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ABSTRACT 

In a decentralized setting the game-theoretical predictions are that only strong 

blockings are allowed to rupture the structure of a matching. This paper argues that, 

under indifferences, also weak blockings should be considered when these blockings 

come from the grand coalition. This solution concept requires stability plus Pareto 

optimality. A characterization of the set of Pareto-stable matchings for the roommate 

and the marriage models is provided in terms of individually rational matchings whose 

blocking pairs, if any, are formed with unmatched agents.  These matchings always 

exist and give an economic intuition on how blocking can be done by non-trading 

agents, so that the transactions need not be undone as agents reach the set of stable 

matchings. Some properties of the Pareto-stable matchings shared by the Marriage and 

Roommate models are obtained. 
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INTRODUCTION, MAIN CONCEPTS AND RESULTS 

In a decentralized setting in which players can interact with each other and get 

together in groups, the game theoretic predictions are that a matching that can be upset 

by a coalition will not occur. When preferences are strict, the outcome of such 

coalitional interactions should then be a stable matching, if it exists. However, such 

predictions should be revised in the cases in which preferences are not necessarily strict. 

In such cases, it is justifiable that recontracts between pairs of agents already allocated 

according to a stable matching, leading to a weak Pareto improvement of the original 

matching, should be allowed. In this context, it makes sense to predict that only Pareto-

stable matchings, i.e. stable matchings that are Pareto optimal, will occur.  

This paper takes up this approach and proves some characteristic properties of 

the Pareto-stable matchings. It concentrates on the well-known Roommate and Marriage 

models, both introduced by Gale and Shapley in their famous paper of 1962. We follow 

the notations and concepts presented in Roth and Sotomayor (1990). The Roommate 

model is described as the pair  (N,P),  where  N={1,2,…,n}  is the set of players and  P 

is the set {P(1),…,P(n)},  where  P(j)  is an ordered list of preferences (strict or non-

strict) for player  j. The Marriage model is regarded as a sub-model of the Roommate 

model in which  N=M∪W,  M  is a set of men and  W  is a set of women. For the sake of 

exposition the main concepts will be introduced along this section, as well as the main 

results of this paper, which will be presented, motivated, discussed and illustrated with 

examples. We will not always provide a formal statement. The intuitive proofs will be 

provided here and the technical proofs will be presented in the next section.  

To figure out the kind of coalitional interaction taking place among agents 

allocated according to a stable matching that is not Pareto-optimal, see Example 1 

below.  

 

Example 1. (Pareto-stability is a natural solution concept for the roommate model) 

Consider a decentralized setting where a set of  eight  boys, 1,2,…,8, wish divide up 

into pairs of roommates. The boys’ preferences over acceptable partners are represented 

by the following ordered lists, where  P(j)  denotes boy  j’s  list for all  j=1,…,8: 

P(1)=8, 2, 1  P(5)=8, 6, 5 

P(2)=[3, 1], 2  P(6)=[3, 5], 6 

P(3)=2,6, 4, 3   P(7)=4, 8, 7 

P(4)=[3, 7], 4             P(8)= [1, 5, 7], 8 
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The brackets in the preference lists of boys  2, 4, 6  and  8  mean that these 

agents are indifferent among the boys inside the brackets. The matching  z,  where  

z(1)=2, z(3)=4, z(5)=6, z(7)=8, doesn’t have any blocking pair, so it is stable. This 

means that no two boys can be both better off by becoming roommates. 

However, we cannot expect to observe this matching as the final outcome. In 

fact, boy  3 prefers boy  6  to his partner, boy 4; in his turn  boy  6  is indifferent 

between boy  3  and his partner, boy  5; boy 5  prefers  boy  8  to his partner, boy  6; boy  

8  is indifferent between boy  5 and  his partner, boy  7; on the other hand boy  7  

prefers boy  4  to his partner, boy  8  and boy  4  is indifferent between boy  7 and his 

partner boy  3. Thus, boys  3, 5 and 7  can act together and be better off  by exchanging 

their partners  6,  8  and  4 among them. It is natural to expect that this exchange will  be 

accepted by  6,  8  and  4,  since these boys are indifferent between their current partners 

under  z  and the new proposed mates. It is then reasonable to expect that these boys  

will form a new set of partnerships, {3,6}, {5,8} and  {7,4},  and that matching  w, such 

that  w(1)=2,  w(3)=6,  w(5)=8  and  w(7)=4,   will be the resulting matching of this 

coalitional interaction. Matching  w  is a weak Pareto improvement of matching  z  via 

coalition  {3,4,5,6,7,8}, which weakly blocks matching  z. Since a weak Pareto 

improvement of a matching does not create any blocking pair, and  z  is stable, then 

matching  w  is also stable.   

Considering that an exchange of partners is acceptable if it does not hurt 

anybody, it is then evident that an exchange of partners is acceptable only if (1) the 

agents involved are either all indifferent between their current partners and the new ones  

or they form a weak blocking coalition and (2) by matching the agents of the weak 

blocking coalition among them in an appropriate way, a weak Pareto improvement of 

the current matching is obtained.  

Having this in mind observe that once matching  w  is reached no more 

acceptable exchange of partners is possible. In fact, boys  7  and   5  are assigned to their 

first choice, so there is no acceptable exchange involving these boys and their partners. 

On the other hand, any exchange involving some of the remaining boys will necessarily 

involve boy  8,  partner of boy  5, who will not accept such pairwise interaction. Hence, 

although  z  and  w  are stable, only  w can be expected to occur.  

