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Abstract

A classic characterization of competitive equilibria views them as feasible allocations maximizing a

weighted sum of utilities. It has been applied to establish fundamental properties of the equilibrium

notion, such as existence, determinacy, and computability. However, it fails for economies with missing

�nancial markets.

We give such a characterization for economies with missing �nancial markets, by an amended social

welfare function. Its parameters capture both the relative importance of households�welfare�the classic

weights�as well as the disagreements among them as to the value of the missing markets.

As a by-product, we identify the dimension of the set of interior equilibrium allocations.
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1 Introduction

If no �nancial markets are missing, following Lange (1942) and Allais (1943), interior allocations of given

resources are competitive equilibria if and only if they solve the program max�xh=rW�(x) for some strictly

positive �; with W� being the social welfare function1

W�(x) := ��
huh(xh) (1)

The parameters � in Lange�s social welfare function capture the relative importance of households�wel-

fare. This characterization has been applied to establish fundamental properties of the equilibrium notion�

existence, Negishi (1960) and Bewley (1969), determinacy with in�nitely lived households, Kehoe and Levine

(1985), and computability, Mantel (1971).

If some �nancial markets are missing as in Radner (1972), however, this equivalence fails: some interior

competitive equilibria need not solve the program max�xh=rW�(x) for any strictly positive �: Moreover,

no natural social welfare function W has been found that would rescue this implication.

We extend the characterization to economies with some missing �nancial markets, by amending the social

welfare function. Thus interior allocations of given resources are competitive equilibria if and only if they

solve the program max�xh=rW�;�(x) for some parameters � 2 D; � 2 M living in certain spaces, with

W�;� being the social welfare function

W (x) := ��huh(xh)� ��h � xh1 (2)

Here, the social evaluation of allocations is described by the usual weights � on households�welfare, and

by new charges � on their future consumption. The parameter � is interpreted classically, whereas � is

interpreted as the �disagreement�among households as to the �value�of the �missing �nancial markets,�

as justi�ed below.

Why does it fail, the equivalence of competitive equilibria and maxima of (1), if some �nancial markets

are missing? On the one hand, any allocation x that maximizes this is Pareto e¢ cient. Indeed, if y were

Pareto superior to x; i.e. (uh(yh)) > (uh(xh)); then W�(y) > W�(x) for any � � 0; so x could not

be a maximum for any � � 0. On the other hand, some allocations x that are competitive equilibria

of incomplete �nancial markets are Pareto ine¢ cient. Indeed, for almost every initial allocation, every

competitive equilibrium allocation is Pareto ine¢ cient� for an exposition of this well known fact, see Magill

and Quinzii (1996).2 So some competitive equilibria fail to maximize (1) for any � � 0:

We explain in what sense the parameter � is the �disagreement�among households as to the �value�

of the �missing �nancial markets,� by clarifying each of these terms. By �missing �nancial markets� we

mean the orthogonal complement a? of the span of the existing �nancial instruments a: By �value� of

the missing �nancial markets we mean a linear functional v : a? ! R: The Riesz representation theorem
1Lange characterizes Pareto optima in this way. So the above characterization follows from the two welfare theorems. (Lange

(1942) is aware of the �rst one, while Allais (1953) is among the �rst to rigourously prove the second one.)
2 If there are multiple goods and enough missing �nancial markets, even the equilibrium use of the existing �nancial markets is

generically Pareto ine¢ cient, as shown by Geanakoplos and Polemarchakis (1986), who pioneer the application of transversality
to equilibrium welfare. The intuition for this is due to Stiglitz (1982). A sweeping generalization is in Citanna, Kajii and
Villanacci (1998).
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or separating hyperplane theorem imply that any linear functional on a �nite dimensional inner product

space can be represented uniquely as the inner product against a unique element of the vector space�call this

element v̂ 2 a?; so that v(m) = m � v̂: If each household thinks such a value vh, the disagreement is then

the di¤erences from the mean, �h := v̂h �mean(v̂1; :::; v̂H): When so de�ned, the disagreement � = (�h)

satis�es two properties: (i) �h 2 a?; because it is a linear combination of points v̂h 2 a? in a vector space,

and (ii) ��h = 0; because these are di¤erences from the mean. In sum, imagining that each household has

its own vh; an opinion as to the value of the missing �nancial markets, then this is the sense of the new

parameter in our social welfare function (1)� a matrix � = (�h) satisfying conditions (i), (ii).

