ṫ ∈ T . Hence there is a nearby Pareto superior GEIT with tax rates on asset purchases.

Proof. The next lemmas, dim(T ) = J , and the hypothesis J ≥ H enable theorem 2.

The introduction of tax rates on asset purchases amounts to a household specific change in asset prices.

The price of asset j changes for household h exactly when yhj > 0. So Dtda,e,t,t∗ = ΣDqd
hIh where

Ih ∈ RJ×J is a diagonal matrix with entry jj equal to one or zero according as yhj > 0 or not. Specializing

to asset prices, (dec) reads

Dqd
h =

⎡⎢⎣ Ph

Bh

⎤⎥⎦−Dwhdh · yh0
so that

∆q = Σ

⎛⎜⎝
⎡⎢⎣ Ph

Bh

⎤⎥⎦−Dwhdh · yh0
⎞⎟⎠ Ih +Dwhdhth∗ · τ (∆q)
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Lemma 3 (Full Reaction of Demand to Policy) If C > 1, generically in utilities and endowments, at

every GEI ∆q has rank dim(T ).

Proof. Fix generic endowments from the Activity lemma and apply transversality to

nonnumeraire excess demand equations

∆̂qφ = 0

φ0φ− 1 = 0

where the hat omits the last J rows of ∆q. This is transverse to zero. The burden of the argument is to

control the middle equations independently of the top and bottom ones. We perturb only the Ph, so that

d
dξ ∆̂

q = ΣṖhIh. Say φj 6= 0; we make column j of d
dξ ∆̂

q arbitrary and preserve the others. The GEI is

active and asset markets clear, so fix h with yhj > 0; the j
th column of PhIh = jth column of Ph. So

let Ṗh be (akφj )k in column j and zero in the others, and Ṗ i6=h = 0. Then (ΣṖhIh)φ = a is arbitrary.

By the transversality theorem, generically in endowments and utilities the system of dim p + dim q +

(S + 1)(C − 1) + 1 equations is transverse in the remaining dim p+ dim q + J variables. By the preimage

theorem, for these every GEI is active and has ∆̂q (a fortiori ∆q) with linearly independent columns.

Lemma 4 (Sufficient Independence of Reactions) If H > 1, then generically in endowments and

utilities, whenever k̃ ∈ R(S+1)(C−1)+J is nonzero in some commodity coordinate and β ∈ R(S+1)(C−1)+J ,

at every GEI there is a path of risk aversion that solves ∆̇ = 0, k̃0∇̇ = β0.

Proof. Fix generic endowments from the Activity lemma, a GEI with k̃m 6= 0 for some commodity

coordinate m, and follow remark 1. For each asset j fix h(j) with yh(j)j < 0, let Ṗh(j) be 1m
β(S+1)(C−1)+j

k̃m

in column j and zero in the others, and all Ḃh = 0. This keeps ∆̇ = 0 and equates k̃0∇̇ to β(S+1)(C−1)+j

in coordinate (S + 1)(C − 1) + j. Having dealt with all asset coordinates j ≤ J via the Ṗh, we turn to

the commodity coordinates n ≤ (S + 1)(C − 1). Let γ0 = ΣṖh0Lh. From display (Sh) it suffices to choose

symmetric Ȧ1 such that k̃0pȦ
1L1 + k̃0qγ

0 = β0p or k̃0pȦ
1 = (β0p − k̃0qγ0)(L1)−1 ≡ α0. Let column n 6= m of

Ȧ1 be 1m αn
k̃m

so that k̃0pȦ
1 equals αn in coordinate n. To preserve symmetry, column m of Ȧ1 must

be αn
k̃m

in row n 6= m and arbitrary x in row m. Then k̃0pȦ
1 equals Σn6=mk̃n αn

k̃m
+ k̃mx in coordinate
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m, which we can equate to αm by solving for x. Having dealt with all coordinates n, this symmetric Ȧ1

solves k̃0∇̇ = β0. Since A1 does not appear in ∆, still ∆̇ = 0.

