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Abstract

In contexts in which players have no priors, we analyze a learning pro-

cess based on ex-post regret as a guide to understand how to play games

of incomplete information under private values. The conclusions depend on

whether players interact within a fixed set (fixed matching) or they are ran-

domly matched to play the game (random matching). The relevant long run

predictions are minimal sets that are closed under “the same or better reply”

operations. Under additional assumptions in each case, the prediction boils

down to pure Nash equilibria, pure ex-post equilibria or pure minimax regret

equilibria. These three paradigms exhibit nice robustness properties in the

sense that they are independent of beliefs about the exogenous uncertainty

of type spaces. The results are illustrated in second-price auctions, first-price

auctions and Bertrand duopolies.

Keywords: Fixed and Random Matching; Incomplete Information; Ex-Post

Regret Learning; Nash Equilibrium; Ex-Post Equilibrium; Minimax Regret

Equilibrium; Second-Price Auction; First-Price Auction; Bertrand Duopoly.

JEL: C72; C73; D43; D44; D82; D83.

∗This paper supersedes a previous draft (Saran and Serrano (2007)). We thank Larry Ausubel,
Antonio Cabrales, Peter Cramton, Emel Filiz-Ozbay, Sergiu Hart, Larry Samuelson and seminar
audiences at Rutgers, Maastricht, Ben-Gurion, Maryland, ASSET 2007 (Padua), Kalai Conference
(Jerusalem), NASMES 2008 (Pittsburgh) and Game Theory World Congress (Evanston) for useful
comments and suggestions. A special acknowledgment goes to Ronald Peeters for his help with the
simulations. Serrano thanks CEMFI in Madrid for its hospitality.

†Email address: r.saran@maastrichtuniversity.nl; Tel: +31-43-3883763; Fax: +31-43-3884878
‡Email address: roberto serrano@brown.edu

1



1 Introduction

The standard analysis of games with incomplete information relies on the notion of

Bayesian equilibrium, and has led to important theoretical constructions. Moreover,

equilibrium insights can sometimes be applied with success to real-world problems.

However, the use of equilibrium also has important limitations, as it assumes the

existence of a common-knowledge type space to describe the underlying uncertainty.

When for instance one talks to game theorists that have provided advice on how

to bid in real auctions, this is often a major stumbling block: we may calculate

an equilibrium of the given auction, but in the absence of common-knowledge of

strategies, type spaces and prior beliefs, it is implausible to expect the equilibrium

to be played. How should one bid then? More generally, how does a player behave in

a game of incomplete information? Our analysis provides several possible answers,

which should be treated as a guide to behavior in our benchmarks.

In agreement with recent trends in the robust analysis of game theory with in-

complete information, we shall deemphasize the role of beliefs and turn to ex-post

considerations. In fact, we shall propose an alternative paradigm to equilibrium

theory by going all the way to the other extreme: without specifying any prior dis-

tribution, we shall analyze a learning model of behavior based on ex-post regrets.

We apply our ex-post regret learning process to games in which each player knows

his or her own payoff function. This makes our results applicable to private-values

incomplete-information games. The analysis will be performed both under fixed

matching and random matching of the players. We assume large multiple popula-

tions –one for each type of each player–, from which players are drawn to play the

game.

Under fixed matching, a player is selected from each population and that set of

players stays matched to play the game infinitely often. In the simplest version of

the ex-post regret learning Markov process, each player starts by choosing his or

her first action arbitrarily. After that first period, his or her last action is repeated

with positive probability (inertia), but the player also switches to other actions with

positive probability if and only if he or she regrets not having used them in the

last period. That is, the player compares the payoff obtained in the last period and

wonders what would have happened, ceteris paribus, had he or she used a different

action.1 The player feels regret for not having used those actions that would have

1See Saran and Serrano (2010) for an extension of the analysis to regret matching with respect
to any finite memory, as opposed to only one-period memory, studied here.
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strictly increased his or her last period’s payoff, and switches to playing them with

arbitrary positive probability. This means that, at any given period, a player’s action

is either unchanged or modified into one that constitutes a strictly better reply to

the last action profile.

In general finite games in normal form, we show that the recurrent classes of our

finite Markov process correspond to minimal sets of actions that are closed under

“the same or better reply” (minimal CUSOBR sets). These sets are related to the

minimal product sets that are “closed under weakly better replies” of Ritzberger and

Weibull (1995). Any of the Ritzberger-Weibull closed sets contains one CUSOBR

set, sometimes properly, since the “(weakly) better-reply” correspondence contains

the “same or (strictly) better-reply” correspondence. However, we find that some

minimal CUSOBR sets are not necessarily product sets, and sometimes they need

not be included in any closed set à la Ritzberger and Weibull.2

For weakly acyclic games under better replies, the result is stronger. All the

recurrent classes of the ex-post regret learning process are singletons, and the set

of absorbing states coincides with the set of pure Nash equilibria of the complete-

information game corresponding to the private valuations of the players that have

been matched. Thus, in spite of the initial incomplete information, the set of players,

through the experience developed by repeatedly playing the game together, arrive

at Nash equilibrium play. The process converges with probability 1 to one of the

pure Nash equilibria; which of them is selected will depend on the initial condition.

Throughout the paper we use three running examples to illustrate our results, the

second-price auction, the first-price auction and Bertrand duopoly competition. We

show that all three are weakly acyclic games under better replies.

Under random matching, an independent draw from each player’s population

takes place every period. The selected players play for one period and then return to

the pool. We conceive a game of incomplete information associated with the random

matching model. A strategy for a player in this game is a function specifying for each

type of that payer, the distribution of actions amongst the corresponding population.

For each ex-post realization of the types, each player’s payoff is a function of the

strategies used in the associated populations. For a given player, two strategies are

adjacent if exactly one type of that player has switched his or her action, while all

other types have not, in the two strategies in question. The set of states of this

Markov process is now the set of strategy profiles.

2Sets that are closed under weakly better replies are curb (closed under rational behavior) sets.
CUSOBR sets are not, as some better replies are excluded.
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The recurrent classes of the ex-post regret learning process with random matching

coincide with those minimal sets of strategy profiles that are “closed under the same

or adjacent ex-post better replies” (minimal CUSOAEBR sets) of the incomplete

information game described. For any strategy profile, the “same or adjacent ex-post

better reply” correspondence consists of the same strategy profile –in which no player

has changed his or her action– and those adjacent strategy profiles that are obtained

when in some ex-post event, some types of the players switch to (strictly) better

replies.

Once again, for games that are weakly acyclic with respect to adjacent ex-post

better replies, the result is stronger. All recurrent classes are singletons and each

absorbing state of the dynamics corresponds to a pure ex-post equilibrium of the

incomplete information game. Some games, like the second-price auction, are weakly

acyclic in this sense, but most games are not. Essentially the condition of weak

acyclicity amounts to the existence of ex-post equilibrium, quite demanding in general

games.

Moreover, in general games, the minimal CUSOAEBR sets can be rather large.

We illustrate this by exhibiting the unique minimal CUSOAEBR sets for the first-

price auction and Bertrand duopoly game. Almost every strategy profile is part

of such a minimal set, which is therefore uninformative in terms of an economic

prediction. In an attempt to gain determinacy, we turn to stochastic monotone

dynamics by allowing players to “make mistakes” with small probability, and where

the probability of switching to an action is an increasing function of the associated

regret. Taking limits as mistakes probability vanishes would not help, however, since

the problem is the large recurrent class of the unperturbed process, as just described.

Instead, we propose an approach in which taking another limit is possible and

yields an interesting answer. We take the limit as the switch probabilities vanish.3

If one performs such a limiting exercise, one obtains a selection of the “recurrent

classes” of the associated “unperturbed process,” which happens to be a snapshot of

the game in which the behavior of all agents is fixed, and hence the set of “recurrent

classes” simply coincides with the set of states of the process. Thus, the exercise

performed in this part of the paper is the long-run prediction in a random match-

ing context in which the behavioral rule is the perturbed monotone ex-post regret

learning, but where switches are unlikely events. Such an application of stochastic

stability provides an extremely powerful refinement in these cases.4 For the first-price

3These results are robust to small non-negligible probabilities, as confirmed via simulations.
4We also introduce a test to check for stochastic stability, of interest in its own right, based on
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auction and Bertrand duopoly, a unique strategy profile is selected. In the first-price

auction, each bidder bids half his valuation. In Bertrand duopoly, each firm uses

that price that, if it were the only firm in the market, would yield half the monopoly

profit. In both cases, these actions are such that the maximum gain from increas-

ing the bid/price equates the maximum gain from decreasing it. It follows that the

strategy profiles selected by stochastic stability are minimax regret equilibria (Hyafil

and Boutilier (2004)).5 Our learning foundation of minimax regret equilibria in the

first-price auction and Bertrand duopoly game is a consequence of the inverse of

the regrets being the exponents of the switch probabilities, which go to zero in the

stochastic stability analysis. We view this as a valid economic prediction in the ab-

sence of information about the exact distribution of types in the population; Savage

(1951) was the first to propose minimizing the maximum ex-post regret – minimax

regret – as a decision-making criterion in problems in which the agent has no specific

prior about the probabilities of the states of the world.

