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Abstract

We study the classic implementation problem under the behavioral assumption that

agents myopically adjust their actions in the direction of better-responses within a given

institution. We offer results both under complete and incomplete information. First,

we show that a necessary condition for assymptotically stable implementation is a small

variation of (Maskin) monotonicity, which we call quasimonotonicity. Under standard

assumptions in economic environments, we also provide a mechanism for Nash imple-

mentation which has good dynamic properties if the rule is quasimonotonic. Thus,

quasimonotonicity is both necessary and almost sufficient for assymptotically stable

implementation. Under incomplete information, incentive compatibility is necessary

for any kind of stable implementation in our sense, while Bayesian quasimonotonic-

ity is necessary for assymptotically stable implementation. Both conditions are also

essentially sufficient for assymptotically stable implementation. We then tighten the

assumptions on preferences and mutation processes and provide mechanisms for sto-

chastically stable implementation under more permissive conditions on social choice

rules.
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1 Introduction

The correct design of institutions can be decisive for achieving economic systems with good

welfare properties. But suppose that the correct design depends on the knowledge of key

parameters in the environment. Then, an important problem ensues if the builder of the

institutions does not have such knowledge. The theory of implementation looks in a system-

atic way at the design of rules for social interaction that do not assume a detailed knowledge

of the fundamentals by those with power to adjudicate social outcomes.

The last decade saw impressive advances in the theory of implementation.1 As Sjöström

(1994) pointed out, ‘With enough ingenuity the planner can implement “anything”’. On

the other hand, several recent contributions (Cabrales (1999), Cabrales and Ponti (2000),

Sandholm (2002), Eliaz (2002)) have highlighted the fact that not all mechanisms perform

equally well, in terms of achieving the socially desirable outcomes. In particular, some of the

mechanisms that are more permissive in terms of the span of implementable social choice

functions may lead to dynamic instability or convergence to the wrong equilibrium when the

players are boundedly rational. To be more precise, mechanisms for Nash implementation

have been shown to be robust to boundedly rational agents. On the other hand, mechanisms

for implementation under iterative deletion of dominated strategies, or for subgame-perfect

implementation have bad dynamic properties (instability, convergence to the “wrong” equi-

librium).

Given these findings, it is natural to ask whether the difficulty with permissive mech-

anisms lies in the particular mechanisms employed, or if it is a general problem. In other

words, what are the necessary conditions for evolutionary implementation?

In this paper we pose the classic implementation questions for a class of evolutionary

settings.2 We postulate a behavioral assumption by which agents (or generations thereof)

interact myopically within a given institution, and adjust their actions in the direction of

better-responses within the mechanism. Our criterion for successful implementation will be

the convergence of the better-response process to a rest point or to a set of rest points.

When the outcomes of a social choice function (SCF) are the only limits of the better-

1See Jackson (2001), Maskin and Sjöström (2002), Palfrey (2002) or Serrano (2004) for recent surveys.
2References for evolutionary game theory in general are Weibull (1995), Vega-Redondo (1996), Samuelson

(1997), Fudenberg and Levine (1998) and Young (1998). The stochastic stability methodology, which will

be used for many of our results, is based on the techniques developed by Freidlin and Wentzell (1984), and

it was first applied to evolutionary biology by Foster and Young (1990), and to game theory by Kandori,

Mailath and Rob (1993) and Young (1993).
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response dynamics of a mechanism for any allowed environment, we shall say that the SCF

is implementable in asymptotically stable strategies.

The environments we shall be concerned with are economic. An amount of L commodi-

ties is to be allocated among n agents. Preferences are strictly increasing in all commodities,

which implies that the zero bundle is the worst outcome for everyone in the economy. The

typical mechanism that we shall construct will have good dynamic properties. It implements

the socially desirable outcome according to the agents’ reports, if there is total agreement

among them. If there is an almost unanimous agreement, other outcomes will be imple-

mented. Those outcomes are meant to elicit the “right” behavior from agents. Finally, if

enough disagreement occurs in the reports, no goods will be allocated and every agent will

receive the zero bundle. This form of severe punishment exploits the economic nature of the

environment. Nonetheless, it allows us to avoid the use of integer or modulo games.

A necessary condition for asymptotically stable implementation is a small variation of

(Maskin) monotonicity (Maskin (1999)), which we call quasimonotonicity. Quasimonotonic-

ity prescribes that the social outcome not change if the strictly lower contour sets of prefer-

ences at the social outcome are nested for every agent across two environments. In particular,

it is neither logically stronger nor weaker than monotonicity; both coincide when indiffer-

ence sets are singletons, or more generally, when preferences are continuous. Furthermore,

quasimonotonicity is also sufficient for asymptotically stable implementation, if there are at

least three agents in the environment and the SCF is ε-secure. The condition of ε-security

stipulates that each agent must be allocated by the rule a bundle consisting of at least ε

units of each commodity.

Our results on asymptotic implementation are obtained for a general class of preferences

and will stand for any mutation process. The latter means that, if one were to perturb the

better-response dynamics via mutations, an SCF that is implementable in asymptotically

stable strategies would also be implementable in stochastically stable strategies of any per-

turbation of better-response dynamics. That is, the outcomes prescribed by the SCF are

the states of minimum stochastic potential, for any perturbed process. In this way, these

conclusions are immune to the Bergin and Lippman (1996) critique of uniqueness results in

stochastic evolutionary implementation.

Next, we strengthen the assumptions on preferences and mutation processes, and we show

that there are mechanisms for evolutionary implementation under relatively permissive con-

ditions on SCF’s. Specifically, we offer two such results. The first shows that, under a variant

of the “more serious mistakes are less likely” assumption, any ε-secure SCF is implementable
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in stochastically stable strategies of the corresponding perturbed better-response process if

there are at least three agents. The second states that, under uniform mutations and a rather

innocuous assumption on diversity of preferences, any Pareto efficient and ε-secure SCF can

be reached if there are at least five agents in the environment; if the required preference

diversity happens near zero, the Pareto assumption can be dispensed with altogether.

