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ABSTRACT 

Starting with an initial price vector, prices are adjusted in order to eliminate the 

demand excess and at the same time to keep the transfers to the sellers as low as possible. 

In each step of the auction, to which sellers should those transfers be made (minimal 

overdemanded sets)  is the key definition in the description of the algorithm. Such approach 

was previously used by several authors. We introduce a novel distinction by considering 

multiple sellers owing multiple identical objects and multiple buyers with a quota greater 

than one consuming at most one unit of each seller’s good. This distinction induces a 

necessarily more complicated construction of the overdemanded sets than the constructions 

existing in the literature, even in the simplest case of additive utilities considered here. As 

the previous papers, our mechanism yields the minimum competitive equilibrium price 

vector. A procedure to find the maximum competitive equilibrium price vector is also 

provided. 
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lattice 
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INTRODUCTION 

The many-to-many Assignment game of our title is one of the two many-to-many 

matching models with additively separable utilities introduced in Sotomayor (1992). We 

can interprete this model as a market of buyers and sellers. Then, there are two finite and 

disjoint sets of players:  B  is a set of buyers and  Q  is a set of sellers. Buyers are interested 

in sets of objects owned by different sellers and each seller owns a bundle of identical 

objects. The quota of a buyer is the number of objects she is allowed to acquire; the quota 

of a seller is the number of identical objects he owns. For each pair of agents  (b,q)∈BxQ  

there is a number  vbq  representing the maximum amount of money buyer  b  considers to 

pay for an object of seller  q. Given the prices of the objects, each buyer demands the sets 

of items of size less than or equal to her quota, which maximize her additive utility payoff. 

That is, an element of the demand set of a buyer is one of her most desirable bundles of 

objects at the current prices.2 Then a buyer is indifferent among any two elements of her 

demand set, if the demand set is not a singleton. The natural solution concept is that of 

competitive equilibrium payoff, introduced in Sotomayor (2007).  Roughly speaking, the 

payoff  (u,p)  is a competitive equilibrium payoff  if   there is a feasible allocation,  μ,  under 

which each  active buyer receives one of her demanded sets of items at the prices  p, every 

inactive buyer has a zero payoff and every unsold object is priced at zero.  

Sotomayor (2007) shows that the set of competitive equilibrium payoffs is non-

empty and it is endowed with a complete lattice structure under two convenient partial 

order relations. Although these partial orders are not defined by the preferences of the 

players, the extreme points of these lattices have important meaning for the market. They 

reflect a coincidence of interest among agents on the same side of the market, and a 

corresponding conflict of interest among agents on opposite sides. All buyers, as well as all 

sellers, agree on the best competitive equilibrium payoff for them.  These outcomes are 

called B-optimal competitive equilibrium payoff and Q-optimal competitive equilibrium 

payoff, respectively. In addition, the B-optimal competitive equilibrium payoff 

(respectively, Q-optimal competitive equilibrium payoff) is the worst competitive 

equilibrium payoff from the point of view of the sellers (respectively, buyers). That is, the 

                                                           
2 This definition is slightly changed in the text due to the inclusion of dummy agents in the model.  
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corresponding payoff vector of the sellers is the minimum (respectively, maximum) 

competitive equilibrium price vector in the sense that it is smaller (respectively, greater) in 

each component than any other competitive equilibrium price vector.    

The contributions of the present paper are: (i) to providing a simple dynamic 

procedure  of adjusting prices for making the allocation of the objects to the buyers 

according to a competitive price vector; (ii) to proving that the competitive price vector 

yielded by this mechanism is the minimum competitive price vector; (iii) to showing that 

this price vector can be supported by a competitive allocation so that the B-optimal 

competitive equilibrium payoff is obtained, and (iv) to proving that, by reversing the roles 

between buyers and sellers, the final outcome can be adjusted to yield the Q-optimal 

competitive equilibrium payoff.  

   The dynamic mechanism roughly works as follows: Given the reservation prices 

to the sellers announced by the auctioneer, buyers indicate their demand set at the current 

price vector. If it is possible to satisfy the demand of every buyer, respecting sellers’ 

quotas, then the auction stops. Otherwise, the auctioneer raises the prices of some objects. 

The technical contribution of this paper is the definition of the set of these objects, which 

must be selected by the auctioneer at each price vector. In order to choose these sets the 

auctioneer divides each buyer into separate agents, one for each slot in her quota. The 

auctioneer induces new demands for these separate agents. Each separate agent of a buyer 

is not an exact copy of the others. The first agent of a buyer is the one who demands one of 

the most favorite objects (there may exist more than one) of the original buyer; the second 

agent is the one who demands the second favorite object of the original buyer among the 

objects that the original buyer demands in the elements of her demand set, and so on. The 

last agent is the one who demands all the remaining object(s) that the original buyer 

demands in the elements of her demand set. (A precise and formal definition will be given 

in the text). The last agent is the most crucial agent in this division process. For each buyer 

there can be several objects in the demand of the last agent of the buyer.  

In view of potential indifferences among the objects, there may be many ways of 

obtaining the demands of these separate agents . Each one of them induces different 

demand structures for the separate agents. The auctioneer chooses a particular one, 

namely, the one which induces the minimum number of minimal overdemanded sets 
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(definition of a minimal overdemanded set almost follows Demange, Gale and Sotomayor 

(1986), with exception that the definition needs to be corrected for multiple objects that a 

seller can supply). The auctioneer increases the prices of the objects in one of the minimal 

overdemanded sets by one unit ( every valuation and price are assumed to be integral 

values, so  1  is the minimum possible increment). This price adjustment procedure is 

repeated until there exists a demand structure (obtained from the division of buyers into 

several agents) such that there are no minimal overdemanded sets. At this point, with the 

help of Hall’s (1935) Theorem3, each buyer can feasibly be assigned one of the sets of 

objects in her demand, ending the mechanism at a competitive price.  

One of the interesting features of this mechanism is that, in spite of the fact that the 

auctioneer may face more than one alternative whenever he needs to make a choice, the 

final price vector is always the same, namely the minimum competitive price vector. The 

intuition is that by keeping the transfers to the sellers as low as possible, the auction stops 

as soon as the prices increase sufficiently to become competitive.  However, the proof of 

this result is not so straightforward and requires two technical lemmas.  

An important property of the minimum competitive price vector shown here is that 

there exists a competitive allocation which supports it, so it is the minimum competitive 

equilibrium price vector. (This property is not true for an arbitrary competitive price vector. 

To see this, consider one buyer  b  and  two sellers  1  and  2.  Every agent has a quota of 

one and  vb=(4, 5). Price vector  p=(1, 3)  is competitive. Buyer  b  demands only the object 

of seller 1, which is allocated to her. The object of seller  2  is unsold. Price  p  is not a 

competitive equilibrium price because the price of the unsold object is not zero. We can 

also observe that the only competitive allocation assigns the buyer to seller  2  and this 

allocation does not supports  p).  

Buyers and sellers are not treated symmetrically in this model when one focus on 

the competitive equilibria, so if we revert the roles between buyers and sellers in the 

                                                           
3  Let  B  and  C  be two finite disjoint sets. For each  b  in  B,  let  Db  be a subset of   C.  A simple assignment 
is an assignment of  C  to  B,  such that each  b  is assigned exactly one element  j  of  C,  such that  j  is in  Db,  
and each  j  in  C  is assigned to at most one element of  B. Then,  
THEOREM OF HALL . A simple assignment exists, if and only if, for every subset  B’  of  B,  the number of 
objects in  D(B’)  is at least as great as the number of buyers in  B'. 
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mechanism the resulting outcome may not even correspond to a competitive price vector.4 

We show that, in spite of this, this outcome can be used to derive the maximal competitive 

equilibrium price vector. It can be obtained from the outcome produced by the new 

mechanism by reducing the price of each of the items of every seller to his minimal 

individual payoff.   

The present article is structured as follows. Section 2 gives the cooperative 

framework. In section 3 the concepts and terminology needed for the description of the 

mechanism and for the proofs of the main results are introduced and an illustrative example 

is provided. The main results are stated in Section 4. Section 5 gives some final remarks 

and discusses related works. All proofs are presented in the Appendices.  

 

2.THE FRAMEWORK  

The sets of buyers and sellers are denoted by  B  and  Q, respectively.  The set  B  

has  m elements and the set  Q  has  n  elements. Generically we will denote buyers by  b,  

b',  and sellers and objects by  q,  q'.  Each  q∈Q  has a quota  s(q)  and each  b∈B  has a 

quota  r(b),  representing the maximum number of partnerships they can form. Quota  s(q)  

of seller  q  means that  q  owns  s(q)  identical and indivisible objects, and  quota  r(b)  of 

buyer  b  represents the maximum number of objects buyer  b  is allowed to buy. Without 

loss of generality we can consider  r(b)≤n  and  s(q) ≤m.  No buyer is interested in 

acquiring more than one item of a given seller.  