For each version of the model, our study yields the relevant sets that are closed

under the “same or better reply” as long-run predictions. Under stronger assump-

tions, play ends up at pure Nash equilibria of the corresponding complete informa-

tion game (fixed matching in weakly acyclic games), pure ex-post equilibria (random

matching in weakly acyclic games) and minimax regret equilibria (random matching

and unlikely switches when there is no ex-post equilibrium). With respect to the

exogenous uncertainty stemming from type spaces, these three paradigms are belief-

independent and provide answers to how the game could be played, which ought to

be compared to its Bayesian equilibria.6

1.1 Related Literature

Our processes are part of the no-regret learning literature (see Fudenberg and Levine

(1998), Hart (2005) and Sandholm (2009) for different surveys of the area; see also

Saran and Serrano (2010) and the references therein). However, our emphasis in

the current paper concerns games of incomplete information. As just stated, Sav-

the construction of certain weighted cycles. This is especially useful in systems like ours, where the
construction of minimal cost rooted trees would require to know the transitions between any pair
of states.

5At a minimax regret equilibrium, each player uses a strategy that minimizes his or her maximum
ex-post regret. Therefore, ex-post equilibria are always minimax regret equilibria (because players
have no regrets), but the latter set is generally non-empty.

6For the reasons outlined above, more research on dynamics and learning processes applied to
Bayesian games would be desirable (see Dekel, Fudenberg and Levine (2004) and Ely and Sandholm
(2005) for early contributions).
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age (1951) was the seminal contribution suggesting minimax regret as a decision

rule in contexts in which agents have no prior beliefs. Noting that Bayesian-Nash

equilibrium does not offer any guidance to behavior when the players lack common

knowledge of priors, Linhart and Radner (1989) study minimax-regret strategies in
1
2
-double auctions. Hyafil and Boutilier (2004) define the minimax-regret equilibrium

for such environments.

Especially related to our fixed-matching model is Hon-Snir, Monderer and Sela

(1998), who model learning in an auction context differently. The bidders’ valuations

are determined first. Then, this fixed set of players repeatedly plays a first-price

auction. Players are informed about the profile of bids at the end of each auction. The

paper looks at two learning rules: generalized fictitious play and adaptive learning

with bounded recall. The main result is that, if all players use either learning rule,

then per-period play converges to Nash equilibrium of the one-shot auction in which

players’ types are common knowledge.7

Our last results use stochastic stability. Most applications of this methodology

in non-cooperative game theory have been confined to games with complete infor-

mation.8 An exception is Jensen, Sloth and Whitta-Jacobsen (2005), which extends

the perturbed best-response model in Young (1993) to finite Bayesian games.9 Com-

pared to our analysis, their players possess much more information, both ex-ante and

ex-post.

1.2 Plan of the Paper

Section 2 describes the ex-post regret learning rule. Section 3 studies it under fixed

matching, and Section 4 under random matching. Each of these two sections con-

tains a subsection on weakly acyclic games that shows the stronger results. Section

4 contains also a subsection that deals with stochastic stability analysis. The ap-

7The particular equilibrium is the one in which the player with the highest valuation wins and
pays a price equal to the second-highest valuation. However, this happens because of their a priori

assumption that no player bids more than her valuation. We would also get a similar result with
this additional assumption.

8See Young (1998) for an account of different applications.
9They make three assumptions that are necessary for this extension. First, the players know

the true distribution of types in the population; second, the types of the matched players are
truthfully revealed to everyone at the end of the interaction; and third, for each type of each player,
there is a record of the action taken by that type during some past periods in which that type
was selected. Under these assumptions, the unperturbed best-response dynamics, appropriately
redefined, converges with probability one to some convention, which is a state that is “equivalent”
to a strict Bayesian equilibrium of the game – if the latter exists. The perturbations then select
among the different strict Bayesian equilibria.
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plications to second-price auctions, first-price auctions and Bertrand duopolies are

brought up to illustrate the relevant results in each case. Section 5 concludes, and

Section 6 collects the proofs of the major results.

2 Ex-Post Regret Learning

Consider a N -person game of incomplete information G, with a finite set of types Vi

and a finite set of actions Ai for each player who plays in position i ∈ N (we use N

for both the set and number of positions). There is a large population of players Pi

for each position i ∈ N (we will also use i to denote a player who plays in position

i). We assume private values, and for the most part we use the word “valuation”

(or “cost” depending on the application) instead of type. For each i ∈ N and each

vi ∈ Vi, there exists a nonempty subset of players Pvi
⊆ Pi whose valuations equal

vi. A player’s valuation is her private information, it is drawn once and for all, and

remains constant over time. A player’s type here involves no beliefs. The question

we tackle is how the players behave under this severe informational restriction.

Players’ interactions will take place under two distinct matching assumptions:

fixed matching and random matching:

• Fixed Matching. For each position, a single player is selected randomly

and independently from the corresponding population of players. The selected

players are matched once and for all, and they repeatedly play the game every

period.

• Random Matching. In each period, a new set of players is selected randomly

and independently, one for each position from the corresponding population of

players, and matched to play the game. After they have played the game, the

matched players return to their respective populations. The process restarts in

the next period with a new selection and matching.

Each player in population Pi is identified by her valuation vi and her unique

action ai that she plays in the event she is matched. We shall assume that players

adapt their actions from one period to the next using the following ex-post regret

learning rule: suppose in period t a player with valuation vi is choosing action ai.

• If this player is not matched in period t, then she does not change her action

in period t + 1.
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• If this player is matched in period t, then let πi(vi, ai, a−i) be her ex-post payoff

in period t’s game, where a−i is the profile of actions of all other players in that

game. Pick any a′
i ∈ Ai \ {ai}. Had she chosen a′

i instead of ai in that game,

ceteris paribus, her payoff would have been πi(vi, a
′
i, a−i).

10

Define ∆i(vi, ai, a
′
i, a−i) = πi(vi, a

′
i, a−i) − πi(vi, ai, a−i).

If ∆i(vi, ai, a
′
i, a−i) > 0, then we refer to this number as valuation vi’s ex-post

regret from using ai instead of a′
i against a−i. In this case, letting q(·) ∈ (0, 1)

as a basic switch probability function, we assume that the player changes her

action to a′
i in period t + 1 with probability q(∆i(vi, ai, a

′
i, a−i)) > 0 if and

only if ∆i(vi, ai, a
′
i, a−i) > 0, and she does not switch her action with a positive

probability, i.e.,
∑

a′

i
q(∆i(vi, ai, a

′
i, a−i)) < 1.

All these events entailing switches in actions are independent across players

and time.

This learning dynamics satisfies two properties: (i) inertia, i.e., a matched player

does not switch her action with a positive probability, and (ii) a matched player of

valuation vi switches to a′
i in period t + 1 with a positive probability whenever her

ex-post regret from not using that action is positive. Several different specifications

of q(·) fulfill these properties;11 in our analysis, we of course fix q(·) to be one such

function.

Our concern in the next sections is the identification of the long-run behavior un-

der fixed and random matching of the players who follow the ex-post regret learning

rule. The dynamic process under fixed matching [MFM/G(q)] is defined over states

that are profiles of actions taken by the fixed set of players. The dynamic process

under random matching [MRM/G(q)] is defined over states that specify the distri-

butions of actions in the different populations of players. Both are finite Markov

processes, and they are generally not irreducible, but they are still aperiodic, and

convergence always obtains to one of their recurrent classes.12 We shall therefore

state our results in terms of the recurrent classes of the dynamics MFM/G(q) and

10In our applications, if the bid/price of a′
i is tied at the highest bid/lowest price, then

πi(vi, a
′
i, a−i) is the expected payoff defined by the tie-breaking lottery specified in the rules of

the game.
11For instance, let ∆∗ be the maximum ex-post regret across all valuation types of all players and

A∗ be the maximum number of actions that any player has. Then any q(·) such that q(x) ∈
[

0, 1
A∗∆∗

)

and q(x) > 0 ⇐⇒ x > 0 will fulfill these properties. We provide another set of specifications in
our stochastic stability analysis.

12A recurrent class is a set of states such that if the process reaches one of them, it will never
leave the set, and such that it does not admit a proper subset of states with the same property. An
absorbing state is a singleton recurrent class.
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MRM/G(q). When switches to actions happen after an agent has ex-post regret, the

analysis will reveal which actions are taken in the long run by a fixed set of players

(fixed matching) and which distributions of actions are more likely to emerge in the

long run in the large populations (random matching).