We do not wish to interpret our findings in this paper as “on-the-one-hand, on-the-other-

hand” type of results. We formalize a genuine tradeoff for the social planner. If the SCF

he wishes to implement satisfies quasimonotonicity, he knows that he has an evolutionarily

robust mechanism for implementation at his disposal. If not, there exist mechanisms that are

robust under evolution, but more requirements are needed from other fundamentals of the

problem. Thus, unlike what some of the previous implementation literature has suggested,

there is no “free lunch” in terms of implementability.

Our main insights already described are confirmed in environments with incomplete in-

formation, and some others are obtained. First, incentive compatibility arises as a necessary

condition for stable implementation in our sense, whatever the perturbation one wishes to

use, including no perturbation at all, of better-response dynamics. If one wishes to imple-

ment in asymptotically stable strategies, faithful to the Bergin-Lipman line of thinking, the

condition of Bayesian quasimonotonicity is also necessary. The comparison between this

condition and Bayesian monotonicity, necessary for Bayesian implementation (e.g., Postle-

waite and Schmeidler (1986), Palfrey and Srivastava (1989), Jackson (1991)), is similar to

that between quasimonotonicity and Maskin’s condition. Moreover, incentive compatibility,

Bayesian quasimonotonicity and ε-security are also sufficient for implementation in asymp-

totically stable strategies of better-response processes when there are at least three agents.

Under a weak diversity of preferences on the environment, the condition of Bayesian qua-

simonotonicity can be entirely dropped. This can be done if the planner is satisfied with

implementation in stochastically stable strategies under uniform mutations, and if there are

at least five agents. Thus, we find the same tradeoff enunciated earlier: evolutionary imple-

mentation results more permissive than those relying on the quasimonotonicity conditions

are possible, but they come at a cost in terms of their robustness.

Section 2 describes the model and the dynamics we use. Section 3 provides necessary and

sufficient conditions for asymptotically stable implementation under complete information.

Section 4 presents more permissive results for stochastically stable implementation under

specific mutation processes. Section 5 collects the extensions of our results to incomplete

information environments. Section 6 concludes.

4



2 Preliminaries

Let N = {1, . . . , n} be a set of agents. Let the environment be an exchange economy with

a grid as its set of allocations. (For example, because of the existence of an indivisible unit

for each commodity.) Let agent i’s consumption set be Xi ⊂ Rl
+. One can specify that each

agent holds initially the bundle ωi ∈ Xi with
∑

i∈N ωi = ω (private ownership economies),

or simply that there is an aggregate endowment of goods ω (distribution economies). The

set of allocations is

Z = {(xi)i∈N ∈
∏

Xi :
∑

i∈N

xi ≤ ω}.

Let us now specify agents’ preferences over allocations. Let θi denote agent i’s preference

ordering, on which we shall make the following assumptions:

(1) No externalities: θi : Xi × Xi 7→ Xi.

(2) Strictly increasing preference: For all i and for all xi ∈ Xi, if yi ≥ xi, yi �θi
i xi.

3 Note

how this implies that 0 is the worst bundle for every agent.

Let θ = (θi)i∈N be a preference profile, and Θ be the set of allowable preference profiles.

A mechanism G = ((Mi)i∈N , g), where Mi is agent i’s message set, and g :
∏

i∈N Mi 7→ Z

is the outcome function.

The mechanism will be played simultaneously each period by myopic agents. Or, in an

interpretation closer to the evolutionary tradition, the mechanism will be played successively

each period by generations of agents who live and care for that period only.

In this paper we shall concentrate on the following class of SCF’s. An SCF f is said to be

ε-secure if there exists ε > 0 such that for each θ, and for each i ∈ N , fi(θ) ≥ (ε, . . . , ε) � 0.

The condition of ε-security amounts to establishing a minimum threshold of living stan-

dards in the consumption of all commodities. We shall think of ε as being a fairly small

number. Then, one could easily justify it on normative grounds.

In addition, we shall use the following condition, which turns out to be more fundamental

to the theory we develop here:

An SCF f is quasimonotonic if, whenever it is true that for every i ∈ N f(θ) �θ
i z implies

that f(θ) �φ
i z, we have that f(θ) = f(φ) for all θ, φ ∈ Θ.

Note how quasimonotonicity resembles closely the condition of monotonicity uncovered

in Maskin (1999). Indeed, the only difference is that, while Maskin’s condition imposes that

3For vectors xi, yi ∈ Xi, we use the standard conventions: xi ≥ yi whenever xil ≥ yil with at least one

strict inequality; and xi � yi whenever xil > yil for every commodity l.
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the lower contour sets of preferences be nested across two environments, quasimonotonicity

relies on the inclusion of the strictly lower contour sets.

Next, we turn to dynamics, the central approach in our paper.

The unperturbed Markov process that we shall impose on the play of the mechanism over

time is the following better-response dynamics. In each period t one of the agents is chosen

at random with positive and fixed probability so that he can revise his message or strategy.

Let m(t) be the strategy profile used in period t, and say agent i is chosen in period t. Then,

denoting by θi agent i’s true preferences, agent i switches with positive probability to any

m′
i such that g(m′

i, m−i(t)) �θi
i g(m(t)).

Thus, the planner, who has a long run perspective on the social choice problem, wishes

to design an institution or mechanism such that, when played by myopic agents who keep

adjusting their actions in the direction of better-responses, will eventually converge to the

socially desirable outcome as specified by the SCF. This logic suggests the two notions of

implementability that we shall employ in the current paper.

An SCF f is implementable in asymptotically stable strategies (of better-response dy-

namics) if there exists a mechanism G such that, for every θ ∈ Θ, the unique outcome of

all recurrent classes of the better response process applied to its induced game when the

preference profile is θ is f(θ).

After the planner solves the question of implementability in the sense just defined, he

can consider “refinements” of such a notion, by allowing specific perturbations of the better-

response dynamics. This will lead to the concept of implementability in stochastically stable

strategies.