6.2 Lump-sum taxes on current income plus flat tax rate on asset purchases

Corollary 2 Fix the desired welfare impact v̇ ∈ RH . Assume S − J ≥ H > 1, C > 1, J > 0. Then

generically in utilities and endowments, at every GEI v̇ is the welfare impact of some ṫ ∈ T . Hence

there is a nearby Pareto superior GEIT with lump-sum taxes on current income plus flat tax rate on asset

purchases.

Proof. The next lemmas and dim(T ) = H + 1 enable theorem 2.

The part of Dtda,e,t,t∗ relating to the lump-sum taxes l ∈ RH on current income is −ΣDwh0 d
h1h0, and

that relating to the flat tax rate f on asset purchases is ∆q1 where 1 ∈ RJ . Concatenating,

Dtda,e,t,t∗ =
h
−ΣDwh0 d

h1h0 : ∆q1
i

Since the first row of τ is [10 : 10Σyi+],

(ΣDwhd
hth∗) · τ = (ΣDwh0 d

hth∗) · [10 : 10Σyi+]

So

∆w =
h
ΣDwh0 d

h(th∗1− 1h)0 : ∆q1 + (ΣDwh0 d
hth∗)(1

0Σyi+)
i

For convenience, we reexpress the lump-sum part ΣDwh0 d
h(th∗1 − 1h)0 l̇h = Σh6=HOh(th∗1 − 1h)0 l̇h with

Oh ≡ Dwh0 d
h −DwH0 d

H , to think of only H − 1 parameters (lh)h6=H . Now dim(T ) = H and

∆w =
h
Σh6=HOh(th∗1− 1h)0 : ∆q1 + (ΣDwh0 d

hth∗)(1
0Σyi+)

i
(∆w)

Lemma 5 (Full Reaction of Demand to Policy) If (S + 1)(C − 1) ≥ H > 1, generically in utilities

and endowments, at every GEI ∆w has rank dim(T ).

Proof. Fix generic endowments from the Activity lemma and apply transversality to

nonnumeraire excess demand equations

∆̂wφ = 0

φ0φ− 1 = 0
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where the hat omits the last J rows. This is transverse to zero. The burden of the argument is to control

the middle equations independently of the top and bottom ones. Write φ = (l, f) so that li 6= 0 for some

i 6= H or f 6= 0.

If f 6= 0, then we want d
dξ ∆̂

q1 = a arbitrary but d
dξ Ôh = 0, where Ôh ≡ Dwh0 x

h −DwH0 x
H , and we

can by choosing some h with yh1 > 0 and setting Ṗh to be a
f with a ∈ R(C−1)(S+1) in column 1 and

zero in the others, so that d
dξ ∆̂

q1 = ṖhIh1 = a
f and d

dξ (∆̂
wφ) = ( ddξ ∆̂

q1)f = a.

If li 6= 0, then we want the ith column of Σh6=HÔh(th∗1− 1h)0 arbitrary:

∗ = d

dξ
Σh6=HÔh(th∗1− 1h)01i =

d

dξ

£
(Σh6=HÔhth∗)− Ôi

¤
=
d

dξ

£
(Σh6=i,HÔhth∗)− (1− ti∗)Ôi

¤
= a

but ♦ = d
dξ

³
∆̂q1 + (ΣDwh0 x

hth∗)(1
0Σyi+)

´
= 0. From the identification of Slutsky perturbations, we set

d
dξDwh0 x

h = 0 for all h 6= i, and Dwi0x
i = a

1−ti∗
by setting d

dξDwix
i = aλ

i0

λi0
—a Slutsky perturbation since

λi0W 0 = 0 from the FOC—so that ∗ = −(1 − ti∗) ddξDwi0x
i = −a. Any effect on ♦ we can undo, since as

just seen we can make d
dξ ∆̂

q1 arbitrary while preserving the Dwh0 x
h.

