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Abstract

Financial innovation in an existing asset generically supports a Pareto improvement, targeting the

income effect.

This result, as several on taxation, owes to one unifying notion: that an intervention generically

supports Pareto improvements if the implied price adjustment is sufficiently sensitive to the economy’s

risk aversion.

Elul (1995) and Cass and Citanna (1998) introduce financial innovation in a new unwanted asset,

targeting the substitution effect.

Our result requires an initial position of greater asset completeness, but not the addition of a new

asset market.

The existence argument relies on recent developments in demand theory with incomplete markets.
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1 Introduction

When asset markets are incomplete, there are almost always many Pareto improving policy interventions,
if there are multiple commodities and households. When they are complete, the First Welfare Theorem
implies there never exist any. While the Pareto improvements vanish with the completion of asset markets,
the process of completion itself can be Pareto worsening, as shown by Hart (1975) in an example and by
Elul (1995) and Cass and Citanna (1998) generically.
Focusing on financial innovation policy, we create a framework for proving the existence of Pareto im-

proving financial innovations, for computing them, and for estimating the size of the improvements. We
apply the framework to prove the existence of Pareto improving financial innovations targeting the income
effect. In contrast, Cass and Citanna’s, and Elul’s financial innovation policies target the substitution effect.
Our result requires an initial position of greater asset completeness than theirs, but not the ad

dition of a new asset market.
The protagonist in Pareto improvements is the price adjustment following an intervention. Its role is

to improve on asset insurance by redistributing endowment wealth across states, as anticipated by Stiglitz
(1982). The price adjustment is determined by how innovations and prices affect aggregate, not individual,
demand.
If financial innovation targeting current incomes is Pareto improving, then it must cause an equilibrium

price adjustment, Grossman (1975). Conversely, we prove that if the price adjustment is sufficiently sensitive
to risk aversion, then for almost all risk aversions and endowments, Pareto improving financial innovations
exist. We show how to verify this sensitivity test with standard demand theory, which Turner (2003a)
extends from complete to incomplete markets.

Financial innovation policy targeting only the income effect generically supports a Pareto improvement,
because it passes this sensitivity test.
To numerically identify the Pareto improving financial innovations, we give a formula for the welfare

impact of financial innovations. It requires information on the individual marginal utilities and net trades,
and on the derivative of aggregate, but not individual, demand with respect to innovations and prices.
To bound the rate of Pareto improvement, we define an equilibrium’s insurance deficit. Pareto optimality

obtains exactly when the insurance deficit is zero. If the financial innovation policy targets only current
incomes, then the implied price adjustment determines the best rate, by integration against the covariance
of insurance deficit and net trades across agents. The equilibrium’s insurance deficit arises from the agents’

component of marginal utility for contingent income standing orthogonally to the asset span.
Geanakoplos and Polemarchakis (1986) began the study of generic improvements with incomplete mar-

kets, and introduced the idea of quadratically perturbing commodity demands. Since they allowed the central
planner to decide the agents’ asset demands, they did not need to go beyond perturbing commodity demand.
To show why weaker interventions may improve welfare, such as anonymous taxes and financial innovations,
it became necessary to take into account how adjustments in agents’ asset demands caused a further price
adjustment. Naturally, this required perturbing asset demand as well as commodity demand. Missing was an
extension, quadratically perturbing both commodity and asset demands. This lacuna blocked contributions
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for over ten years1, until a breakthrough by Citanna, Kajii, and Villanacci (1998), who analyzed first order
conditions instead of Slutsky matrices. Researchers have extended the theory of generic improvements with
incomplete markets to many policies by applying this first order approach; on financial innovation, Cass and
Citanna (1998), and on taxes, Citanna, Polemarchakis, and Tirelli (2001), Bisin et al. (2001), and Mandler
(2003). Recently, Turner (2003a) has supplied the missing extension, and Turner (2004a) used it to unify

and extend the literature on Pareto improving taxation, marking a return to the original demand-based
approach to generic improvements from the latest first order-based approach.
Our existence result here on financial innovation is based on this recent extension of demand theory with

incomplete markets. We believe in the computational and expositional advantages of the original demand-
based approach to generic improvements. First, an argument about generic welfare can drastically reduce
the number of equations, targeting the envelope formula instead of the first order conditions and budget
identities generating it. First order conditions and budget identities completely vanish; perturbations are
to the objects in the envelope formula. Second, to compute the welfare impact of interventions, the policy
maker needs to know the derivative of aggregate, not individual, demand. In the first order approach, he
needs to know the derivative of every individual’s demand, i.e. the second derivative of every individual’s

utility. Third, the economist can express intuitions with the familiar language of demand theory, and avoid
the less familiar language of submersions.
We continue as follows. Section 2 presents a model of financial innovation policy. Section 3 has the

formula for the welfare impact of financial innovations. Section 4 obtains the generic existence of Pareto
improving financial innovations from the sensitivity condition on price adjustment, which it then reinterprets
in terms of the Reaction of Demand to Prices and to Policy. Section 5 summarizes the demand theory in
incomplete markets necessary to apply the sensitivity test, then section 6 applies it to financial innovations
targeting the income effect. Section 7 estimates the rate of Pareto improvement. Section 8 derives the welfare
impact formula, and spells out the notation and the parameterization of economies.