3 Long-Run Behavior under Fixed Matching

Let G(v1, . . . , vN) denote the complete information game in which the valuations

of the players are {v1, . . . , vN}, the sets of actions are (Ai)i∈N and the payoffs are

given by the functions (πi(vi, ·, ·))i∈N . This will be the underlying game once a fixed

matching happens, though recall that our players do not know the other players’

valuations.

Let A =
∏

i∈N Ai. For any (ai, a−i) ∈ A, the set of same-or-better replies for the

player of valuation vi is

Rvi
(ai, a−i) = {a′

i ∈ Ai|either a′
i = ai or πi(vi, a

′
i, a−i) > πi(vi, ai, a−i)}.

Let RG(v1,...,vN ) : A → A be the same-or-better-reply correspondence of the game

G(v1, . . . , vN), i.e.,

RG(v1,...,vN )(a1, . . . , aN) =
∏

i∈N

Rvi
(ai, a−i).

Definition 3.1. A set of action profiles Â ⊆ A in G(v1, . . . , vN) is closed under

same-or-better replies (henceforth, CUSOBR set) if for all (a1, . . . , aN) ∈ Â, we have

RG(v1,...,vN )(a1, . . . , aN) ⊆ Â. A minimal CUSOBR set is a CUSOBR set that does

not contain a proper subset that is a CUSOBR set.

For any nonempty Â ⊆ A, define

R̃G(v1,...,vN )(Â) =
⋃

(a1,...,aN )∈Â

(

∏

i∈N

Rvi
(ai, a−i)

)

.

Equivalently, Â is a CUSOBR set if and only if Â is a fixed point of R̃G(v1,...,vN ), i.e.,

R̃G(v1,...,vN )(Â) = Â.

It is easy to see that (a1, . . . , aN) is a pure Nash equilibrium of G(v1, . . . , vN) if

and only if {(a1, . . . , aN)} is a singleton minimal CUSOBR set. Furthermore, since

the game G(v1, . . . , vN) has a finite number of action profiles, there exists a minimal

9



CUSOBR set.

CUSOBR sets are related to product sets that are closed under weakly better

replies (Ritzberger and Weibull (1995)); we discuss the differences at present. For

any (ai, a−i) ∈ A, the set of weakly-better replies for the player of valuation vi is

WBRvi
(ai, a−i) = {a′

i ∈ Ai|πi(vi, a
′
i, a−i) ≥ πi(vi, ai, a−i)}.

Let WBRG(v1,...,vN ) : A → A be the weakly-better-reply correspondence of the game

G(v1, . . . , vN), i.e.,

WBRG(v1,...,vN )(a1, . . . , aN) =
∏

i∈N

WBRvi
(ai, a−i).

A product set of action profiles Â ⊆ A is such that Â =
∏

i∈N Âi, where ∅ 6= Âi ⊆

Ai, ∀i ∈ N . Then, Â is a product set of action profiles that is closed under weakly bet-

ter replies (or PCUWBR set) if Â is a product set and WBRG(v1,...,vN )(a1, . . . , aN) ⊆

Â for all (a1, . . . , aN) ∈ Â.13 A minimal PCUWBR set is a PCUWBR set that does

not contain a proper subset that is a PCUWBR set.

Since RG(v1,...,vN )(a1, . . . , aN) ⊆ WBRG(v1,...,vN )(a1, . . . , aN), every PCUWBR set

contains a CUSOBR set. Hence, every minimal PCUWBR set contains a minimal

CUSOBR set. Therefore, in some games, the set of minimal CUSOBR sets is a

refinement of the set of minimal PCUWBR sets. Game (a) in Figure 1 is an example;

its unique minimal CUSOBR set {(D, R)} is a refinement of its unique minimal

PCUWBR set {(U, L), (U, R), (D, L), (D, R)}. However, it is not necessary that every

minimal CUSOBR set of a game is a subset of some minimal PCUWBR set. Game

(b) in Figure 1 is an example; {(D, L)} is its unique minimal PCUWBR set whereas

it has two minimal CUSOBR sets, {(D, L)} and {(U, R)}. Finally, unlike minimal

PCUWBR sets, minimal CUSOBR sets are not necessarily product sets. Game (c) in

Figure 1 has a unique minimal CUSOBR set {(U, L), (M, L), (M, R), (D, L), (D, R)},

which is not a product set.

Consider any fixed matching in which {v1, . . . , vN} are the valuations of the se-

13This definition is equivalent to the original definition by Ritzberger and Weibull (1995) where
the weakly-better-reply correspondence is defined over the domain of mixed strategies. For any
Âi ⊆ Ai, let S(Âi) be the set of mixed strategies with support in Âi. The weakly-better-
reply correspondence over the domain of mixed strategies, WBRG(v1,...,vN ) :

∏

i∈N S(Ai) → A is

such that WBRG(v1,...,vN )(s1, . . . , sN) =
∏

i∈N WBRvi
(si, s−i), where WBRvi

(si, s−i) = {a′
i ∈

Ai|Es−i
(πi(vi, a

′
i, a−i)) ≥ Esi,s−i

(πi(vi, ai, a−i))}, ∀i ∈ N . The equivalence follows since for

any product set Â =
∏

i∈N Âi, WBRG(v1,...,vN )(a1, . . . , aN) ⊆ Â, ∀(a1, . . . , aN ) ∈ Â ⇐⇒

WBRG(v1,...,vN )(s1, . . . , sN ) ⊆ Â, ∀(s1, . . . , sN ) ∈
∏

i∈N S(Âi).
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L R
U 1, 3 3, 1
D 2, 0 3, 2

(a)

L R
U 1, 1 0, 1
D 2, 3 0, 2

(b)

L R
U 1, 0 0, 0
M 0, 1 2, 0
D 2, 0 0, 1

(c)

Figure 1

lected players. Define a state of the matched players in a period as the current

action profile (a1, . . . , aN ) of the players. Hence, A is the set of states. Our interest

in minimal CUSOBR sets stems from the following result:

Proposition 3.2. Let {v1, . . . , vN} be the valuations of the matched players under

fixed matching. Then, Â is a recurrent class of MFM/G(q) if and only if Â is a

minimal CUSOBR set of G(v1, . . . , vN).

3.1 Weakly Acyclic Games

A stronger result can be established if G(v1, . . . , vN) is weakly acyclic under better

replies. A better-reply graph is defined as follows: each action profile of G(v1, . . . , vN)

is a vertex of the graph and there exists a directed edge from vertex (a1, . . . , aN) to

vertex (a′
1, . . . , a

′
N) if and only if (a1, . . . , aN) 6= (a′

1, . . . , a
′
N) and (a′

1, . . . , a
′
N) ∈

RG(v1,...,vN )(a1, . . . , aN). A sink is a vertex with no outgoing edges. A better-reply

path is a sequence of vertices (a1
1, . . . , a

1
N ), . . . , (aL

1 , . . . , aL
N) such that there exists a

directed edge from each (al
1, . . . , a

l
N) to (al+1

1 , . . . , al+1
N ). The game G(v1, . . . , vN) is

weakly acyclic under better replies if from any action profile, there exists at least one

better-reply path to a sink. Clearly, an action profile is a sink if and only if it is a pure

Nash equilibrium of G(v1, . . . , vN). Thus, the game G(v1, . . . , vN ) is weakly acyclic

under better replies if from any action profile there exists at least one better-reply

path to a pure Nash equilibrium.

Remark: Young (2004) defines a closely related class of weakly acyclic complete

information games.14 A single-better-reply graph is defined as follows: each action

profile of G(v1, . . . , vN) is a vertex of the graph and there exists a directed edge

from vertex (a1, . . . , aN) to vertex (a′
1, . . . , a

′
N) if and only if there exists exactly one

player such that a′
i 6= ai, and πi(vi, a

′
i, a−i) > πi(vi, ai, a−i). A single-better-reply path

14Note that Young (2004) uses the term “weakly acyclic under better replies” to describe this
class. We modify his terminology.
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and a game being weakly acyclic under single-better replies are defined similarly as

above. Again, an action profile is a sink if and only if it is a pure Nash equilibrium

of G(v1, . . . , vN). Thus, the game G(v1, . . . , vN) is weakly acyclic under single-better

replies if from any action profile there exists at least one single-better-reply path to

a pure Nash equilibrium.

Since a single-better-reply graph is a subgraph of a better-reply graph, a game

is weakly acyclic under single-better replies only if it is weakly acyclic under better

replies. In fact, the former class of games is smaller than the latter. For example,

consider the following game with three players (row, column and matrix) and two

actions for each player:

L R
U 0, 1, 1 1, 0, 0
D 1, 0, 0 0, 1, 0

A

L R
U 1, 0, 0 1, 0, 0
D 0, 1, 1 1, 1, 0

B

Figure 2: A game that is weakly acyclic under better replies but not weakly acyclic
under single-better replies.