An SCF f is implementable in stochastically stable strategies (of perturbed better-response

dynamics) if there exists a mechanism G such that, for every θ ∈ Θ, a perturbation of the

better response process applied to its induced game when the preference profile is θ has f(θ)

as the unique outcome supported by stochastically stable strategy profiles.

3 Necessary and Sufficient Conditions for asymptoti-

cally Stable Implementation: Complete Information

3.1 Necessity

We first seek implementation in asymptotically stable strategies, i.e., without relying on

perturbations of the better response dynamics. For example, suppose one is interested in
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seeking robustness in stochastically stable implementation, in the sense that one would like

the implementation to be successful with independence of the perturbation used – requiring

implementability in this sense is desirable, given the results in Bergin and Lipman (1996).

We wish to show now that quasimonotonicity of f is a necessary condition for its imple-

mentability in asymptotically stable strategies.

Theorem 1 If f is implementable in asymptotically stable strategies of an unperturbed

better-response dynamic process, f is quasimonotonic.

Proof 1 Let the true preference profile be θ. Because f is implementable in asymptotically

stable strategies of better-response dynamics, the only outcome that corresponds to strategy

profiles in recurrent classes of the dynamics is f(θ).

Now consider a preference profile φ such that for all i f(θ) �θ
i z implies that f(θ) �φ

i z.

Since the only outcome compatible with recurrent classes of the dynamics when preferences

are θ is f(θ), this means that agent i’s unilateral deviations from recurrent strategy profiles

must yield either f(θ) again, or outcomes z such that f(θ) �θ
i z. But this implies that f(θ)

is also supported by recurrent profiles of better-response dynamics when preferences are φ.

Since f is implementable in asymptotically stable strategies of better-response dynamics, this

implies that f(φ) = f(θ). That is, f must be quasimonotonic.

3.2 Sufficiency

We now present our next result. Together with Theorem 1, it provides almost a characteriza-

tion of the SCF’s that are implementable in asymptotically stable strategies, and therefore,

implementable in stochastically stable strategies independently of the perturbation used.

Theorem 2 Suppose the environments satisfy Assumptions (1) and (2). Let n ≥ 3. If an

SCF f is ε-secure and quasimonotonic, it is implementable in asymptotically stable strategies

of better-response dynamics.

Proof 2 Consider the mechanism G = ((Mi)i∈N , g), where agent i’s message set is Mi =

Θ × Z, and the outcome function g is defined by the following rules:

(i.) If for all i ∈ N , mi = (θ, f(θ)), g(m) = f(θ).

(ii.) If for all j 6= i, mj = (θ, f(θ)) and mi = (φ, z) 6= (θ, f(θ)), one can have two cases:

(ii.a) If z �θ
i f(θ), g(m) = (fi(θ) − β, f−i(θ)), where fi(θ) ≥ fi(θ) − β ∈ Xi.
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(ii.b) If f(θ) �θ
i z, g(m) = z.

(iii.) In all other cases, g(m) = 0.

We begin by arguing in the next four steps that all recurrent classes of the unperturbed

better-response process are singletons. Let θ be the true preference profile.

Step 1: No message profile in rule (iii) is part of a recurrent class. Arguing by contradiction,

from any profile m in (iii), one can construct a path as follows. Without loss of generality,

suppose m1 = (φ, z) 6= (θ, f(θ)). In the path, change one by one the strategies of all agents

other than 1, starting from agent n and going down to agent 2, to (θ, f(θ)). In doing this,

one constructs a sequence of outcomes consisting of the zero allocation until, in the last step,

when (n− 1) messages are (θ, f(θ)), the outcome switches to either z or (f1(θ)− β, f−1(θ)),

consistent with better-response dynamics. In the last step of the path, agent 1 switches from

(φ, z) to (θ, f(θ)). This yields f(θ), from which one can never go back to the zero allocation

under better-response dynamics.

Step 2: No message profile under rule (ii.a) is part of a recurrent class of better-response

dynamics. We argue by contradiction. Recall that the true preference profile is θ, and let

the message profile under rule (ii.a) in question be the following: all agents j 6= i announce

mj = (φ, f(φ)), whereas agent i’s message is (φ′, z′) such that z′ �φ
i f(φ), leading to an

outcome in which agent i receives fi(φ)− β. Because preferences are strictly increasing, one

can construct a single-step path under better-response dynamics in which agent i switches to

(φ, z), where zi = fi(φ) − β ′ (for β ′ < β) and zj = 0 for every j 6= i, which yields outcome

z. But from here, each of the other agents j 6= i can switch to (φj, zj) (for some (φj, zj) 6=
(φ, f(φ))). Thus, we find ourselves under rule (iii), which is a contradiction.

Step 3: No recurrent class contains profiles under rule (ii.b). Again, we argue by contra-

diction. Consider a profile m such that for all j 6= i mj = (φ, f(φ)), whereas mi = (φ′, z′),

satisfying that fi(φ) �φ
i z′i. This implies that the outcome is z′. Then, construct a path in

which agent i switches, if necessary, to (φ′, z), where zi = z′i and for all j 6= i, zj = 0, after

which the outcome is z. But then, as before, any of the other agents can switch to yield an

outcome under rule (iii), a contradiction.

Step 4: Thus, all recurrent classes contain only profiles under rule (i). However, one cannot

abandon a profile under rule (i) to get to another under the same rule without passing through

rule (ii). This establishes that all recurrent classes are singletons.

Moreover, each recurrent class, a singleton under rule (i), must consist of a Nash equi-

librium of the game induced by the mechanism when the true preferences are θ. Otherwise,

one would not have an absorbing state of better-response dynamics.
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One such Nash equilibrium that always exists is the truthful profile (θ, f(θ)) reported by

every agent. Note how unilateral deviations from this profile produce an outcome either

under rule (ii.a) or under rule (ii.b). In either case, no such switch can happen under

better-response dynamics.