2 GEI model

Households h = 1, ...,H know the present state of nature, denoted 0, but are uncertain as to which among
s = 1, ..., S nature will reveal in period 1. They consume commodities c = 1, ..., C in the present and
future, and invest in assets j = 1, ..., J in the present only. Each state has commodity C as unit of
account, in terms of which all value is quoted. Markets assign to household h an income wh ∈ RS+1++ , to
commodity c < C a price p·c ∈ RS+1++ , to asset j a price qj ∈ R and future yield aj ∈ RS . We call
(p·c)

C
1 = p = (ps·) the spot prices, q = (qj) the asset prices, (aj) = a = (as) the asset structure, and

w = (wh) the income distribution, P ≡ R(C−1)(S+1)++ ×RJ .2 The set of budget variables is

b ≡ (P, a,w) ∈ B ≡ P×RJ×S ×R(S+1)H++

and has some distinguished nonempty relatively open subset B0 ⊂ B.
1The sole one is Elul (1995).
2The numeraire convention is that unity is the price of sC,s ≥ 0, which for this reason is omitted from the description of

P. The addition of the sC,s ≥ 0 coordinates, bearing value unity, is denoted p. We use the notation P = (p, q) ∈ P.
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Demand for commodities and assets d = (x, y) : B0 → R
C(S+1)
++ ×RJ is a function on B0. The demand

dh = (xh, yh) of household h depends on own income only, (xh, yh)(P, a,w, t) = (xh, yh)(P, a,w0, t) if
wh = w0h.

An economy (a, e, d) consists of an asset structure a, endowments e, and demands d. For each
household h, endowments specify a certain number ehsc > 0 of each commodity c in each state s, and
demands specify a demand dh. Let Ω be the set of (a, e, d).3

A list (P ; a, e) ∈ P×Ω is a GEI ↔P
(xh(b)− eh) = 0

P
yh(b) = 0

with b ≡ (P, a, (whs = eh0s ps)hs ) ∈ B0

We say (a, e) ∈ Ω has equilibrium P ∈ P. Under neoclassical assumptions (a, e) ∈ Ω has an equilibrium4.

2.1 Neoclassical demand

Consider the budget function βh : B ×RC(S+1) ×RJ → RS+1

βh(b, x, y) ≡ (p0sxs − whs )Ss=0 −
"
−q0
a0

#
y

Demand dh = (xh, yh) is neoclassical if there is a utility function u : R
C(S+1)
+ → R with

u(xh(b)) = max
Xh(b)

u throughout B0 Xh(b) ≡ {x ∈ RC(S+1)+ | βh(b, x, y) = 0, some y ∈ RJ}

Neoclassical welfare is v : B0 → RH , v(b) = (vh(b)) ≡ (uh(xh(b))). The neoclassical domain is

B0 = {(P, a,w) ∈ B | q ∈ aRS++, a has linearly independent rows}

Debreu’s smooth preferences imply neoclassical demand exists and is smooth.
The interpretation of X is that the cost of consumption x in excess of income w is financed by some

portfolio y ∈ RJ of assets. A portfolio specifies how much of each asset to buy or sell (yj ≷ 0), and ajs
how much value in state s an asset j buyer is to collect, a seller to deliver.

3 Welfare impact of financial innovation

Financial innovation in an asset structure a is a smooth path t = t(ξ) in RJ×S through t(0) = 0,
defining a(ξ) = a + t(ξ) as a new asset structure. We think of infinitesimal financial innovation as its
initial velocity ṫ = ṫ(0). Suppose the GEI (P, a, e) is regular in that equilibrium prices are locally a smooth

function of the economy, so that financial innovation lifts locally to a unique path (P (ξ), a + t(ξ), e) of
nearby GEI. Then welfare is v(b(ξ)) with b(ξ) = (P (ξ), a+t(ξ), (whs = e

h0
s ps(ξ))

h
s ). Thus financial innovation

impacts welfare only via the budget variables it implies. By the fundamental theorem of calculus the welfare
3The appendix spells out the parameterization of demand d.
4Geanakoplos and Polemarchakis (1986).
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impact is the integral of Dbvh · ḃ, which by abuse we call the welfare impact. We compute this product in
the appendix, using the envelope theorem for Dbvh and the chain rule for ḃ, where details of the notation
appear.

Proposition 1 (Envelope) The welfare impact v̇ ∈ RH of infinitesimal innovation ṫ at a regular GEI
is

v̇ = (λ)0ṁ ṁ = y1ṫ|{z} −zṖ|{z}
PRIV ATE PUBLIC

Here (λ)0 collects the households’ marginal utilities of income across states, and ṁ the impact on their
incomes, private and public. The private one is the impact y1ȧ on portfolio payoffs, and the public one is
the impact on the value of their excess demands z in all nonnumeraire markets, that implied by the impact
Ṗ on prices.