By the transversality theorem, generically in endowments and utilities the system of dim p + dim q +

(S +1)(C − 1) + 1 equations is transverse in the remaining dim p+dim q+H variables. By the preimage

theorem, for these every GEI is active and has ∆̂w (a fortiori ∆w) with linearly columns.

Lemma 6 (Sufficient Independence of Reactions) If H > 1, then generically in endowments and

utilities, whenever k̃ ∈ R(S+1)(C−1)+J is nonzero in some commodity coordinate and β ∈ R(S+1)(C−1)+J ,

at every GEI there is a path of risk aversion that solves ∆̇ = 0, k̃0∇̇ = β0.

Proof. The proof of the lemma for ∆q applies verbatim.

6.3 Asset measurable tax rates on future capital gains

Corollary 3 Fix the desired welfare impact v̇ ∈ RH . Assume J, S − J ≥ H > 1, C > 1. Then generically

in utilities and endowments, at every GEI v̇ is the welfare impact of some ṫ ∈ T p. Hence there is a nearby

Pareto superior GEIT with asset measurable tax rates on future capital gains.

Proof. The next lemmas, dim(T ) = J , and the hypothesis J ≥ H enable theorem 2.
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Capital gain is ghs = (p
0
sx
h
s − whs )+. State contingent taxes are asset measurable if they are a linear

function of asset payoffs, t = a0L for some L. The introduction of tax rates on capital gains amounts to a

household specific proportional change in commodity prices. The prices of state s commodities change in

the same proportion exactly when p0sx
h
s −whs > 0, i.e. ph1 = [p1](I + [th]).16 So Dtda,e,t,t∗ = ΣDp1dh[p1]Ih

where Ih ∈ RS×S is a diagonal matrix with entry ss equal to one or zero according as p0sx
h
s −whs > 0 or

not. Specializing to period 1 commodity prices, (dec) reads

Dp1d
h =

⎡⎢⎣ Ah1

P 01
h

⎤⎥⎦−Dwh1dh · [xh1]0
so that with the parameterization ṫ = a0L̇

∆p =

⎧⎪⎨⎪⎩Σ
⎛⎜⎝
⎡⎢⎣ Ah1

P 01
h

⎤⎥⎦−Dwh1dh · [xh1]0
⎞⎟⎠ [p1]Ih +Dwhdhth∗ · τ

⎫⎪⎬⎪⎭ a0 (∆p)

Note that at an active GEI for every s there are h, i with p0sx
h
s − whs > 0 > p0sxis − wis. For with t = 0

the budget equation is p0sx
h
s − whs = a0syh for all h, so Σp0sx

h
s − whs = 0 by asset market clearing.

Lemma 7 (Full Reaction of Demand to Policy) If C > 1, generically in utilities and endowments, at

every GEI ∆p has rank dim(T ).

Proof. Fix generic endowments from the Activity lemma and apply transversality to

nonnumeraire excess demand equations

{̂·}φ = 0

φ0φ− 1 = 0

where the hat selects the (s1)s≥1 rows in the bracketed matrix {}, omitting the (sc)s≤S,c6=1 and asset rows.

This is transverse to zero. The burden of the argument is to control the middle equations independently of

the top and bottom ones. We perturb only the (Ah1)s1 ∈ RS(C−1), so that ( ddξ {̂·})s = Σ(Ȧh1)s1[p1]Ih. Say
16For φs = p0sxs − whs + gst − a0sy. If gs = 0 then φs reduces to the GEI φs. If gs 6= 0 then gs = p0sxs − whs so