Every object has a reservation price of  0  (which can be obtained after 

normalization). For each pair  (b,q)  there is a non-negative number  vbq≥0  which  does not 

depend on which other partnerships are formed by buyer  b  and seller  q. (We call this 

condition separability across the pairs). This number can be interpreted as the value of any 

object of seller q  to buyer  b. That is,  vbq  is the gain of trade when any of the objects of 

seller  q  is sold to buyer  b.  If  buyer  b  acquires some object  of  q  at price  π  then  b   

receives the individual payoff  ubq≡vbq-π . Dummy players, denoted by  0,  will be available 

in both sides of the market to fill the quotas of the non-dummy (real) players. We have that  

                                                           
4 This is not the case if the focus is stability. Under this setting the resulting outcome is the optimal stable 
payoff for the buyers, which coincide with the B-optimal competitive equilibrium payoff. By reversing the 
roles between buyers and sellers in the mechanism we get the optimal stable payoff for the sellers, which may 
be different from the Q-optimal competitive equilibrium payoff. 
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vb0=v0q= 0  for all  b∈B  and  q∈Q. We will also include an artificial "null-object",  0,  

owned by the artificial seller, whose value is zero to all buyers and whose price is always 

zero. The many-to-many Assignment game is given by  (B,Q,v,r,s),  where  v  is the matrix 

of the numbers  vbq’s  and  r  and  s  denote the array of quotas for the buyers and sellers, 

respectively. 

We will say that a subset  S ⊆Q  is an allowable set of partners for b∈B,  if  ⏐S⏐

=r(b). For technical convenience, we will extend this terminology to include the sets  S  

with  k  non-dummy sellers and  r(b)-k  repetitions of the dummy seller for  0 ≤ k ≤ r(b). 

Analogously we define an allowable set of partners for  q∈Q.  For an abuse of notation 

we will also write  S⊆B  or  S⊆Q  for any allowable set  S  of B-players or Q-players, 

respectively. An allowable set of objects for buyer  b  contains  r(b)  objects, some of 

which may be repetitions of the null-object. Furthermore, it does not contain more than one 

object belonging to the same seller (an exception is made to the fictitious seller). 

 

A. Utility functions 

We are considering the simplest many-to-many Assignment game, namely the 

model in which the agents have additively separable utilities. This condition means that for 

every coalition  T=R∪S,  R⊆B  and  S⊆Q, the payoff  v(R∪S)  of the coalition  R∪S  is 

given by 

 

(1) v(R∪S) =max{∑b∈R ,μ(b)∈S vbμ(b)},  over all feasible matchings  μ . 

  

Consequently, for all  S⊆Q  with  |S| ≤ r(b) and for all R⊆B  with  |R| ≤s(q),  

 

(2)  v(b ∪S) = ∑q∈S vbq   and  v(q ∪R) = ∑b∈R vbq. 

 

The number  v(b ∪S)  also defines the value of  the allowable set  S  of objects  to 

buyer  b.  

One of the characteristics of the additively separable utility function is that if a 

buyer demands a set  A  of objects at prices  p  and  some of these objects have their prices 

raised, then the buyer will continue to want to buy the objects in  A  whose prices were not 
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changed. That is, the function  v({b}∪A) over all allowable sets  A  of partners for  b  

satisfies the gross substitute condition.  

Under additively separable utilities buyers can be interpreted as brokers, rather than 

as final consumers. Each buyer  b  has in hand an offer from a client who will purchase any 

bundle of goods of size less than or equal to  r(b)  from the buyer and will pay  vbq  for each 

unit  q  in the bundle, should she obtain them in the market. Since each buyer  b  knows that 

she can earn  vbq  (but no more) by reselling the object  q  to her client,  the buyer will not 

buy at a higher price. So for each object  q  that is sold to buyer  b  at a price  pq  buyer  b  

earns  vbq –pq,  and so, by reselling an allowable set of objects  S  she earns  ∑q∈S (vbq - pq).   

 

B. Matching and allocation 

 

A feasible matching  μ  is a function that maps every agent to an allowable set of 

partners for  him/her such that  b  is in  µ(q) if and only if  q  is in  µ(b),  for every  

(b,q)∈BxQ. It is described by a set of partnerships between buyers and sellers of the kind  

(b,q),  (b,0)  or  (0,q),  for  (b,q)∈BxQ,  such that each  b  forms  r(b)  partnerships and  

each  q  forms  s(q)  partnerships.  If  b  and  q  are matched under  μ,  we write  b∈ μ(q)  or  

q∈μ(b). A dummy player may be matched to more than one player of the opposite side and 

more than once to the same player. If an agent forms all his/her partnerships with a dummy 

agent we say that he/she is unmatched.  

The value of  μ  is . The matching  μ  is optimal if it attains the maximum 

value among all feasible matchings.  

∑
∈∈ )(, qbQq

bqv
μ

A feasible allocation allocates each non-null object to one buyer (who might be the 

dummy buyer) so that each non-dummy buyer is assigned an allowable set of objects for 

her. If an object is allocated to the dummy buyer we say that it is left unsold. Of course, the 

dummy buyer may be assigned to any number of objects and the null object may be 

allocated to any number of buyers. 

If an object is allocated to a buyer then the seller who owns this object is matched to 

that buyer. Thus, if  μ*  is a feasible allocation, we can define a corresponding  matching  
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μ  such that seller  q∈μ(b)  if and only if one of his objects is allocated to  b  under  μ*5. 

We say that  μ  and  μ*  correspond to each other. Clearly,  μ   and  μ*  have the same 

value, so μ  is an optimal matching if and only if   μ*  is an optimal allocation. 

 

C. Stable payoffs and competitive equilibrium payoffs. 

 

For this model we have two natural solution concepts: the concept of stability and 

the concept of competitive equilibrium payoff. When the focus of attention is stability, 

buyers and sellers are treated symmetrically. The feasible outcomes are defined as follows: 

 

DEFINITION 1: A feasible outcome, denoted by  (u,w;μ),  is a pair  (u,w)  of the agents’ 

individual payoffs,  called feasible payoff,  and a feasible matching  μ.  The individual 

payoffs of each  b∈B  and q∈Q  are given by the arrays of numbers  ubq,  with  q∈μ(b),  

and  wbq,  with  b∈μ(q),  respectively,  with  ubq + wbq=vbq,  ubq≥0  and  wbq≥0. 

Consequently,  ub0=u0q=wb0=w0q=0  in case these payoffs are defined. The matching  μ  is 

said to be compatible with the feasible payoff  (u,w)  and vice-versa. 

 

If (u,w; μ)  is a feasible outcome and  μ* is a feasible allocation corresponding to  μ  

then  we also refer to  (u,p;μ*)  as a feasible outcome. 

It was proved in Sotomayor (1992,2007) that the concept of stability is equivalent to 

pairwise-stability for this model. For this definition we will use the following notation: 

Given a feasible payoff   (u,w),  ub(min)  is the smallest individual payoff of buyer  b;  

wq(min)  is the smallest individual payoff of seller  q.  Then, 

  

DEFINITION 2: The feasible outcome  (u,w;μ), is  stable  if  ub(min) + wq(min) ≥ vbq  for 

all pairs  (b,q)  with  q∉μ(b).  

 

                                                           
5 If  μ*  is a feasible allocation and a buyer buys an object from a seller, then make a link between the two. 
The resulting graph is the corresponding feasible matching  μ. Conversely, if  μ  is a feasible matching and a 
buyer buys an object from a seller, then make a link between the buyer and the object. The resulting graph is 
the corresponding feasible allocation  μ*.     
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If this condition is not satisfied for some pair  (b,q),  we say that the pair destabilizes 

the outcome  (u,w;μ.) 

The concept of competitive equilibrium payoff is closely related to the traditional 

concept of equilibrium from standard microeconomic theory.  It is natural under the 

asymmetric approach where buyers demand the objects taking the prices as given. In this 

context, a vector of prices   p ∈RN
+,  with  N≡∑q∈Q s(q),  is called a feasible price vector or 

price vector, for short. That is, a feasible price vector specifies a non-negative price for 

each object. We denote the price of object  q  under the price vector  p  by  pq. 

Given a price vector  p, a buyer has preferences over allowable sets of objects that 

are completely described by  the numbers  vbq’s : For any two allowable sets of objects  S  

and  S’,  buyer  b  prefers  S  to  S’  at prices  p  if  ∑q∈S (vbq-pq) >∑q∈S’ (vbq-pq). She is 

indifferent between these two sets if  ∑q∈S (vbq-pq) = ∑q∈S’ (vbq-pq).  Object  q  is acceptable 

to buyer  b  at  prices  p  if,  vbq-pq ≥0.  

Under the structure of preferences we are assuming, each buyer  b  is able to 

determine which allowable sets of objects she would most prefer to buy at a given price 

vector  p. We denote the set of all such allowable sets by  Db(p)  and call it the demand set 

of  b  at prices  p.  (Note that  Db(p)  is never empty, because there is always the option of 

buying the allowable set with  r(b)  repetitions of the null object. Note also that, if  

S∈Db(p),  then every element of  S  is acceptable to  b).  

 

DEFINITION 3: The outcome  (u,p; μ*)  is a competitive equilibrium outcome if  (i) it is 

feasible, (ii) μ*  is a feasible allocation such that, if  μ*(b)=S  then  S∈Db(p)  for all  b∈B  

and  (iii)  pq=0  if  μ*(q)=0. 

 

 If  (u,p;μ*)  is a competitive equilibrium outcome we say that  (u,p)  is a 

competitive equilibrium payoff,   (p,μ*)  is a competitive equilibrium and  p  is a 

competitive equilibrium price or an equilibrium price for short.  