In addition, one may have other (non-truthful) Nash equilibria under rule (i). Let

(φ, f(φ)) be such an arbitrary Nash equilibrium. For this profile to be a Nash equilibrium, it

must be true that for all i ∈ N , f(φ) �φ
i z implies that f(φ) �θ

i z, since otherwise such a

z, which could be induced by i in the mechanism, would contradict that the profile is a Nash

equilibrium. But in fact, we know even more. Since the profile is actually an absorbing state

of the dynamics, we must have that for all i ∈ N , f(φ) �φ
i z implies that f(φ) �θ

i z: that

is, such allocations z that i could induce cannot be indifferent to f(φ) under θ, or the profile

(φ, f(φ)) would not be absorbing.

Thus, because f is quasimonotonic, we must have that f(θ) = f(φ) for any arbitrary

absorbing state (φ, f(φ)) of the better-response dynamics. Therefore, f is implementable in

asymptotically stable strategies, or equivalently, in stochastically stable strategies no matter

what perturbation of better-response dynamics one takes.

4 Permissive Results

Thus far we have seen that quasimonotonicity is the key condition that essentially charac-

terizes implementability in asymptotically stable strategies in economic environments with

at least three agents. In this section, we explore the possibilities of implementing non-

quasimonotonic rules under extra specific assumptions on preferences and mutations.

4.1 A Perturbed Process with Non-Uniform Mutations

This subsection explores the possibilities of obtaining a more permissive implementation

result, by imposing a specific kind of perturbation of better-response dynamics. It is in-

structive to note that the institution we shall employ to this end will be essentially the same

canonical mechanism used in the proof of Theorem 2.

For this section we need the following additional assumptions on preferences:

(3) Let commodity 1 be a nummeraire whose indivisible unit is ∆ > 0. The preference

is quasilinear in the nummeraire. Also, let ∆ > 0 be smaller than any utility gap

resulting from reallocations of the non-nummeraire commodities.
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(4) The preference is continuous.

Assumption (3) is needed because we use the penalties in the nummeraire (see rule (ii.a’)

in the proof below), which are smaller than any other caused by reallocations of the other

goods. Assumption (4) is needed because we shall quantify the resistance of each transition

through utility differences.

For the perturbed process used in the next theorem we shall specify a very concrete

type of perturbations. The interpretation is that agents may make “mistakes” with positive,

though small probability, when changing their strategies in the mechanism.

The idea is to introduce an assumption that is a variant of “more serious mistakes are

less likely.” Specifically, suppose that at the status-quo in the mechanism, agent i is receiving

bundle z0
i . Suppose agent i takes an action in which he asks for bundle yi and forces a change

in outcome to bundle zi, out of which he suffers a utility loss. In principle, one should think

of the probability of such a transition to depend on all three components: the initial and

final bundles in the transition, as well as what happens in the mechanism.

Consider a perturbation of better-response dynamics, in which one allows transitions

where agent i moves and becomes worse off going from z0
i to zi. We shall define the resistance

of such a transition to be the following:

[ui(z
0
i ) − ui(zi)] + λ[ui(yi) − ui(zi)],

where 0 < λ < 1 is small enough to ensure that this resistance is always positive, and ui is

a utility function representing agent i’s preferences.4

That is, the first term says that more serious mistakes are less likely (the first component

of resistance is utility loss in the transition). However, this is affected by the size of the

disappointment/relief of the agent inducing an outcome change when comparing the final

outcome with the one proposed by him. For a given amount of disappointment/relief, the

transition is all the more likely the smaller the utility loss. And, for a given utility loss, the

transition is all the more likely the smaller the disappointment or the greater the relief (as if

the agent exhibited disappointment aversion-relief attraction). If the term multiplying λ is

positive –disappointment–, the agent is less likely to make a mistake that will imply a greater

level of disappointment. If it is negative –relief–, a mistake is more likely the greater the

relief. Other interpretations of the second term of the resistance are possible. For example,

one could explain it in terms of how others perceive the agent that moves. For a given real

4Any utility function that represents the preferences will do. The existence of such a utility representation

follows from Assumption (4).
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utility loss suffered by i due to his action, such a transition is more likely when the others

view him as “self-sacrificing” instead of “greedy.” In any event, we emphasize that these

behavioral departures from the standard conventional assumptions are minimal – λ can be

taken arbitrarily small.

Apart from this, any transition from any bundle other than 0 to 0 has a fixed resistance,

which we will call K. (If K were large, it would be as if the planner were “reluctant” to use

rule (iii) in the mechanism of the proof of Theorem 2.)

Theorem 3 Suppose the environments satisfy Assumptions (1), (2), (3) and (4). Let n ≥ 3.

Then, any ε-secure SCF f is implementable in stochastically stable strategies of the prescribed

perturbed better-response dynamics.

Proof 3 Consider the mechanism G = ((Mi)i∈N , g) proposed in the proof of Theorem 2.

This proof will make extensive use of it.

In particular, recall that, without relying on quasimonotonicity of f , we showed in the

first steps of that proof that all recurrent classes of the better-response dynamics are sin-

gletons under rule (i). Let θ denote the true preferences. The truthful strategy profile,

((θ, f(θ)), . . . , (θ, f(θ))), is always one of these absorbing states, and in addition, there

may exist absorbing profiles ((φ, f(φ)), . . . , (φ, f(φ))) with the property that for all i ∈ N ,

f(φ) �φ
i z implies that f(φ) �θ

i z.

We classify the recurrent classes of the unperturbed process into two kinds:

Class E0 is the truth-telling strategy profile, i.e., for each i ∈ N , mi = (θ, f(θ)).

Class Ej for j = 1, . . . , J is the coordinated lie on profile θj: for each i ∈ N , mi =

(θj, f(θj)), known to be a Nash equilibrium of the mechanism under preference profile θ.

Note that, for this to be true, as we have already pointed out, the strictly lower contour set

at f(θj) for each agent i when his preferences are θj
i must be contained in the strictly lower

contour set of f(θj) when his preferences are θi.