φs = (1 + ts)(p0sxs − whs )− a0sy. At a GEI whs = p0se
h
s + t

h
∗rs with r = 0, so that φs = (1 + ts)p0s(xs − ehs )− a0sy, as if now

prices ps(t) = (1 + ts)ps. In sum, for every s ≥ 1 φs(t) = ps(t)
0(xs − ehs ) − a0sy with ps(t) = (1 + ths )ps with ths = ts, 0

according as p0sx
h
s −whs > 0 or not.
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φs 6= 0; the GEI is active so fix h = h(s) with ghs > 0; for it, the s
th column of [p1]Ih = sth column of

[p1]. Now let (Ȧh1)s1 be (...0 : as
φsps1

10c=1 : 0...), so that (Ȧ
h
1)s1[p1]I

hφ = as, and (Ȧh1)t1 = 0 for t 6= s, so

that Ȧh1[p1]I
hφ = 1sas. Note that Ȧh is symmetric. Finding such h(s) for each s, ΣsȦ

h
1[p1]I

hφ = a is

arbitrary. Thus let Ȧi = 0 for those i distinct from every h(s) to get d
dξ {̂·}φ = a.

By the transversality theorem, generically in endowments and utilities the system of dim p+dim q+S+1

equations is transverse in the remaining dim p+ dim q + S variables. By the preimage theorem, for these

every GEI is active and has {̂·} (a fortiori {} and {} a0) with linearly independent columns.

Lemma 8 (Sufficient Independence of Reactions) If H > 1, then generically in endowments and

utilities, whenever k̃ ∈ R(S+1)(C−1)+J is nonzero everywhere and β ∈ R(S+1)(C−1)+J , at every GEI there

is a path of risk aversion that solves ∆̇ = 0, k̃0∇̇ = β0.

Proof. Consider generic endowments from the Activity lemma, and follow remark 1.

To solve k̃0p∇̇ = β0p we set the Ȧ
h = 0 so that we seek k̃0qΣṖ

h0Lh = β0p or (ΣL
hṖh)k̃q = βp. For each

s there is i = i(s) with capital loss 0 > p0sx
i
s −wis, so we can fix Ṗ i(s) in coordinates (sc, j)c,j and still

preserve ∆̇ = 0; fix Ṗ i(s) in coordinates (sc, J)c to be
βsc
k̃Jλis

and zero in coordinates (s0c, J)c for s0 6= s,

and zero in columns j < J . Then Li(s)Ṗ i(s)k̃q equals βsc in coordinates (sc)c and zero in (s0c)s0 6=s,c,

so (ΣsL
i(s)Ṗ i(s))k̃q = βp. We let Ṗ

h = 0 for those h distinct from any i(s), so (ΣLhṖh)k̃q = βp. Recall

∆̇ = 0 so far.

To solve k̃0q∇̇ = β0q, having fixed the Ṗ
h, we want to solve k̃0qΣḂ

h = β0q − k̃0pΣṖh ≡ γ0 ∈ RJ with the

Ḃh being symmetric. Since the latter do not figure in ∆, such as solution will complete k̃0∇̇ = β0 with

∆̇ = 0. Set Ḃ1 to be diagonal with jth diagonal element
γj
k̃j

and the other Ḃh6=1 = 0.

6.4 Excise taxes on current commodities

Corollary 4 Fix the desired welfare impact v̇ ∈ RH . Assume C − 1, S − J ≥ H > 1. Then generically in

utilities and endowments, at every GEI v̇ is the welfare impact of some ṫ ∈ T. Hence there is a nearby

Pareto superior GEIT with tax rates on net purchases of current commodities.