   If  there is an allocation  μ*  satisfying condition  (ii) of Definition 3,  we say that  

p  is a competitive price vector.  The allocation  μ*  is said to be compatible with the 

competitive price  p.  The allocation  μ*  is called competitive if it is compatible with a 
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competitive equilibrium price. It is proved in Sotomayor (2007) that  μ* is an optimal 

allocation if and only if it is competitive. 

The two solution concepts capture some of the fundamental dissimilarities between 

the symmetric and the asymmetric approaches: Under a stable payoff the sellers can 

discriminate the buyers. However, every seller sells all of his items for the same price 

under a competitive equilibrium payoff. (If  a seller has two identical objects,  q  and  q',  

and  pq>pq'  for some price vector  p,  then no buyer  b  will demand, at prices  p, a set  S  of 

objects that contains object  q.  This is because, by replacing  q  with  q'  in  S,  b  gets a 

more preferable allowable set of objects. But then,  q  will remain unsold with a positive 

price, which violates condition  (iii)  of Definition 3).  

 

DEFINITION 4: A stable (respectively, competitive equilibrium) payoff is called the B-

optimal stable (respectively, competitive equilibrium) payoff if it gives to each player in  B  

the highest total payoff among all stable (respectively, competitive equilibrium) payoffs. 

Similarly we define the Q-optimal stable (respectively, competitive equilibrium) payoff. 

 

REMARK 1: When every seller sells his identical objects for the same feasible price, we 

can identify a seller with any of his objects. Thus, we do not cause any confusion by using 

the same notation for a seller and for any of his objects. Then, if  S  is an allowable set of 

objects for buyer  b  we can use the same notation  S  to mean the set of owners of these 

objects, and so this set can also be referred as an allowable set of partners for buyer  b. 

Under this identification, if  b  demands the allowable set  S  of objects at prices  p  we will 

say that  b  also demands the allowable set  S  of sellers at prices  p. The notation  Db(p)  

stands for the demand set of buyer  b  for objects at prices  p  as well as for the demand set 

of buyer  b  for sellers at prices  p. 

 Under this observation, if  μ*  is a feasible allocation and  μ  is its corresponding  

matching,  q∈μ*(b)  means that   object  q   is allocated to buyer  b (there is only one object  

q  belonging to seller  q  allocated to buyer  b),  and  q∈μ(b)  means that   buyer  b  and 

seller  q  are partners at  μ.. On the other hand, since the array of payoffs for any seller  q  is 

given by the array of prices of his objects, then, in order to represent the array of the  s(q)  

identical individual payoffs for any seller  q,  we need not make any reference to the buyers 
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who are matched to  q. For example,  (pq, pq,..., pq)  denotes the array of payoffs of seller  q  

and  pq  denotes the price of any of his objects.g    

 

3. THE MECHANISM 

In order to describe our price adjusting mechanism for the many-to-many 

Assignment game  (B,Q,v,r,s)  we need a few more notations and definitions.  

 

A. Demand structure for a buyer. 

 

In every step of the mechanism all the objects of a seller have the same price. Then, 

by Remark 1, we can identify the seller with any of his objects.  For every buyer  b,  each 

pair  (b,i),  i=1,…,r(b),  is called  b-agent. We will provide a demand structure for  b  at 

prices  p  which specifies a demand set for every b-agent. 

 Given a price vector  p, the demand set of buyer  b for sellers may have several 

allowable sets  Ci’s  of partners for  b.  If  |Db(p)|=k,  set 

(3) Db(p)≡{ C1,…,Ck}  and  Bb(p) ≡∪Ci,  i=1,…,k. 

 

Therefore,  q∈BBb(p)  if and only if the number of sellers strictly preferred to  q  by  

b  at prices  p  is less than  r(b). Of  course, the number of elements listed in BbB (p) (this set 

must include all repetitions of the dummy seller that appear in the allowable sets  Ci’s,, if 

any) is greater than or equal to  r(b).  Also, if  q∈BBb(p)  and  b  weakly prefers  q’  to  q  at 

prices  p,  then  q’∈BbB (p). 

Now, each b-agent  (b,i)  demands the set of sellers  Ab,i(p)  defined as follows:  

 

(4) Ab,1(p)={q}, for some  q  such that  vbq-pq≥ vbq’-pq’,  ∀q’∈BBb(p); 

Ab,i(p)={q}, for some  q  such that  vbq-pq ≥ vbq’ -pq’, ∀q∈BBb(p)-[Ab,1(p)∪…        

∪Ab,i-1(p)],  ∀i=2,…,r(b)-1; 

    Ab,r(b)(p)= Bb(p) - [Ab,1(p)∪…∪Ab,r(b)-1(p)]. 

 

 11



Therefore,  Ab(p)={Ab,1(p),.., Ab,r(b)(p)}  is a partition of  BBb(p). It will be called a 

demand structure for  b  at prices  p. Due to the potential indifferences among the sellers, 

there may be more than one way of obtaining the demands of the  b-agents. Consequently 

we may have different demand structures for b at prices  p. The set of all  Ab(p)’s  will be 

called a demand structure at  p  and will be denoted by  A(p). 

In order to illustrate these definitions suppose that Db(p)={{q1,q2,0},{q1,0,0}, 

{q2,0,0}, {0,0,0}}. Then  BBb(p)={q1,q2,0,0,0}. Observe that in this case  b  is indifferent 

between any two elements of  BbB (p). A demand structure for  b  at prices  p   is:  

Ab,1(p)={0}, Ab,2(p)={0}  and  Ab,3(p)={q1,q2,0}; another demand structure for  b at prices  p  

is: A’b,1(p)={q1}, A’b,2(p)={0}  and  A’b,3(p)={q2,0,0},  and so on.  

From (4) it follows that, at prices  p,  b  likes   Ab,i(p)  as well as  Ab,i+1(p)  for all  

i=1,…,r(b)-1. It is worth to point out that, at prices  p,  b  is indifferent between any two 

sellers from  Ab,r(b)(p)  when this set is not a singleton. In fact, if there are two sellers  q  

and  q’  in  Ab,r(b)(p)  such that  b  prefers  q  to  q’ at prices  p,  then  b  strictly prefers the 

single seller in  Ab,i(p)  to  q’,  for all  i=1,…,r(b)-1,  so  the number of sellers strictly 

preferred to  q’  by  b  at prices  p  is greater than or equal to  r(b),  and so  q’  is not in  

BBb(p)  as remarked before, which is absurd. 

 

B. Overdemanded set.  

 

 We now introduce the main concept that will be used in the description of our 

mechanism, which is that of  overdemanded set for a given demand structure. Given a 

demand structure  A(p), 

 

(5)  b-agent  (b,i)  is a loyal demander of  S  if   Ab,i (p)⊆S. 

 

DEFINITION 5: Given  the feasible price vector p∈Rn
+ we will say that the set  S⊆Q  is 

overdemanded for the demand structure  A(p),  if there is a set  T of loyal demanders of  S,  

such that  |T|>∑q∈S σ(q),  where  σ (q)=min{s(q), number of  (b,i)∈T  with  q∈Ab,i(p)}.   
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The overdemanded set  S  is said to be minimal, if no proper subset of  S  is 

overdemanded. Thus, suppose for example, that  b  has quota  r(b)=1  and  Ab,1(p)={q3,q4};  

b’   has quota  r(b’)=2  and  Ab’,1(p)={q3}  and  Ab’,2(p)={q4};   and  b”  has quota  r(b”)=2  

and  Ab”,1(p)={q1}, Ab”,2(p)={q3}.  Then,  T={(b,1),(b’,1),(b’,2),(b”,2)} is a set of loyal 

demanders of  S={q3,q4}.  If  s(q3)=1  and  s(q4)=3  then  σ(q3)=min{1,3}=1  and               

σ(q4)=min{3,2}=2. Then  4=|T|>3=σ(q3)+ σ(q4). Set  S is overdemanded, but it is not 

minimal. In fact, the set  S’={q3}  is overdemanded by  T’={(b’,1),(b”,2)}. Indeed,  S’  is a 

minimal overdemanded set.   

It is not hard to see that a set of sellers  S  is minimal overdemanded if and only if 

the set of all objects of the sellers in  S  is minimal overdemanded. This is because for all  

q∈S,  the number of (b,i)'s,  loyal demanders of S  with  q∈Ab,i(p),  is strictly greater than  

s(q),  so σ(q)=s(q). Therefore, our mechanism is able to operate if we change the vector of 

prices in  Rn  by their extension in  RN
+.

 

REMARK 2. It follows from the definition of competitive equilibrium that, if   p∈Rn
+  is a 

competitive equilibrium price then each buyer  b  can be matched to her most preferred 

allowable set of sellers at prices  p  (this may include repetitions of the dummy-seller). 

Therefore, there is some demand structure  A(p)  for which each pair  (b, i)  can be matched 

to exactly one seller   q,   with  q∈Ab,i(p)  (q  might be the dummy-seller). In addition,   

every non-dummy seller  q  is matched  s(q)  times at most. Hence, by Hall's theorem, 

there is no overdemanded set for  A(p).   