Consider the following modification made to the outcome function of the mechanism in

the proof of Theorem 2:

(ii.a’.) Replace β with the vector (∆, 0, . . . , 0), i.e., the punishment takes the form of the

smallest indivisible unit of the nummeraire commodity.

Now, we show that the profile in E0 is the only stochastically stable profile of the perturbed

dynamics:

[a] to get out of E0, one can go through rule (ii.a’) of the mechanism, paying (1 + λ)∆ if

the deviator i proposes an outcome indifferent to f(θ), or go through rule (ii.b) paying a cost
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that is exactly (1 + λ) times the smallest utility loss from f(θ) to z, which, by Assumption

3, is not smaller than (1 + λ)∆. After that, a mistake that takes us to rule (iii), which costs

K, takes us to 0 and from there we go for free to any of the untruthful Nash equilibria in

any class Ej.

[b] to get out of an arbitrary class Ej, we have those two paths as well, but the cheapest

will be one under rule (ii.a’) again. Indeed, let agent i deviate from the otherwise unanimous

announcement (θj, f(θj)), and instead announce (φ, z) such that z �θj

i f(θj) and f(θj) �θ
i z.

In this case, the resistance is strictly smaller than (1+λ)∆, because of the relief term. After

that, we go to rule (iii) paying also K, and from there we go for free to E0.

Remark: Note the novel use of the inclusion of the lower contour sets of preferences made

in the last step of the proof. Although the assumptions made on mutations are somewhat

special, we think it is interesting that Theorem 3 dispenses with quasimonotonicity, while

still making use of the same mechanism as does Theorem 2.

4.2 A Perturbed Process Based on Uniform mutations

To obtain a sufficiency result based on stochastic stability of perturbed better-responses un-

der uniform mutations, we use an additional assumption on the SCF, i.e., that it is efficient:5

An SCF f is (strongly) Pareto efficient if for all θ and for all alternative outcomes

z 6= f(θ), there exists an individual i(θ, z) such that f(θ) �θ
i(θ,z) z.

In addition, we modify slightly our assumptions on the environment, as follows.

First, note that since states differ because at least one of the agent’s preference varies,

one has that for each pair of states θ and φ, there exists an agent j(θ, φ) and alternatives

x(θ, φ) and y(θ, φ) such that

x(θ, φ) �θ
j(θ,φ) y(θ, φ) and y(θ, φ) �φ

j(θ,φ) x(θ, φ). (∗)

Denote by J(θ, φ) the set of agents j(θ, φ) for whom there exists a preference reversal between

a pair of alternatives across states θ and φ, as specified in (*).

Also, without loss of generality, note that for all θ, φ, one can choose alternative y(θ, φ)

so that for all i 6= j(θ, φ), yi(θ, φ) 6= 0. We shall do this in the sequel.

Here is our regularity assumption on the environments:

5As we shall remark after the proof of the result in this subsection, one can get rid of this by making a

different assumption on the environments.
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(5) For each pair of states θ and φ, there exists j(θ, φ) ∈ J(θ, φ) such that j(θ, φ) 6=
i(θ, x(θ, φ)), where x(θ, φ) is an alternative for which agent j(θ, φ) has a preference

reversal as in (*).

Now, we can prove the following result:

Theorem 4 Suppose the environments satisfy Assumptions (1), (2) and (5). Let n ≥ 5.

Any ε-secure and strongly Pareto efficient SCF f is implementable in stochastically stable

strategies of perturbed better-response dynamics, where the perturbation consists of uniform

mutations.

Proof 4 Consider the following mechanism. Let agent i’s message set be Mi = Θ × Z.

Denote a typical message sent by agent i by mi = (m1
i , m

2
i ) and the corresponding message

profile by m = (m1, m2). The outcome function obeys the following rules:

(i.) If for every i ∈ N , m1
i = θ, g(m) = f(θ).

(ii.a.) If exactly (n − 1) messages mi are such that m1
i = θ and mi(θ,x(θ,φ)) = (φ, x(θ, φ)),

g(m) = (xi(θ,x(θ,φ))(θ, φ), xj(θ,φ)(θ, φ), 0, 0, . . . , 0).

(ii.b.) If exactly (n− 1) messages mi are such that m1
i = θ, but the odd man out, say agent

k, does not satisfy the requirements of rule (ii.a), g(m) = (fk(θ) − β, f−k(θ)), where

fk(θ) ≥ fk(θ) − β ≥ (ε, . . . , ε).

(iii.a.) If exactly (n − 2) messages mi are such that m1
i = θ, mi(θ,x(θ,φ)) = (φ, x(θ, φ)) and

mj(θ,φ) = (φ, y(θ, φ)), g(m) = (yi(θ,x(θ,φ))(θ, φ), yj(θ,φ)(θ, φ), 0, 0, . . . , 0).

(iii.b.) If exactly (n − 2) messages mi are such that m1
i = θ, but we are not under rule

(iii.a), for all k ∈ N , gk(m) = (ε, . . . , ε).

(iv.) In all other cases, g(m) = 0.

(For rules (iii.a) and (iii.b) to be well defined, the assumption n ≥ 5 is needed to deter-

mine the outcome in profiles where two agents report the same state as part of their message

and two other agents report a different state.)

First, we can follow steps similar to those in the proof of Theorem 2 to show that all re-

current classes of unperturbed better-response dynamics are singletons, i.e., absorbing states,

and that all of them happen under rule (i).

Let θ be the true state. Next, we can classify the absorbing states into two categories:

13



Denote by Ej
0 a typical singleton recurrent class –absorbing state– of better-response dy-

namics in which all n agents report the true state as the first part of their announcement.

Note that there are multiple such states, as agents can disagree on the allocation reported.

And denote by Ej
1 a typical singleton recurrent class consisting of a uniform profile under

rule (i), where agents’ reported state is not θ, the true state.