The pairs {3,2}  and  {1,8,} are the only weak blocking pairs of matching  w  but 

the coalition  {3,2,1,8} does not produce any weak Pareto-improvement of  w. Matching  

z  is also weakly blocked but only  w  is Pareto-stable.  
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Observe that in this example coalition  {1,2,3,4,7,8} also weakly blocks 

matching  z,  and yields a weak Pareto-improvement given by the matching  w’, which 

assigns  1  to  8,  2  to  3,  4  to  7  and  5  to  6. This new matching is also Pareto-stable. 

No more acceptable exchange of partners will occur. g 

 

The Pareto-stability concept can be viewed as an intermediate concept between 

the stability concept and the strong-stability concept. In fact, the set of strongly stable 

matchings is contained in the set of Pareto-stable matchings, since if a stable matching 

is not Pareto-optimal then it has a weak Pareto-improvement via some weak-blocking 

coalition. When preferences are strict, these two sets coincide with the set of stable 

matchings, because there is no weak blocking coalitions. With indifferences, the 

previous example illustrates that the set of strongly stable matchings may be a proper 

subset of the set of Pareto-stable matchings, which may be a proper subset of the set of 

stable matchings. In that example the set of strongly stable matchings is empty.  

It is immediate that Pareto-stable matchings exist if and only if the set of stable 

matchings is non-empty. In fact, starting at any stable matching that is not Pareto 

optimal, a finite sequence of weak Pareto-improvements leads to a Pareto-stable 

matching. This is due to the fact that any weak Pareto improvement of a stable matching 

is still stable and the set of stable matchings is non-empty by assumption, it is finite and 

preferences are transitive. Consequently, a Pareto-stable matching always exists for the 

Marriage model.  

Assuming we have a stable matching, a natural question is how to test it for 

Pareto optimality.  Clearly, if  x  is a stable matching then matching  z  is  a weak Pareto 

improvement of  x  if: (i) the set  S={j∈N; z(j)≠x(j)}  is a weak blocking coalition of  x; 

(ii) x(S)=z(S)=S; (iii) if  j, k∈S  and  z(j)=k  then  (j,k)  is a weak blocking pair of  x  or 

both agents are indifferent between each other and their mates under  x  and  (iv) if  j∈S  

and  j  is unmatched under  z  then  j  must be indifferent between being unmatched and 

being matched to  x(j). Equivalently, given a stable matching  x,  we can say that  x  is 

Pareto optimal if none of the following requirements occurs: 

(1) There are sequences  (j1,j2,…,jq) and  (k1,k2,…,kq)  with  x(j1)=kq,  x(jt)=kt-1  

for all  t=2,…,q,  and such that either  (jt,kt)  is a weak blocking pair of  x  or  

both agents are indifferent between each other and their mates under  x,  for 
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all  t=1,…,q. Moreover,  (jt,kt)  is a weak blocking pair of  x  for some 

t=1,…,q. 

(2) There are sequences  (j1,j2,…,jq) and  (k0,k1,…,kq)  where  kq  is unmatched 

under  x,  x(jt)=kt-1  for all  t=1,…,q,  k0  is indifferent between being 

unmatched at  x  and being matched to  j1=x(k0), and either  (jt,kt)  is a weak 

blocking pair of  x  or  both agents are indifferent between each other and 

their mates under  x,  for all  t=1,…,q.  Moreover,  (jt,kt)  is a weak blocking 

pair of  x  for some t=1,…,q. 

(3) There are sequences  (j1,j2,…,jq+1) and  (k1,…,kq)  where  j1  is unmatched 

under  x,  x(jt)=kt-1  for all  t=2,…,q+1,  jq+1  is indifferent between being 

unmatched at  x  and being matched to  kq=x(jq+1),  and either  (jt,kt)  is a 

weak blocking pair of  x  or  both agents are indifferent between each other 

and their mates under  x,  for all  t=1,…,q.  Moreover,  (jt,kt)  is a weak 

blocking pair of  x  for some t=1,…,q. 

In fact, if (1) occurs a weak Pareto improvement of  x  is obtained  by matching  

jt  to  kt, for all  t=1,…,q  and  keeping the other matches. If  (2) occurs then a weak 

Pareto improvement of  x  is obtained  by matching  jt  to  kt, for all  t=1,…,q, leaving  k0  

unmatched  and  keeping the other matches. If  (3) occurs then a weak Pareto 

improvement of  x  is obtained  by matching  jt  to  kt, for all  t=1,…,q, leaving  jq+1  

unmatched  and  keeping the other matches.    

The remaining part of this paper is devoted to finding the main properties that 

characterize the Pareto-stable matchings for the Roommate and Marriage models. Our 

main finding concerns the role played by the simple matchings and Pareto-simple 

matchings in the characterization of such outcomes2. Simple matchings can be defined 

as follows: 

 

Definition 1. Matching  x  is simple if it is individually rational and all of its blocking 

pairs, if any, are formed with unmatched agents.  

 

Simple matchings exist even when stable matchings do not, since the matching 

where everyone is unmatched is simple. Clearly, every stable matching is simple. 

The concept of Pareto- simple matching is the following:  

                                                           
2 The idea of focusing on simple matchings has already been used in the literature for the proof of 
existence theorems in several matching models. (See the last section of this paper). 
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Definition 2. An individually rational matching  z  extends  the individually rational 

matching  x  if  z  is a weak Pareto improvement of  x. If  z  and  x  are simple we say 

that  z  is a simple extension of  x. A matching  x  is Pareto- simple if it is simple and 

does not have any simple extension.  

 

That is, matching  x  is Pareto- simple if it is simple and it is not weakly-

dominated by any other simple matching. Pareto-simple matchings always exist since 

the set of simple matchings is non-empty, finite and preferences are transitive.  