If  p∈Rn
+  is not a competitive equilibrium price, then there is no way to match each 

buyer to her  r(b)  most preferred sellers under a feasible matching. Again, by Hall's 

theorem, every demand structure  A(p)  has an overdemanded set. g 

 

C. Description of the price adjusting mechanism for (B,Q,v,r,s). 

 

We now can describe how the prices will be adjusted along the steps of the 

mechanism. We will take all prices and valuations to be integers. Then, 

Step (1): The auctioneer announces an initial price vector,  p(1)= (0,...,0)∈Rn
+. Each 

buyer  b  “bids” by announcing  Db(1)≡Db(p(1)).  
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Step (t+1): After bids  Db(t)  are announced, the auctioneer determines all the 

demand structures at  p(t). If there is some demand structure A(t)≡A(p(t)),  for which it is 

possible to match each b-agent  (b, i)  to a seller  q∈A(b,i)(t),  so that no real seller is 

matched more times than his quota, the algorithm stops. If no such demand structure 

exists, Hall’s Theorem implies that there is some overdemanded set for every demand 

structure. Then, the auctioneer chooses some demand structure that has the minimum 

number of minimal overdemanded sets, among all demand structures. Next, he selects a 

minimal overdemanded set for the demand structure chosen  and raises the price of all 

objects belonging to each seller in the set by one unit. All other prices remain at level p(t). 

This defines  p(t+1).  

It is clear that the algorithm stops at some step, because, as soon as the price of the 

objects of a given seller becomes higher than any buyer’s valuation for them, the seller will 

not be in the bid of any buyer. It follows from the construction of the algorithm that the 

final price is a competitive price vector. What is less clear is that this algorithm yields the 

same price, independent of the demand structures selected by the auctioneer. We will prove 

this fact in section 4, by showing that the price obtained in the algorithm is the minimum 

equilibrium price vector. Before, we will illustrate the mechanism with an example. 

  

D. Example 

 

The following example illustrates the price adjusting mechanism. There are four 

non-dummy-buyers, 1, 2, 3 and 4, and six non-dummy sellers, q1, q2, ..., q6.  Seller  q1  has 

two identical objects and the other sellers have each only one object.   The maximum 

number of objects that each buyer can purchase is given by  3,  2, 1  and  1,  respectively. 

These numbers define the quotas of the buyers. The values of the buyers to the non-null 

objects are given by the following vectors: v1=(4,3,3,3,1,1),  v2=(2,2,1,0,1,1),  

v3=(2,0,0,0,0,2)  and  v4=(1,0,1,1,1,2),  where the j-th coordinate of  vi  is the value of any 

object of seller  qj  to buyer  i.  

Step 1.  p(1)=(0,0,...,0). The matrix of surpluses  (vbq-pq(1))  is given in the table 

below. For each row the entries corresponding to the sellers belonging to the demand set of 

the corresponding buyer are in boldface .  
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 q1 q2 q3 q4 q5 q6 0 

 

              1 4 3 3 3 1 1 0 

              2 2 2 1 0 1 1 0 

              3 2 0 0 0 0 2 0 

             4 1 0 1 1 1 2 0 

 

Then, BB1(1)={q1,q2,q3,q4};  B2B (1)={q1,q2}};  B3(1)={q1,q6}; BB4(1)= {q6}. There are 

three demand structures. The first one is: A1,1(1)={q1},  A1,2(1)={q2},   A1,3(1)={q3,q4}; 

A2,1(1)={q1},  A2,2(1)={q2},   A3,1(1)={q1,q6}  and  A4,1(1)={q6}. It is not possible to find a 

competitive matching. There are two minimal overdemanded sets: {q2}  and  {q1,q6}. The 

second demand structure is: A'
1,1(1)={q1},  A'

1,2(1)={q3},  A'
1,3(1)={q2,q4}, A'2,1(1)={q1},  

A'2,2(1)={q2},   A'3,1(1)={q1,q6}  and  A'
4,1(1)={q6}. The only minimal overdemanded set is  

{q1,q6}.  The third demand structure is given by: A"
1,1(1)={q1},  A"

1,2(1)={q4},  

A"
1,3(1)={q2,q3}, A"2,1(1)={q1},  A"2,2(1)={q2},   A"3,1(1)={q1,q6}  and  A"4,1(1)={q6}. As 

before, it is not possible to find a competitive matching. The only minimal overdemanded 

set is  {q1,q6}. The auctioneer must choose a demand structure with the minimum number 

of minimal overdemanded sets. Suppose the auctioneer chooses  A’. As a result, he raises 

the price of  all objects of  q1  and  q6  by one unit. 

Step 2.  p(2)=(1,0,0,0,0,1,0). The matrix of surpluses  (vbq-pq(2))  is given in the 

table below. For each row the entries corresponding to the sellers belonging to the demand 

set of the corresponding buyer are in boldface .  

 

 

 

 
   q1 q2 q3 q4 q5 q6 0 

1 3 3 3 3 1 0 0 

2 1 2 1 0 1 0 0 

3 1 0 0 0 0 1 0 

4 0 0 1 1 1 1 0 
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Then, BB1(2)={q1,q2,q3,q4};  B2B (2)={q2,,q1,q3,q5};  B3(2)={q1,q6}  and  BB4(2)= 

{q3,q4,q5,q6}. There are several demand structures.  Under  A1,1(2)={q1},  A1,2(2)={q2},   

A1,3(2)={q3,q4}; A2,1(2)={q2},  A2,2(2)={q1,q3,q5};   A3,1(2)={q1,q6}  and  

A4,1(2)={q3,q4,q5,q6},  for example, it is not possible to find a competitive matching and the 

minimal overdemanded set is  {q2}. However, under   A’1,1(2)={q1}, A’1,2(2)={q3}, 

A’1,3(2)={q2,q4}   and A'2,1(2)={q2},  A'2,2(2)={q1,q3,q5};   A'3,1(2)= {q1,q6}  and  A'4,1(2)= 

{q3,q4,q5,q6},  there is a competitive matching  that matches buyer  1  to  {q1,q3,q4},  buyer  

2  to  { q1,q2},  buyer  3  to  q6  and buyer  4  to  q5.  Therefore, the final price is  

(1,0,0,0,0,1,0).g 

 

4. MAIN RESULTS 

The first theorem states that the price vector  p  produced by the price adjusting 

mechanism is the minimum competitive price.  

  

Theorem 1. Let  p  be the price vector produced by the price adjusting mechanism. Let  p’  

be any competitive price vector. Then, pq ≤ p’q  ∀ q ∈ Q. 

 

The idea of the proof of this theorem is the following. If  p  is not the minimum 

competitive price vector then there is some competitive price vector  y  such that  p≠y  and  

p  is not smaller than  y. In such a case there exists at least one seller who gets a final price 

for his objects higher than the price given by  y.  On the other hand, we have that  

p(1)=(0,...,0),  so  p (1)≤y. Then, since we are working with all integers, there is at least 

one-step  t  of the auction in which  pq(t)=yq  for some  q  with   pq > yq.  By choosing  t  

such that  t  is the first such step we still have  p(t) ≤y, because if there would be some  q*  

such that  pq*(t)>yq*  this would contradict the choice of  t. At this point Lemma 2 implies 

that the auctioneer will never raise the price of the objects owned by  q  at any step 

further, which is a contradiction.  

Lemma 2 is a key result which uses in its proof a very technical lemma, Lemma 1, 

which in its turn has a very long proof.  
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Theorem 2 states that the final matching  μ  can be chosen so that  (p,μ)  is the 

minimum competitive equilibrium.  

 

Theorem 2.  If  p  is the minimum competitive price vector then it is the minimum 

competitive equilibrium price vector. 

 

For the proof of this theorem we argue that, since  p is competitive then there exists 

some matching  μ  compatible with  p. If  p  is not an equilibrium then there must exist 

some seller who owns an object, with a positive price, which is unsold at μ  The fact that  p  

is the smallest price vector among all competitive price vectors allows us to construct a 

procedure for altering the matching so as to allocate this object to  a non-dummy buyer. We 

can repeat this procedure until obtaining a matching compatible with  p  in which every 

unsold object is zero priced.  

According to Theorem 2, the outcome produced by the mechanism allocates the 

sellers to the buyers according to the  B-optimal competitive equilibrium payoff. By 

Proposition 1 below, whose proof can be seen in Sotomayor (2007), under the B-optimal 

stable payoff no seller discriminates the buyers. Then, the B-optimal stable payoff  is 

competitive. It then easily follows that it coincides with the  B-optimal competitive 

equilibrium payoff. 

 

Proposition 1. Let  (u,w)  be  the B-optimal (respectively, Q-optimal) stable payoff for  M. 

Let  μ  be an optimal matching. Then, wbq=wb'q   for all  q∈Q  and all  b  and  b'  in  μ(q)  

(respectively  ubq=ubq'  for all  b∈B  and all  q  and  q'  in  μ(b)).  

 

As remarked in foot-note (4), buyers and sellers are treated symmetrically in this 

model when we focus on the stable payoffs. Then, if we revert the roles between buyers and 

sellers in the mechanism we get the Q-optimal stable payoff.  This outcome need not be 

competitive, as it is illustrated by an example in Sotomayor (2007). However we can 

obtain the  Q-optimal competitive equilibrium payoff by using Proposition 2 below, from 

Sotomayor (2007): 
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Proposition 2. Let  (u,w;μ)  be a Q-optimal stable outcome. Construct the payoff  (u',w')  

such that the payoffs of  a seller  q  are given by a vector with  s(q)  repetitions of the 

number  w'q=wq(min),  and the  u'bq's  are given by  u'bq=vbq-w'q  if  q∈μ(b). Then, (u',w')  is 

the Q-optimal competitive equilibrium payoff. 