Our main conclusions are about the following set, given some smooth preferences u �a la Debreu (1972),

some state-contingent resources r; and some �nitely many �nancial instruments a: Namely, the set X of

all interior competitive equilibrium allocations arising from some income distribution �eh = r compatible

with the resources.

The �rst result (theorem 1) is that an allocation x � 0 is an equilibrium allocation if and only if it

solves the program max�xh=rW�;�(x) for some (�; �) 2 D�M; where

D :=
�
� 2 RH j � � 0;�

1

�h
= 1

�
M :=

n
� 2

�
a?
�H j ��h = 0o

We see that the �welfare�parameter � is normalized in a standard way, and the �disagreement�parameter

� re�ects properties (i) and (ii) above.

The second result (proposition 1, part A) identi�es the (�; �) from the equilibrium allocation as being

�h(x) =
1

Dx0u
h(xh)

(3)

�h(x) = v̂h �mean(v̂1; :::; v̂H) with v̂h :=
Dx1u

h(xh)

Dx0u
h(xh)

Thus �h is the inverse of the marginal utility of present consumption, as usual, and � is, as interpreted

above, the disagreement among households as to the value of the missing �nancial markets, where each

household�s �value� v̂h is concretized as the marginal rates at which it substitutes consumption in future

states for consumption in the present state. Here, the abstract notion of �value� as a linear functional

v : a? ! R is made concrete by the idea of marginal willingness to pay as � 7! � �MRS; the inner product

of the in�nitesimal change � in future consumption against the marginal rates of substitution MRS.

The third result (theorem 2) is that the relation x$ (�; �) between X$ D�M is a bijection, smooth

in both directions. This implies immediately that the dimension of X equals the dimension of D�M;
which is easily shown to be (H � 1)(1 +m) where m is the number of missing �nancial markets. This

nests a well known fact about complete markets, where m = 0 : the interior Pareto optima (which are X
by the two welfare theorems) have dimension H � 1; cf. proof of 5.2.4 in Balasko (1988).
We restrict attention to an exchange economy that, for simplicity, has a single good per state and assets

paying o¤ in terms of it. However, our results extend to the case of multiple goods per state and any

assets paying o¤ linearly in the goods�prices, with the social welfare function and arguments being almost

identical. For this more general setting, Tirelli (2008) develops a parameterization of equilibria, alternate to

the x $ (�; �) here, emphasizing their geometry over the social welfare function they optimize. He then
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applies the parameterization to derive the constrained ine¢ ciency of equilibria in the sense of Geanakoplos

and Polemarchakis (1986).

By way of application, we suggest the problem of computing equilibria of incomplete �nancial markets.

This problem has its analogue with complete �nancial markets, for which many algorithms and their con-

vergence properties are available. One such algorithm is Mantel�s (1971), a dynamic system in the welfare

weights � given initial endowments e :

_�
h
=
p0�(e

h � xh� )
�h

where x� solves the �-program max�xh=rW�(x) and p� is its Kuhn-Tucker multiplier, with W� as in (1).

Clearly, a rest point _� = 0 corresponds to an allocation x� that is resource-feasible, and Marshallian-optimal

relative to prices p�; so that x� 2 X: He shows that if the utilities de�ne excess demands for which goods are
gross-substitutes� known to imply unique equilibrium prices� and are homothetic, then this dynamic system

is globally stable. Our characterization suggests that a natural idea for computing equilibria of incomplete

�nancial markets a; would be to amend his dynamic system to one in the parameters �; �; and amend his

condition for global stability.

