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Abstract

We consider the regret matching process with finite memory. For general

games in normal form, it is shown that any recurrent class of the dynamics

must be such that the action profiles that appear in it constitute a closed set

under the “same or better reply” correspondence (CUSOBR set) that does not

contain a smaller product set that is closed under “same or better replies,” i.e.,

a smaller PCUSOBR set. Two characterizations of the recurrent classes are

offered. First, for the class of weakly acyclic games under better replies, each

recurrent class is monomorphic and corresponds to each pure Nash equilibrium.

Second, for a modified process with random sampling, if the sample size is

sufficiently small with respect to the memory bound, the recurrent classes

consist of action profiles that are minimal PCUSOBR sets. Our results are

used in a robust example that shows that the limiting empirical distribution

of play can be arbitrarily far from correlated equilibria for any large but finite

choice of the memory bound.
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1 Introduction

We consider the regret matching process based on finite memory. Each player re-

members the last m action profiles used in the game. Regret is calculated with

respect to the average payoff obtained in those m periods. With respect to the last

action chosen, the player calculates his or her regret from not having used other

actions, when those actions replace the last action each time it was used in the m

periods that the player recalls. The player switches with positive probability to those

actions associated with positive regret, but continues to play the same action also

with positive probability. This process corresponds exactly to the regret matching

of Hart and Mas-Colell (2000), except that our players’ memory is not unbounded.

A typical state of the m-period memory regret learning process is a list of m

action profiles. It is shown that any recurrent class of the dynamics must be such

that the action profiles that appear in it constitute a closed set under the “same

or better reply” correspondence (CUSOBR set) that does not contain a smaller

product set that is closed under “same or better replies,” i.e., a smaller PCUSOBR

set. Since this is only a necessary condition, in general games we are not able to offer

a characterization of the recurrent classes of the m-period memory regret learning

process. However, we offer two possible ways out that yield a characterization. First,

for the class of weakly acyclic games under better replies, each recurrent class is

monomorphic and corresponds to each pure Nash equilibrium of the game. Second,

for a modified process in which agents sample at random from their bounded memory,

if the sample size is sufficiently small with respect to the memory bound, the recurrent

classes consist of action profiles that are minimal PCUSOBR sets.

Our findings turn out to shed interesting new light on the results in Hart and

Mas-Colell (2000). These authors prove that the empirical distribution of play of

their unbounded-memory regret matching process converges almost surely to the set

of correlated equilibrium distributions. But as Hart and Mas-Colell (2000) them-

selves point out, little more is known about additional convergence properties of

the empirical play distribution. In contrast, our analysis offers clear pointwise con-

vergence conclusions. In weakly acyclic games, per period play in our process will

almost surely in finite time be a pure Nash equilibrium that will be played for ever

into the future. In terms of the empirical distribution of play, given the random-

ness in choosing the arbitrary initial conditions, we know that it is a correlated

equilibrium in the convex hull of the pure-strategy Nash equilibria. In general, for

any game, pointwise convergence of per period play can only happen to pure Nash
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equilibria. But in addition, we know that play in finite time will enter one of the

CUSOBR sets of the game not containing a smaller PCUSOBR set. This in turn

implies that the empirical distribution converges to a point, which lies in the convex

hull of distributions whose supports are CUSOBR sets that do not contain smaller

PCUSOBR sets. As it turns out, this may give a long-run prediction far from the

set of correlated equilibria, in the following sense. We offer a robust example, in

which there is a unique correlated equilibrium distribution, and such that for any

finite m –the memory bound– the limiting empirical play distribution concentrates

with probability arbitrarily close to 1 on an action profile that is not in the support

of the correlated equilibrium. The main result in Hart and Mas-Colell (2000) seems

to depend crucially on the unbounded memory assumption.