 

5. FINAL REMARKS AND RELATED LITERATURE 

 

 A. Final remarks 

 

We considered the many-to-many Assignment game introduced in Sotomayor 

(1992). In Sotomayor (2007), the relationship between the optimal stable payoffs and the 

corresponding optimal competitive equilibrium payoffs for this model is established: The 

B-optimal stable payoff equals the B-optimal competitive equilibrium payoff, but the Q-. 

optimal competitive equilibrium payoff may be different from the Q-optimal stable payoff. 

The Q-optimal competitive equilibrium payoff can be obtained from the Q-optimal stable 

payoff by reducing the price of each of the items of every seller to his minimal individual 

payoff. (Propositions 1 and 2). 

 In the present paper we provided a dynamic mechanism to finding such optimal 

competitive equilibrium payoffs. We proved that the mechanism operates in a finite number 

of steps, and converges to the extreme point of the lattice of stable payoffs favored by 

players on the offer-making side of the market. The two extreme points of the lattice of 

competitive equilibrium payoffs can then be obtained via the application of the results of 

Sotomayor (2007) mentioned above.  

The intuition behind the mechanism is quite simple. At any step, transfers are made 

to some set of sellers. Since a transfer is made to a seller by raising the prices of all his 

objects equally by the same increment, then, at the end of the mechanism, the identical 

objects of any seller are sold for the same price. In order to yield the minimum price vector 

that clears the market the transfers to the sellers were kept as low as possible. Since all 

prices and values are integers, the increment in each step was conveniently taken as one 

unit.  
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This idea has been previously explored in several papers on multi-unit auctions 

existing in the literature, where the key concept in designing these auction mechanisms has 

been that of minimal overdemanded set. ( We can cite  Demange, Gale and Sotomayor 

(1986) and Gul and Stacchetti (2000), among others). In despite of the similarities found 

with several of these procedures, our approach reveals a novel distinction: The fact that 

there are multiple sellers with multiple identical objects, that each buyer can consume at 

most one unit of each seller’s good and may have a quota greater than one. Even using 

additive utility functions this distinction induces a necessarily more complicated 

construction of the overdemanded sets than the constructions existing in the literature. This 

complexity reveals why and in which ways our model is distinct. For example, in Demange 

et al each buyer can consume at most one object and each seller owns at most one object. 

For this model, as well as for the case in which the sellers own multiple identical objects 

and the buyers have a quota of one, it is very simple to construct an over-demanded set: 

There is only one demand structure in each step of the algorithm given by the demand set 

of every buyer. Then a set  S of objects  is over-demanded  if there is a set  T of buyers, 

loyal demanders of  S,  such that  |T|>∑q∈S σ(q),  where  σ(q) is the minimum between  q’s  

quota and the number of buyers  in  T  who have  q  in their demand set. In the 

generalization of the ascending bid auction of Demange et al  presented by Gul et al the 

buyers have gross substitutes quasi-linear utility functions. Buyers consume a bundle of 

objects, all objects are distinct and they are all owned by the same seller. Thus, if the buyers 

in our model could consume as many of a seller’s good as they want up to their 

consumption capacity, then one could apply Gul and Stacchetti directly, as if one had only 

one seller. Also if the agents could be divided into smaller pieces, by creating repetitions of 

a buyer that can consume at most one good and repetitions of a seller that own one object at 

most, (which might be incorrectly suggested by our additive utility assumption), one could 

apply Demange, Gale and Sotomayor (1986) auction. Nevertheless, both approaches would 

not work in our case, since it would create possibilities for a buyer to consume more than 

one unit of a seller’s good. Instead we found a different way of defining the overdemanded 

set.  

This paper was not intended to provide a general auction mechanism, instead it 

shows that even the simplest case of additive utilities can rise a very complex mechanism. 
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The understanding of its similarities and dissimilarities with the existing mechanisms can 

help the understanding of the limitations that should be taken into account in the design of 

new mechanisms under more general utility functions.  

 

B. Some related literature 

 

Competitive equilibria have been used by several authors, besides those cited along 

this paper, to produce allocations with desirable properties of fairness and efficiency. There 

is by now a vast theoretic literature about two-sided matching markets, providing 

mechanisms to produce such allocations. For the buyer-seller market game proposed by 

Shapley and Shubik, Sotomayor (2002a) proposes a new descending bid method for 

auctioning multiple objects, which generalizes the Dutch auction and produces the 

maximum competitive equilibrium price. Demange, Gale and Sotomayor (1986) also 

consider a second auction mechanism which approximates the minimum competitive 

equilibrium price to any desired degree of accuracy. For the same model, Perez-Castrillo 

and Sotomayor (2002b) analyze a two-stage mechanism that produces the maximum 

equilibrium price vector when buyers and sellers play subgame perfect equilibrium 

strategies. For the case in which the utility functions are piecewise linear, Alkan (1988) 

presents a dynamic mechanism that finds an equilibrium price in finitely many steps and 

approximates an equilibrium price for general continuous utilities. Sotomayor (1992) 

presents a procedure to obtain the optimal stable payoffs of the many-to-many case which 

consists in solving three linear programming problems. 

 

APPENDIX I. 

In this section we will demonstrate the results stated in section 4. In the proof of 

Theorem 1 we argue by contradiction that  p  is not the minimum competitive price vector. 

Then, there is some competitive price vector  y  such that  p≠y  and  p  is not smaller than  y. 

We have that  p(1)=(0,...,0), so  p(1)≤y. For each step  t  of the auction we define  

U(t)≡{q∈Q; pq(t)=yq}.  

The proof of Theorem 1 uses lemmas 1 and 2 below. For the statement of these 

lemmas we need some more notation. Since we are working with all integers, there is at 
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least one-step  t  of the auction such that  U(t)≠φ  and  p(t)≤y. From the competitivity of   y   

it follows that there is some demand structure for  y  with no overdemanded set. Choose one 

of such demand structures and call it  A*(y).  Let  A(t)  be any demand structure at step  t. 

Now set 

 

(P1)  BBb(t)≡F(t)∪G(t),  where  G(t)≠φ,  F(t)∩G(t)=φ, (∀q,q’∈G(t)) vbq-pq(t)=vbq’ –

pq’(t)  and  (∀q∈F(t) and ∀ q’∈G(t))  vbq-pq(t)>vbq’ –pq’(t). 

 

 Since  G(t)≠φ  and  F(t)  is the set of objects which are strictly preferred by  b  to 

any object of G(t)  then  |F(t)|<r(b).  From  (4)  it follows that  |Ab,j(t)|=1  for all  j≠r(b).  It 

is then clear that, for all  j≠r(b),  either Ab,j(t)⊆F(t)  or  Ab,j(t)⊆G(t).  Since  b  is 

indifferent between any two sellers from  Ab,r(b)(t)  when this set is not a singleton,  we 

also have that    Ab,r(b)(t)⊆G(t).   

 Also set 

 

(P2)  BBb(y)≡F(y)∪G(y),  G(y)≠φ,  F(y)∩G(y)=φ, (∀q,q’∈G(y)) vbq-yq=vbq’ –yq’  

and  (∀q∈F(y) and ∀ q’∈G(y))  vbq-yq>vbq’ –yq’. 

 

By using the same argument as before, for all  j≠r(b),  either A*b,j(y)⊆F(y)  or  

A*b,j(y)⊆G(y).  We also have that    A*b,r(b)(y)⊆G(y).   

Now, suppose there is some  C⊆Q such that  

  

(a) pq(t)=yq  ∀q∈C  and  

(b) C⊆G(t)  and  C⊆G(y).   

From  (b)  it follows that:   

 (c) q”∈F(t) ⇔ (∀q∈C)  vbq” - pq” (t) > vbq-pq(t);   

 (d) q”∈F(y)  ⇔ (∀q∈C ) vbq” - yq”  > vbq-yq;     

(e) q”∈F(t)∪G(t) ⇔(∀q∈C)  vbq” - pq” (t) ≥ vbq-pq(t)  and   

(f) q”∈F(y)∪G(y)  ⇔ (∀q∈C)  vbq” - yq”  ≥ vbq-yq .  
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It is, therefore, a matter of verification that, if there is some set  C⊆Q  satisfying  (a)  

and  (b)  then: 

 

F(y)∪G(y) ⊆ F(t)∪G(t)  and F(y)⊆F(t)                                          (A1) 

G(y)∩U(t)=G(t)∩U(t)  and  F(y)∩U(t)=F(t)∩U(t).                           (A2) 

If  Ab,i(t)⊆F(t)∩U(t),  for some  (b,i),  then Ab,i(t)= A*b,j(y), for some  (b,j).       (A3) 

 

The original proof of Lemma 1 is very technical and long. The details of this proof 

are in Appendix 2. For a first reading we suggest the sketch of the proof presented below.  

 

LEMMA 1: Let  t  be some step of the auction at which  U(t)≠φ  and  p(t)≤ y. Let  A*(y)  be 

some demand structure for  y  with no overdemanded set. Let  A(t)  be any demand 

structure at step  t  under price  p(t).  Let  T’={(b,i); Ab,i(t)∩U(t)≠φ}.  Suppose that  T’≠φ.  