The paper proceed as follows. Section 2 spells out the model and assumptions. Section 3 develops the

characterization. Section 4 re�nes the characterization, computing the dimension of X: Section ?? contains
the more formalistic and less insightful proofs.

2 Economy and equilibria

Primitives There are h = 1; :::;H households who know the present state of nature 0 but are uncertain

as to which future state of nature s = 1; :::; S will occur. In each state a nonstorable good is available for

consumption, and in state 0 there are assets j = 1; :::; J available for trade.

Real economy The resource r 2 RS+1++ of the good is state-contingent, and the income distribution

e across households is compatible, 
 :=
n
e 2 RH(S+1)++ : �eh = r

o
. Each asset j pays o¤ in the future

a state-contingent amount aj 2 RS of the good, summarized by a matrix a 2 RS�J :3 Asset markets are
complete if span(a) = RS ; incomplete otherwise.
Markets Markets specify that each asset j is tradeable at a price of qj units of the good in the

present, by specifying q = p0a (row) for some state prices p 2 RS++: Q � RJ denotes such asset prices.

Households are free to trade any amount �hj 2 R of any asset: buy �hj > 0; sell �
h
j < 0; or neither �hj = 0:

Trades of asset j clear if ��hj = 0: Viewing asset prices as a negative payo¤ in the present, asset payo¤s

become W :=

 
�q
a

!
2 RS+1�J

Remark 1 The payo¤s a of the assets and the resources r of the good are �xed throughout the paper.

This is important in interpreting the dimensions reported in section 4.

3All vectors are column vectors, unless stated otherwise.
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Consumption The consumption correspondence from asset prices q 2 Q and one�s income

eh 2 RS+1++ is

X(q; eh) = span
�
eh +WRJ

�
\ RS+1+

The asset trade is any function � : Q� RS+1++ ! RJ from asset prices and one�s income. Each household

has an asset trade �h; by which it transforms its income into consumption, xh(q; eh) := eh +W �h(q; eh):

Trades are optimal if there is a utility function uh : RS+1+ ! R solving

uh(xh(q; eh)) = supuh(X(q; eh))

De�nition 1 (q; e) 2 Q � 
 is an equilibrium if asset trades clear, ��h(q; eh) = 0: It is a no-trade
equilibrium if �h(q; eh) = 0 for every h:

We denote by E;T;X the sets of equilibria, no-trade equilibria, equilibrium allocations�an equilibrium
allocation is any x for which (q; x) 2 T for some q 2 Q:

2.1 Assumptions

Assumption 1 In the economy, the income distribution is strictly positive (e 2 
) and no assets are

redundant (a has rank J):

Assumption 2 Trades by h are optimal with respect to utility uh:

Assumption 3 uh is continuous, C2 in RS+1++ ; strictly increasing (8x 2 RS+1++ ; Duh(x) � 0), strictly

concave (8x 2 RS+1++ ; D2uh(x) is negative de�nite), and boundary averse (8x0 2 RS+1++ ; uh(x) � uh(x0) )
x 2 RS+1++ ; and limxs&0

@uh(x)
@xs

=1).

An instrumental notion is each household�s rh (marginal rates of substitution), the row-vector
function RS+1++ ! RS+1++

rh(x) :=
�
::;
Dxsu

h(x)

Dx0u
h(x)

; ::

�
(4)

It is instrumental because of a well known implication of the assumptions, that the optimal asset trades

�h(q; eh) are C1 and characterized as the unique solution of

rha� q = 0 (�)

while evaluating rh at eh +W�h:

3 Equilibrium allocations characterized

We characterize equilibria as solutions of the program max�xh=rW�;�(x) for some parametric social welfare

function W�;�; where the parameters satisfy a speci�c restriction, (�; �) 2 P: The social welfare function in
question, given parameters (�; �) 2 RH � RHS ; is

W�;�(x) := ��
huh(xh)� ��h � xh (5)
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where �h = (0; �h) 2 RS+1 simply prepends to the row vector �h a coordinate with value zero.