The single-better-reply graph of this game has two sinks corresponding to the

two pure Nash equilibria, (U, R, B) and (D, R, B), and the rest of action profiles

form a connected component (see Figure 3). Thus, the game is not weakly acyclic

under single-better replies. However, in addition to the directed edges in the single-

better-reply graph, there exists one more directed edge from (D, L, A) to (D, R, B)

in the better-reply graph (see Figure 4). Over this edge, two players switch to better

replies: the column player from L to R and the matrix player from A to B. Thus,

this game is weakly acyclic under better replies.

The result in the current subsection, stronger than the first proposition stated

earlier, is this:

Lemma 3.3. If G(v1, . . . , vN ) is weakly acyclic under better replies, then Â is a

minimal CUSOBR set if and only if Â is a singleton, i.e., Â = {(a1, . . . , aN )}, and

(a1, . . . , aN ) is a pure Nash equilibrium of G(v1 . . . , vN ).

As a corollary to the above lemma and Proposition 3.2, we obtain the following

result.
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U

D

L R

0,1,1

1,0,0

1,0,0

0,1,0

U

D

L R

A B

1,0,0

0,1,1

1,0,0

1,1,0

Figure 3: Single-Better-Reply Graph of the game in Figure 2

U

D

L R

0,1,1

1,0,0

1,0,0

0,1,0

U

D

L R

A B

1,0,0

0,1,1

1,0,0

1,1,0

Figure 4: Better-Reply Graph of the game in Figure 2

Corollary 3.4. Let {v1, . . . , vN} be the valuations of the matched players under fixed

matching and suppose G(v1, . . . , vN) is weakly acyclic under better replies. All recur-

rent classes of MFM/G(q) are singletons. Furthermore, (a1, . . . , aN) is an absorbing

state if and only if it is a pure Nash equilibrium of G(v1, . . . , vN).15

Remark: Thus, in spite of the initial incomplete information, ex-post regret learn-

ing under fixed matching gives players enough experience so that, when switches

happen in the direction of ex-post regrets and the game is weakly acyclic under bet-

15Our dynamics is uncoupled in the sense of Hart and Mas-Colell (2003) and convergence to Nash
equilibrium is obtained only in a specific class of games, while those authors seek a convergence
result in all games. Our convergence to Nash equilibrium is a consequence of the fixed matching
and the weakly acyclic property of the game.
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ter replies, play in the game always converges to a pure-strategy Nash equilibrium

of the complete information game corresponding to the valuations of the players in

the match. Examples will be provided in our subsections on applications.

3.1.1 Applications: Second-Price Auctions, First-Price Auctions and

Bertrand Duopolies

We now illustrate our results by studying specific games with our ex-post regret

learning process under fixed matching. To begin, consider the second-price auction

with N ≥ 2 bidders and one seller. In each period, each seller is selling a single

indivisible object and each bidder is interested in buying at most one unit of the

good. Any seller of that indivisible object values it at 0 and this is known to the

potential bidders. Let S0 denote the population of sellers. There are a large number

of potential bidders, Pi, who play in position i ∈ N . The valuation of any bidder in

position i, vi ∈ Z ≡ {0, δ, 2δ, . . . , 1}.

Under fixed matching, a single seller is selected randomly from the population

S0. The selected seller is then matched with N ≥ 2 bidders, where bidder for

position i is selected randomly and independently from Pi. These matched players

repeatedly play the second-price auction in every period. The rules of the auction

are as follows: all the bidders matched to the seller simultaneously announce their

bids for the object. A bidder can bid any number in Z. The bidder with the highest

bid wins the object. The bidder who wins the object pays a price equal to the

second-highest bid.16 If the object is traded at price p, the winning bidder i’s payoff

is vi −p and all the other bidders matched to the seller get a payoff of 0. The seller’s

payoff is p. Each bidder in population Pi can be identified by her valuation vi and

her unique bid ai that she bids in the event she is matched with a seller.

Let {v1, . . . , vN} be the valuations of the matched bidders under fixed matching.

The set of states is ZN , the collection of all possible bid profiles.

Lemma 3.5. The one-shot second-price auction in which the valuations {v1, . . . , vN}

of the N bidders are common knowledge is weakly acyclic under better replies.

The following corollary follows from the above lemma and Corollary 3.4:

Corollary 3.6. In the fixed-matching model, when the game is a second-price auc-

tion, all recurrent classes of MFM/SPA(q) are singletons. Furthermore, (a1, . . . , aN)

16If more than one bidder bid the highest amount, then the object is allocated at random among
the highest bidders and the price is equal to their bid.
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is an absorbing state if and only if it is a pure Nash equilibrium of the one-shot

second-price auction in which the valuations {v1, . . . , vN} of the N bidders are com-

mon knowledge.17

Now suppose that in every period, the seller uses the first-price auction to sell

her object to the set of bidders that are matched to her. The only change in the

rules is that the bidder who wins the object pays a price equal to her bid.

Lemma 3.7. The one-shot first-price auction in which the valuations {v1, . . . , vN}

of the N bidders are common knowledge is weakly acyclic under better replies.

So we obtain the following corollary using the above lemma and Corollary 3.4:

Corollary 3.8. In the fixed-matching model, when the game is a first-price auction,

all recurrent classes of MFM/FPA(q) are singletons. Furthermore, (a1, . . . , aN) is an

absorbing state if and only if it is a pure Nash equilibrium of the one-shot first-price

auction in which the valuations {v1, . . . , vN} of the N bidders are common knowledge.

Consider next a game of Bertrand duopoly competition. The market demand for

a good at price p is Q = (x − p)/y, where x, y > 0. There are a large number of

potential sellers of the good. Let Pi be the population of sellers who play in position

i ∈ {1, 2}. The cost of producing Qi units of the good to a seller in position i is

ciQi, where ci ∈ C ≡ {0, δ, 2δ, . . . , x} is her constant marginal cost (note that x is

some multiple of δ). A seller’s marginal cost is her private value, her type. For each

i ∈ {1, 2} and ci ∈ C, there exists a nonempty set of sellers Pci
⊆ Pi whose marginal

costs equal ci.

In Bertrand competition, the two matched sellers simultaneously post their prices

p1 and p2 for the object, where each pi ∈ P = {0, δ
2
, δ, . . . , x− δ

2
, x}. This ensures that

each marginal cost type ci can post her monopoly profit maximizing price p∗(ci) =
x+ci

2
. We assume that the buyers purchase the good from the cheaper seller and if

both sellers charge the same price, then each seller captures the market, i.e., supplies

the market demand, with equal probability. Hence, for any (p1, p2), seller i’s ex-post

payoff is 0 if either pi > pj or pi = pj and she looses the tie-breaking lottery, and

17 Strictly speaking, applying Corollary 3.4 requires that the matched bidders are repeatedly
playing a game. This is not the case here since the bidders adapt their bids in the ex-post stage.
Therefore, in the event of a tie at the winning bid, the ex-post payoff of a bidder need not equal her
expected payoff (where the expectation is with respect to the tie-breaking lottery). Nevertheless,
given a−i, the expected payoff of bidder of valuation vi from bidding a′

i is greater than her expected
payoff from bidding ai if and only if in some ex-post event her regret ∆i(vi, ai, a

′
i, a−i) > 0. This fact

and Lemma 3.5 are sufficient to establish the corollary. Similar comments apply to Corollaries 4.8,
3.8 and 3.10.
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(pi−ci)(x−pi)
y

if either pi < pj or pi = pj and she wins the tie-breaking lottery.18 Each

seller in population Pi can be identified by her marginal cost ci and her unique price

pi that she posts in the event she is matched with another seller.

Under fixed matching, let {c1, c2} be the marginal costs of the two matched sellers.

A state of the matched sellers in a period is a profile of each seller’s price, (p1, p2).

Thus, the set of states is P 2.

Lemma 3.9. The one-shot Bertrand duopoly game in which the marginal costs

{c1, c2} of the two sellers are common knowledge is weakly acyclic under better replies.

The following corollary follows from the above lemma and Corollary 3.4:

Corollary 3.10. In the fixed-matching model, when the game is Bertrand duopoly

competition, all recurrent classes of MFM/BC(q) are singletons. Furthermore, (p1, p2)

is an absorbing state if and only if it is a pure Nash equilibrium of the one-shot

Bertrand game in which the marginal costs {c1, c2} of the two sellers are common

knowledge.

Remark: In all our applications, the ex-post regret learning dynamics converges to

one of the pure Nash equilibria of the game; which equilibrium will be the limit of

the dynamics is a function of the initial condition. The general point, nonetheless, is

how Nash play emerges through using the learning process on the fixed set of players,

in spite of the restrictive informational assumptions.

4 Long-Run Behavior under Random Matching

There is a game of incomplete information that corresponds to the random matching

of the players. In this game, the set of strategies of valuation vi, Σi(vi), can be

identified with the set of distributions of actions Ai in the population Pvi
. Let σi(vi)

denote a strategy of valuation vi. Given σi(vi), let σi(vi, ai) be the relative frequency

of action ai and Ai(σi(vi)) denote the support of σi(vi). The strategy of position i, σi,

is a collection of strategies of all valuations vi ∈ Vi. Let Σi be the set of strategies of

position i. A strategy profile (σ1, . . . , σN) is a collection of strategies of all positions.