Policy targeting welfare must account for the equilibrium price adjustment it causes.
At a regular GEI there is a price adjustment matrix dP , smooth in a neighborhood of it, such that

Ṗ = dP ṫ. Thus the welfare impact is a differential ṫ→ v̇,

dv = (λ)0 (y1 − zdP ) (1)

Note dv = dv(b) is a function of the budget variables, since v itself is.
We consider two types of financial policy, perturbing an existing asset in a substitution-free way, and

perturbing a new unwanted asset, as in Elul (1995) and Cass and Citanna (1998). Aggregate demand is
provoked by the income effect of one policy, and by the substitution effect of the other. In either case,
financial innovation is parameterized by a vector subspace ṫ ∈ T = T (b) associated with the equilibrium
budget variables b :

dv : T (b)→ RH

4 Framework for generic existence of Pareto improving innovation

We prove the generic existence of Pareto improving innovations, stressing the role of changing commodity
prices over the role of the particular financial policy. Existence follows directly from a hypothesis on price
adjustment. Thus the financial policy is relevant only insofar as it meets the hypothesis on price adjustment.
Then we reinterpret this hypothesis on dP in terms of primitives, the Reaction of Demand to Prices and
the Reaction of Demand to Policy.
Pareto improving financial innovation exists if there exists a solution to dvṫ À 0. In turn this exists if

dv ∈ RH×dimT (b) has rank H, which in turn forces us to suppose the innovation parameters outnumber

household types dimT (b) ≥ H. The key idea is that if dv = (λ)0y1 − (λ)0zdP is rank deficient, then a
perturbation of the economy would restore full rank by preserving the first summand but affecting the second
one. Namely, if some economy’s dP is not appropriate, then almost every nearby economy’s dP is.
We have in mind a perturbation of the households’ risk aversion (D2uh)h, which affects nothing but

dP in the welfare impact dv. Now, to restore the rank the risk aversion must map into (λ)0zdP richly
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enough. Since this map keeps (λ)0z fixed, we require that (λ)0z have rank H and that dP be sufficiently
sensitive to risk aversion. Cass and Citanna (1998) gift us the first requirement:

Fact 1 (Full Externality of Price Adjustment on Welfare) Suppose asset incompleteness exceeds house-
hold heterogeneity S−J ≥ H > 1. Then generically in endowments every GEI has (λhsz

h
s1)

h≤H
s≤H−1 invertible.

Fact 2 At a regular active GEI, dP is locally a smooth function of risk aversion; the marginal utilities λi

and excess demands zi are locally constant in risk aversion.

For k ∈ R(S+1)(C−1)+J we say that a commodity coordinate is one of the first (S + 1)(C − 1).

Definition 1 At a regular active GEI, dP is k-Sensitive to risk aversion if for every α ∈ Rdim(T )
there is a path of risk aversion that solves k0dṖ = α0.5 It is Sensitive to risk aversion if it is k-Sensitive
to risk aversion for all k with a nonzero commodity coordinate.

Assumption 1 (Generic Sensitivity of dP ) If H > 1, then generically in endowments and utilities, at
every GEI dP is Sensitive to risk aversion.

This assumption banishes the particulars of the financial innovation policy, leaving only its imprint on
dP. Of course, dP is defined only at regular GEI, so implicitly assumed is that regular GEI are generic in
endowments. Lastly, the requirement dimT (b) ≥ H with b arising in equilibrium makes sense only with

Assumption 2 (Innovation has a dimension) If S − J ≥ H, then there is an integer dim such that
generically in utilities, at every GEI the vector subspace ṫ ∈ T = T (b) parameterizing financial innovation
has dimension dim . Call it gendim.

Theorem 2 (Logic of Pareto Improvement) Fix a financial policy and the desired welfare impact v̇ ∈
RH . Grant the Generic Sensitivity of dP under gendim, S − J ≥ H > 1, C > 1. Then generically in
utilities and endowments, at every GEI v̇ is the welfare impact of some ṫ ∈ T . Hence financial innovation
supports a nearby Pareto superior GEI.

Proof. Fix generic endowments, utilities from the lemma, assumptions, and apply transversality to

1

2

3

nonnumeraire excess demand equations
γ0(λ)0 (y1 − zdP ) = 0

γ0γ − 1 = 0

where dv : T (b)→ RH . Suppose endowments and utilities make this transverse to zero and the natural pro-
jection is proper. By the transversality theorem, for generic such, the system of (dim p+dim q)+gendim+1
equations is transverse to zero in the remaining endogenous variables, which number dim p+dim q +dim γ.

By hypothesis gendim ≥ H = dim γ, so for these endowments and utilities the preimage theorem implies
that no endogenous variables solve this system—every GEI has dv with rank H.

5The appendix spells out a path of risk aversion. Here the dot denotes differentiation with respect to the path’s parameter.
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This is transverse to zero. As is well known, we can control the first equations by perturbing one
household’s endowment. For a moment, say that we can control the second equations and preserve the top
ones. We then control the third equation and preserve the top two, by scalar multiples of γ. So transversality
obtains if our momentary supposition on γ0dv holds:
Write k0 ≡ γ0(λ)0z. Differentiating γ0dv with respect to the parameter of a path of risk aversion,

α0 =def
d

dξ
γ0(λ)0 (y1 − zdP ) = −γ0(λ)0z

d

dξ
(dP ) = −k0dṖ

since λ, z (hence y1) are locally constant by fact 2. We want to make α arbitrary, and we can if dP is
k-sensitive, which holds by assumption if k has a nonzero commodity coordinate. It has: Full Externality
of Price Adjustment on Welfare, C > 1, γ 6= 0 imply γ0(λ)0z is nonzero in the coordinate m = s1 for
some s ≤ H − 1.
That the natural projection is proper we omit. (The numeraire asset structure is fixed.)
Insofar as generically supporting a Pareto improvement, a financial policy need only imply a sensitive

price adjustment, and its particulars are irrelevant.