The following example, due to Gale and Shapley (1962), shows that the set of 

Pareto-simple matchings may be disjoint from the set of Pareto-optimal matchings, as 

well as from the set of Pareto-stable matchings.  

 

Example 2. (The set of Pareto-simple matchings, the set of Pareto-optimal matchings 

and the set of Pareto-stable matchings are disjoint) Consider the Roommate model 

where the set of boys is  N={1,2,3,4}. The boys’ preferences over acceptable partners 

are given by: 

P(1)=2,3,4,1  P(3)=1,2,4,3   

P(2)=3,1,4,2  P(4)=arbitrary  

 The set of Pareto-stable matchings is empty. There is no Pareto-simple matching 

that is Pareto-optimal. In fact, matching  x  where every agent is unmatched is the only 

simple matching because any other matching has a blocking pair where at least one boy 

is matched.  Then it is Pareto-simple. However, it is not Pareto-optimal since it is 

weakly dominated by, for example, matching  x1,  which matches  1 to  2  and  3  to  4. 

Matching  x1  is Pareto-optimal but it is not simple. The set of Pareto-optimal matchings 

also includes  x2,  which matches  1 to  3  and  2  to  4  and  x3  which matches  1 to  4  

and  3  to  2. g                          

  

The set of Pareto-stable matchings may be a non-empty proper subset of the set 

of Pareto-simple matchings and of the set of Pareto-optimal matchings, as illustrated in 

the example below.  

 

Example 3. (Pareto-stable matchings is a non-empty proper subset of the set of Pareto-

simple matchings and of the set of Pareto-optimal matchings.) Consider the Roommate 
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model where the set of boys is  N={1,2,…,6}. The boys’ preferences over acceptable 

partners are given by: 

P(1)=2,3,1   P(4)=[5,6],4 

P(2)=3,1,2   P(5)=4,3,5 

P(3)=1,5,2,3                P(6)=4,6 

The set of stable matchings is non-empty since matching  y,  such that  y(1)=2, 

y(3)=5  and  y(4)=6,  is stable. This is the only stable matching for this market. Since 

any Pareto-improvement of  y  must be stable then  y  is Pareto-optimal, so it is Pareto-

stable and Pareto-simple. The pair  {5,4}  weakly blocks  y, so the set of strongly stable 

matchings is empty.  Now, let  y’  be  the matching that assigns 5  to  4  and leaves 

unmatched the other boys. It is easy to see that  y’  is simple and unstable. On the other 

hand, there is no way to extend  y’  to a simple matching. In fact, boy  5  is matched to 

his first choice. Consequently, any weak-Pareto-improvement of  y’  will only involve 

the unmatched boys. However, any arrangement with these boys will have a blocking 

pair where at least one boy is matched. Then, any weak-Pareto-improvement of  y’ is 

not simple, so  y’  is a Pareto-simple matching. Since it is not stable then it is not Pareto-

stable.  Matching  y’  is not Pareto-optimal, since matching  z’  that assigns 5  to  4,  1  

to  2  and leaves unmatched the other agents, for example, is a weak-Pareto 

improvement of  y’. However, matching  z’  is not simple since the pair  {2,3}  blocks it  

and boy  2  is matched.  Then,  z’  is Pareto-optimal but it is not Pareto-stable.g 

               

As these examples suggest, the set of Pareto-stable matchings is the intersection 

of two non-empty Pareto sets: 

 

Theorem 1. The set of Pareto-stable matchings equals the intersection of the set of 

Pareto-simple matchings with the set of Pareto-optimal matchings. 

 

The proof of this result is straightforward. If a matching is Pareto-stable then it is 

simple and it is not weakly dominated by any individually rational matching, in 

particular it is not weakly dominated by any simple matching, so it is a Pareto-simple 

matching. Conversely, if  a matching is simple and Pareto-optimal then it must be 

stable, since otherwise it would have a blocking pair formed with unmatched agents and 

so, by matching these agents with each other, we would get a weak-Pareto-improvement 

of  the given matching, which would contradict its Pareto-optimality. 

 7



 Thus, by Theorem 1, in order to show that Pareto-stable matchings exist it is 

sufficient to find just one Pareto-simple matching that is Pareto-optimal. It turns out that 

under strict preferences, if Pareto-stable matchings exist then every Pareto-simple 

matching must be Pareto-optimal, so every Pareto-simple matching must be stable. In 

fact, Theorem 2 provides a characterization of the set of Pareto-stable matchings as the 

set of Pareto-simple matchings. For the Roommate model it is required strictness of the 

preferences and non-emptiness of the set of stable matchings. For the Marriage model it 

is not imposed any restriction.  

 

Theorem 2. a) Consider the Roommate model with strict preferences and suppose the 

set of stable matchings  is non-empty. Then the set of Pareto-stable matchings equals 

the set of Pareto-simple  matchings.   

b) Consider the Marriage model. Then the set of Pareto-stable matchings equals the set 

of Pareto-simple  matchings.  

 

 The idea of the proof of this result is to show that every Pareto-simple matching 

is stable. If this is established then every Pareto-simple matching is Pareto optimal, 

since otherwise there would be a weak Pareto improvement of it, which would still be 

stable, so it would be simple, which is a contradiction. This is equivalent to show that 

every unstable and simple matching has a simple extension: 

 

Proposition 1. a)Consider the Roommate model with strict preferences. If the set of 

stable matchings is non-empty then every unstable and simple matching has a simple 

extension. 

b)Every  unstable and simple matching for the Marriage model has a simple extension. 