For any (σi, σ−i) ∈ Σ and (vi, v−i) ∈ V , the expected payoff of position i is

πi(vi, σi(vi), σ−i(v−i)) = Eσ1(v1),...,σN (vN )(πi(vi, ai, a−i)).

18See Spulber (1995) for the equilibrium analysis of the winner-takes-all Bertrand competition
with unknown but continuously distributed marginal costs.
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Let G(RM) be the N -position incomplete information game with valuations (Vi)i∈N ,

strategies (Σi)i∈N and expected payoffs in each ex-post event (v1, . . . , vN) given by
(

πi(vi, σi(vi), σ−i(v−i)
)

i∈N
.

For any σi(vi), σ
′
i(vi) ∈ Σi(vi), let d(σi(vi), σ

′
i(vi)) denote the Euclidean distance

between σi(vi) and σ′
i(vi). We say that strategy σ′

i is adjacent to strategy σi if there

exists a vi ∈ Vi such that d(σi(v
′
i), σ

′
i(v

′
i)) = 0, ∀v′

i 6= vi, and d(σi(vi), σ
′
i(vi)) =

√
2

|Pvi
| ,

where |Pvi
| is the number of players in population Pvi

(i.e., in terms of the underlying

distributions of actions in the population of players, σ′
i is adjacent to σi if exactly one

player of valuation vi plays differently in σi than in σ′
i). For any σ′

i that is adjacent to

σi, let v
(σi,σ′

i)
i ∈ Vi be the unique valuation such that the distance between σi(v

(σi,σ′

i)
i )

and σ′
i(v

(σi,σ
′

i)
i ) is positive. Furthermore, there exist exactly two actions in Ai, say

a
(σi,σ′

i)
i and a′

i
(σi,σ′

i), such that

σi(v
(σi,σ′

i)
i , a

(σi,σ′

i)
i ) = σ′

i(v
(σi,σ′

i)
i , a

(σi,σ′

i)
i ) +

1

|Pvi
|
,

and σ′
i(v

(σi,σ′

i)
i , a′

i
(σi,σ

′

i)) = σi(v
(σi,σ′

i)
i , a′

i
(σi,σ

′

i)) +
1

|Pvi
|
.

For any σi ∈ Σi, let

Σi(σi) = {σ′
i ∈ Σi|either σ′

i = σi or σ′
i is adjacent to σi}.

Let V =
∏

i∈N Vi and Σ =
∏

i∈N Σi. For any (σ1, . . . , σN) ∈ Σ, the action profiles

that will be played with a positive probability conditional on the realization of types

(v1, . . . , vN) ∈ V is given by
∏

i∈N Ai(σi(vi)).

The same-or-adjacent-ex-post-better-reply correspondence of the game G(RM),

RG(RM) : Σ → Σ, is defined as follows: (σ′
1, . . . , σ

′
N) ∈ RG(RM)(σ1, . . . , σN) if and

only if

1. (σ′
1, . . . , σ

′
N) ∈

∏

i∈N Σi(σi) and

2. if (σ′
1, . . . , σ

′
N) 6= (σ1, . . . , σN), then let I = {i|σi 6= σ′

i}. There must exist

(v1, . . . , vN) ∈ V and (a1, . . . , aN ) ∈
∏

i∈N Ai(σi(vi)) such that for all i ∈ I, we

have vi = v
(σi,σ

′

i)
i , ai = a

(σi,σ
′

i)
i and

πi(v
(σi,σ

′

i)
i , a′

i
(σi,σ

′

i), a−i) > πi(v
(σi,σ

′

i)
i , a

(σi,σ
′

i)
i , a−i).

The first condition says that (σ′
1, . . . , σ

′
N ) is such that for all i, σ′

i is either the same or

adjacent to σi. Now, if (σ′
1, . . . , σ

′
N) differs from (σ1, . . . , σN), then by the definition
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of the set I, σ′
i is adjacent to σi for all i ∈ I. The second condition says that for all

i ∈ I, this change in strategy should be justified as an ex-post better reply, i.e., there

must exist an ex-post event in which for all i ∈ I, the realized valuation vi = v
(σi,σ

′

i)
i ,

the realized action ai = a
(σi,σ′

i)
i , and the action a′

i
(σi,σ′

i) is a better reply to a−i than

the action a
(σi,σ′

i)
i .

Definition 4.1. A set of strategy profiles Σ̂ ⊆ Σ in G(RM) is closed under same-or-

adjacent-ex-post-better replies (henceforth, CUSOAEBR set) if for all (σ1, . . . , σN) ∈

Σ̂, we have RG(RM)(σ1, . . . , σN) ⊆ Σ̂. A minimal CUSOAEBR set is a CUSOAEBR

set that does not contain a smaller CUSOAEBR set.

For any nonempty Σ̂ ⊆ Σ, define

R̃G(RM)(Σ̂) =
⋃

(σ1,...,σN )∈Σ̂

RG(RM)(σ1, . . . , σN).

Equivalently, Σ̂ is a CUSOAEBR set if and only if Σ̂ is a fixed point of R̃G(RM), i.e.,

R̃G(RM)(Σ̂) = Σ̂.

Since G(RM) has a finite number of strategy profiles, there exists a minimal

CUSOAEBR set.

Remark: Suppose there is a unique valuation type for all positions, i.e., Vi =

{vi}, ∀i ∈ N . Then G(RM) is an extension of G(v1, . . . , vN) to mixed strategies Σ.

Thus, G(RM) is a complete information game in which the valuations of the players

are {v1, . . . , vN}, the sets of strategies are (Σi)i∈N and the payoffs are given by the

functions (πi(vi, σi, σ−i))i∈N . In this case, if Σ̂ is a CUSOAEBR set of G(RM), then

the set of action profiles that are in the support of Σ̂, i.e.,

⋃

(σ1,...,σN )∈Σ̂

(

∏

i∈N

Ai(σi(vi))

)

is a CUSOBR set of G(v1, . . . , vN).

Definition 4.2. A strategy profile (σ1, . . . , σN) ∈ Σ is an ex-post equilibrium of

G(RM) if for all i ∈ N and all (vi, v−i) ∈ V ,

πi(vi, σi(vi), σ−i(v−i)) ≥ πi(vi, σ
′
i(vi), σ−i(v−i)), ∀σ′

i ∈ Σi.

Thus, in every ex-post state (vi, v−i), each player i’s mixed strategy σi(vi) is a best

response to the mixed-strategy profile σ−i(v−i).
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A strategy profile (σ1, . . . , σN) ∈ Σ is a pure ex-post equilibrium of G(RM) if for

all i ∈ N , (vi, v−i) ∈ V and (ai, a−i) ∈
∏

j∈N Aj(σj(vj)),

πi(vi, ai, a−i) ≥ πi(vi, a
′
i, a−i), ∀a′

i ∈ Ai.

There is a slight abuse of language in our use of the term “pure” here. Essentially,

we are also allowing a mixed-strategy ex-post equilibrium (i.e., types can play non-

degenerate mixed strategies) such that in every ex-post event, every action profile,

which is in the support of the mixed-strategy profile corresponding to that ex-post

event, is a pure Nash equilibrium. But there is a purification argument for any such

mixed equilibrium, by having the appropriate proportions in the population of each

type play the pure actions in the support of the mixed strategy.

Lemma 4.3. A strategy profile (σ1, . . . , σN) is a pure ex-post equilibrium of G(RM)

if and only if {(σ1, . . . , σN)} is a singleton CUSOAEBR set.

A state in a period is a list specifying for all i ∈ N and vi ∈ Vi, the distribution

of actions Ai in population Pvi
. Hence, a state is a strategy profile of G(RM) and

the set of states is Σ. Given G and random matching of the players, for fixed switch

function q(·), consider now the learning rule presented in Section 2 and the associated

Markov process MRM/G(q) on the state space Σ.

Proposition 4.4. Σ̂ is a recurrent class of MRM/G(q) if and only if Σ̂ is a minimal

CUSOAEBR set of G(RM).

4.1 Weakly Acyclic Games

As in the fixed-matching model, stronger results are obtained for weakly acyclic

games. An adjacent-ex-post-better-reply graph is defined as follows: each strategy pro-

file (σ1, . . . , σN) of G(RM) is a vertex of the graph. There exists a directed edge from

vertex (σ1, . . . , σN) to vertex (σ′
1, . . . , σ

′
N) if and only if (σ1, . . . , σN ) 6= (σ′

1, . . . , σ
′
N)

and (σ′
1, . . . , σ

′
N ) ∈ RG(RM)(σ1, . . . , σN). An adjacent-ex-post-better-reply path is a

sequence of vertices (σ1
1, . . . , σ

1
N), . . . , (σL

1 , . . . , σL
N) such that there exists a directed

edge from each (σl
1, . . . , σ

l
N ) to (σl+1

1 , . . . , σl+1
N ). The game G(RM) is weakly acyclic

under adjacent-ex-post-better replies if from any strategy profile, there exists at least

one adjacent-ex-post-better-reply path to a sink. Note that a strategy profile is a

sink if and only if it is a pure ex-post equilibrium of G(RM) (using Lemma 4.3).