1.1 Related Literature

Our process is part of the no-regret learning literature (e.g., Hannan (1957), Fuden-

berg and Levine (1995), Foster and Vohra (1998), Hart and Mas-Colell (2000)).1 In

related processes, Young (1993) shows that if players have bounded recall and play a

myopic best reply to a sample drawn from their memory, where the sample is suffi-

ciently small compared to the memory, then in games that are weakly acyclic (under

“single best reply”), per period play converges to a pure Nash equilibrium.2 Young

(1998) proves that this learning dynamics converges to a minimal curb –closed under

rational behavior– set for generic finite N -player games. In Hurkens (1995), players

have bounded recall of m periods and play myopic best replies to their beliefs, where

the belief of player i about player j is any distribution with its support in the set of

actions played by player j during the last m periods. It is shown that this learning

dynamics converges to a minimal curb set in all finite N -player games. Instead of

myopic best reply, players in Josephson and Matros (2004) use an imitation dynam-

ics. That is, players have bounded recall, and out of her memory, each player samples

all past actions and the corresponding payoffs. She then plays the action that had

the highest average payoff in her sample. The recurrent classes of this dynamics in

all finite N -player games are monomorphic states and the main result is that the set

of stochastically stable monomorphic states is a union of sets that are minimal closed

sets under single better replies. Ritzberger and Weibull (1995) prove that the face of

a product set (set of all mixed strategies with support in the set) is asymptotically

1See Fudenberg and Levine (1998), Hart (2005), Young (2004) or Sandholm (2009) for surveys
of learning and related areas.

2“Single” means that only one player is allowed to change his or her action at a time.
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stable under any sign-preserving selection dynamics (in continuous time) if and only

if the set is closed under better replies. Each such set always contains an essential

component of Nash equilibria that is strategically stable.

In Zapechelnyuk (2008), an agent is playing against nature. The agent has recall

m and her adaptive behavior is a function of her unconditional regrets over the last

m periods. He assumes that the agent plays according to a better-reply rule, which

is defined by the following weak requirement: whenever there exists an action with

positive unconditional regret, the agent does not play any action with non-positive

unconditional regrets. Unconditional regret matching of Hart and Mas-Colell (2000)

is a particular better-reply rule. He provides a 2 × 3 game example, where the

agent is the row player and nature is the column player. He assumes that nature

plays according to fictitious play with recall m, i.e., in every period, it plays a best

reply to the agent’s average play over the last m periods. Under this assumption,

he proves that for any better-reply rule and for any large enough recall m, there

exists an initial history and period T such that for all t ≥ T , the probability that the

agent’s maximum unconditional regret over the last m periods is bounded away from

0 is bounded below by a positive constant. That is, any better-reply rule of the agent

with large enough bounded recall is not universally consistent with nature’s strategy.

Apart from adaptive play being a function of unconditional regrets, the difference

with respect to our example below is that nature’s adaptive behavior (although a

better-reply rule) is not the same as the agent’s. In related work to Zapechelnyuk’s,

Lehrer and Solan (2009) find an adaptive rule with bounded recall that converges to

the set of correlated equilibria by “restarting the memory.”

Marden et al (2007) consider a regret based dynamics with fading memory and

inertia. That is, with a positive probability each player repeats her last period’s

action and with the rest of the probability she updates her action as a function of

her unconditional regrets where past regrets are exponentially discounted. Their

result is that if players use this learning rule, then in games that are weakly acyclic

under single better replies and in which no player is indifferent between distinct

strategies, per period play converges to pure Nash equilibrium almost surely.

The rest of the paper is organized as follows. Section 2 describes regret matching

with finite memory. Section 3 defines CUSOBR and PCUSOBR sets. We provide

the results in Section 4. In Section 5, we discuss the connections with Hart and

Mas-Colell (2000). Finally, Section 6 collects the proofs.
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2 Regret Matching with Finite Memory

Consider a N -person game in normal form G, with a finite set of actions Ai for each

player i ∈ N . Call A =
∏

i∈N Ai. Let πi(ai, a−i) be her payoff when she chooses ai

and the other players choose a−i.

Suppose that the players remember the last m ≥ 1 action profiles. At the be-

ginning of period t + 1, let (at−m+1, . . . , at) be the history of action profiles played

during the last m periods. Player i’s average payoff over these m periods is given by

Πi =
1

m

t∑
k=t−m+1

πi(a
k). Let at

i be the action played by player i in period t. For all

a′i 6= at
i, let Πi(a

′
i) be the average payoff over the last m periods that player i would

have obtained had she played action a′i every time she played action at
i during the

last m periods. That is, Πi(a
′
i) =

1

m

t∑
k=t−m+1

υk
i (a′i), where

υk
i (a′i) =

{
πi(a

′
i, a

k
−i) if ak

i = at
i

πi(a
k
i , a

k
−i) if ak

i 6= at
i.