 

The proof of this proposition is given in the next section. Unlike the other results 

of this paper it is not straightforward. It is easy to obtain an extension  B  of an unstable 

and simple matching  A  for the Roommate model. It is enough to keep the partnerships 

formed under  A,  if any,  and to add some new partnerships. Of course, these new 

partnerships are formed with blocking pairs of  A.  What is not clear is that if the set of  

stable matchings is non-empty and preferences are strict, then  matching  B  can be 

constructed so that it is still simple. Without these requirements such construction of  B  

is not always possible. Indeed, to match the correct blocking pairs of  A  is the inventive 
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part of the proof. (Remember that matching  x of Example 2 and matching  y’  of 

Example 3 are simple and unstable matchings but they cannot be extended to a simple 

matching. In the first case there is no stable matchings in the market and in the second 

case the preference of player 4 is not strict).  

The proof of Proposition 1-(a) uses a key lemma. This is a technical result, 

which is a one-sided version of the Decomposition lemma for the Marriage model from 

Gale and Sotomayor (1985). For part (b), the proof strongly uses the fact that the 

Marriage model has two sides. 

By Proposition 1, in order to conclude that the set of Pareto-stable matchings for 

the Roommate model with strict preferences is empty, it is enough to find just one 

Pareto-simple and unstable matching. See the example below. 

 

Example 4. (An application of Proposition 1-(a)) Consider the Roommate model where 

the set of boys is  N={1,2,…,7}. The boys’ preferences over acceptable partners are 

given by: 

P(1)=5, 6, 1   P(4)=6, 5, 4                          P(7)=2, 1, 3, 7 

P(2)=3, 7, 2   P(5)=4, 1, 6, 5 

P(3)=7, 2, 3                P(6)=1, 4, 6 

The matching that assigns  4  to  5,  1  to  6  and leaves the other agents unmatched is 

simple and unstable. Any extension of this matching will match a pair of agents in  

{2,3,7}.  However, one of the agents in the pair will form a blocking pair with the agent 

left unmatched. Hence, the original matching does not have a simple extension. Since 

the preferences are strict, we need not check that every Pareto-simple matching is 

unstable. (Observe that the matching  that assigns 4  to  6,  1  to  5  and leaves the other 

agents unmatched is also Pareto-simple and unstable). Proposition 1 implies that the set 

of stable matchings is empty, so the set of Pareto-stable matchings is also empty. g 

 

 The following corollary is then immediate: 

 

Corollary 1. (a) Suppose the preferences in the Roommate model are strict. The set of 

stable matchings is non-empty if and only if every unstable and simple matching has a 

simple extension. 

(b) The set of stable matchings for the Marriage model is always non-empty. 
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The fact that the condition in (a) is necessary is immediate from Proposition 1. It 

is sufficient since, if every  unstable and simple matching has a simple extension then 

the Pareto-simple matchings must be stable. The conclusion follows since Pareto-simple 

matchings always exist. The proof of part (b) is immediate from Proposition 1 b), since 

a Pareto-simple matching always exists and cannot have a simple extension. 

It is easy to construct examples for the Marriage model where, as in the 

Roommate model, the set of strongly stable matchings is empty.  However, it is well 

known that the existence of two sides in the Marriage market causes fundamental 

differences between the two models. There are properties of the Marriage model which 

depend on the two-sidedness of the market, as the non-emptiness of the set of stable 

matchings under any kind of preferences and the lattice property of the set of stable 

matchings when preferences are strict. This last property guarantees the existence of the 

optimal stable matchings for each side of the market. Moreover, it implies that if the 

two optimal stable matchings coincide then the set of stable matchings is a singleton. 

When preferences need not be strict, the lattice property may fail to hold even when the 

man-optimal and the woman-optimal stable matchings exist.  Moreover, the man-

optimal stable matching may coincide with the woman-optimal stable matching when 

the set of stable matchings is not a singleton. See the example below. 

 

Example 5. (The woman-optimal and the man-optimal stable matchings coincide but 

the set of stable matchings is not a singleton) Consider the Marriage model where the 

set of agents are  M={m1, m2}  and  W={w1,w2}. Agent  m1  is indifferent between  w1  

and  w2; m2  prefers  w1  to  w2; w1  is indifferent between  m1  and  m2  and  w2  prefers  

m1  to  m2. Both matchings under which no agent is unmatched are stable and are the 

only stable matchings. The matching  y1  where  y1(m1)=w1  and  y1(m2)=w2  is not 

Pareto-optimal and is not strongly stable. It is weakly Pareto improved by matching  y2  

where  y2(m1)=w2  and  y2(m2)=w1. Matching  y2  is strongly stable. Matching  y2  is 

clearly optimal for the men and for the women but matching  y1  is also stable. g 

 

The key lemma mentioned above is also used in this paper to extend, to the 

Roommate model with strict preferences, two well-known properties for the Marriage 

model with strict preferences. The first result reflects an opposition of interests between 

the two players involved in a partnership regarding two Pareto-stable matchings. It 

asserts that if  x  and  y  are Pareto-stable matchings and  j  prefers  x  to  y  then j is 
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matched under both matchings and both of his mates prefer  y  to  x. The second result 

implies that the set of trading agents at a simple matching can be regarded as a sort of 

stable coalition in the sense that such agents always make their transactions under a 

stable matching within the same pool. In particular, the set of matched agents under a 

Pareto-stable matching is the same under any Pareto-stable matching. The proof of both 

results will be given in the next section. 

 The present work also addresses the case of non-necessarily strict preferences. 

Similar results to those stated under the assumption of strict preferences, by focusing on 

strongly stable matchings and strongly simple matchings, are obtained and presented in 

section 3. The proofs of these results follow the lines of the proofs of the corresponding 

results under strict preferences and are left to the reader. Some final conclusions and 

related work are presented in the last section. 