4.1 Expression for Price Adjustment

Before we can check whether a particular policy meets the Sensitivity of dP to Risk Aversion, we need
an expression for dP. We express dP in terms of the Reaction of Demand to Prices and the Reaction of
Demand to Policy.
Let an underbar connote the omission of the numeraire in each state, define

d : B0 → R
(C−1)(S+1)
++ ×RJ d = Σdh

and the aggregate demand of (a, e, d) ∈ Ω

da,e(p, q) ≡ d(p, q, a, (whs = eh0s ps)hs )

with domain Pa,e ≡ {(p, q) ∈ P | (p, q, a, (whs = eh0s ps)hs ) ∈ B0}.6

Now define
∇ ≡ Dp,qda,e the Reaction of Demand to Prices
∆ ≡ Dada,e the Reaction of Demand to Policy

(2)

Suppose a path of GEI (p(ξ), q(ξ), a+ t(ξ), (whs = e
h0
s ps(ξ))

h
s ) through a GEI. Then

da,e(P ) =

" P
eh

0

#
is an identity in the path’s parameter ξ. Differentiating with respect to it,

∇Ṗ +∆ṫ = 0

A GEI is regular if ∇ is invertible. By the implicit function theorem, at a regular GEI equilibrium prices
P are locally a smooth function of the financial innovation t(ξ).

6Pa,e is open, as the preimage by a continuous function of the open B0. Recall the notation P 0 = (p0, q0).

6



Proposition 3 (Price Adjustment) At a regular GEI the Price Adjustment to infinitesimal financial in-
novation exists,

dP = −∇−1∆ (dP )

where the Reactions ∇,∆ are defined in (2).

4.2 Primitives for the Sensitivity of Price Adjustment to Risk Aversion

Given the Logic of Pareto improvement, we want to check whether a policy meets the Generic Sensitivity of
dP . We provide primitives for the Sensitivity of dP , thanks to expression (dP )7 :

dṖ = −∇−1∆̇+∇−1∇̇∇−1∆

Recall equation k0dṖ = α0 from definition 1. If ∆̇ = 0 and k̃0 ≡def k0∇−1 then the equation reads
k̃0∇̇∇−1∆ = α0. If ∆ has rank gendim then there is a solution β to β0∇−1∆ = α0 so it suffices to solve
k̃0∇̇ = β0. Thus dP is k-Sensitive if (1) ∆ has rank gendim, (2) k̃ is nonzero everywhere, (3) whenever K̃
is nonzero everywhere and β ∈ R(S+1)(C−1)+J , there is a path of risk aversion that solves ∆̇ = 0, K̃0∇̇ = β0.
(Take k̃ = K̃.) Thus Generic Sensitivity of dP obtains (independently of the k̃ defined) if:

Lemma 1 (Activity) If H > 1, generically in endowments every GEI is regular.8

Assumption 3 (Full Reaction of Demand to Policy) If C > 1, generically in utilities and endow-
ments, at every GEI ∆ has rank gendim .

Lemma 2 (Mean Externality of Price Adjustment on Welfare is Regular) Generically in utilities,
at every regular GEI, whenever k is nonzero in some commodity coordinate, k̃0 ≡ k0∇−1 is nonzero every-
where.

Assumption 4 (Sufficient Independence of Reactions) If H > 1, then generically in endowments

and utilities, whenever k̃ ∈ R(S+1)(C−1)+J is nonzero everywhere and β ∈ R(S+1)(C−1)+J , at every GEI
there is a path of risk aversion that solves ∆̇ = 0, k̃0∇̇ = β0.

These primitives for the Generic Sensitivity of dP and the Logic of Pareto Improvement yield

Theorem 4 (Test for Pareto Improvement) Fix a financial policy and the desired welfare impact v̇ ∈
RH . Say the policy passes the Full Reaction of Demand to Policy and the Sufficient Independence of Reactions
under gendim, S − J ≥ H > 1, C > 1. Then generically in utilities and endowments, at every GEI v̇ is
the welfare impact of some ṫ ∈ T . Hence financial innovation supports a nearby Pareto superior GEI.

Next we illustrate how to check whether a financial policy passes this test via demand theory in incomplete
markets, as developed by Turner (2003a). We show that substitution free financial innovation passes this test,

and so generically supports Pareto improvement, owing to the unifying logic of a sensitive price adjustment.
In contrast, financial innovation in a new unwanted asset never passes this test. At a GEI ∇ will turn out
to be independent of the policy, so we will verify the lemma on the Mean for one and all policies.

7Applying the chain rule to JJ−1 = I gives d
dξ
J−1 = −J−1( d

dξ
J)J−1.

8We do not argue this standard result. For these endowments, both ∆ and dP are defined.
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5 Summary of demand theory in incomplete markets

We must check whether each policy meets the Full Reaction of Demand to Policy and the Sufficient Indepen-
dence of Reactions. For this we report the theory of demand in incomplete markets as developed by Turner
(2003a). The basic idea is to use decompositions of ∆,∇ in terms of Slutsky matrices, and then to per-
turb these Slutsky matrices by perturbing risk aversion, while preserving neoclassical demand at the budget
variables under consideration. We stress that this theory is applied to, but independent of, equilibrium.