(1)

Define Ri(a
′
i) = Πi(a

′
i)−Πi. Then, player i switches to action a′i in period t+1 with

probability q(Ri(a
′
i)) > 0 if and only if Ri(a

′
i) > 0, whereas she does not switch with

the rest of probability, which we assume is positive, i.e.,
∑
a′i 6=at

i

q(Ri(a
′
i)) < 1. This

adaptive behavior is regret matching à la Hart and Mas-Colell (2000) but with finite

recall.

Define a state of the matched players in a period to be the history of last m action

profiles. Hence, the set of states is H = Am.

Given G, for fixed q(·), regret matching with bounded recall describes an aperiodic

Markov process M̄G(q) on the state space H. We identify its recurrent classes next.

A recurrent class is a set of states such that if the process reaches one of them, it

will never leave the set, and such that it does not admit a proper subset of states

with the same property.

3 CUSOBR and PCUSOBR Sets

For any (ai, a−i) ∈ A, the set of same-or-better replies for player i is

Ri(ai, a−i) = {a′i ∈ Ai|either a′i = ai or πi(a
′
i, a−i) > πi(ai, a−i)}.
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Let RG : A → A be the same-or-better-reply correspondence of the game G, i.e.,

RG(a1, . . . , aN) =
∏
i∈N

Ri(ai, a−i).

Definition 3.1. A set of action profiles Â ⊆ A in G is closed under same-or-better

replies (CUSOBR set) if for all (a1, . . . , aN) ∈ Â, we have RG(a1, . . . , aN) ⊆ Â. A

minimal CUSOBR set is a CUSOBR set that does not contain a proper subset that

is a CUSOBR set.3

For any nonempty Â ⊆ A, define

R̃G(Â) =
⋃

(a1,...,aN )∈Â

(∏
i∈N

Ri(ai, a−i)

)
.

Equivalently, Â is a CUSOBR set if and only if Â is a fixed point of R̃G, i.e., R̃G(Â) =

Â.

It is easy to see that (a1, . . . , aN) is a pure Nash equilibrium of G if and only

if {(a1, . . . , aN)} is a singleton minimal CUSOBR set. Furthermore, since G has a

finite number of action profiles, there exists a minimal CUSOBR set.

Definition 3.2. Â ⊆ A is a product set of action profiles that is closed under same-

or-better replies (PCUSOBR set) if Â is a product set and for all (a1, . . . , aN) ∈ Â,

we have RG(a1, . . . , aN) ⊆ Â. A minimal PCUSOBR set is a PCUSOBR set that

does not contain a proper subset that is a PCUSOBR set.

For any nonempty Â ⊆ A, define

R̂G(Â) =
∏
i∈N

 ⋃
(ai,a−i)∈Â

Ri(ai, a−i)

 .

Note that a product set Â is a PCUSOBR set if and only if Â is a fixed point of R̂G,

i.e., R̂G(Â) = Â.

Remark: Every minimal CUSOBR set that is a product set is a minimal PCUSOBR

set. Thus, in particular, a pure Nash equilibrium is both a singleton minimal CU-

SOBR set and a singleton minimal PCUSOBR set. Moreover, every minimal PCU-

SOBR set contains a minimal CUSOBR set. Hence, the set of minimal CUSOBR

3See Saran and Serrano (2010), where we study regret matching with one-period memory under
fixed and random matching, for a comparison of CUSOBR sets with other set-valued concepts.
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L R
U 1, 0 0, 0
M 0, 1 2, 0
D 2, 0 0, 1

(a)

L C R
Û 0, 0 0, 0 1, 1
U 1, 0 0,−1 0, 0
M 0, 1 2, 0 0, 0
D 2, 0 0, 1 0, 0

(b)

Figure 1

sets and minimal PCUSOBR sets coincide in games where all minimal CUSOBR sets

are product sets. However, in some games, the set of minimal CUSOBR sets is a

refinement of the set of minimal PCUSOBR sets. Game (a) in Figure 1 has a unique

minimal CUSOBR set {(U,L), (M, L), (M, R), (D, L), (D, R)}, which is a refinement

of its unique minimal PCUSOBR set {(U,L), (U,R), (M, L), (M, R), (D, L), (D, R)}.
On the other hand, it is also possible that there exists a minimal CUSOBR set that

is not a subset of any minimal PCUSOBR set of the game. For example, Game (b)

in Figure 1 has a unique minimal PCUSOBR set {(Û , R)} but it has two minimal

CUSOBR sets, {(Û , R)} and {(U,L), (M, L), (M, C), (D, L), (D, C)}.