Key to the characterization is a function (�(x); �(x)) from income distributions 
 to the ambient space

RH � RHS ; given by
�h(x) =

t

D0uh
�h(x) = t(rh �r) (6)

where

t = �D0u
i 2 R++ r = 1

H
�rh 2 RS++ (7)

by assumption 3. Since the dependence of rh on xh; and of t;r on x is understood, it is being omitted.

In a nutshell, the logic of the characterization has two steps. In the �necessity step�(proposition 1), we

show that if x� 0 is an equilibrium allocation, then it solves the program for (�; �) = (�(x); �(x)); the value

of (6) at the equilibrium allocation, and in turn (�(x); �(x)) satis�es speci�c restrictions. It is then natural

to de�ne, independently of the social welfare function (5) or the function (6), the subset P � RH �RHS of

all points satisfying these restrictions. In the �su¢ ciency step�(proposition 2), we show that an allocation

x that solves the program for some (�; �) 2 P is an equilibrium allocation, and in turn (�; �) must be

(�(x); �(x)); the value of (6) at the maximum. We include all proofs in the body of the paper because they

are insightful and simple.

Proposition 1 (necessity) If x� 0 is an equilibrium allocation, then

� (A) it solves the program max�xh=rW�;�(x) for the (�; �) = (�(x); �(x)) in (6)

� (B) (�(x); �(x)) satis�es the restrictions �(x)� 0;� 1
�h(x)

= 1 and �h(x) 2 a?;��h(x) = 0:

Proof. Part A Feasibility: �xh = r holds because x is an equilibrium allocation. Maximality: By

the easy half of Kuhn-Tucker, it su¢ ces that x maximizes

W�;�(x)� � � �xh

for some � 2 RS+1; say, � := t(1;r)� 0 with t;r as in (7).

Note W�;�(x) � t(1;r) � �xh is concave, given � = �(x) � 0. So it is maximized at x � 0; the

equilibrium allocation, so long as its derivative is zero there. Its derivative with respect to xh0 is

�hD0u
h � t

By the hypothesis that � is the �(x) in (6), this is zero indeed. Its derivative with respect to xh1 where

1 = f1; :::; Sg is

�hD1u
h � �h � tr

By the hypothesis that �; � are the �(x); �(x) in (6), this is

t

D0uh
D1u

h � t(rh �r)� tr

= t
D1u

h

D0uh
� trh
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Recalling de�nition (4), this is zero indeed.

Part B �(x) 2 D : De�nitions (6), (7) immediately imply the 1
�h
= D0u

h

t sum to 1; also, �h > 0 by

assumption 3; therefore, �(x) 2 D: �(x) 2M : It su¢ ces that (rh�r)h 2M; since t = �D0u
i > 0 is just

a uniform rescaling. That the (rh�r) sum to 0 is immediate from the de�nition of r := 1
H�r

h as the

average. (Up to here, the proof does not require the hypothesis of equilibrium.) That rh�r 2 a? follows

from asset trades, which are optimal in equilibrium hence satisfy rha� q = 0 as noted in (�). Averaging

these equations, ra� q = 0: Subtracting the latter from the former, (rh �r)a = 0; i.e. rh �r 2 a?:
Let us de�ne the sets

D :=
�
� 2 RH j � � 0;�

1

�h
= 1

�
M :=

n
� 2

�
a?
�H j ��h = 0o (8)

Whereas these sets are de�ned independently of the auxiliary function (6), conclusion (B) does refer to the

auxiliary function (6). Yet it is possible to paraphrase conclusion (B) in terms of these sets: (�(x); �(x)) 2
D�M: Putting together (A) and (B) therefore yields the

Corollary 1 If x � 0 is an equilibrium allocation, then it solves the program max�xh=rW�;�(x) for

some (�; �) 2 D�M:4

A natural conjecture is whether the converse is true, and it is:

Proposition 2 (su¢ ciency) If x � 0 solves the program max�xh=rW�;�(x) for some (�; �) 2 D�M;
then

� (A) it is an equilibrium allocation

� (B) (�; �) is necessarily the (�(x); �(x)) in (6)� in particular, x� 0.