 

2.  TECHNICAL PROOFS 

The following result is a technical lemma that will be used to prove some of our 

results. The idea is the following. Given a pair of matchings, one stable and the other 

simple, non-necessarily stable, the set of agents who prefer one matching to the other 

can be decomposed into two disjoint sets, such that the agents from one set are matched 

to the agents of the other set under both matchings. A special case of this result, in 

which both matchings are stable, was obtained in Gale and Sotomayor (1985) for the 

Marriage model and called by these authors Decomposition lemma.  

  

Lemma 1. Suppose the preferences are strict. Consider the Roommate model  (N,P). 

Let  x  be a simple matching and let  y  be a stable matching. Let   T={j∈N; x(j)≠j},  

Mx={j∈N; x(j) >j y(j)}  and  My={j∈T; y(j) >j x(j)}.  Then  x(Mx)= y(Mx)=My  and  

x(My)=y(My)=Mx. 

Proof. First observe that all  j  in  Mx  are matched under  x  and all  j  in  My  are 

matched under  y.  If  j  is in  Mx  then  x(j)≠y(j)  and  k=x(j)  is in  My,  for otherwise the 

strictness of the preferences will imply that  j=x(k) >k y(k), so  y  will be blocked by  j  

and  k,  which contradicts the assumption that  y  is stable.  On the other hand, if  k  is in  

My  then  y(k)≠x(k)  and  j=y(k)  is in  Mx,  for if not the strictness of the preferences will 

imply that   k=y(j) >j x(j),  so  x  will be blocked by  j  and  k. However,  k  is  in  T,  so  

k  is matched under  x,  which contradicts the fact that  x  is simple. Therefore,  
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x(Mx)⊆My  and  y(My)⊆Mx. Since   x  and  y  are one-to-one and  Mx  and  My  are finite 

sets, the conclusion follows.  Hence the proof is complete.g 

 

Proposition 1. (a) Consider  the Roommate model  (N,P).  Let  x  be an unstable and 

simple matching. If the set of stable matchings is non-empty then   x  can be extended to 

a simple matching. 

 (b) Consider the Marriage model  (M,W,P). Let  x  be an unstable and simple matching. 

Then  x  can be extended to a simple matching. 

Proof of part (a).  Let  y  be a stable matching. Using the notation of Lemma 1, set  S≡ 

Mx∪My. To prove that  x  has a simple extension define matching  z  to agree with  x  on  

S  and with  y  on  N-S. Lemma 1 implies that all of  S  are matched among them under  

x  and  y,  so z  is well defined. Clearly,  z  is individually rational and restricted to  S  

(because  x  is simple) or  N-S  (because  y  is stable) is stable. Then, if there is a 

blocking pair  {j,k}  we must have that  j∈N-S  and  k∈S. Then  j>k z(k)=x(k)  and  k>j 

z(j)=y(j)≥j x(j), so   {j,k}  blocks  x.  However,  k  is matched at  x,  which contradicts the 

fact that  x  is simple. Hence,  z  is stable.  It is also clear that  z  extends  x.  In fact, we 

have that  z(j)=x(j)  for every  j∈S  and  z(j)=y(j)≥jx(j)  for every  j∉S.  Furthermore,  

x≠z due to the fact that  x  is unstable and  z  is stable. Hence,  z(j)≥jx(j)  for every j,  

with strict preference for at least one  j∈N.  Then,  z  extends  x  and we have proved 

part (a). 

Proof of part (b). The fact that  x  is simple and unstable implies that every blocking 

pair is formed with unmatched agents. Choose  (m1,w1)  such that  w1  is one of m1’s 

favorite blocking partners (m1  may have more than one favorite blocking partner since 

preferences need not be strict). Now let  x1  be the matching that matches  m1  with  w1 

and agrees with  x  on every other agent. Clearly, every woman weakly prefers  x1  to  x  

and  w1  strictly prefers  x1  to  x. Also every man weakly prefers  x1  to  x. Therefore  x1  

is a weak Pareto-improvement of  x. If  x1  is unstable then choose  (m2,w2)  such that  

w2  is one of the  m2’s favorite blocking partners. (Note that  w2  might be  w1).  Of 

course,  (m2,w2)  also blocks  x  and since  x  is simple we must have that  m2  and  w2  

are unmatched under  x.  By construction of  x1  we  have that  m2  is also unmatched at 

x1.  Now let  x2  be the matching that matches  m2  to  w2, leaves  m1  unmatched in case  

w2=w1, and otherwise agrees with  x1  on every other agent.  Clearly, all women weakly 

prefer  x2  to  x1,  and by transitivity they prefer  x2  to  x;  w2  strictly prefers  x2  to  x1,  
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so she strictly prefers  x2  to  x; every man weakly prefers  x2  to  x. Then, x2  is a weak 

Pareto-improvement of  x.  Again, if  x2  is unstable then choose  (m3,w3)  such that  w3  

is one of the  m3’s favorite blocking partners. (Note that  w3  might be  w1  or  w2). Of 

course,  (m3,w3)  also blocks  x  and since  x  is simple we must have that  m3  and  w3  

are unmatched under  x.  By construction of  x2  we  have that  m3  is also unmatched at 

x2.  Then, let  x3  be the matching that matches  m3  with  w3,  leaves  mj  unmatched in 

case  w3=wj  for some  j∈{1,2},  and otherwise agrees with  x2  on every other agent, and 

so on.  Following this procedure, we can construct a sequence of matchings, x1, x2, 

x3,…, where every term of the sequence is a weak Pareto-improvement of  x,  it is 

weakly preferred by every woman and it is strictly preferred by at least one woman to 

the previous terms, so the matchings of this sequence are distinct. Since the number of 

matchings is finite we must have that this sequence ends with a matching  x* which is a 

weak Pareto-improvement of  x  and does not have any blocking pair.   Hence  x*  is 

stable (so it is simple) and extends  x, so the proof is complete. g 

 