We wish to show that the stochastically stable states of better-response dynamics in the

game under uniform mutations are precisely the states in the classes Ej
0. To show this, it

will suffice to make the following observations:

[a] To get out of any state Ej
0, we need some agent i(θ, x(θ, φ)) to impose one of the reversal

outcomes x(θ, φ) – one mistake, as by definition this individual is worse off. Next,

j(θ, φ) imposes y(θ, φ) – second mutation, in this case by equation (*). Finally, anyone

else changes and we go to rule (iv) where 0 is the outcome – third mutation. From 0,

we go for free to any of the other absorbing states. There are other paths as well, going

first to (ii.b), and from there to (iii.b), and then to (iv), but all those also require three

mutations.

[b] On the other hand, to get out of an untruthful uniform profile, say m1 = φ when the

true state is θ, one can take the following path: an agent i(φ, x(φ, θ)) can impose

x(φ, θ). At this point, either f(φ) �θ
i(φ,x(φ,θ)) x(φ, θ), in which case this step requires

a first mutation, or x(φ, θ) �θ
i(φ,x(φ,θ)) f(φ), in which step has zero resistance. Next,

agent j(φ, θ) changes the outcome to y(φ, θ) for free. Finally, someone else changes

the outcome to 0 under rule (iv), which constitutes at most a second mutation. From

there, we go for free to any of the other absorbing states.

Remark: If one assumes that the preference reversals specified in equation (*) occur “near

enough the zero bundle,” one can show, using a similar proof, that for n ≥ 5 any ε-secure SCF

is implementable in stochastically stable strategies of a perturbed better-response dynamics

based on uniform mutations. In this sense, one can clearly interpret Theorem 4 as a very

permissive result.

Remark: It appears that, to obtain meaningful implementability results using uniform

mutations, one needs to add at least a new rule to the canonical mechanism of Theorem 2,

as we have just done. Note how the proof has relied heavily on the use of the preference

reversal specified in equation (*).
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5 Incomplete Information

This section tackles the extension of our results to incomplete information environments.

We shall begin with the (almost) characterization of SCF’s that are implementable in as-

ymptotically stable strategies of interim better-response dynamics. Following a plan similar

to that in previous sections, we shall consider more permissive results later on.

5.1 Necessary and Sufficient Conditions

We now describe an incomplete information environment. Each agent knows his type θi ∈ Θi,

a finite set of possible types. Let Θ =
∏

i∈N Θi be the set of possible states of the world,

let Θ−i =
∏

j 6=i Θj of type profiles θ−i of agents other than i. We shall sometimes write a

state θ = (θi, θ−i). We shall assume that the set of states with ex-ante positive probability

coincides with Θ.6

Let qi(θ−i|θi) be type θi’s interim probability distribution over the type profiles θ−i of the

other agents.

An SCF (or state-contingent allocation) is a mapping f : Θ 7→ Z that assigns to each

state of the world a feasible allocation. Let A denote the set of SCFs. We shall assume that

uncertainty concerning the states of the world does not affect the economy’s endowments,

but only preferences and beliefs.

We shall write type θi’s interim expected utility over an SCF f as follows:

Ui(f |θi) ≡
∑

θ−i∈Θ−i

qi(θ−i|θi)ui(f(θi, θ−i), (θi, θ−i)).

Note how the Bernoulli (ex-post) utility function ui may change with the state.

We shall continue to make the same assumptions on ex-post preferences: no externalities,

and each agent has strictly increasing utility.

A mechanism G = ((Mi)i∈N , g), played simultaneously by myopic agents, consists of

agent i’s set Mi of messages (for each i ∈ N , agent i’s message is a mapping from Θi to

Mi), and the outcome function g : Θ 7→ Z. To prevent any kind of learning about the

state, we shall assume that, after an outcome is observed, agents forget it (or, closer to the

evolutionary tradition, agents are replaced by other agents who share the same preferences

and prior beliefs as their predecessors, but are not aware of their experience).

6We make this assumption for simplicity in the presentation. With some modifications in the arguments,

one can prove similar results if Θ∗ 6= Θ is the set of states with positive probability, according to every

agent’s prior belief.
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Let agent i of type θi be the only type that is allowed to revise his message in period t.

He does so using the interim better-response logic, i.e., he switches with positive probability

to any message that improves (weakly) his interim expected utility, given his interim beliefs

qi(θ−i|θi). That is, letting mt be the message profile at the beginning of period t, type θi

switches from mt
i(θi) to any m′

i such that:

∑

θ−i∈Θ−i

qi(θ−i|θi)ui(g(m′
i, m

t
−i(θ−i)), (θi, θ−i)) ≥

∑

θ−i∈Θ−i

qi(θ−i|θi)ui(m
t(θ), θ).

The rest of the message profile mt
−i(θ−i) is as in the previous period, and so this revision

in type θi’s message may cause a change in the induced outcome in each state where type θi

is present, as expressed in the preceeding interim expected utility inequality.

We adapt now the definitions of implementability to environments with incomplete in-

formation:

An SCF f is implementable in asymptotically stable strategies (of interim better-response

dynamics) if there exists a mechanism G such that the interim better-response process applied

to its induced game has f as its unique outcome of the recurrent classes of the process.

An SCF f is implementable in stochastically stable strategies (of perturbed interim better-

response dynamics) if there exists a mechanism G such that a perturbation of the interim

better-response process applied to its induced game has f as the unique outcome supported

by stochastically stable strategy profiles.

5.1.1 Necessity

As for the assumptions on SCFs, we still assume that it is ε-secure in each state, although

this will not be a necessary condition. In contrast, we shall introduce two more properties,

which will be necessary for implementability in asymptotically stable strategies. The next

one is the strict version of incentive compatibility.

An SCF f is strictly incentive compatible if truth-telling is a strict Bayesian equilibrium

of its direct mechanism, i.e., if for all i and for all θi,

∑

θ−i∈Θ−i

qi(θ−i|θi)ui(f(θ), θ) >
∑

θ−i∈Θ−i

qi(θ−i|θi)ui(f(θ′i, θ−i), (θi, θ−i))

for every θ′i 6= θi.

An SCF f is incentive compatible if the inequalities in the preceeding definition are

allowed to be weak.