Thus, the game G(RM) is weakly acyclic under adjacent-ex-post-better replies if
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from any strategy profile there exists at least one adjacent-ex-post-better-reply path

to a pure ex-post equilibrium.

Lemma 4.5. If G(RM) is weakly acyclic under adjacent-ex-post-better replies, then

Σ̂ is a minimal CUSOAEBR set if and only if Σ̂ is a singleton, i.e., Σ̂ = {(σ1, . . . , σN)},

and (σ1, . . . , σN) is a pure ex-post equilibrium of G(RM).

We obtain the following result as a corollary to the above lemma and Proposition

4.4.

Corollary 4.6. Suppose G(RM) is weakly acyclic under adjacent-ex-post-better replies.

All recurrent classes of MRM/G(q) are singletons. Furthermore, (σ1, . . . , σN) is an

absorbing state if and only if it is a pure ex-post equilibrium of G(RM).

Remark: Thus, when players are randomly matched and they use ex-post regret

learning in a game that is weakly acyclic under adjacent-ex-post-better replies, all

valuation types of all players will play in the long run according to some pure ex-post

equilibrium of the game.

4.1.1 Application: Second-Price Auctions

Under random matching, in each period t, a single seller is selected randomly from

the population S0. The selected seller is then matched with N ≥ 2 bidders, where

bidder for position i is selected randomly and independently from Pi. These matched

players play the second-price auction in period t. After the end of the auction, these

players return to their respective populations. A new set of players is selected in

period t + 1 and so on.

Let SPA(RM) denote the incomplete information game corresponding to the

random matching of the players when the matched players play the second-price

auction. Thus, SPA(RM) is the N -bidder one-shot second-price auction under

incomplete information with valuations Vi = Z, ∀i ∈ N , and strategies (Σi)i∈N ,

where Σi is the set of distributions of bids in populations Pvi
, ∀vi ∈ Z.

Lemma 4.7. SPA(RM) is weakly acyclic under adjacent-ex-post-better replies.

The next corollary follows from the above lemma and Corollary 4.6:

Corollary 4.8. In the random-matching model, when the game is a second-price auc-

tion, all recurrent classes of MRM/SPA(q) are singletons. Furthermore, (σ1, . . . , σN)

is an absorbing state if and only if it is a pure ex-post equilibrium of SPA(RM).
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Remark: One pure ex-post equilibrium is truth telling. However, there also exist

pure ex-post equilibria of SPA(RM) that are ex-post inefficient (this is also true for

the standard one-shot second-price auction model in which the valuations are con-

tinuously distributed on a certain interval and bidders can use any mixed strategy).

An example is the following strategy profile: let n ∈ (0, 1/δ) and

σ1(v1, nδ) = 1, ∀v1 ≤ nδ, and σ1(v1, v1) = 1, ∀v1 > nδ,

and for all i 6= 1

σi(vi, 0) = 1, ∀vi ≤ nδ, and σi(vi, vi) = 1, ∀vi > nδ.

Hence, even such inefficient pure ex-post equilibria are absorbing states of the ex-post

regret dynamics under random matching.19

4.2 Stochastic Stability

A necessary condition for a game to be weakly acyclic under adjacent-ex-post-better

replies is that it has an ex-post equilibrium, which is often not satisfied (for instance,

our applications to first-price auction and Bertrand competition in the sequel are not

weakly acyclic under adjacent-ex-post-better replies). The recurrent classes of the

process MRM/G(q) will typically be very large, offering limited prediction.

In an attempt to provide a sharper prediction in these cases, we shall now spec-

ify q(∆i(vi, ai, a
′
i, a−i)) = q

1
∆i(vi,ai,a′

i
,a

−i) , i.e., q is now a positive parameter that is

sufficiently small to ensure positive probability of inertia. Thus, switches to other

actions are an increasing function of the corresponding ex-post regret, and the way

in which ex-post regret affects switching probabilities is exponential. But now, in

addition, if ∆i(vi, ai, a
′
i, a−i) ≤ 0, then agent i changes her action to a′

i in period t+1

with probability q
1
γ , where γ > 0 is smaller than any ex-post regret.20 Allowing for

a positive γ leads to ergodic dynamics.

Letting α = q
1
γ be the probability of an individual’s “mistake” –a switch under

19Note how if we had a single population model –which is a reasonable alternative model since the
game is symmetric–, these inefficient equilibria would be eliminated. Consider the above strategy
profile. With a single population, the bidders in position 1 will also meet each other, and hence,
those who bid above their valuations will experience positive regret. This is the only result of
our three applications where the assumption of single versus multiple populations would make any
qualitative difference.

20This minimum (positive) ex-post regret is well-defined since the sets of players, valuations and
actions are finite.
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no regret–, we are now interested in analyzing the long run properties of the random

process MRM/G(q, α) when α is a small but positive constant. This is an irreducible

and aperiodic process, and it is a regular perturbation of MRM/G(q, 0), which cor-

responds to the random matching ex-post regret learning process of Section 2. It

is known that it admits a unique invariant distribution for each α > 0 and q > 0.

Further, the support of its limiting distribution as α → 0 (which is the same as

γ → 0) is contained within the recurrent classes of the corresponding Markov pro-

cess with α = 0. However, as we just observed, such recurrent classes are very large

and therefore we propose to perform a different exercise.

We fix γ > 0 and take the limit with respect to q → 0.21 If one fixes γ > 0 and

allows q to go to zero, the process MRM/G(q, α) is a regular perturbed process of

MRM/G(0, 0). Hence, as q → 0, the support of the unique invariant distribution of

MRM/G(q, α) is contained within the recurrent classes of MRM/G(0, 0), which are all

singletons (indeed, the set of absorbing classes of MRM/G(0, 0) coincides with the

set of states). Following Kandori, Mailath and Rob (1993) and Young (1993), we

refer to the states that are in the support of this limiting distribution as stochastically

stable. The limiting distribution approximates both the frequency with which a state

is visited over a long horizon and the probability of being in a particular state at a

point in time. Hence, the stochastically stable states are the only states on which

the system will spend a positive proportion of time in the very long run when the

switches of actions are possible but very unlikely events.22

Consider any two different states σ = (σ1, . . . , σN) and σ′ = (σ′
1, . . . , σ

′
N) such

that there is a positive probability of moving from the former to the latter in one

period under the Markov process MRM/G(q, α). This probability is of the order qr

for some unique r > 0 as q → 0. Define the resistance of going from σ and σ′ as

r(σ, σ′) = r.23

A weighted-adjacent-ex-post-better-reply graph is an adjacent-ex-post-better-reply

graph with weights assigned to all directed edges. Pick the directed edge from

σ = (σ1, . . . , σN ) to σ′ = (σ′
1, . . . , σ

′
N) in the adjacent-ex-post-better-reply graph.

21The limit exercise allows us to obtain an analytical result. However, we point out that we have
confirmed the result for fixed small values of q via simulations (available upon request).

22This analysis still respects the ordinality of payoffs in the game. Specifically, the results are
robust to any transformation λ of the probability of switching as follows: a player with valuation

vi changes her action from ai to a′
i ∈ Ai \ {ai} with probability q

1
λ(max{∆i(vi,ai,a′

i
,a−i),γ}) , where

λ : <++ → <++ is a strictly increasing function.
23To calculate r(σ, σ′), consider any match that can occur in state σ, which includes all the

players who switch their action between σ and σ′. For each such match, sum the reciprocals of the
ex-post regrets of the players who switch their action between σ and σ′ (if the ex-post regret of any
player is non-positive, then add 1

γ
instead). The lowest such sum is r(σ, σ′).

22



Since σ′ ∈ RG(RM)(σ), there is a positive probability of moving from σ to σ′ in one

period under the Markov Process MRM/G(q, α) (see the proof of Proposition 4.4).

Define the weight of this directed edge as r(σ, σ′), which is positive by the definition

of resistance. A weighted-adjacent-ex-post-better-reply path is a sequence of vertices

(σ1
1, . . . , σ

1
N ), . . . , (σL

1 , . . . , σL
N) and weights w1, . . . , wL−1 such that there exists a di-

rected edge from each (σl
1, . . . , σ

l
N) to (σl+1

1 , . . . , σl+1
N ) with weight wl. A weighted

cycle is a weighted-adjacent-ex-post-better-reply path that begins and ends at the

same vertex with no other repetition of vertices.

Next, we shall identify the stochastically stable states by eliminating states that

pass the following weighted cycle test. This has interest in its own right as it provides

a necessary condition for stochastic stability in processes like ours.