5.1 Slutsky perturbations

Define H : RC
∗×C∗ → RC

∗+J+(S+1)×C∗+J+(S+1) as

H(D) =

⎡⎢⎣ D 0 −[p]
0 0 W

−[p]0 W 0 0

⎤⎥⎦
where p,W = [−q : a] ∈ RJ×S+1 of rank J are given, and C∗ = C(S + 1). In other notation,

H(D) =

"
M(D) −ρ
−ρ0 0

#
where M(D) =

"
D 0

0 0

#
, ρ =

"
[p]

−W

#

In showing the differentiability of demand, the key step is the invertibility of H(D2u). Slutsky matrices
are H(D2u)−1. If D is symmetric, so are H(D),H(D)−1 when defined. Thus we write

H(D)−1 =

"
S −m
−m0 −c

#

where S, c are symmetric of dimensions C∗+J, S+1 and m = (mx,my) is C∗+J ×S+1.9 A Slutsky
perturbation is of the form ∇ = H(D)−1−H(D2u)−1, for some symmetric D ≈ D2u that is close enough
for the inverse to exist. A Slutsky perturbation is a perturbation of Slutsky matrices rationalizable by some
perturbation of the Hessian of utility. Being symmetric, we write

∇ =
"

Ṡ −ṁ
−ṁ0 −ċ

#

and view a Slutsky perturbation as a triple Ṡ, ṁ, ċ. We identify Slutsky perturbations, without reference to
the inversion defining them, in terms of independent linear constraints on ∇ :

on Ṡ ρ0Ṡ = 0 and Ṡ is symmetric
on ṁ ρ0ṁ = 0 and ṁxW

0 = 0

on ċ ċW 0 = 0 and ċ is symmetric

(constraints)

9 It turns out that m = Dwd.
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Theorem 5 (Identification of Slutsky perturbations, Turner 2003a) Given u smooth in Debreu’s
sense and b in B0 with t = 0, consider the Slutsky matrices H(D2u)−1. Every small enough Slutsky
perturbation ∇ satisfies (constraints). Conversely, every small enough perturbation ∇ that satisfies
(constraints) is Slutsky: H(D2u)−1+∇ is the inverse of H(D) for some D that is negative definite and
symmetric.

We use only Slutsky perturbations with ṁ, ċ = 0 by choosing Ṡ as follows. A matrix Ṡ ∈
R(C−1)(S+1)+J×(C−1)(S+1)+J is extendable in a unique way to a matrix Ṡ ∈ RC∗+J×C∗+J satisfying
ρ0Ṡ = 0; we call Ṡ the extension of Ṡ. It is easy to verify that if Ṡ is symmetric, so is its extension. In
sum, any symmetric Ṡ defines a unique Slutsky perturbation with ṁ, ċ = 0.
Now we turn to decompositions of ∆,∇ in terms of Slutsky matrices, which in turn make up the inverse

the Hessian H matrix.

5.2 Slutsky decomposition of the Reaction to prices

The relevance of Slutsky perturbations is that they allow us to perturb demand functions directly, while
preserving their neoclassical nature, without having to think about utility. This is because Slutsky matrices
appear in the decomposition of demand Dp,qd at b : 10

Dp,qd
h = ShLh+ −mh · ([xh]0 : yh0) (dec)

Here Lh+ a diagonal matrix displaying the marginal utility of contingent income

Lh+ ≡
"
Lh 0

0 λh0IJ

#
Lh ≡

⎡⎢⎣ · 0

λhs IC−1

0 ·

⎤⎥⎦
mh = Dwhd

h, and ([xh]0 : yh0) is the transpose of d
h : 11

[xh]0 =

⎡⎢⎣ · 0 0

0 xh0s 0

0 0 ·

⎤⎥⎦
(S+1)×(C−1)(S+1)

yh0 =

"
yh0

0

#
S+1×J

Writing (eh0s ps)s as [eh]0p, we have Dp,q[eh]0p = ([eh]0 : 0), so from (2) we have

∇ = ΣDp,qdh +Dwhdh · ([eh]0 : 0)

Inserting decomposition (dec),

∇ = ΣShLh+ −Dwhdh · ([xh − eh]0 : yh0)

Writing zh0 ≡ ([xh − eh]0 : yh0) this reads

∇ = ΣShLh+ −Dwhdh · zh0 (∇)
10Gottardi and Hens (1999) have this in the case C = 1. They do not address or define Slutsky perturbations.
11We view p as one long vector, state by state, and p, q as an even longer one; (∗ : #) denotes concatenation of ∗,#.
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This decomposition of the aggregate demand of (a, e, t, t∗) ∈ Ω generalizes Balasko 3.5.1 (1988) to
incomplete markets.
One implication of the decomposition is that ∇ is independent of the policy.
Proof that Mean Externality of Price Adjustment on Welfare is Regular. See Turner (2003b).

5.3 Slutsky decomposition of the Reaction to insurance

There is another decomposition of demand Dad at b with t = 0 :

Dad
h = Sh

"
0

Λh1

#
−mh · yh1

Here Λh1 is a matrix displaying the marginal utility of contingent income

Λh1 ≡ [λh1IJ : ... : λsIJ ]J×JS

and yh1 is a repeated display of yh : 12

yh1 =

⎡⎢⎢⎢⎣
0 · 0

y0 · 0

· · ·
0 · y0

⎤⎥⎥⎥⎦
S+1×JS

Specializing to a single asset’s payoff, this reads

Dajd = ΣS
h
j λ

h0
1 −mh

1 · yhj (Dajd)

where Shj is column (C − 1)(S + 1)+ j of Sh.