Proof. Part B That x 2 argmax� 0 follows from the boundary aversion in assumption 3 and � � 0:

Further, the harder half of Kuhn-Tucker implies that x maximizes

W�;�(x)� � � �xh

for some �+ = (�0; �) 2 RS+1: (Here we use that W�;� is concave and �xh = r linear, so that the

constraint quali�cation automatically holds.) Since x� 0; the derivative must be zero:

�hDuh � �h = �+ (9)

Equation (9) implies for state 0 that

�h =
�0

D0uh

since �h0 = 0: This and the hypothesis � 2 D (so that � 1
�h
= 1) imply �0 = �D0u

i; hence

�h =
�D0u

i

D0uh
(10)

4The P to which the introduction to this section alludes is here recognized as P = D�M:
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This states � is the �(x) in (6). And equation (12) implies for states 1 = f1; :::; Sg that

�h = �hD1u
h � � = (�D0u

i)rh � �

on substituting conclusion (10) and de�nition (4). This and the hypothesis � 2 M (so that ��h = 0),

when averaged, imply 0 = 1
H��

h = (�D0u
i)r� � hence � = (�D0u

i)r; which substituted back implies

�h = (�D0u
i)(rh �r) (11)

This states � is the �(x) in (6).

Part A By de�nition of equilibrium allocation, we are to show that (q; x) 2 T is a no-trade equilibrium,

i.e. �h(q; xh) = 0; for some asset prices q 2 Q: By (�), this is equivalent to rha� q = 0 while evaluating

rh at the xh +W0 = xh; for some q 2 Q: It su¢ ces that this be true for, say, q := ra with r as in

(7). That is, it su¢ ces that

rha�ra = 0 (12)

while evaluating at xh: Now, (12) is equivalent to (rh � r)a = 0 is equivalent to (rh � r) 2 a? is

equivalent to (�D0u
i)(rh�r) 2 a? (since the vector space a? is closed under rescalings by (�D0u

i) 6= 0).
Thus it su¢ ces that (�D0u

i)(rh � r) 2 a? while evaluating at xh: This is true, because of conclusion

(11) and the hypothesis � 2M (so that �h 2 a?).
Putting together part (A) of propositions 1 and 2 yields our characterization of equilibria:5

Theorem 1 Suppose x� 0: Then it is an equilibrium allocation i¤ it solves max�xh=rW�;�(x) for some

(�; �) 2 D�M:

We remark that if asset markets are complete, then a? = f0g and M = f0g and � = 0 necessarily,

making W�;�(x) = ��
huh(xh): In particular, if asset markets are complete, theorem 1 simply concludes that

x is an equilibrium allocation if and only if it solves max�xh=r ��
huh(xh) for some � 2 D� the classical

characterization.

As an aside, there is a separate characterization, which does not even refer to social welfare functions.

The proof is relegated to the appendix, and simply recycles the arguments above.

Corollary 2 Suppose x 2 
: Then it is an equilibrium allocation i¤ (rh �r) jx2 a? for every h:

Likewise, if asset markets are complete, then a? = f0g and this merely concludes that x is an

equilibrium allocation if and only if it all rh are equal (to the average)� a classical characterization.

Remark 2 (multiple goods) If there are multiple goods per state and assets pay o¤ in the numéraire,
theorem 1 holds exactly as stated, so long as the social welfare function is amended as follows:

��huh(xh)� ��h � xhnuméraire in future
5Part (B) of proposition 1 may seem super�uous, but in fact was the identi�er of (�; �) 2 D�M as this theorem�s necessary

and su¢ cient condition. Part (B) of proposition 2 will play a role in the next section.
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4 Dimension of equilibrium allocations

Here, we state a version of the characterization that is stronger by the fact it claims the above relation

x$ (�; �) is a di¤eomorphism�a bijection, smooth in both directions. If the utilities are time separable
u(x) = u0(x0) + u1(x1); and we think of the inverse of (6), we see � determines the distribution of present

consumption x0, and, given �; � determines the distribution of future consumption x1.