Then, there is some demand structure  A’(t), such that  for each  (b,i)∈T’,  there exists some  

(b,j),  with A*b,j(y)⊆U(t),  and such that  A*b,j(y)=A’b,i(t),  if  i≠r(b)  and A*b,j(y)⊆A’b,i(t), 

otherwise.  Furthermore, A’b,i(t)= Ab,i(t)  for all  (b,i)∉T’. 

SKETCH OF THE PROOF: Define  A'(t)  as follows. If  (b,i)∉T’,  set  A’b,i(t)≡Ab,i(t).  If 

for all  (b,i)∈T’  there is some  (b,j),  such that  A*b,j(y)⊆Ab,i(t)∩U(t), define A’b,i(t)≡Ab,i(t)  

for all  (b,i)∈T’ and we are done.  Otherwise, there is some  (b,i)∈T’,  with   Ab,i(t)≡C∪E,  

where  C= Ab,I (t)∩U(t),  such that,  

for all  (b,j),  A*b,j(y)  is not contained in  C .  

We want to show that it is possible to  define  A’(t)  so that, for all  (b,j) )∈T’, with  

j≠r(b),  there exists some  (b,k)  such that A’b,j(t)=A*b,k(y)⊆U(t);  if  (b,r(b))∈T’,  there 

exists some  (b,k)  such that A*b,k(y)⊆A’b,r(b)(t)∩U(t).  

The plan of the proof is the following: By defining F(t), G(t), F(y)  and  G(y)  as in 

(P1)  and  (P2)  we first show that  C⊆G(t)  and C⊆G(y), so  (a)  is satisfied. Since  C ⊆U(t)  

then we have that  (b)  is satisfied. Then,  (A1) and (A2)  hold.  From  C⊆BBb(y)  it follows 

that all of C  must be demanded  by  b  at prices  y,  so every element of  C  must be in 

some  A*b,j(y)  for some b-agent  (b,j). Then, by  (L1), we conclude that such a copy of  b  is  
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(b,r(b)).  Then,   A*b,r(b)(y)=C ∪D,  with  D∩C=φ  and D≠φ  by  (L1).  It is clear that 

A*b,r(b)(y)⊆G(y),  because  (b,r(b))  is the last copy of  b. Now set:   

Γ≡{ (b,j); Ab,j(t)⊆G(t)  and  Ab,j(t)∩U(t)≠φ} 

Γ’≡{ (b,j); A*b,j(y)⊆G(y)  and  A*b,j(y)∩U(t)≠φ} 

ℑ≡{ (b,j); Ab,j(t)⊆G(t)  and  Ab,j(t)∩U(t)=φ} 

ℑ’≡{ (b,j); A*b,j(y)⊆G(y)  and  A*b,j(y)∩U(t)=φ} 

We have that  Γ≠φ,  since  (b,i)∈Γ.    Also, Γ’≠φ,  since  (b,r(b))∈Γ’.  

The next step is to define a one-to-one map  f  from  Γ-{(b,r(b)}  into Γ’-{(b,r(b)}.  

This can be done by establishing that  |Γ|≤|Γ'|  and  (b,r(b)) ∈Γ. Then, define  

A’b,j(t) ≡ Ab,j(t)  if  Ab,j(t) ⊆ F(t)  or  (b,j) ∈ ℑ. 

A’b,j(t) ≡ A*f(b,j)(y)   if  (b,j)∈ Γ - {(b,r(b))}. 

A’b,r(b)(t) ≡ G(t) -  A’
)(brj≠

∪ b,j(t). 

To see that  A'(t)  is well defined and is the desired demand structure, use (A1) and 

(A2).g 

 

LEMMA 2: Let  t  be some step of the auction at which  U(t)≠φ  and  p(t)≤y. Let  A*(y)  be 

some demand structure for  y  with no overdemanded set. Let  A(t)  be any demand 

structure at step  t  under price  p(t).  Let  T'  and  A’(t)  be defined as in Lemma 1. Then, a)  

A’(t)  has no minimal overdemanded set containing elements of  U(t); b) every minimal 

overdemanded set for  A’(t),  if any,  is a minimal overdemanded set for  A(t).  

PROOF: For part a), suppose by way of contradiction that  S  is a minimal overdemanded 

set for  A’(t)  and S1≡S∩U(t)≠φ.  Let  T  be the set of loyal demanders of  S.  The fact that  S  

is overdemanded means exactly that  

|T| > |     (L*1) ∑
∈Sq

qS )(

 We will show that  S-S1  is non-empty and overdemanded for  A’(t), so  S is not a minimal 

overdemanded set for  A’(t), which is a contradiction. To see this, define  T1={(b,i)∈T; 

A’b,i(t)∩S1≠φ}. Let  T’  be as defined in Lemma 1. Now, observe that T1⊆T’.  In fact, if  

(b,i)∉ T’  then  Ab,i(t)=A'b,i(t),  so  A'b,i(t)∩U(t)=φ,   and so  (b,i)∉T1. By Lemma 1, for each  

(b,i)∈T1  there is some  (b,j),  such that  A*b,j(y)⊆A’b,i(t)∩U(t).  On the other hand, the fact 
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that  (b,i)∈T  implies that  A’b,i(t)⊆S,  so  A’b,i(t)∩U(t) = A’b,i(t)∩S1.  Then, 

A*b,j(y)⊆A’b,i(t)∩S1,   so A*b,j(y) ⊆S1.   Thus,  since  A'b,i(t)∩A'b,k(t) =φ  if  i≠k, 

|T1|≤|{(b,j); A*b,j(y)⊆S1}|≤ ,            (L*2) ∑
∈ 1

)(1
Sq

qS

where the last inequality is due to the competitivity of  y.  But then, (L*1)  and  (L*2)  

imply that  |T-T1|=|T|-|T1|>∑ ∑ ∑
∈ ∈ −∈

≥=−
Sq Sq SSq

qSqSqS
1 1

0)()()( 1 , from which follows that  T-

T1≠φ.  However,  T-T1={(b,i)∈T; A’b,i(t)⊆S-S1},  so  S-S1  is non-empty and overdemanded 

for  A’(t), as we wanted to show.  

For part b), suppose that  A’(t)  has overdemanded sets. Let  S  be some minimal 

overdemanded set for  A’(t).  Let  T  be the set of loyal demanders of  S. Let  T’  be as 

defined in Lemma 1.  By part a),  S∩U(t)=φ. Then, if  (b,i)∈T,  A’b,i(t)⊆S,  so  

A’b,i(t)∩U(t)=φ,  so  (b,i)∉T’.  By Lemma 1,  A’b,i(t)=Ab,i(t).  Then, for all  (b,i)∈T,  

Ab,i(t)⊆S.  Then,  T  is a set of loyal demanders of  S  under  A(t)  and min{s(q), number of  

(b,i)∈T  with  q∈Ab,i(t)} = min{s(q), number of  (b,i)∈T  with  q∈A'b,i(t)}.  Hence,  S  is also 

minimal overdemanded for  A(t),  and the proof is complete. g 

 

PROOF OF THEOREM 1: Suppose by way of contradiction that  p  is not the minimum 

competitive price. Let  y  and  A*(y)  be as defined in Lemma 1. Let  t  be the last step of 

the auction at which  p(t)≤y and let   

S1={q∈Q; pq(t+1)>yq}.    (T1)  

Then,  S1≠φ.  Since we are working with all integers,  S1⊆U(t). Let  A(t)  be the demand 

structure chosen by the auctioneer at prices  p(t)  which has the minimum number of 

minimal overdemanded sets. Let  S  be the minimal overdemanded set  for  A(t)  whose 

prices are raised at stage t+1. Thus, 

S={q∈Q; pq(t+1)>pq(t))},             (T2) 

so  S1= S∩U(t),  and so  

S∩U(t)≠φ.               (T3) 

By Lemma 1 and Lemma 2-a, there is some demand structure  A’(t),  defined from  A(t)  

and  A*(y),  that has no minimal overdemanded set containing some element of  U(t). 

Then,  by (T3),  S  is not a minimal overdemanded set for  A’(t).  On the other hand, 
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Lemma 2-b asserts that every minimal overdemanded set for  A’(t),  if any,  is a minimal 

overdemanded set for  A(t).  Therefore, since  S⊆A(t)-A’(t),  A’(t)  has less minimal 

overdemanded sets than  A(t),  contradiction.  Hence,   p  is the minimum competitive price. 

g   
 

PROOF OF THEOREM 2: Let  μ  be a matching compatible with  p.  Call the objects of 

seller  q  overpriced if  q  does not complete his quota under  μ  but  pq>0. Suppose  (p, μ)  

is not a competitive equilibrium, so there is at least one seller  k  whose objects are 

overpriced.  We will give a procedure for altering  μ  so as to eliminate the overpriced 

objects of seller  k. For this purpose we construct a directed graph whose vertices are  B∪Q.  