4 Results

For any set of states Ĥ ⊆ H, let A(Ĥ) ⊆ A be the set of all action profiles that are

played in some state in Ĥ.

Proposition 4.1. (a) If Â is a minimal PCUSOBR set of G, then there exists a

recurrent class Ĥ of M̄G(q) such that A(Ĥ) ⊆ Â.

(b) Ĥ is a recurrent class of M̄G(q) only if A(Ĥ) is a CUSOBR set of G that does

not contain a smaller PCUSOBR set.

Remark: Due to inertia in the dynamics, for any (a1, . . . , aN) ∈ A(Ĥ), there exists a

monomorphic state (a1, . . . , am) ∈ Ĥ such that ak = (a1, . . . , aN) for all k = 1, . . . ,m.

Hence, if Ĥ and Ĥ ′ are two recurrent classes of M̄G(q), then A(Ĥ)
⋂

A(Ĥ ′) = ∅.

A stronger result can be established if G is weakly acyclic under better replies.4

A better-reply graph is defined as follows: each action profile of G is a vertex of the

graph and there exists a directed edge from vertex (a1, . . . , aN) to vertex (a′1, . . . , a
′
N)

4Young (2004) defines a smaller class of games that are in fact weakly acyclic under single better
replies. See Saran and Serrano (2010) for a detailed comparison.
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if and only if (a1, . . . , aN) 6= (a′1, . . . , a
′
N) and (a′1, . . . , a

′
N) ∈ RG(a1, . . . , aN). A

sink is a vertex with no outgoing edges. A better-reply path is a sequence of ver-

tices (a1
1, . . . , a

1
N), . . . , (aL

1 , . . . , aL
N) such that there exists a directed edge from each

(al
1, . . . , a

l
N) to (al+1

1 , . . . , al+1
N ). The game G is weakly acyclic under better replies if

from any action profile, there exists at least one better-reply path to a sink. Clearly,

an action profile is a sink if and only if it is a pure Nash equilibrium of G. Thus, the

game G is weakly acyclic under better replies if from any action profile there exists

at least one better-reply path to a pure Nash equilibrium.

If G is weakly acyclic under better replies, then every CUSOBR set contains a

pure Nash equilibrium, which is a singleton PCUSOBR set. Hence, we obtain the

following corollary:

Corollary 4.2. Suppose G is weakly acyclic under better replies. Then, Ĥ is a

recurrent class of M̄G(q) if and only if A(Ĥ) is a pure Nash equilibrium of G.

We are, however, not able to strengthen Proposition 4.1 to an “if and only if”

statement for games that are not weakly acyclic under better replies, which is the

reason to turn to a random sampling version of the process next. That is, we thus

far have assumed that players consider all the past periods in the m-period history.

Instead, suppose that each player i independently draws a random sample of s periods

(a1, . . . , as) from the m-period history (at−m+1, . . . , at) and calculates her regrets

relative to the latest action in her sample, as
i (unlike earlier, where the regrets are

calculated relative to the latest action at
i).

Formally, let Πs
i =

1

s

s∑
k=1

πi(a
k) be player i’s average payoff over her s-period

sample. For all a′i 6= as
i , let Πs

i (a
′
i) be the average payoff over these s periods that

player i would have obtained had she played action a′i every time she played action

as
i during these s periods. That is, Πs

i (a
′
i) =

1

s

s∑
k=1

υk
i (a′i), where

υk
i (a′i) =

{
πi(a

′
i, a

k
−i) if ak

i = as
i

πi(a
k
i , a

k
−i) if ak

i 6= as
i .