Proof. The next lemmas, dim(T ) = C − 1, and the hypothesis C − 1 ≥ H enable theorem 2.
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The introduction of tax rates on net purchases of commodities, given endowments, amounts to a household

specific change in commodity prices. The price of commodity 0c changes to p0c + tc > 0 exactly when

xh0c − eh0c > 0, c < C. So Dtda,e,t,t∗ = ΣDp0d
hIh where Ih ∈ RC−1×C−1 is a diagonal matrix with

coordinate cc one or zero according as xh0c − eh0c > 0 or not. Specializing to period 0 commodity prices,

(dec) reads

Dp0d
h =

⎡⎢⎣ Ah0

Ph00

⎤⎥⎦λh0 −Dwh0 dh · xh00
so that

∆c = Σ

⎛⎜⎝
⎡⎢⎣ Ah0

Ph00

⎤⎥⎦λh0 −Dwh0dh · xh00
⎞⎟⎠ Ih +Dwhdhth∗ · τ (∆p)

Lemma 9 (Full Reaction of Demand to Policy) If C > 1, generically in utilities and endowments, at

every GEI ∆c has rank dim(T ).

Proof. Fix generic endowments from the Activity lemma and apply transversality to

nonnumeraire excess demand equations

∆̂pφ = 0

φ0φ− 1 = 0

where the hat selects the (Sc)c<C rows in (∆p). This is transverse to zero. The burden of the argument is

to control the middle equations independently of the top and bottom ones. We perturb only the (Ȧh0)Sc,· ∈

RC−1, so that ( ddξ ∆̂
p)c = Σλ

h
0(Ȧ

h
0)Sc,·I

h. Say φc 6= 0; since the GEI is active fix h = h(c) with xh0c−eh0c > 0;

we set row ( Ȧh0)Sc,· to be
αc1

0
c

λh0
so that λh0(Ȧ

h
0)Sc,·I

hφ = αc. To preserve the symmetry of Ȧh, we set

(ȦhS)·,0c to be αc1c
λh0

but this does not appear in ∆̂p. Setting ( Ȧh0)Sc0,· = 0 for rows c0 6= c, we get

λh0(Ȧ
h
0)I

hφ = 1cαc. Doing so for each c < C,Σcλ
h(c)
0 (Ȧ

h(c)
0 )Ih(c)φ = α is arbitrary. Now set Ȧi = 0 for

those i distinct from all the h(c). Then d
dξ ∆̂

pφ = α is arbitrary with all Ȧk symmetric.

By the transversality theorem, generically in endowments and utilities the system of dim p + dim q +

(C − 1) + 1 equations is transverse in the remaining dim p + dim q + (C − 1) variables. By the preimage

theorem, for these every GEI is active and has ∆̂p (a fortiori ∆p) with linearly independent columns.
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Lemma 10 (Sufficient Independence of Reactions) If H > 1, then generically in endowments and

utilities, whenever k̃ ∈ R(S+1)(C−1)+J is nonzero everywhere and β ∈ R(S+1)(C−1)+J , at every GEI there

is a path of risk aversion that solves ∆̇ = 0, k̃0∇̇ = β0.

Proof. Fix generic endowments from the Activity lemma, a GEI with k̃m 6= 0 for every coordinate m,

and follow remark 1. Fix a commodity coordinate m = sc. Pick h(m) with x
h(m)
m − ehm < 0, let Ṗh(m)

be 1m
β(S+1)(C−1)+j

k̃m
in column j, so that k̃0∇̇ equals β(S+1)(C−1)+j in coordinate (S + 1)(C − 1) + j,

for all j ≤ J . This Ṗh(m) keeps ∆̇p = 0 because h(m) is a net seller in commodity market m. Having

dealt with all asset coordinates via the Ṗh, we turn to the commodity coordinates n ≤ (S +1)(C − 1). Let

γ0 = ΣṖh0Lh. From display (Sh) it suffices to choose symmetric Ȧh such that k̃0pΣȦ
hLh + k̃0qγ

0 = β0p or

k̃0pΣȦ
hLh = (β0p − k̃0qγ0) ≡ α0. For column n = s0c0 pick h(n) with x

h(n)
n − ehn < 0 and let Ȧh(n) be zero

everywhere but αn
λ
h(n)

s0 k̃n
in coordinate nn, and Ȧi6=h(n) be zero in column n, so that (k̃0pΣȦ

hLh)n = αn

and still ∆̇p = 0 because h(n) is a net seller in commodity market n. Doing so simultaneously for all n,

we get k̃0pΣȦ
hLh = α0. This keeps the symmetry of the Ȧh and ∆̇p = 0.