5.4 Preparation for genericity

We investigate for each policy the Full Reaction of Demand to Policy and the Sufficient Independence of
Reactions. In computing

∆ ≡ Dada,e
we use the following notation for Sh, where Ah, Bh are symmetric of dimensions (C − 1)(S + 1), J :

Sh = [Shp : S
h
q ] =

"
Ah Ph

Ph0 Bh

#
(Sh)

We can perturb Ph arbitrarily and get a Slutsky perturbation.

Remark 1 In checking the Sufficient Independence of Reactions, all marginal utilities λi and excess de-
mands z are automatically fixed by the Ṡ

h
Slutsky perturbations. Their only effect is on the Jacobian

∇̇ = ΣṠ
h
Lh+ in (∇). Also, we solve k̃0∇̇ = β0 piecemeal, solving k̃0∇̇p = β0p, k̃

0∇̇ = β0q by splitting
β0 = (β0p,β

0
q), ∇̇ = [∇̇p : ∇̇q].

12We view a as one long vector, state by state.
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6 Pareto improving innovation in an existing asset

Here we prove the generic existence of Pareto improving innovation in an existing asset, targeting the income
effect, by showing this policy passes the sensitivity test in theorem 4. Key is the generic position of

6.1 The insurance deficit

In equilibrium, every household’s marginal utility of future income projects to a common point in the asset
span13

λh1
λh0
= uh + c ∈ a⊥ ⊕ span(a)

We summarize the insurance deficit by

U ≡
h
... uh ...

i
S×H

Lemma 3 (Insurance deficit in general position) If S − J ≥ H then generically in endowments, at
every GEI every H rows of the insurance deficit U are linearly independent.14

Proof. Fix K ⊂ {1, ..., S} with cardinality H, and apply transversality to

nonnumeraire excess demand equations
π0U = 0

π0KπK − 1 = 0

where πS\K = 0. Endowments make this transverse to zero. The burden of the argument is to control the

second equations independently of the others. Given t ∈ RH we want π0u̇h = th, where u̇h ≡ d
dξ Pr a⊥

³
λh1
λh0

´
,

via appropriate λ̇
h
, i.e. λ̇

h
must preserve first order conditions λ̇

h

0q = aλ̇
h

1. Any λ̇
h
is implementable by

an endowment perturbation ėh = ẋh as we show last. If λ̇
h

0 = 0 and 0 = aλ̇
h

1 then first order conditions
remain and

∂

∂·

Ã
λh1
λh0

!
=

λ̇
h

1

λh0
− λh1

λh20
λ̇
h

0 =
λ̇
h

1

λh0
so u̇h ≡ ∂

∂· Pr a⊥
Ã
λh1
λh0

!
= Pr a⊥

λ̇
h

1

λh0
=

λ̇
h

1

λh0

So set λ̇
h

0 = 0 and seek λ̇
h

1 with 0 = aλ̇
h

1,π
0 λ̇

h
1

λh0
= th. To find λ̇

h

1, say πs 6= 0, s ∈ K and set λ̇
h

K to

λ̇
h

s =
λh0 t

h

πs
, λ̇
h

t6=s = 0 for t ∈ K so that, thanks to πS\K = 0, π0
λ̇
h
1

λh0
= th regardless of λ̇

h

S\K . Having set

λ̇
h

K , define λ̇
h

S\K as a solution to 0 = aλ̇
h

1 = aK λ̇
h

K + aS\K λ̇
h

S\K , which exists since these are J equations
in |S\K| = S −H ≥ J variables and every J columns of a are linearly independent.

To implement this λ̇
h
, solve D2uh · ẋh = (psλ̇

h

s )s for ẋ
h, possible by the negative definiteness of D2uh

and the inverse function theorem. Implement this ẋh by setting ėh = ẋh, while preserving the other
equations.
13This is the same as the decomposition λh1 ∈ a⊥+ ⊕ span(a+) by definition of new unwanted asset.
14This requires that every J columns of a are linearly independent.
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By the transversality theorem, generically in endowments, the system is transverse to zero in the re-
maining variables. These are dim p+ dim q + dimπ variables and dim p+ dim q +H + 1 equations, with
dimπ = H, so the associated zero set is a submanifold of dimension −1, hence empty. For these endowments
EK , the K rows of U are linearly independent. The intersection of the generic EK over the finitely
many such K is generic still.

6.2 Applying the sensitivity test

Substitution free innovation in an existing asset satisfies λh01 ȧ
j = 0.We parameterize financial innovation

by T (b) = span(a, U)⊥. Note, ȧj ∈ T (b)⇒ λh01 ȧ
j = 0.

Substitution free innovation provokes only the income effect on demand; formula (Dajd) implies

∆ · ȧj = Dajd · ȧj = −Σmh
1 · yhj ȧj

That is,
∆ = −Σmh

1 · yhj on T (b)

Corollary 6 Fix the desired welfare impact v̇ ∈ RH . Assume S − J ≥ 2H;H,C > 1. Then generically in
utilities and endowments, at every GEI v̇ is the welfare impact of some ṫ ∈ T. Hence there is a nearby
Pareto superior GEI with substitution free innovation in an existing asset.

Proof. The next lemmas with gendim = S−J−H and the hypothesis S−J−H ≥ H enable theorem
4.