Remark 1. In the proof of Proposition 1-b), matchings x1, x2, x3,…, are not necessarily 

simple. They belong to a special class of matchings, which we call here semi-simple 

matchings. They are the individually rational matchings such that all of its blocking 

pairs, if any, have a single man3. Therefore, every simple matching and every stable 

matching are semi-simple. We learned from the proof of Proposition 1-b) that we can 

construct a sequence of distinct semi-simple matchings, starting at any semi-simple 

matching, by satisfying some blocking pairs conveniently chosen, leading to a stable 

matching. Unlike the algorithm of Gale and Shapley, this final matching is not 

necessarily an extreme point of the lattice of the stable matchings.g 

 

The following two properties of the Pareto-stable matchings, already discussed 

in the previous section, can also be derived from Lemma 1 under the assumption of 

strict preferences.  
 

Property 1. Suppose the preferences are strict. Let  x  and y  be  Pareto-stable 

matchings. If  j  prefers  x  to  y  then  k=x(j)≠j,  for some  k,  and  h=y(j)≠j,   for some  h  

with  h≠k. Furthermore, both  k  and  h   prefer  y  to x. 

                                                           
3 This concept was first used in the literature in Sotomayor (1996).  
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Proof. Using the notation of Lemma 1, if  x(j)>jy(j)  then  j∈Mx.  It follows from this 

lemma that  j  is matched under  x  and under  y  and both mates belong to  My. g 

 

Property 2. Suppose the preferences are strict. Let  x  be a simple matching and let  y  

be a stable matching. If j∈N  is unmatched under y  then  j  is unmatched under  x. 

Proof. Using the notation of Lemma 1, if  j  was unmatched under  y,  but he was 

matched under  x,  then  he would belong to  Mx,  so he would be matched under  y  by  

Lemma 1, contradiction. g 

 

The following corollary is immediate: 

 

Corollary 2. Suppose the preferences are strict. Then the set of unmatched agents 

under a Pareto-stable matching is the same for every Pareto-stable matching.  

 

3. WHEN PREFERENCES NEED NOT BE STRICT 

If we relax the assumption of strictness of the preferences, we can obtain  similar 

results to those presented in the previous section by focusing on strongly stable 

matchings and strongly simple matchings. The proofs of these results are trivial 

adaptations of the proofs presented in section 2 and will be left to the reader. 

 

Definition 3. The matching  x  is  strongly simple if it is individually rational and no 

matched agent is part of a weak blocking pair. Matching  x  is called Pareto-strongly 

simple if it is strongly simple and it is not weakly dominated by any strongly  simple 

matching.  

 

  Clearly, the matching where every agent is unmatched is strongly simple. Also, 

if a matching is strongly stable then it is strongly simple. From the definition above, if a 

matching is Pareto-simple and strongly simple then it is Pareto-strongly simple. If a 

matching   is strongly stable then it is Pareto-optimal and strongly simple, so it is 

Pareto-strongly simple. A sort of converse is given by Proposition 2 that asserts that 

under the assumption that the set of strongly stable matchings is non-empty, we have 

that every Pareto-strongly simple matching is strongly stable. Properties 3 and 4 are the 

corresponding extensions of Properties 1 and 2 to the case in which preferences are non-
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necessarily strict. The proofs of these three results use the straightforward extension of 

Lemma 1 where stable and simple are replaced by strongly stable and strongly simple, 

respectively, with the adequate adaptations.  

 

Proposition 2. Suppose the set of strongly stable matchings is non-empty. Then, the set 

of Pareto-strongly simple matchings equals the set of strongly stable matchings.  

   

Property 3.  Let  x  and y  be strongly stable matchings for the Roommate model  (N,P). 

If  j  prefers  x  to  y  then  k=x(j)≠j,  for some  k,  and  h=y(j)≠j,   for some  h≠k. 

Furthermore, both  k  and  h   prefer  y  to x. 

 

The following corollary asserts that there is an opposition of interests between 

the two sides of the Marriage market along the whole set of strongly-stable matchings.4

 

Corollary 3. Consider the Marriage market  (M,W,P).  Let  x  and  y  be strongly stable 

matchings. Then, all men like  x  at least as well as  y  if and only if all women like  y  at 

least as well as  x.   

Proof. Suppose  all men like  x  at least as well as  y.  If there is some woman  w  such 

that  x(w)>wy(w)  then  x(w)=m  for some  m∈M  and  m  prefers  y  to  x  by Property 1,  

contradiction. Hence, no woman prefers  x  to  y  and so  all women like  y  at least as 

well as  x.  The other direction is proved similarly.g 

 

Given two strongly stable matchings,  x  and  y,  the trading agents at  x, who are 

not indifferent between the two outcomes, trade among themselves at y. Consequently, 

an unmatched agent under  y  either is also unmatched under  x  or is indifferent between 

his/her mate under  x  and being unmatched.  Formally, 

  

Property 4.  Let  x  and  y  be strongly stable matchings. If  j  is unmatched under  y  

then  j is indifferent between  x(j) and being unmatched. 5

 

                                                           
4 Knuth (1976) proved this result for the case where preferences are strict.  
5 This result was proved for the Marriage market and for the College admission market with strict preferences by 
Gale and Sotomayor (1985a,b). A different proof is provided by McVitie and Wilson (1970) for the particular 
Marriage market where all men and women are mutually acceptable.  For the College admission model, Roth (1986) 
proved that if a college does not fill its quota under some stable matching then it is matched to the same set of 
students under every stable matching. 
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4. CONCLUSION AND RELATED WORK. 