Define Rs
i (a

′
i) = Πs

i (a
′
i) − Πs

i . Then, player i plays action a′i in period t + 1 with

probability q(Rs
i (a

′
i)) > 0 if and only if Rs

i (a
′
i) > 0, whereas she does not switch with

probability 1−
∑

a′i 6=as
i
q(Rs

i (a
′
i)) > 0. This adaptive behavior is regret matching with

bounded recall and random sampling.

As before, a state of the matched players in a period is the history of last m
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action profiles. Hence, the set of states is still H. Given G, for fixed q(·), regret

matching with bounded recall and random sampling describes an aperiodic Markov

process M̃G(q) on the state space H.

Proposition 4.3. If s/m is sufficiently small, then Ĥ is a recurrent class of M̃G(q)

if and only if A(Ĥ) is a minimal PCUSOBR set of G.

5 Connections with Hart and Mas-Colell’s Regret

Matching

Hart and Mas-Colell (2000) study the long-run behavior when the players use regret

matching but, in contrast to our model, have unbounded memory. Regret matching

with unbounded recall is defined as follows: at the beginning of period t + 1, let

(a1, . . . , at) be the history of action profiles played. The average payoff of player i

over this history is given by Πt
i =

1

t

t∑
k=1

πi(a
k). Let at

i be the action played by player

i in period t. For all a′i 6= at
i, let Πt

i(a
′
i) be the average payoff that player i would

have obtained had she played action a′i every time she played action at
i in the history.

That is, Πt
i(a

′
i) =

1

t

t∑
k=1

υk
i (a′i), where υk

i (a′i) is as in (1). Define Rt
i(a

′
i) = Πt

i(a
′
i)−Πt

i.

Then, player i switches to action a′i in period t + 1 with probability

1

c
max{Rt

i(a
′
i), 0},

whereas she does not switch with probability

1− 1

c

∑
a′i 6=at

i

max{Rt
i(a

′
i), 0},

which is positive for a sufficiently large constant c.

Let µt be the empirical distribution of play up to period t, i.e., for every (a1, . . . , aN),

µt(a1, . . . , aN) =
1

t
|{1 ≤ k ≤ t|ak = (a1, . . . , aN)}|.

The main theorem in Hart and Mas-Colell (2000) states the following: If the

players use regret matching with unbounded recall, then the empirical distribution

of play µt converges almost surely as t → ∞ to the set of correlated equilibrium

distributions of G. Nevertheless, as Hart and Mas-Colell (2000, p. 1132) themselves
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point out, we know little about additional convergence properties of µt under regret

matching with unbounded recall. In particular, it is not known whether µt converges

to a “point”, i.e., a distribution over the set of action profiles. We know that if there

exists a finite time T such that for all t > T , µt lies in the set of correlated equilibria,

then µt must be a pure Nash equilibrium for all t > T (because the action profile does

not change whenever µt is a correlated equilibrium as all regrets are zero). Hence,

if µt does not converge to a pure Nash equilibrium, then the sequence {µt}t≥1 must

lie infinitely often outside the set of correlated equilibria. Therefore, if µt converges

to a point, then it can either converge to a pure Nash equilibrium or a correlated

equilibrium on the boundary of the set of correlated equilibria.

To facilitate the comparison with regret matching with bounded recall (but no

sampling), let’s fix q(·) to be such that player i switches to action a′i in period

t+1 with probability 1
c
max{Ri(a

′
i), 0}, whereas she does not switch with probability

1 − 1

c

∑
a′i 6=at

i

max{Ri(a
′
i), 0}, where c is sufficiently large to ensure that the latter is

positive.

In contrast to Hart and Mas-Colell (2000), we have precise results about the

pointwise convergence of per period play under regret matching with bounded recall.

If G is weakly acyclic under better replies, Corollary 4.2 tells us that per period

play at will almost surely in finite time be a pure Nash equilibrium – the particular

equilibrium depends on the initial history. In this case, µt converges as t → ∞ to

a correlated equilibrium distribution that lies in the convex hull of the pure Nash

equilibrium distributions.5

More generally, Proposition 4.1 tells us that under regret matching with bounded

recall, per period play at will almost surely in finite time enter some CUSOBR set

that does not contain a smaller PCUSOBR set – again, the particular set depends

on the initial history – and after that time, each of the action profiles that belong to

this set, and only this set, will be played infinitely often. This in turn implies that µt

converges as t → ∞ to a point, which lies in the convex hull of distributions whose

supports are CUSOBR sets that do not contain smaller PCUSOBR sets. However, as

the following example illustrates, the empirical distribution of play need not converge

to the set of correlated equilibrium distributions when players have bounded recall.