7 The insurance deficit bound on the rate of improvement

We bound the rate of Pareto improvement by the equilibrium’s insurance deficit, which vanishes exactly

at Pareto optimality. The bound turns out to be the covariance of the insurance deficit with the marginal

purchasing power.

Recall that the welfare impact is v̇h = λh0dmh where dmh is marginal purchasing power, for some

matrices Σdmh = 0. (dmh = (th∗τ − τh)− zhdP.) Converting marginal welfare from utils to the numeraire

at time 0, marginal utility becomes λh

λh0
, which we rewrite as λh with λh0 = 1. In this common unit,

dW =
1

H
Σλh0dmh the mean welfare impact

Every household’s marginal utility of future income projects to a common point in the asset span,

λh1 = δh + c ∈ a⊥ ⊕ a
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by the first order condition, being unique only in its insurance deficit δh. If themean insurance deficit

is δ = H−1Σδh, then the GEI’s insurance deficit is

∆ = [δ1 − δ : ... : δH − δ]S×H

Note that the GEI is Pareto optimal exactly when ∆ = 017 . Computing the mean welfare impact,

H · dW = Σλh0dm
h
0 + Σλ

h0
1 dm

h
1

= Σdmh
0 +Σ(δ

h + c)0dmh
1

= 0 +Σδh0dmh
1 + c

0Σdmh
1

= Σδh0dmh
1

= Σ(δh − δ)0dmh
1

= H · cov(∆, dm1)

since Σdmh = 0. The rate of Pareto improvement is the norm of the functional dW |dv≥0 .

Remark 2 At a regular GEI, the mean welfare impact equals the covariance across households of the insur-

ance deficit and the marginal purchasing power, dW = cov(∆, dm1). So the rate of Pareto improvement is

bounded above by the norm of this covariance.

If the tax policy targets only current income, i.e. τh1, τ1 = 0, then dmh
1 = −zh1dP1 and

dW = −cov(∆, z1)dP1

The sole control is the future price adjustment, since the GEI sets the insurance deficit and net trade. In

a nutshell, the mean welfare impact of the sole control is minus the covariance of insurance deficit and net

trade.
17Also, a household’s commodity demand is as though asset markets were complete exactly when δh = 0.
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8 Appendix

8.1 Derivation of formula for welfare impact

It is standard how Debreu’s smooth preferences, linear constraints, and the implicit function theorem imply

the smoothness of neoclassical0 demand. In fact, the implicit function theorem implies smoothness of neo-

classical demand in a neighborhood b̃ ≈ b ∈ B, if neoclassical0 demand is active at b ∈ B0. It is standard

also that the envelope property follows from the value function’s local smoothness, which is the case for vh

as the composition of smooth functions:

Dbv
h = DbL(x, y,λ

h) |(xh,yh)(b)

where b = (p, q, a,wh, t) and

L(x, y,λh) ≡ uh(x)− λh0

⎛⎜⎝[p]0x− wh −
⎡⎢⎣ −q0

a0

⎤⎥⎦ y + τh(b0, x, y)t

⎞⎟⎠
Thus

Dbv
h = −λh0

¡
[xh]0 +Dpτ

ht : yh0 +Dqτ
ht : ∗ : −I +Dwhτht : τh

¢
where yh0 =

⎡⎢⎣ yh0

0

⎤⎥⎦
If t = 0

Dbv
h = −λh0

¡
[xh]0 : yh0 : ∗ : −I : τh

¢
So much for demand theory. Recalling regular GEI from the subsection on the Expression for the Price