 Basically, we can identify four sets, each a superset of the next: The weak Pareto 

frontier, the set of stable matchings, the set of Pareto-stable matchings and the set of 

strongly stable matchings. The set of stable matchings is always a subset of the set of 

weak Pareto-optimal matchings, understood as those allocations for which the grand 

coalition cannot strongly block, i.e., the grand coalition does not cause a strict Pareto 

improvement. We proved that when preferences are strict the three last sets coincide. 

With indifferences, Pareto-stability plays the role of an intermediate solution concept: 

the set of Pareto-stable matchings may be a proper subset of the set of stable matchings 

and may properly contain the set of strongly stable matchings. It is non-empty when the 

set of stable matchings is non-empty.  

Of course we may have Pareto-optimal matchings that are unstable. However, if 

a Pareto-optimal  matching is simple then it is stable. In fact, we characterized the set of 

Pareto-stable matchings as the intersection of two non-empty sets: the set of Pareto-

simple matchings and the set of Pareto-optimal matchings. For the Marriage model, 

without imposing any restriction, and for the Roommate model, under the assumption of 

strict preferences and non-emptiness of the set of stable matchings, the Pareto-stable 

matchings are exactly the Pareto-simple matchings. With indifferences, Example 3 

showed that there may be Pareto-simple matchings for the Roommate model that are not 

Pareto-stable.  

From the conceptual point of view, it is natural that in a decentralized setting, 

recontracts between pairs of agents already allocated according to a stable matching 

leading to a weak Pareto improvement of the original matching should be expected.  

From the technical point of view, the characterization of Pareto-stable matchings 

in terms of Pareto-simple matchings provides us more understanding of the role of 

unmatched versus matched agents. Simple matchings capture a sort of dynamic flavor to 

coalition formation, without an explicit model of dynamics. For the Roommate model 

under strict preferences, starting from an unstable and simple matching (for example, 

the matching where every player is unmatched, if it is unstable), it is possible to 

gradually increase cooperation by making weak-Pareto improvements and still staying 

within the set of simple matchings, until no pairwise transaction is able to benefit all 

agents involved, or until the matching cannot be simple anymore. In the former case a 

stable matching has been reached. In the latter case, the set of stable matchings is 

empty, so increase in payoffs is only available through non-optimal (in the selfish 

 16



sense) cooperation of some agents. These weak-Pareto improvements produce a finite 

sequence of simple matchings that keep the current trades and add new ones, leading to 

a Pareto-simple matching. Thus, once a transaction is done, it will not be undone at the 

subsequent matching. Only agents who are not currently trading are able, by trading 

among them, to be better off. 

This dynamics can be identified, for example, in the steps of the Top Trading 

Cycles algorithm due to Gale, for the Housing market of Shapley and Scarf (1974). 

Each cycle formed by the Top Trading Cycles algorithm produces a simple allocation, 

defined in the straightforward manner for the Housing model (see Sotomayor, 2005). In 

each step one more cycle is added. The sequence of such simple allocations converges 

to a core outcome as soon as no more cycles can be added.  

For the Marriage model with non-necessarily strict preferences, starting with any 

simple matching (for example, the simple and semi-simple matching in which every 

agent is unmatched), we can construct a sequence of weak Pareto-improvements of the 

original matching and still stay within the set of semi-simple matchings. Each term of 

the sequence is obtained by matching some blocking pair where the man is currently 

unmatched and the woman is one of his favorite blocking partners. In this sequence of 

pairwise interactions the women currently matched stay matched (not necessarily to the 

same mate). Furthermore, the trades can be done without hurting any woman. This 

sequence of distinct and semi-simple matchings clearly ends with a matching that does 

not have any blocking pair, so the final matching is stable. This is the general basis 

which underlies the construction of the algorithm of Gale and Shapley with the men 

proposing. The matching produced in each step of this algorithm is semi-simple and it is 

a weak Pareto-improvement of the simple matching in which every agent is unmatched. 

However our approach  is different since: (i) we do not require to break ties when 

preferences are not strict; (ii) the initial point of our sequence need not be the matching 

where everyone is unmatched, so (iii) the final matching is not necessarily the man-

optimal stable matching.  

 This justifies Pareto-stability.  

Stability and Pareto optimality only for the students were required in Erdil and 

Ergin (2007) to replace the standard concept of student optimal stable matching for the 

school choice model. That is, according to this concept, a stable matching is called a 

“student optimal stable matching” if no stable matching is weakly preferred by all 

students to that matching. These authors present a simple procedure to compute a 
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“student optimal stable matching”, under the assumption that priorities are weak and the 

preferences of the students are strict. In this model, since preferences of schools are not 

considered, the exchange of partners does not always produce a weak Pareto 

improvement of the given matching and it does not always yield a stable matching. 

Then, in order to compute a stable and Pareto optimal matching for the students, the 

authors considered exchange of partners only inside a stable improvement cycle, defined 

as a cycle of students who each prefer the school to which the next student in the cycle 

is matched, and each of whom is one of the school's most preferred candidates among 

the students who prefer that school to their current match. Therefore, a stable 

improvement cycle produces a stable matching in which some schools may be worse off 

and the students of the cycle are strictly better off. Starting with a student-proposing 

deferred acceptance algorithm with arbitrary tie-breaking of non-strict preferences by 

schools, the authors construct a computationally efficient algorithm which, in each step, 

improves the current matching for the students, by finding and satisfying stable 

improvement cycles, until no more remain. The outcome of such an algorithm is then a 

stable matching that is Pareto optimal with respect to students.  