5This follows from the properties of the invariant distributions of the process. Since the recurrent
classes of the process coincide with monomorphic states that are pure Nash equilibria, any invariant
distribution of the process is a convex combination of the distributions whose supports are such
monomorphic states. A similar remark applies to the convergence of µt when the game is not
weakly acyclic under better replies.

10



Example 5.1. Suppose there are two players who repeatedly play the game in Figure

2, where ε ≥ 0.

L C R
U 0, 20 50, 15 60, 20
D 10, 30 40, 35 60 + ε, 25

Figure 2

Fix m ≥ 1, and let M(m, ε) be the transition matrix of the Markov process when

the players use regret matching with bounded recall of m. Let Mhh′(m, ε) be the hh′

entry in this matrix, i.e., the probability of transition from state h = (a1, . . . , am) to

state h′ = (a′1, . . . , a′m) in one period. Note that a′k = ak+1 for all k = 1, . . . ,m− 1.

Let i and j denote, respectively, the row and column players. Since the players

choose their actions independently, Mhh′(m, ε) = ihh′(m, ε)jhh′(m, ε), where ihh′(m, ε)

and jhh′(m, ε) are the probabilities that, respectively, the row player plays action

a′mi and the column player plays action a′mj during the next period conditional on

state h. Since Rj(·) does not depend on ε, jhh′(m, ε) does not depend on ε. Thus,

jhh′(m, ε) = jhh′(m, 0) for all ε. Similarly, if h is such that ak
j 6= R for all k = 1, . . . ,m,

then ihh′(m, ε) = ihh′(m, 0) for all ε. So suppose h is such that out of all the periods

in which player i played am
i , player j played L and R in, respectively, l and r periods.

First, let am
i = U . Then, conditional on state h, Ri(D) = 10

m
(2l + r −m) + ε r

m
.

Therefore, if ε < min{10
m

, c− 10} (note that c > 10 to ensure positive probability of

inertia in the process when ε = 0), then the probability that the row player switches

to D the next period is

10
cm

(2l + r −m) + ε r
cm

< 1, if 10
m

(2l + r −m) ≥ 0

0, if 10
m

(2l + r −m) < 0.

Hence, for all ε < min{10
m

, c− 10}, we have:

• if a′mi = D, then

ihh′(m, ε) =

{
ihh′(m, 0) + ε r

cm
< 1, if 10

m
(2l + r −m) ≥ 0

ihh′(m, 0), otherwise.
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• if a′mi = U , then

ihh′(m, ε) =

{
ihh′(m, 0)− ε r

cm
> 0, if 10

m
(2l + r −m) ≥ 0

ihh′(m, 0), otherwise.

Next, let am
i = D. Then, conditional on state h, Ri(U) = 10

m
(m − 2l − r) − ε r

m
.

Therefore, if ε < 10
m

and c > 10, then the probability that the row player switches to

U the next period is

10
cm

(m− 2l − r)− ε r
cm

∈ (0, 1), if 10
m

(m− 2l − r) > 0

0, if 10
m

(m− 2l − r) ≤ 0.

Hence, for all ε < 10
m

, we have:

• if a′mi = U , then

ihh′(m, ε) =

{
ihh′(m, 0)− ε r

cm
> 0, if 10

m
(m− 2l − r) > 0

ihh′(m, 0), otherwise.

• if a′mi = D, then

ihh′(m, ε) =

{
ihh′(m, 0) + ε r

cm
< 1, if 10

m
(m− 2l − r) > 0

ihh′(m, 0), otherwise.

Thus, whenever ε < min{10
m

, c − 10}, there exists a Q(m) such that M(m, ε) =

M(m, 0) + εQ(m).

If ε > 0, then the set of all action profiles is the game’s unique CUSOBR set that

does not contain a smaller PCUSOBR set. Hence, it follows from Proposition 4.1

that the Markov process defined by M(m, ε) has a unique recurrent class and hence,

a unique invariant distribution, µ(m, ε). Then,

µ(m, ε) = µ(m, ε)M(m, ε) = µ(m, ε)M(m, 0) + εµ(m, ε)Q(m).