As it turns out, (strict) incentive compatibility is an important necessary condition for

any kind of implementability in our sense.
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Theorem 5 If f is implementable in stochastically stable strategies of any perturbation of an

unperturbed interim better-response dynamic process, f is incentive compatible. Furthermore,

if at least one of the recurrent classes selected by the perturbation of the interim better-

response process is a singleton, f is strictly incentive compatible.

Proof 5 Suppose that f is implementable in stochastically stable strategies of any pertur-

bation of better-response dynamics. This means that, for this perturbed process, there is a

unique outcome supported by at least one of the recurrent classes of the unperturbed process,

and this outcome is f . Since f is the outcome of such an absorbing set of better-response

dynamics, it must be incentive compatible.

Furthermore, if one of the recurrent classes selected by the perturbation is a singleton, any

deviation from the message profile that is an absorbing state of the unperturbed dynamics must

worsen each type’s interim expected utility, and thus, f must be strictly incentive compatible.

Remark: In particular, the conclusions of Theorem 5 extend to the case of no-perturbations

at all, i.e., incentive compatibility is also a necessary condition for implementability in as-

ymptotically stable strategies of better-response dynamics. In addition, if the process admits

at least one singleton recurrent class, strict incentive compatibility also becomes necessary.

The next definitions prepare the way for the other condition that we shall present in this

subsection.

Consider a strategy in a direct mechanism for agent i, i.e., a mapping αi = (αi(θi))θi∈Θi
:

Θi 7→ Θi. A deception α = (αi)i∈N is a collection of such mappings where at least one differs

from the identity mapping.

Given an SCF f and a deception α, let [f ◦ α] denote the following SCF: [f ◦ α](θ) =

f(α(θ)) for every θ ∈ Θ.

Finally, for a type θ′i ∈ Θi, and an arbitrary SCF y, let yθ′i
(θ) = y(θ′i, θ−i)) for all θ ∈ Θ.

An SCF f is Bayesian quasimonotonic if for all deceptions α, for all i ∈ N , and for all

θi ∈ Θi, whenever

Ui(f | θi) > Ui(yθ′i
| θi)∀θ′i ∈ Θi implies Ui(f ◦ α | θi) > Ui(y ◦ α | θi), (∗∗)

one must have that f ◦ α = f .

Note how Bayesian quasimonotonicity is to Bayesian monotonicity (e.g., Jackson (1991))

as quasimonotonicity was to Maskin monotonicity.

We move on now to our next necessity result. In it, Bayesian quasimonotonicity shows up

as a necessary condition when implementability is sought in asymptotically stable strategies,
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or equivalently, in stochastically stable strategies for all perturbations of an unperturbed

interim better-response process.

Theorem 6 If f is implementable in asymptotically stable strategies of an unperturbed in-

terim better-response dynamic process, f is Bayesian quasimonotonic.

Proof 6 Suppose that f is implementable in asymptotically stable strategies of better-response

dynamics. This means that f is the only outcome of the recurrent classes of the unper-

turbed dynamics. In particular, this implies that there exists a message profile m such that

g(m) = f , in one of such recurrent classes.

Any unilateral deviation from m made by type θi either results laso in f, or it changes the

outcome. In the latter case, call such an outcome y. If the deviation also involves pretending

to be type θ′i, the corresponding outcome imposed can be written as yθ′i
. But, since we are

starting from a recurrent class of better-response dynamics, any such deviations that change

the outcome fall in the strict lower contour set of the interim preferences for type θi at f .

That is, Ui(f | θi) > Ui(yθ′i
| θi). This statement holds for every θi and for every i.

Consider now an arbitrary deception α and suppose, following the hypothesis of Bayesian

quasimonotonicity –equation (**)–, that any such yθ′i
, when the deception α is used, is such

that Ui(f ◦ α | θi) > Ui(y ◦ α | θi) for every i and θi. Consider the strategy profile m ◦ α. Its

outcome is f ◦ α. Then, any unilateral deviation from it on the part of type θi either does

not change the outcome or yields an outcome y ◦ α such that Ui(f ◦ α | θi) > Ui(y ◦ α | θi).

To see this, note that if type αi(θi) found a weakly profitable deviation from m ◦ α, he would

be implementing an outcome y ◦α that he likes at least as much as f ◦α. But then, the same

deviation made by type θi from m would lead to an outcome yθ′i
6= f that he would like as

much as f , contradicting that m was part of a recurrent class of the better-response process.

This implies that m ◦ α is also an element of a recurrent class of the better-response

process. Thus, for f to be implementable in asymptotically stable strategies, it is required

that the outcome of m ◦ α, i.e., f ◦ α, be f . That is, f must be Bayesian quasimonotonic.

Remark: Note the subtle difference between the necessity results provided in Theorems 5

and 6. Theorem 5 identifies incentive compatibility as a necessary condition for any kind of

stochastically stable implementation. Bayesian quasimonotonicity becomes necessary only if

one insists on asymptotically stable implementation.

5.1.2 Sufficiency

Our next sufficiency result follows:
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Theorem 7 Suppose the environments satisfy Assumptions (1) and (2) in each state. Let

n ≥ 3. If an SCF f is ε-secure, strictly incentive compatible and Bayesian quasimonotonic,

f is implementable in asymptotically stable strategies of interim better-response dynamics.

Proof 7 We construct the following canonical mechanism G = ((Mi)i∈N , g), where agent i’s

message set Mi = Θi × A. Denote mi = (m1
i , m

2
i ). The outcome function g is defined in the

following rules:

(i.) If for every agent i ∈ N , m2
i = f , g(m) = f(m1).

(ii.) If for all j 6= i m2
j = f and m2

i = y 6= f , one can have two cases:

(ii.a.) If there exist types θi, θ
′
i ∈ Θi such that Ui(yθ′i

| θi) ≥ Ui(f | θi), g(m) =

(fi(m
1) − β, f−i(m

1)), where fi(m
1) ≥ fi(m

1) − β ∈ Xi.