The idea of proving the non-emptiness of the core by showing that every Pareto-

simple outcome must be stable has been explored in the literature via adaptations of the 

concept formulated here of simple matching. In Sotomayor (2005), for example, it was 

introduced the concept of simple allocation for the one-sided market (not matching 

market) of Shapley and Scarf (1974). There, it was proved that every Pareto-simple 

allocation must be in the core.  

For the two-sided matching models it has been more convenient to work with the 

concept of semi-simple outcome, whose discrete version was introduced in Sotomayor 

(1996) for the Marriage market. The extension of this concept to a general discrete 

many-to-many matching market (in particular, to the College Admission model), where  

preferences are substitutable and non-necessarily strict, was introduced in Sotomayor 

(1999) to prove the non-emptiness of the set of pairwise-stable matchings. A similar 

idea was used in Sotomayor (2004) to show the existence of Nash equilibria in an 

implementation mechanism for the discrete many-to-many matching model.  The 

continuous version of that concept was used in Sotomayor (2000) for the Assignment 

game of Shapley and Shubik (1972) and for a unified two-sided matching model.  

The possibility of obtaining a stable matching for the discrete matching models, 

by starting from an arbitrary unstable matching and successively satisfying blocking 
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pairs, has been the subject of several papers, motivated by an open problem posed by 

Knuth (1976): Let  μ  be  an unstable matching for the Marriage model (M,W,P) with 

strict preferences. Is there a sequence of matchings  μ=μ1, …,μk,  such that  μk  is stable 

and for each  i=1,…,k-1,  there is a blocking pair  (mi,wi)∈MxW  for  μi,  such that the 

subsequent matching  μi+1 matches  mi  to  wi, μi(mi)  to  μi(wi) in case  mi  and  wi  are 

matched under μi, in case only one of these agents is matched then the corresponding 

mate is left unmatched, and the other matches at  μi  are kept unchanged?   

Knuth illustrates with an example that if the sequence of unstable matchings is 

not conveniently formed then it may cycle. Unlike the unstable simple matchings, the 

members of the selected blocking pairs of these unstable matchings need not be 

unmatched.  In case they are matched, it is a crucial point in Knuth’s problem that their 

current mates must be matched to each other in the subsequent matching. Thus, it is not 

correct the assertion that has been made in the literature that Roth and Vande Vate 

(1990) answered Knuth’s question in the affirmative. In the approach treated by Roth et 

al., if the blocking pair  (mi,wi)  is selected then  μi(mi) and  μi(wi)  are left unmatched. 

This case is easily solved by using a version of the deferred-acceptance algorithm of 

Gale and Shapley.  

According to our results, Knuth’s problem is solved for the Marriage model 

when μ  is unstable and semi-simple. It is also solved for the Roommate model with 

strict preferences when μ  is unstable and simple. Under indifferences this problem may 

have no solution for the Roommate problem, even when the set of stable matchings is 

non-empty. In fact, in our Example 3, matching  y  is the only stable matching and 

matching  y’ is unstable. If we start with  y’,  the procedure proposed by Knuth never 

reaches  y;  it always cycles.  

Although the result of Roth and Vande Vate (1990) does not solve Knuth’s 

problem, an immediate corollary of it is that a random process that begins from an 

arbitrary matching and continues by satisfying a randomly selected blocking pair must 

eventually converge with probability one to a stable matching, provided each blocking 

pair has a probability of being selected that is bounded away from zero. This corollary 

has given origin to several other papers.  Chung (2000), for example, proves that this 

random-paths-to-stability result applies to the Roommate model under the assumption 

of non-necessarily strict preferences, as long as some sufficient condition for the 

existence of stable matchings, called no-odd-rings, is satisfied. If the no-odd-ring 
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condition is not satisfied but preferences are strict and stable matchings exist then the 

Roth and Vande Vate path still converges to a stable matching (Diamantoudi et al. 

2004).  

Inarra, Larrea and Molis (2008) generalizes  for the Roommate model the result 

of Diamantoudi et al. (2004), and consequently that of Chung (2000) under strict 

preferences and the one of Roth and Vande Vate (1990). They prove that from any 

matching for the Roommate model with strict preferences, there exists a path, given by 

a proposal-rejection procedure, which reaches a specific matching6 that has the property 

to be stable when the set of stable matchings is non-empty. 

Kojima and Unver (2006) study the convergence to stability in many-to-many 

matching models. Klaus and Klijn (2007) analyze this convergence for matching 

markets with couples. 

The presence of indifference in the preferences of the agents in the discrete 

matching models, affecting the existence of strongly stable matchings, has  been 

considered by several authors. Irving (1994), for example, formulated an O(n4) 

algorithm for determining whether a given instance of the Marriage model, with  n  men 

and  n  women  and complete lists of non-necessarily strict preferences, admits a 

strongly stable matching and for constructing one if it does. An extension of this 

algorithm by allowing incomplete lists of preferences is presented in Manlove (1999). 

Irving, Manlove and Scott (2000) present an algorithm to determine whether a given 

instance of the Hospitals/Residents Problem with indifferences admits a super-stable 

matching and, if it does, to construct such a matching. They define a super-stable 

matching  x  as a stable matching for which there is no pair, resident/hospital, not 

matched to each other, such that (a) the resident is indifferent between his partner and 

the hospital and (b) the hospital is indifferent between its worst partner and the resident. 
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