Adjustment, dP 0 = (dp0, dq0) exists and

wh = [p]0eh + th∗r⇒

dwh = [eh]0dp+ th∗dr

= ([eh]0 : 0)dP + th∗τ

using dr = τ from the Revenue Impact proposition.
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Thus the welfare impact at a regular GEI is

dvh = Dbv
h · db

= −λh0
¡
([xh]0 : yh0) : ∗ : −I : τh

¢
·
¡
dP : 0 : ([eh]0 : 0)dP + th∗τ : I

¢
= −λh0

¡
([xh]0 : yh0)dP − ([eh]0 : 0)dP − th∗τ + τh

¢
= −λh0

¡
zh0dP − th∗τ + τh

¢
where zh0 ≡ ([xh − eh]0 : yh0) by definition. In sum,

dvh = λh0
¡
(th∗τ − τh)− zhdP

¢
8.2 Aggregate notation

We collect marginal utilities of contingent income, and denote stacking by an upperbar

(λ)0 ≡

⎡⎢⎢⎢⎢⎣
· 0

λh0

0 ·

⎤⎥⎥⎥⎥⎦
H×H(S+1)

z ≡

⎡⎢⎢⎢⎢⎣
·

zh0

·

⎤⎥⎥⎥⎥⎦
H(S+1)×(S+1)(C−1)+J

Thus

dv = (λ)0
¡
(th∗τ − τh)h − zdP

¢
To visualize the bracket notation [·] defined in footnote 7, it staggers state contingent vectors:

[p] ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

·

ps−1 0

ps

0 ps+1

·

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
C(S+1)×S+1

8.3 Transversality

A function F :M ×Π→ N defines another one Fπ :M → N by Fπ(m) = F (m,π). Given a point 0 ∈ N

consider the ”equilibrium set” E = F−1(0) and the natural projection E → Π, (m,π) 7→ π. A function is

proper if it pulls back sequentially compact sets to sequentially compact sets.
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Remark 3 (Transversality) Suppose F is a smooth function between finite dimensional smooth mani-

folds. If 0 is a regular value of F , then it is a regular value of Fπ for almost every π ∈ Π. The set of

such π is open if in addition the natural projection is proper.

A subset of Π is generic if its complement is closed and has measure zero. Write C∗ = C(S+1). Here

the set of parameters is

Π = O ×O0 × (0, ²)

where O,O0 are an open neighborhoods of zero in RC
∗H , R

C∗(C∗+1)
2 H relating to endowments and symmetric

perturbations of the Hessian of utilities. We have in mind a fixed assignment of utilities, which we perturb

by O0 × (0, ²). Specifically, given an equilibrium commodity demand x by some household and ¤ ∈

R
C∗(C∗+1)

2 ,α ∈ (0, ²) we define u¤ ,α as

u¤ ,α(x) ≡ u(x) +
ωα(kx− xk)

2
(x− x)0¤(x− x)

where ωα : R→ R is a smooth bump function, ωα |(−α
2 ,

α
2 )
≡ 1 and ωα |R\(−α,α)≡ 0. In a neighborhood

x ≈ x we have

u¤ ,α(x) = u(x) +
1

2
(x− x)0¤(x− x)

Du¤ ,α(x) = Du(x) + (x− x)0¤⇒ Du¤ ,α(x) = Du(x)

D2u¤ ,α(x) = D2u(x) +¤

So in an α-neighborhood the Hessian changes, by ¤, but the gradient, demand do not. For small enough

α,¤ this utility remains in Debreu’s setting, so neoclassical demand is defined and smooth when active.

In the Sufficient Independence of Reactions, the path of risk aversion is identified with a linear path

(¤h,αh)(ξ) ≡ (¤hξ, kx
hk
2 ) for each household, so that d

dξD
2uh¤ ,α(x) = ¤h.
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9 Figures

risk aversion ra

dPk '  

dP  is k-sensitive 
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dP  is k-sensitive at both equilibria 
of all shaded economies    save those dotted    (=generic) 

… plotted in the shade.  
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