Lemma 4 (Generic Dimension of Innovation) If S − J ≥ H, then gendim = S − J − H. That
is, generically in endowments, at every GEI the vector subspace ṫ ∈ T = T (b) parameterizing financial
innovation has dimension S − J −H.

Proof. Lemma 3 says that generically in endowments U has rank H, and then span(a,U)0s dimension
is J +H.

Lemma 5 (Full Reaction of Demand to Policy) If C > 1, S − J ≥ H > 1, generically in utilities and
endowments, at every GEI ∆ has rank gendim .

Proof. We recall ∆ = −Σmh
1 · yhj has domain k ∈ T (b) = span(a, U)⊥, and take for granted the very

standard result that with H > 1 generically in numeraire endowments, at every GEI asset j is traded.
Taking generic endowments from this result and the previous lemma’s, we apply transversality to

nonnumeraire excess demand equations³
Σ∇h · yhj

´
k = 0

k0k − 1 = 0

where ∇hS×S selects from mh
1 ∈ RS(C−1)×S only the rows of commodities (s1)s≥1. Utilities make this

transverse to zero. The burden of the argument is to control the middle equations independently of the

12



top and bottom ones. Say ks≥1 6= 0; we want to perturb arbitrarily column s of the parenthetical
sum, as d

dξ

³
Σ∇h · yhj

´
= a

ks
, and no other. There is h∗ with yh

∗

j 6= 0. From the identification of

Slutsky perturbations 5, we may perturb arbitrarily any row of mh∗

x , hence any row of ∇h
∗
, subject only

to ṁh∗

x W
0 = 0, where W = [−q : a]. So perturb it as ∇̇h

∗

s = [0 : as
yhj
k0] so that d

dξ

³
Σ∇hs · yhj

´
k =

d
dξ

³
∇̇h
∗

s y
h∗

j

´
k = as(k

0k) = as is arbitrary. Indeed, ∇̇h
∗

s W
0 = 0 since k ∈ T (b) ≡ span(a, U)⊥ ⊂ a⊥.

By the transversality theorem, generically in endowments and utilities, this system is transverse to zero in

the remaining endogenous variables. These number dim p+dim q+gendim and there are dim p+dim q+S
equations, and gendim = S − J −H, so by the preimage theorem, for these endowments and utilities the
associated solution set is empty—every GEI has Σ∇h · yhj (a fortiori ∆) with linearly independent columns.

Lemma 6 (Sufficient Independence of Reactions) Generically in endowments and utilities, whenever
k̃ ∈ R(S+1)(C−1)+J is nonzero everywhere and β ∈ R(S+1)(C−1)+J , at every GEI there is a path of risk
aversion that solves ∆̇ = 0, k̃0∇̇ = β0.

Proof. Fix such a k̃, and follow remark 1. Since ∆ = −Σmh
1 · yhj is independent of the substitution

matrices Sh, which is all we perturb, automatically ∆̇ = 0 and ∇̇ = ΣṠ
h
Lh+. Left to solve k̃0∇̇ =

ΣṠ
h
Lh+ = β0, we set Ṡ

h6=H
= 0 and so seek to solve k̃0Ṡ

H
= β0

¡
LH+
¢−1 ≡ β̃

0
. This is made trivial by a

diagonal hence symmetric Ṡ
H
, with Ṡ

H

mm =
β̃m
k̃m
.

7 The insurance deficit bound on the rate of improvement

We bound the rate of Pareto improvement by the equilibrium’s insurance deficit, which vanishes exactly
at Pareto optimality. The bound turns out to be the covariance of the insurance deficit with the marginal
purchasing power.
Recall that the welfare impact is v̇h = λh0dmh where dmh is marginal purchasing power, for some

matrices Σdmh = 0. (dmh = y1 − zdP.) Converting marginal welfare from utils to the numeraire at time
0, marginal utility becomes λh

λh0
, which we rewrite as λh with λh0 = 1. In this common unit,

dW =
1

H
Σλh0dmh the mean welfare impact

Every household’s marginal utility of future income projects to a common point in the asset span,

λh1 = δh + c ∈ a⊥ ⊕ a

by the first order condition, being unique only in its insurance deficit δh. If themean insurance deficit
is δ = H−1Σδh, then the GEI’s insurance deficit is

∆ = [δ1 − δ : ... : δH − δ]S×H

13



Note that the GEI is Pareto optimal exactly when ∆ = 015 . Computing the mean welfare impact,

H · dW = Σλh0dm
h
0 + Σλ

h0
1 dm

h
1

= Σdmh
0 +Σ(δ

h + c)0dmh
1

= 0 +Σδh0dmh
1 + c

0Σdmh
1

= Σδh0dmh
1

= Σ(δh − δ)0dmh
1

= H · cov(∆, dm1)

since Σdmh = 0. The rate of Pareto improvement is the norm of the functional dW |dv≥0 .

Remark 2 At a regular GEI, the mean welfare impact equals the covariance across households of the insur-
ance deficit and the marginal purchasing power, dW = cov(∆, dm1). So the rate of Pareto improvement is
bounded above by the norm of this covariance.

If the tax policy targets only current income, i.e. τh1, τ1 = 0, then dmh
1 = −zh1dP1 and

dW = −cov(∆, z1)dP1

The sole control is the future price adjustment, since the GEI sets the insurance deficit and net trade. In

a nutshell, the mean welfare impact of the sole control is minus the covariance of insurance deficit and net
trade.