There are two types of arcs. If  q∈μ(b)  and  b  likes  q'  at least as well as  q  for all  

q'∈μ(b),  at prices  p,  there is an arc from  b  to  q.  If  q  is in  BBb(p)-μ(b)    there is an arc 

from  q  to  b. (Observe that, since every buyer is matched under  μ   to her favorite set of 

allowable sellers, it follows that  if there is an arc from  q  to  b  and an arc from  b  to  q'  

then  b  is indifferent between  q  and  q'  at prices  p ). We have that  k  is in  BbB (p)  for 

some  b∉μ(k), for if not we could decrease  pk  a little bit and still have competitive prices, 

which contradicts the minimality of  p. Let  B*∪Q*  be all vertices that can be reached by a 

directed path starting from  k, followed by  b1∉μ(k).   

Case 1:  B*  contains a buyer  b  such that  μ(b)  contains a dummy-seller. Then, there is an 

arc from  b  to  0.  Let  (k=q1, b1,q2,b2,q3,...,qt,b,0=qt+1)  be a path from  k  to  0.  Then, we 

may change  μ  by replacing  q2  by  k  in  μ(b1);  q3  by  q2  in  μ(b2); ..., the dummy-seller  

qt+1  by  qt  in  μ(b). Since  each  bj  is indifferent between  qj  and  qj+1,  for all  j=1,...,t,  the 

matching is still competitive and  k  has less one unsold object, and hence he has less one 

overpriced object.  

Case 2: No dummy-seller is in  μ(b)  for every  b∈B*. Then, we claim that there must be 

some  q  in  Q*  such that  pq=0,  for suppose not. By definition of  B*∪Q*  we know that if  

b∉B*  then  Q*∩ [BBb(p)- μ(b) ] = φ.  On the other hand, if  b∈B*,  q∉Q*,  q'∈Q*  and  q  

and  q'  are in  μ(b),  then  b  prefers  q  to  q'.  Therefore we can decrease the price of the 

objects of each seller in  Q*  by some positive  ε  and still have competitiveness, 

contradicting the minimality of  p. So choose  q  in  Q*  such that  pq=0  and let  (k=q1, 
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b1,q2,b2,q3,...,qt,bt,q)  be a path from  k  to  q  where  b1∉μ(k).  Again change  μ  by 

replacing  q2  by  k  in  μ(b1),  q3  by  q2  in  μ(b2), ..., q  by  qt  in  μ(b)  and leaving  one 

object of  q  unsold. The resulting matching is still competitive. Again the number of 

unsold objects of  k  has been reduced and so does the number of overpriced objects. g 

 

APPENDIX II. 

Detailed proof of Lemma 1  

 

PROOF OF LEMMA 1: Define  A'(t)  as follows. If  (b,i)∉T’,  set  A’b,i(t)≡Ab,i(t).  If for 

all  (b,i)∈T’  there is some  (b,j),  such that  A*b,j(y)⊆Ab,i(t)∩U(t), define A’b,i(t)≡Ab,i(t)  for 

all  (b,i)∈T’ and we are done.  Otherwise, there is some  (b,i)∈T’  such that,  

for all  (b,j),  A*b,j(y)  is not contained in  Ab,i(t)∩U(t). (L1) 

We want to show that it is possible to  define  A’(t)  so that, for all  (b,j) )∈T’, with  

j≠r(b),  there exists some  (b,k)  such that A’b,j(t)=A*b,k(y)⊆U(t);  if  (b,r(b))∈T’,  there 

exists some  (b,k)  such that A*b,k(y)⊆A’b,r(b)(t)∩U(t). 

Set  Ab,i(t)≡C∪E,  where  C= Ab,i(t)∩U(t)  and  C∩E=φ.   We have that  C≠φ,  due 

to the fact that  (b,i)∈T’. Define  F(t), G(t), F(y)  and  G(y)  as in (P1)  and  (P2). Then,  C  

is contained in the set of elements listed in  BBb(t). We claim that  

   Ab,i(t)⊆G(t).   (L2) 

In fact, if  Ab,i(t)⊆F(t), then  |Ab,i(t)|=1, and so Ab,i(t)={q},  for some  q∈U(t). We do 

not have that  q∈F(y),  for if not there would be some  (b,j)  such that A*b,j(y)={q}= Ab,i(t), 

which contradicts (L1).  Then suppose  q∉F(y).  We are going to show that  

F(y)∪G(y)⊆F(t),  so  |F(y)∪G(y)|≤|F(t)|<r(b).  But this is  absurd since |BBb(y)|≥r(b).  Then, 

take any  q'∈G(y).  If  b  prefers  q  to  q'  at  p(t)  then  vbq-yq = vbq-pq(t) > vbq' - pq'(t) ≥ vbq' -

yq' ,  so  vbq-yq > vbq' - yq',  from which follows that  q∈F(y),  contradiction. Then,  b  prefers  

q'  to  q  or is indifferent between  q  and  q'  at prices  p(t).  Then  q'∈F(t),  because  

q∈F(t),  so  G(y)⊆F(t). To see that  F(y)⊆F(t)  take any  q"∈F(y).  Then  b  strictly prefers  

q"  to  q  at prices  y  (recall that  q∉F(y)),  so  vbq" -pq"(t) ≥vbq" - yq" > vbq - yq = vbq-pq(t),  so  

b  strictly prefers  q"  to  q  at prices  p(t).  (In the last inequality we used that  q∈U(t)).  
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Since  q∈F(t),  it follows that  q"∈F(t).  Therefore,  F(y)∪G(y)⊆F(t)  and we have obtained 

the desired contradiction. Hence, Ab,i(t)⊆G(t)  and we have proved  (L2). Then,  

C⊆G(t),  (L3) 

We also have that 

C  is contained in the set of elements of  list  BBb(y),   (L4) 

because otherwise all elements of  C  are out of  F(y)∪G(y),  so  vbq" - yq" >vbq - yq,  

∀q"∈F(y)∪G(y)  and  ∀q∈C.  In this case we would have that  ∀q"∈F(y)∪G(y)  and  q∈C  

we can use that  pq(t)=yq  and  yq" ≥ pq"(t)  to get that  vbq" - pq" ≥ vbq" -yq" > vbq - yq = vbq - 

pq(t),  so  q"∈F(t)  (we used here that  q∈C⊆G(t)). This implies that  F(y)∪G(y)⊆F(t), so  

|F(y)∪G(y)|≤|F(t)|<r(b), absurd. 

 Now observe that if  there is some  q∈C  such that  q∈F(y), then there is some  (b,j)  

such that  A*b,j(y)={q}⊆C=Ab,i(t)∩U(t),  which contradicts  (L1).  Hence, it follows by  

(L4)  that 

C⊆G(y).  (L5) 

It also follows from  (L4) (or (L5))  that all of C  are demanded  by  b  at prices  y,  

so every element of  C  must be in some  A*b,j(y)  for some  (b,j).   Let  (b,j)  be such that   

A*b,j(y)∩C≠φ.  Since A*b,j(y)  is not contained in  C,  by (L1),  we must have that  

|A*b,j(y)|>1,  so  j=r(b).  Then  C⊆A*b,r(b)(y)  and we can write  A*b,r(b)(y)=C ∪D,  where  

D≠φ  and  D∩C=φ.  It is clear that A*b,r(b)(y)⊆G(y),  because  (b,r(b))  is the last copy of  b.  

Set:   

Γ≡{ (b,j); Ab,j(t)⊆G(t)  and  Ab,j(t)∩U(t)≠φ} 

Γ’≡{ (b,j); A*b,j(y)⊆G(y)  and  A*b,j(y)∩U(t)≠φ} 

ℑ≡{ (b,j); Ab,j(t)⊆G(t)  and  Ab,j(t)∩U(t)=φ} 

ℑ’≡{ (b,j); A*b,j(y)⊆G(y)  and  A*b,j(y)∩U(t)=φ} 

We have that  Γ≠φ,  since  (b,i)∈Γ  by (L2) and by the fact that  (b,i)∈T’.  Also, 

Γ’≠φ,  since  (b,r(b))∈Γ’. We are going to show that we can define a one-to-one map from  

Γ-{(b,r(b)}  into Γ’-{(b,r(b)}. In fact, it is clear that   

|Γ|=r(b)-|F(t)|-| ℑ|  and  |Γ’|=r(b)-|F(y)|-| ℑ’|.   (L6) 

We claim that 

|F(t)|≥|F(y)| + |ℑ’| + |D-U(t)|    (L7) 
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To see this, first observe that, due to the fact that  (b,r(b))∈Γ’,  then every  A*b,j(y)  

with  (b,j)  in  ℑ’  is singleton, so  | A*
'),( ℑ∈

∪
jb

b,j(y)|=|ℑ’|.  Furthermore,  [ A*
'),( ℑ∈

∪
jb

b,j(y)] ∩(D-

U(t))=φ.  Thus, since  G(y)-U(t)=[ A*
'),( ℑ∈

∪
jb

b,j(y)] ∪(D-U(t)),  it follows that  | G(y)-U(t)|= 

|ℑ’| + | D-U(t)|. Therefore, it is enough to prove that  F(t) ⊇ F(y) ∪ [G(y)-U(t)].   That  F(t) 

⊇ F(y)  follows from (A1).  Then, let  q∈G(y)-U(t).  It also follows from  (A1) that  

q∈F(t)∪G(t).  If  q  was in  G(t)  then, for all  q'  in  C,  vbq' -yq'= vbq' - pq'(t)= vbq -pq(t) >  

vbq -yq= vbq'-yq' ,  contradiction, where in the second equality we used (L3),  in the inequality 

we used that  q∉U(t)  and in the last equality we used that  q∈G(y)  and  (L5). Therefore,  

q∉ G(t),  so  q∈ F(t),  and so  G(y)-U(t)⊆F(t).  Hence,  F(t) ⊇ F(y) ∪ [G(y)-U(t)]  and we 

have proved  (L7). 