There exists a subsequence where µ(m, ε) converges pointwise to say µ(m) as ε → 0.

Hence, along this subsequence, we have

µ(m) = lim
ε→0

µ(m, ε) =
(
lim
ε→0

µ(m, ε)
)

M(m, 0) = µ(m)M(m, 0).

That is, µ(m) is an invariant distribution of the Markov process defined by M(m, 0).
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But if ε = 0, then {(U,R)} is the game’s unique CUSOBR set that does not contain

a smaller PCUSOBR set; the only other CUSOBR sets are the set A and the set

A \ {(D, R)}. Therefore, the Markov process defined by M(m, 0) has a unique

invariant distribution, with support on the monomorphic state in which (U,R) is

played. Hence, we conclude that for any memory m, there exists an εm > 0 such

that the unique invariant distribution of the Markov process defined by M(m, εm)

puts probability close to 1 on the monomorphic state in which (U,R) is played.

For any ε > 0, the game has a unique correlated equilibrium, in which each of

the action profiles (U,L), (U,C), (D, L) and (D, C) has probability equal to 0.25.

Thus, fixing a finite m as large as one wishes, we have argued that there exists an

ε small enough such that the empirical distribution of play of the game as t → ∞
is concentrated on the outcome (U,R) a proportion of time close to 1: this is very

“far” from the unique correlated equilibrium distribution of the game.

On the other hand, for any ε > 0 and taking m = ∞, it follows from the result

in Hart and Mas-Colell (2000) that the limiting empirical distribution of play must

approximate the unique correlated equilibrium. Our analysis shows that, in obtaining

this result, the infinite tail of memory is crucial.

6 Proofs

Proof of Proposition 4.1: Suppose Â is a PCUSOBR set. Let Pi(Â) be the pro-

jection of Â on Ai. Pick any action profile (a1, . . . , aN) ∈ Â. Suppose that in period

t, the dynamics is in state (at−m+1, . . . , at) ∈ H such that ak = (a1, . . . , aN),∀k =

t − m + 1, . . . , t. We argue by induction that for all t′ ≥ t, the state in period

t′, (at′−m+1, . . . , at′) is such that ak ∈ Â,∀k = t′ − m + 1, . . . , t′. This is clearly

true for t′ = t. Now, suppose this is true for t′′ ≥ t. Consider at′′+1. It must be

that for all i, either at′′+1
i = at′′

i or there exists a ak, where t′′ − m + 1 ≤ k ≤ t′′,

such that ak
i = at′′

i and πi(a
t′′+1
i , ak

−i) > πi(a
k
i , a

k
−i). If at′′+1

i = at′′
i , then obviously

at′′+1
i ∈ Pi(Â). On the other hand, since ak ∈ Â (follows from the induction hypoth-

esis) and Â is a PCUSOBR set, we again have at′′+1
i ∈ Pi(Â). Since this is true for

all i, at′′+1 ∈
∏

i∈N Pi(Â) = Â, where the equality follows since Â is a product set,

which completes the induction argument.

This implies that starting from period t, any action profile that does not belong

to Â is played with zero probability. Hence, there exists a recurrent class Ĥ such

that A(Ĥ) ⊆ Â. The first statement in the proposition follows from this fact.

Next, suppose Ĥ is a recurrent class of M̄G(q). We first argue that A(Ĥ)
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is a CUSOBR set. Pick any action profile (a1, . . . , aN) ∈ A(Ĥ). There exists a

(a1, . . . , am) ∈ Ĥ such that ak = (a1, . . . , aN),∀k = 1, . . . ,m (because there is iner-

tia in the dynamics and Ĥ is a recurrent class). Let (a′1, . . . , a
′
N) ∈ RG(a1, . . . , aN).

From state (a1, . . . , am), there is a positive probability that the dynamics will move to

the new state (a2, . . . , am, am+1), where am+1 = (a′1, . . . , a
′
N). Since Ĥ is a recurrent

class, it must be that (a2, . . . , am, am+1) ∈ Ĥ and hence, (a′1, . . . , a
′
N) ∈ A(Ĥ).