Proposition 4.9. (Weighted cycle test) (σ1, . . . , σN) is not stochastically stable if

there exists an outgoing edge from (σ1, . . . , σN) with weight less than 1
γ

and either of

the following hold:

1. There does not exist any weighted cycle containing this outgoing edge.

2. In all weighted cycles containing this outgoing edge, the weight of this outgoing

edge is less than the weight of some other edge on the weighted cycle.

This test substantially simplifies the search for the stochastically stable states.

Since every state in Σ is absorbing in the process MRM/G(0, 0), the standard tech-

nique of constructing rooted trees in order to find the minimal rooted trees would

require calculating resistances between any two states in Σ. In contrast, in order to

perform the weighted cycle test, we need to construct a single graph –the adjacent-

ex-post-better-reply graph– and calculate the resistances of only the edges in this

graph.

Remark: The necessary condition stated in the proposition is subtle. In particular,

we cannot say that (σ1, . . . , σN ) is stochastically stable only if (σ1, . . . , σN) belongs

to a minimal CUSOAEBR set. For instance, let σ1 be stochastically stable and not

belong to any minimal CUSOAEBR set. We know that from any state σ1 that does

not belong to a minimal CUSOAEBR set, there exists a weighted-adjacent-ex-post-

better-reply path σ1, . . . , σL such that σL is in some minimal CUSOAEBR set. We

also know that there does not exist any weighted cycle containing this path. However,

there could exist a weighted cycle containing the first edge σ1, σ2.
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4.2.1 Applications: First-Price Auctions and Bertrand Duopolies

Most games are not weakly acyclic under adjacent-ex-post-better-replies. As illus-

trations, consider first-price auctions and Bertrand duopolies. The analysis, through

the use of stochastic stability, points in the direction of minimax-regret equilibrium

(Hyafil and Boutilier (2004)). We remark that any ex-post equilibrium is also a

minimax-regret equilibrium, but not vice versa. Indeed, for games with incomplete

information that are not described by probabilistic beliefs (games with strict type

uncertainty, in their terminology), these authors obtain a remarkable existence result

for this concept.

Let FPA(RM) denote the incomplete information game corresponding to the

random matching of the players when the matched players play the first-price auc-

tion. Thus, FPA(RM) is the N -bidder one-shot first-price auction under incomplete

information with valuations Vi = Z, ∀i ∈ N , and strategies (Σi)i∈N , where Σi is the

set of distributions of bids in populations Pvi
, ∀vi ∈ Z.

Lemma 4.10. Suppose 2δ < 1. FPA(RM) has a unique minimal CUSOAEBR

set Σ̂. Furthermore, ∀i ∈ N , vi > 2δ, and ai ∈ [δ, vi − 2δ]
⋂

Z, there exists a

(σ1, . . . , σN) ∈ Σ̂ such that σi(vi, ai) = 1.

As a corollary of the above lemma and Proposition 4.4, it follows that when δ is

small enough, the process MRM/FPA(q) has a unique large recurrent class.24 Hence,

the answer obtained simply by looking at this recurrent class is not informative.

As a possible way to increase predictive power, the next proposition identifies the

stochastically stable states of MRM/FPA(q, α) as q → 0.

Proposition 4.11. In the random-matching model, when the game is a first-price

auction, if (σ1, . . . , σN) is stochastically stable in MRM/FPA(q, α) as q → 0, then

∀i ∈ N and vi ∈ Z, we have σi(vi, ai) > 0 only if ai ∈
[

vi−δ
2

, vi+δ
2

]
⋂

Z.

That is, when switches are unlikely events, all bidders bid approximately half

their valuations almost all the time. We prove this by showing that a state that

does not satisfy the condition in the proposition passes the weighted cycle test and

hence, it is not stochastically stable. The intuition is as follows. Suppose in a state

σ, the bidder i of valuation vi > δ is bidding z < vi (the proof takes care of all

cases). The bidder gains from adjusting her bid upwards only when it converts her

from a looser to a winner, while she gains from adjusting her bid downwards only

24Applying Proposition 4.4 also requires that the randomly matched bidders are repeatedly play-
ing a game; see footnote 17.
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when it reduces the price of winning the object. If z > vi+δ
2

, then the maximum gain

from adjusting her bid downwards is equal to the highest price fall z − δ (when the

highest opposing bid encountered by her is 0). Since all 0 valuation types must bid

0 – the unique no-regret bid for 0 valuation bidders– there is a positive probability

that the last highest bid encountered by the bidder is 0 and thus, she could obtain

the maximum gain of z− δ by adjusting her bid downwards. Let σ′ be the new state

after this bidder reduces her bid to δ, ceteris paribus. Since the bidder gains z − δ

from this adjustment, the weight of the edge from σ to σ′ in the weighted-adjacent-

ex-post-better-reply graph is at most 1
z−δ

< 1
γ
. Now, consider any weighted cycle

containing this outgoing edge. There must be an edge in this cycle such that our

bidder increases her bid from some z̃ < z to some ẑ ≥ z. However, the maximum

gain of the bidder in this transition is vi − ẑ ≤ vi − z < z − δ, when she turns from

loosing at z̃ to winning at ẑ. Hence, the weight of this edge in the weighted cycle is

greater than the weight of the edge from σ to σ′. Therefore, σ passes the weighted

cycle test. On the other hand, if z < vi−δ
2

, then the maximum gain from adjusting

her bid upwards is at least vi − z∗, where z∗ is the lowest bid that is at least vi−δ
2

.

Now if there is another bidder j who bids z′ such that z ≤ z′ < vi−δ
2

– existence is

shown in the proof– then there is a positive probability that these two bidders meet

and bidder i looses the auction (this happens when all other bidders in this match

have 0 valuations). Then bidder i can obtain the gain of vi − z∗ by adjusting her

bid upwards to z∗. Let σ′ be the new state after this bidder increases her bid to

z∗, ceteris paribus. The weight of the edge from σ to σ′ in the weighted-adjacent-

ex-post-better-reply graph is at most 1
vi−z∗

< 1
γ
. Now, consider any weighted cycle

containing this outgoing edge. There must be an edge in this cycle such that our

bidder changes her bid from z∗ to some ẑ 6= z∗. If ẑ > z∗, then the maximum gain of

the bidder in this transition is vi − ẑ < vi − z∗; whereas if ẑ < z∗, then the maximum

gain of the bidder is z∗−δ < vi−z∗ (since z∗ < vi+δ
2

). Hence, the weight of this edge

in the weighted cycle is greater than the weight of the edge from σ to σ′. Therefore,

σ passes the weighted cycle test.

In fact, the stochastically stable bids (approximately) satisfy the following balance

condition: at these bids, a bidder’s maximum gain from increasing her bid (approx.

vi−σi) equals her maximum gain from decreasing it (approx. σi), leading to σi = vi/2.

Equivalently, at a stochastically stable bid, the maximum regret from not having used

a higher bid is equal to the maximum regret from not having used a lower bid.

Remark: In the standard N -bidder one-shot first-price auction under incomplete

information with the valuations for each bidder continuously distributed on [0, 1], the
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strategy profile in which each bidder bids half of her valuation is a minimax-regret

equilibrium (Hyafil and Boutilier (2004)). Hence, Proposition 4.11 predicts that if

the bidders repeatedly face a random first-price auction environment and they are

very slow to adapt their bids, then in the long run, the distributions of bids in the

populations of bidders will be a minimax-regret equilibrium.

Consider now Bertrand duopolies. Let BC(RM) denote the incomplete informa-

tion game corresponding to the random matching of the sellers when the matched

sellers play the Bertrand duopoly competition game. Thus, BC(RM) is the 2 player

one-shot Bertrand competition game under incomplete information with marginal

costs Vi = C, ∀i ∈ {1, 2}, and strategies (Σi)i∈{1,2}, where Σi is the set of distribu-

tions of prices in populations Pci
, ∀ci ∈ C.

Lemma 4.12. BC(RM) has a unique minimal CUSOAEBR set Σ̂. Furthermore,

∀i ∈ {1, 2}, ci ∈ C \ {0, x}, and pi ∈ [ci + δ
2
, p∗(ci)]

⋂

P , there exists a (σ1, σ2) ∈ Σ̂

such that σi(ci, pi) = 1.

As a corollary of the above lemma and Proposition 4.4, it follows that the process

MRM/BC(q) has a unique large recurrent class.25 Hence, the answer obtained simply

by looking at this recurrent class is not informative. As in the first-price auction

model, we identify the stochastically stable states of MRM/BC(q, α) as q → 0.

If seller i with marginal cost ci were a monopolist, then the price of p̂(ci) =

p∗(ci) −
x−ci

2
√

2
gives the seller a payoff equal to half of her maximum payoff –it is the

unique such price that is less than p∗(ci). Clearly, there does not exist any price in

P that equals p̂(ci). Let p+(ci) be the least element in P that is at least p̂(ci).