8 Appendix

8.1 Notation

An underbar connotes the omission of the sC, s ≥ 0 coordinates, as in xh; an upperbar on a price p

connotes the addition of sC coordinates with value psC = 1, s ≥ 0.
When differentiating with respect to p, q, a, w, we parameterize these as long vectors:

p =

⎡⎢⎣ ·
ps

·

⎤⎥⎦
(C−1)(S+1)×1

q =

⎡⎢⎣ ·
qj

·

⎤⎥⎦
J×1

a =

⎡⎢⎣ ·
as

·

⎤⎥⎦
SJ×1

w =

⎡⎢⎣ ·
wh

·

⎤⎥⎦
H(S+1)×1

8.2 Derivation of formula for welfare impact

It is standard how Debreu’s smooth preferences, linear constraints, and the implicit function theorem imply
the smoothness of neoclassical demand. It is standard also that the envelope property follows from the value
function’s local smoothness, which is the case for vh as the composition of smooth functions:

Dbv
h = DbL(x, y,λ

h) |(xh,yh)(b)
15Also, a household’s commodity demand is as though asset markets were complete exactly when δh = 0.
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where b = (p, q, a,wh) and

L(x, y,λh) ≡ uh(x)− λh0
Ã
[p]0x− wh −

"
−q0
a0

#
y

!
Thus

Dbv
h = −λh0

¡
[xh]0 : yh0 : −yh1 : −I

¢
where yh0 =

"
yh0

0

#
, yh1 =

⎡⎢⎢⎢⎣
0 · 0

yh0 0

·
0 yh0

⎤⎥⎥⎥⎦
So much for demand theory. Recalling regular GEI from the subsection on the Expression for the Price
Adjustment, dP 0 = (dp0, dq0) exists and

wh = [p]0eh ⇒
dwh = [eh]0dp

= ([eh]0 : 0)dP

Thus the welfare impact at a regular GEI is

dvh = Dbv
h · db

= −λh0
¡
([xh]0 : yh0) : −yh1 : −I

¢
·
¡
dP : ISJ : ([e

h]0 : 0)dP
¢

= −λh0
¡
([xh]0 : yh0)dP − yh1 − ([eh]0 : 0)dP

¢
= −λh0

¡
zh0dP − yh1

¢
where zh0 ≡ ([xh − eh]0 : yh0) by definition. In sum,

dvh = λh0
¡
yh1 − zhdP

¢
8.3 Aggregate notation

We collect marginal utilities of contingent income, and denote stacking by an upperbar

(λ)0 ≡

⎡⎢⎣ · 0

λh0

0 ·

⎤⎥⎦
H×H(S+1)

y1 =

⎡⎢⎣ ·
yh1
·

⎤⎥⎦
H(S+1)×SJ

z ≡

⎡⎢⎣ ·
zh0

·

⎤⎥⎦
H(S+1)×(S+1)(C−1)+J

Thus
dv = (λ)0 (y1 − zdP )

To visualize the bracket notation [·] defined in footnote 7, it staggers state contingent vectors:

[p] ≡

⎡⎢⎢⎢⎢⎢⎢⎣
·
ps−1 0

ps

0 ps+1

·

⎤⎥⎥⎥⎥⎥⎥⎦
C(S+1)×S+1
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8.4 Transversality

A function F :M ×Π→ N defines another one Fπ :M → N by Fπ(m) = F (m,π). Given a point 0 ∈ N
consider the ”equilibrium set” E = F−1(0) and the natural projection E → Π, (m,π) 7→ π. A function is

proper if it pulls back sequentially compact sets to sequentially compact sets.

Remark 3 (Transversality) Suppose F is a smooth function between finite dimensional smooth mani-
folds. If 0 is a regular value of F , then it is a regular value of Fπ for almost every π ∈ Π. The set of
such π is open if in addition the natural projection is proper.

A subset of Π is generic if its complement is closed and has measure zero. Write C∗ = C(S+1). Here
the set of parameters is

Π = O ×O0 × (0, ²)

where O,O0 are an open neighborhoods of zero in RC
∗H , R

C∗(C∗+1)
2 H relating to endowments and symmetric

perturbations of the Hessian of utilities. We have in mind a fixed assignment of utilities, which we perturb
by O0 × (0, ²). Specifically, given an equilibrium commodity demand x by some household and ¤ ∈
R

C∗(C∗+1)
2 ,α ∈ (0, ²) we define u¤ ,α as

u¤ ,α(x) ≡ u(x) +
ωα(kx− xk)

2
(x− x)0¤(x− x)

where ωα : R→ R is a smooth bump function, ωα |(−α
2 ,

α
2 )
≡ 1 and ωα |R\(−α,α)≡ 0. In a neighborhood

x ≈ x we have

u¤ ,α(x) = u(x) +
1

2
(x− x)0¤(x− x)

Du¤ ,α(x) = Du(x) + (x− x)0¤⇒ Du¤ ,α(x) = Du(x)

D2u¤ ,α(x) = D2u(x) +¤

So in an α-neighborhood the Hessian changes, by ¤, but the gradient, demand do not. For small enough
α,¤ this utility remains in Debreu’s setting, so neoclassical demand is defined and smooth when active.
In the Sufficient Independence of Reactions, the path of risk aversions is identified with a linear path

(¤h,αh)(ξ) ≡ (¤hξ, kx
hk
2 ) for each household, so that d

dξD
2uh¤ ,α(x) = ¤h.
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