Now, suppose A(Ĥ) is a CUSOBR set that contains a smaller PCUSOBR set Â.

Then there exists a recurrent class of M̄G(q), H ′ such that A(H ′) ⊆ Â ⊂ A(Ĥ),

a contradiction. This completes the proof of the second statement in the proposi-

tion.

Proof of Proposition 4.3: As in the previous proof, we can argue that if Â is a

PCUSOBR set, then there exists a recurrent class Ĥ of M̃G(q) such that A(Ĥ) ⊆ Â.

We argue that if Ĥ is a recurrent class of M̃G(q), then A(Ĥ) contains a PCU-

SOBR set. Pick any action profile (a1, . . . , aN) ∈ A(Ĥ). Recall the definition of R̂G

and to simplify notation, we instead write R̂. Consider the iteration

R̂({(a1, . . . , aN)}) ⊆ R̂2({(a1, . . . , aN)}) ⊆ . . . ⊆ R̂l({(a1, . . . , aN)}) . . .

Since the set of action profiles is finite, there exists a finite l′ such that for all l ≥ l′,

R̂l({(a1, . . . , aN)}) = R̂l+1({(a1, . . . , aN)}) = Ã. By construction, Ã is a PCUSOBR

set.

Let s|A| < m. Since Ĥ is a recurrent class, starting at any state in Ĥ, the

action profile (a1, . . . , aN) will be played after finite time. Then each player can

repeatedly draw a sample in which as = (a1, . . . , aN) and therefore, this action

profile will be played for the next m periods due to inertia, i.e., there exists a

(a1, . . . , am) ∈ Ĥ such that ak = (a1, . . . , aN),∀k = 1, . . . ,m. Let (a′1, . . . , a
′
N) ∈

R̂({(a1, . . . , aN)})\{(a1, . . . , aN)}. Starting with state (a1, . . . , am) in period t, there

is a positive probability that (a′1, . . . , a
′
N) is played for the next s periods. This is

because in each t + k period, where 1 ≤ k ≤ s, each player can draw a s-period

sample in which only (a1, . . . , aN) is played. Let (a′′1, . . . , a
′′
N) ∈ R̂({(a1, . . . , aN)}) \

{(a1, . . . , aN), (a′1, . . . , a
′
N)}. Starting with period t+s, there is a positive probability

that (a′′1, . . . , a
′′
N) is played for the next s periods. This is because in each t + s + k

period, where 1 ≤ k ≤ s, each player can again draw a s-period sample in which

only (a1, . . . , aN) is played. It is clear that in finite time, we will obtain a history h

in which each action profile in R̂({(a1, . . . , aN)} is played for at least s periods. Let
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(ã1, . . . , ãN) ∈ R̂2({(a1, . . . , aN)}) \ R̂({(a1, . . . , aN)}). Hence, for all i, there exists

a (ã′i, ã
′
−i) ∈ R̂({(a1, . . . , aN)}) such that ãi ∈ Ri(ã

′
i, ã

′
−i). In each of the s periods

following history h, there is a positive probability that player i will draw a s-period

sample in which only (ã′i, ã
′
−i) is played. Hence, there is a positive probability that

(ã1, . . . , ãN) will be played during these s periods. Continuing the argument, we see

that we will obtain a history h̃ in which all action profiles in Ã are played at least s

times. Since Ĥ is a recurrent class, history h̃ ∈ Ĥ. Hence, Ã ⊆ A(Ĥ).

So far we have argued that: (i) if Â is a PCUSOBR set, then there exists a

recurrent class Ĥ such that A(Ĥ) ⊆ Â, and (ii) if Ĥ is a recurrent class, then

A(Ĥ) contains a PCUSOBR set. It follows from these statements that a minimal

PCUSOBR set Â contains a A(Ĥ), where Ĥ is a recurrent class, which in turn

contains a PCUSOBR set Ã. Since Â is a minimal PCUSOBR set, it must be that

Â = A(Ĥ). On the other hand, if Ĥ is a recurrent class, then A(Ĥ) contains a

PCUSOBR set and hence a minimal PCUSOBR set Ã, which in turn contains a

A(H̃), where H̃ is a recurrent class. But H̃ = Ĥ and hence, A(Ĥ) = Ã. Thus, the

proposition is established.
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