By way of caveat, the dimensions reported here are to be interpreted for �xed asset payo¤s a and

resources r:

Theorem 2 The no-trade equilibria T are di¤eomorphic to D�M:6 In fact, a global chart is (6). Thus
T is a smooth manifold of dimension (H � 1)(S � J + 1):

To see why this is the dimension, note that T;D�M must have equal dimension, being di¤eomorphic,

while that of D�M is easy to compute. It is dim(D) + dim(M); clearly, glancing at (8) we see dim(D) =
H � 1; and dim(M) = (H � 1)(S � J); because choosing �1;:::;H�1 from a? (itself of dimension S � J)

uniquely determines �H 2 a? as �H = ��h<H�h: Thus

dimT = dimD+ dimM = (H � 1) + (H � 1)(S � J) = (H � 1)(S � J + 1)

Theorem 2 nests a well known fact about complete markets, where S = J : the interior Pareto optima

(which are X by the two welfare theorems) have dimension H � 1; cf. proof of 5.2.4 in Balasko (1988).

Corollary 3 The equilibria E are a (H�1)J�vector bundle on T; hence a smooth (H�1)(S+1)-manifold.

To see why this is the dimension, note that E; as locally the Cartesian product of T and a vector space

of dimension (H � 1)J; must have dimension

dimE = dimT+ (H � 1)J =theorem 2= (H � 1)(S + 1)

Corollary 3 agrees with a well known fact about complete markets, where S = J : the equilibrium

manifold given �xed resources has dimension (H � 1)(#goods); cf. chapter 5 in Balasko (1988).

Remark 3 (multiple goods) If there are multiple goods per state and assets pay o¤ in the numéraire,
theorem 2 holds exactly as stated�so the dimension of T stays the same.

4.1 Theorem ??

To show that X is a manifold di¤eomorphic to D �M (itself a manifold), it su¢ ces to show that there

exist C1 functions D�M! R
H(S+1)
++ !� RH � RSH such that

�  (D�M) = X

� � �  is the identity

6Note, though the statement is about T instead of X; it this equivalent, as shown by the inverses (q; x)! x; x! (r; x):
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In particular,  would be a global parameterization of X by D�M:
The functions are the following.  : D�M! RH(S+1)++ is

 (�; �) = arg max
�xh=r;x�0

W�;�(x) (13)

� : RH(S+1)++ ! RH � RSH is just (6):

�(x) =

"
:::; �D0u

i

D0uh
; :::

:::; (�D0u
i)(rh �r); :::

#
(14)

Claim � and  are well de�ned, C1; and satisfy both conditions.
� is well-de�ned and C1 Obvious given assumption 3.
 is well-de�ned, i.e.  (�; �) exists, is unique, and in RH(S+1)++ . The argmax exists by Weiertrass�s

theorem, because in (13) the objective is continuous and the feasible set compact. The argmax is unique

because, �rst, argmax� 0 given the Inada condition in assumption 3, and, second, the objective is strictly

concave in the interior given the concavity condition in assumption 3.
 is C1 This follows from the implicit function theorem and domain( ) = D � M by a standard

argument that we omit.

 (D�M) = X That  (D�M) � X is part A of proposition 2. That  (D�M) � X is corollary ??.
� �  = id Given (�; �) 2 D �M, de�ne x := argmax in (13). We want �(x) = �; �(x) = � in the

sense of (6). Part B of proposition 2 says so.

Finally, we provide the

Proof. of corollary 3. By de�nition, X is the image of the projection E ! 
; �(q; e) = (eh +

W�h(q; eh))h: Its �bers ��1(x) are clearly

��1(x) = fr jx ag �
�
e 2 
 : 8h; eh = xh ��h for some �h 2 span(W )

	
using remark ??. So �bers are parameterized (smoothly in x) by an open set of �h>1 in span(W )H�1� here

e1 = x1 +�h>1�
h� which is a convex set of dimension (H � 1)J:
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