(ii.b.) If for all θi, θ
′
i ∈ Θi, Ui(yθ′i

| θi) < Ui(f | θi), g(m) = y(m1).

(iii.) In all other cases, g(m) = 0.

Following similar steps as in the proof of Theorem 2, one can show that all recurrent

classes of the unperturbed dynamics are absorbing states that happen under rule (i). More-

over, their outcomes are either f or f ◦ α. But in the latter case, since f is Bayesian

quasimonotonic, one can show that f ◦ α = f .

Remark: Theorems 5, 6 and 7 provide almost a characterization of the rules that are

implementable in asymptotically stable strategies of better-response dynamics in economic

environments with at least three agents.

5.2 More Permissive Results

In an attempt to obtain more permissive results, in this subsection we shall consider sto-

chastically stable implementation using perturbations of interim better-responses based on

uniform mutations. We shall make the following assumptions on environments:

(6) For every deception α, there exists an agent i ∈ N , a type θi ∈ Θi, a strictly incentive

compatible SCF x, and another SCF y such that

Ui(x | θi) > Ui(yθ′i
| θi)∀θ′i ∈ Θi and Ui(x ◦ α | θi) ≤ Ui(y ◦ α | θi). (∗ ∗ ∗)

(7) The bundles in the SCF’s x and y used in (***) are componentwise no greater than ε.
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In words, Assumption (6) says that the environment admits preference reversals to over-

come deceptions. However, these preference reversals need not happen around f , the SCF

of interest, but around some strictly incentive compatible SCF x; see Serrano and Vohra

(2005) for an appraisal of how weak this assumption really is.

For each deception α, we shall choose one test-pair x, y and one test-agent i, satisfying

the conditions in (***). Denote the set of all such x by D. Finally, with very little loss of

generality, choose the bundles in the SCF’s y consisting of strictly positive amounts of each

commodity. Then, define the SCF [y] as the one that assigns in each state the componentwise

minimum bundle for each agent i and each state θ: [y]i(θ) ≤ yi(θ) for all y.

On the other hand, Assumption (7) says that such reversals happen “near enough the

zero bundle.”7 Then, one can make use of the insight in the last remark of the previous

section to show our next result:

Theorem 8 Suppose that the environments satisfy Assumptions (1), (2), (6) and (7). Let

n ≥ 5. Any ε-secure and strictly incentive compatible SCF f is implementable in stochasti-

cally stable strategies of perturbed interim better-response dynamics under uniform mutations.

Proof 8 The proof follows steps similar to that of Theorem 4, but applied to the following

mechanism. Let agent i’s message set be Mi = Θi × A. Denote a typical message sent by

agent i by mi = (m1
i , m

2
i ) and the corresponding message profile by m = (m1, m2). The

outcome function obeys the following rules:

(i.) If for every i ∈ N , m2
i = f , g(m) = f(m1).

(ii.a.) If exactly (n − 1) messages mj are such that m2
j = f and m2

i = x for some x ∈ D,

g(m) = x(m1).

(ii.b.) If exactly (n − 1) messages mj are such that m2
j = f and m2

i = x for some x /∈ D,

g(m) = (fi(m
1) − β, f−i(m

1)), where fi(·) ≥ fi(·) − β ≥ (ε, . . . , ε).

(iii.a.) (iii.a) If exactly (n− 2) messages mk are such that m2
k = f , m2

i = x for some x ∈ D

and m2
j = y where j and y are the ones associated with x as in (***), g(m) = y(m1).

(iii.b.) (iii.b) If exactly (n− 2) messages mk are such that m2
k = f , but the other conditions

of rule (iii.a) are not met, g(m) = [y].

7In fact, if the environment allowed the use of lotteries and making use of expected utility, one could

combine the SCF’s x and y in a mixture with the zero bundle, where the latter is imposed with arbitrarily

high probability. This argument would allow one to take the SCF’s x and y arbitrarily “near the zero bundle”

without assuming it explicitly, as we do.
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(iv.) In all other cases, g(m) = 0.

We sketch the steps of the proof as follows. First, one can show that all recurrent classes of

interim better-response dynamics are singletons under rule (i). Strict incentive compatibility

allows one to support truth-telling as one of these absorbing states, but there may well be

others, in which agents are using a deception α.

To finish the proof, the details are somewhat involved, but here is an intuitive argument.

One can describe the transition paths among the different absorbing states. To get out of the

one in which agents are telling the truth in their first part of the announcement, one can go

through rule (ii.a), which requires one mutation because any x ∈ D is near the origin (note

that any agent can be used for this mutation, by strictly increasing preferences in each state).

Next, the test-agent corresponding to that x will implement rule (iii.a), where we require a

second mutation. Finally, someone else mutates and we go to rule (iv). A similar path can

be created for each state to get to the profile of zero bundles. There are other paths one could

follow: for example, through rules (ii.b) and (iii.b), but the point is that each time an agent

switches to change the outcome in the direction of the zero profile, a mutation is required.

On the other hand, if one starts at an absorbing state in which a deception is being used,

one gets out through any agent other than the test-agent for that deception and imposes rule

(ii.a), which requires one mutation. The next step, taken by the test-agent for that deception,

is free because of equation (***). From rule (iii.a), someone else changes to rule (iv), and

so on. In this path, we have “saved” one mutation. Of course, from the zero profile, we go

for free to any of the other absorbing states.

6 Conclusion

This paper has studied the classic implementation problem in evolutionary settings. In

particular, necessary and sufficient conditions for implementability in asymptotically sta-

ble strategies of better-response processes and stochastically stable strategies of perturbed

better-response dynamics have been identified. In this exercise, variants of the well-known

monotonicity conditions in implementation theory seem to be the key to capture good dy-

namic properties of implementation. More permissive results, beyond quasimonotonicity,

are possible, but they come at a cost in terms of robustness. In the case of incomplete

information, incentive compatibility shows up as the only necessary condition for evolution-

ary implementation in our sense, with independence of the mutation processes employed.

The analysis of the implementation problem under alternative forms of bounded rationality
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should be the subject of further research.
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