Using  (L6)  and  (L7),  we get that    |Γ|=r(b)-|F(t)|-|ℑ| ≤ r(b)-|F(y)|-| ℑ’|-|D-U(t)| - 

|ℑ|  = |Γ’| - |D-U(t)| - |ℑ|.  That is,  

|Γ| ≤ |Γ’| - |D-U(t)| - |ℑ|.   (L8)  

Since  Ab,r(b)(t)⊆G(t)  (because  (b,r(b))  is the last copy of  b),  there must be that, 

either  (b,r(b))∈ℑ,  or  (b,r(b))∈Γ.  If   (b,r(b))∈ℑ  then  |ℑ|≥1 and  |Γ|=|G(t)∩U(t)|, 

because every  Ab,j(t)  is singleton for  b≠r(b). But then,  |Γ| ≤ |Γ’| - |D-U(t)| - 1 ≤ |Γ’| - 1 < 

|Γ'|,  so  |Γ'|>|Γ|. Since G(t)∩U(t)=G(y)∩U(t)  by  (A2), we must have that 

|Γ'|>|Γ|=|G(t)∩U(t)|=|G(y)∩U(t)|,  which would be a contradiction (for each  (b,j)∈Γ', 

A*b,j(y) has at least one element of G(y)∩U(t)) ).  Then, (b,r(b))∈Γ. In this case, |Γ- 

{(b,r(b))}|  ≤ |Γ’- {(b,r(b))}|.  Hence, we can define a one-to-one map  f  from  Γ-{(b,r(b)}  

into Γ’-{(b,r(b)}. Then set: 

A’b,j(t) ≡ Ab,j(t)  if  Ab,j(t) ⊆ F(t)  or  (b,j) ∈ ℑ. 

A’b,j(t) ≡ A*f(b,j)(y)   if  (b,j)∈ Γ - {(b,r(b))}. 

A’b,r(b)(t) ≡ G(t) -  A’
)(brj≠

∪ b,j(t). 

It is a matter of verification that  A’b(t)  is well defined (use that  

G(t)∩U(t)=G(y)∩U(t)  given by  (A2)). We have to check  that, if  (b,j)∈T’  and  j≠r(b),  

there exists some  (b,h)  such that A’b,j(t)=A*b,h(y)⊆U(t); if  (b,r(b))∈T’,  there exists some  

(b,h)  such that A*b,h(y)⊆A’b,r(b)(t)∩U(t). Then, let  (b,j)∈T’.  This means that  

 28



Ab,j(t)∩U(t)≠φ.  If  Ab,j(t)⊆F(t),  then  j≠r(b),  so Ab,j(t)={q}  for some  q∈U(t),  and so  

q∈F(t)∩U(t)= F(y)∩U(t),  where the equality follows from (A2). Thus, there is  h  such 

that  A*b,h(y)={q}  and so  A’b,j(t)= A*b,h(y)⊆U(t),  by definition of  A’(t).  If  (b,j)∈T’  and  

Ab,j(t)⊆G(t),  then  (b,j)∈Γ  because  Ab,j(t)∩U(t)≠φ.  We distinguish two cases:  

Case 1.  j≠r(b). Then,  A’b,j(t)= A*f(b,j)(y)  and  f(b,j)∈Γ’-{(b,r(b))},  so  

A*f(b,j)(y)={q},  for some  q. The definition of  Γ’  implies that  q∈G(y)∩U(t).  Hence,  

A'b,j(t)= A*f(b,j)(y)⊆U(t).  

Case 2.  j=r(b).  The definition of  A’b  implies that   

A’b,r(b)(t)∩U(t) = [G(t)∩U(t)] - A*
))(,(),( brbkb −Γ∈

∪ f(b,k)(y)                        (L9) 

Suppose that  |D-U(t)|=0.  Then, we have that A*b,r(b)(y)=C∪D ⊆ U(t).  Therefore, 

A*b,r(b)(y)=[G(y)∩U(t)]-  A*
)(brk≠

∪ b,k(y)=[G(y) ∩U(t)] -  A*
))(,('),( brbkb −Γ∈

∪ b,k(y) ⊆[ G(y) ∩U(t)] -    

 A*
))(,(),( brbkb −Γ∈

∪ f(b,k)(y) .  Using  (L9)  and the fact that G(y) ∩U(t)=G(t) ∩U(t),  given by 

(A2), we get that  A*b,r(b)(y) ⊆ A’b,r(b)(t)∩U(t). 

Now, suppose that  |D-U(t)|>0.  Then  |Γ| ≤ |Γ’| - 1  by  (L8),  so  |Im(f)| ≤|Γ’-

{(b,r(b))}|-1. 6  Thus, there is at least one  (b,h)∈Γ’,  with  h≠r(b),  such that  (b,h)∉ Im(f).  

The fact that  h≠r(b)  implies that  A*b,h(y)={q},  for some  q.  The fact that  (b,h)∉ Im(f)  

implies that q∉ A*
))(,(),( brbkb −Γ∈

∪ f(b,k)(y). That  (b,h)∈Γ’  implies that  q∈G(y)∩U(t) and so  

q∈G(t)∩U(t)  by  (A2).  That is,  q∈[G(t)∩U(t)] - A*
))(,(),( brbkb −Γ∈

∪ f(b,k)(y).                          

Now, use (9) to conclude that A*b,h(y)={q}⊆A’b,r(b)(t)∩U(t). 

Thus, if  j=r(b),  there is some  (b,h)  such that  A*b,h(y)⊆A’b,r(b)(t)∩U(t). 

Hence we have demonstrated the desired result and the proof is complete. g 
 

 

REFERENCES 

Alkan, A. (1988) “Auctioning several objects simultaneously”. Bogazici University, 

mimeo. 

Chae, S. H. (2003) “Is the match illegal?,” The New England Journal of Medecine 348, 

                                                           
6 We are using the abbreviation  Im(f)  to denote the image set of  f:  f(Γ-{(b,r(b))}).  

 29



352-356. 

Crawford, V. P. and Elsie M. Knoer (1981) “Job matching with heterogeneous firms 

and workers”, Econometrica 49, n.2, 437-450. 

Dantzig, G. B. (1963) “Linear Programming and Extensions”, Princeton University 

Press. 

Demange G. (1982) “Strategyproofness in the assignment market game”, Preprint. Paris: 

Ecole Polytechnique, Laboratoire D’Econometrie. 

Demange, G., David Gale and Marilda Sotomayor (1986) “Multi-item auctions”, Journal of 

Political Economy vol 94, n.4, 863-872. 

Gale, D. (1960) “The theory of linear economic models”, New York: McGraw-Hill. 

Gale, D. and L. Shapley (1962) "College admissions and the stability of marriage", 

American Mathematical Monthly, 69, 9-15. 

Gul, F. and E. Stacchetti (2000) “The english auction with differentiated commodities”, 

Journal of Economic Theory 92, 66-95. 

Hall P., (1935) “On representatives of subsets”, J. London Math. Soc. 10, 26-30. 

Kelso, A. and Vincent P. Crawford (1982) “Job matching, coalition formation, and 

gross substitutes”, Econometrica 50, n.6, 1483-1504. 

Leonard, H. B. (1983) “Elicitation of honest preferences for the assignment of 

individuals to positions”, Journal of Political Economy  461-479. 

Miller, F. H. And Thomas L. Greaney (2003) “The National Resident Matching Program 

and Antitrust Law”, Journal of the American Medical Association 289, 913-918. 

Roth A. and Marilda Sotomayor (1990) “Two-sided matching. A study in game-theoretic 

modeling and analysis”, Econometric Society Monograph Series, N. 18 Cambridge 

University Press.  

Shapley, L. and Martin Shubik (1972) “The assignment game I: The core”, International 

Journal of Game Theory,  1, 111-130. 

Sotomayor, M. (1992) “The multiple partners game”, Equilibrium and Dynamics: Essays in 

Honor of David Gale, edit. by Mukul Majumdar, The Macmillan Press Ltd. 

____________(1999) “The lattice structure of the set of stable outcomes of the multiple 

partners assignment game”, International Journal of Game Theory 28, 567-583. 

 30



___________(2002a) "A simultaneous descending bid auction for multiple items and 

unitary demand", Brazilian Economic Journal 56(3), 497-510. 

___________(2002b) “A simple selling and buying procedure”, Journal of Economic 

Theory, 103, 461-474. 

_____________(2007) "Connecting the cooperative and competitive structures of the 

multiple-partners assignment game”, Journal of Economics Theory, 134(1), 155–174. 

Vickrey, William (1961) “Counterspeculation, auctions, and competitive sealed tenders” 

Journal of Finance 16, 8-37. 

 

 31



 

 

 32


	Universidade de São Paulo, Departamento de Economia 
	4. MAIN RESULTS 
	 
	APPENDIX I. 
	Dantzig, G. B. (1963) “Linear Programming and Extensions”, Princeton University 
	Press. 