Proposition 4.13. In the random-matching model, when the game is Bertrand

duopoly competition, if (σ1, σ2) is stochastically stable in MRM/BC(q, α) as q → 0,

then ∀i ∈ {1, 2} and ci ∈ C, we have σi(ci, pi) > 0 only if pi ∈ [p+(ci), p
+(ci)+δ]

⋂

P .

Thus, when switches are unlikely events, any seller with marginal cost ci will post

approximately the price p+(ci) almost all the time. This is because any state that

does not satisfy the condition in the proposition passes the weighted cycle test and

hence, it is not stochastically stable. The intuition is as follows. Suppose in a state

σ, the seller i with marginal cost ci < x posts a price p < p+(ci). Then p < p̂(ci)

and so the maximum gain from adjusting her price upwards is greater than half of

her maximum monopoly payoff (x−ci)2

4y
(when the opponent’s price is greater than

25Again, see footnote 17.
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p∗(ci) and she switches from p to p∗(ci)). Since all sellers with marginal costs equal

to x must post the price x – the unique no-regret price for such sellers –, there is a

positive probability that the last price encountered by the seller is x and thus, she

could obtain the maximum gain by adjusting her price upwards to p∗(ci). Let σ′ be

the new state after this seller increases her price to p∗(ci), ceteris paribus. Since the

seller gains an amount greater than (x−ci)2

8y
from this adjustment, the weight of the

edge from σ to σ′ in the weighted-adjacent-ex-post-better-reply graph is less than
8y

(x−ci)2
< 1

γ
. Now, consider any weighted cycle containing this outgoing edge. There

must be an edge in this cycle such that our seller decreases her price from some

p̃ > p to some p̄ ≤ p. However, the maximum gain of the seller in this transition

is less than (x−ci)2

8y
since p̄ < p̂(ci). Hence, the weight of this edge in the weighted

cycle is greater than the weight of the edge from σ to σ′. Therefore, σ passes the

weighted cycle test. On the other hand, if p > p+(ci) + δ, then the maximum gain

from adjusting her price downwards is greater than (x−ci)2

8y
(e.g., when she switches

from zero market share at price p to full market share at price p+(ci)). Now if there

is a seller j who posts a price pj such that p ≥ pj > p+(ci) – existence is shown in

the proof –, then there is a positive probability that these two sellers meet and seller

i obtains a zero market share. Then seller i can obtain a gain greater than (x−ci)
2

8y

by adjusting her price downwards to p+(ci). Let σ′ be the new state after this seller

decreases her price to p+(ci), ceteris paribus. The weight of the edge from σ to σ′

in the weighted-adjacent-ex-post-better-reply graph is less than 8y
(x−ci)2

< 1
γ
. Now,

consider any weighted cycle containing this outgoing edge. There must be an edge

in this cycle such that our seller changes her price from p+(ci) to some p̃ 6= p+(ci).

Thus either p > p+(ci) or p < p̂(ci). Hence, irrespective of the value of p, the

maximum gain of the seller is less than (x−ci)
2

8y
. Therefore, the weight of this edge in

the weighted cycle is greater than the weight of the edge from σ to σ′ and hence, σ

passes the weighted cycle test.

Like in the first-price auction, the stochastically stable prices in Bertrand compe-

tition (approximately) satisfy a balance condition: at these prices, a seller’s maximum

gain from increasing her price equals her maximum gain from decreasing it.

Remark: In the one-shot Bertrand duopoly game under incomplete information

with the marginal costs for each seller continuously distributed on [0, x] (e.g., see

Spulber (1995)), the strategy profile in which each seller posts the price equal to

p̂(ci) is a minimax-regret equilibrium. Hence, as in the first-price auction model,

Proposition 4.13 predicts that if the sellers repeatedly face a random Bertrand com-

petition environment and they are very slow to adapt their prices, then in the long
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run, the distributions of prices in the populations of sellers will be a minimax-regret

equilibrium.

5 Conclusion

We have analyzed a learning process based on ex-post regret as a guide to understand

how to play games of incomplete information under private values. The conclusions

depend on whether players interact within a fixed set (fixed matching) or they are

randomly matched to play the game (random matching). The relevant long run pre-

dictions are minimal sets that are closed under “the same or better reply” operations.

Under additional assumptions in each case, the prediction boils down to pure Nash

equilibrium play, pure ex-post equilibrium play or pure minimax regret equilibrium

play. These three paradigms exhibit nice robustness properties in the sense that

they are independent of beliefs about the exogenous uncertainty of type spaces. At

the very least, these predictions ought to be compared to the more standard one

given by Bayesian equilibria. One obvious next step for further research would be to

generalize these results for the case of interdependent values.

6 Proofs

Proof of Proposition 3.2: We first argue that Â is a CUSOBR set if and only

if whenever the dynamics MFM/G(q) reaches any state in Â, it does not leave Â.

Suppose Â is such that whenever the dynamics reaches any state in Â, it never

leaves Â. We argue that RG(v1,...,vN )(a1, . . . , aN) ⊆ Â for all (a1, . . . , aN) ∈ Â. Pick

any (a′
1, . . . , a

′
N) ∈ RG(v1,...,vN )(a1, . . . , aN). The argument is trivial if (a′

1, . . . , a
′
N) =

(a1, . . . , aN ). So suppose (a′
1, . . . , a

′
N) 6= (a1, . . . , aN). Let I be the set of players such

that a′
i 6= ai. Then for all i ∈ I, action a′

i is a better reply for valuation vi to a−i

than ai. There is a positive and independent probability that a player either does

not switch her action or switches her action if she has positive regret. Hence, starting

from state (a1, . . . , aN ), there is a positive probability that, for all i ∈ I, the player of

valuation vi switches her action to a′
i while for all j /∈ I, the player of valuation vj does

not switch her action. Hence, the dynamics moves from (a1, . . . , aN) to (a′
1, . . . , a

′
N)

in one period with a positive probability. Therefore, (a′
1, . . . , a

′
N) ∈ Â. Hence, Â is a

CUSOBR set. Next, suppose Â is a CUSOBR set. Then for all (a1, . . . , aN ) ∈ Â, we

have RG(v1,...,vN )(a1, . . . , aN) ⊆ Â. Since a player switches her action with a positive

probability only if she has positive regret, this means that once the dynamics reaches
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a state in Â, it never leaves Â. It follows that Â is a recurrent class if and only if it

is a minimal CUSOBR set.

Proof of Lemma 3.3: If (a1, . . . , aN ) is a pure Nash equilibrium of the game, then

clearly {(a1, . . . , aN)} is a minimal CUSOBR set. Now, pick any a1 = (a1
1, . . . , a

1
N)

that is not a pure Nash equilibrium of the game and suppose a1 is an element of

some minimal CUSOBR set Â. Since G(v1, . . . , vN) is weakly acyclic under better

replies, there exists a pure Nash equilibrium aL and a better-reply path a1, . . . , aL

such that for any al, al+1 in the path, al+1 ∈ RG(v1,...,vN )(a
l). Since a1 ∈ Â, it must

also be that aL ∈ Â. But {aL} is a minimal CUSOBR set, a contradiction.

Proof of Lemma 3.5: Suppose a1 = (a1
1, . . . , a

1
N ) is not a pure Nash equilibrium of

the one-shot second-price auction in which the valuations {v1, . . . , vN} of the players

are common knowledge. Then there exists bidder i(1) who could gain by unilaterally

deviating. Since bidding equal to one’s valuation is a weakly dominant strategy,

unilaterally deviating to bidding vi(1) is a better reply to a1
−i(1) for bidder i(1). Let

a2 be the bid profile such that bidder i(1) bids equal to her valuation and all other

bidders j 6= i(1) continue to bid a2
j = a1

j . If a2 is a pure Nash equilibrium of the

game, then we are done. Otherwise, there exists a bidder i(2) 6= i(1) who could gain

by unilaterally deviating when the bid profile is a2 (bidder i(1) cannot gain a positive

amount by unilateral deviation since she is playing her weakly dominant strategy).

Again, have i(2) bid truthfully and repeat the process. Since all bidders bidding

truthfully is a pure Nash equilibrium of the game, it should be clear that in a finite

number of steps, we will reach a bid profile aL that is a pure Nash equilibrium of the

game. Thus, the game is weakly acyclic under better replies.

Proof of Lemma 3.7: Suppose a1 = (a1
1, . . . , a

1
N) is not a pure Nash equilibrium

of the one-shot first-price auction in which the valuations {v1, . . . , vN} are common

knowledge. Then there exists a bidder i(1) who could gain by unilaterally deviating.

If bidder i(1) is getting a negative expected payoff at a1, let a2
i(1) = 0, which, with no

other change to a1, leads to a2. If a2 is a Nash equilibrium, we are done, and if not,

first make the same change in the bids of those players who are receiving a negative

expected payoff. Suppose that, after such changes, the bid profile is al. At al all

bidders are receiving non-negative payoffs. If al is a Nash equilibrium, we are done. If

not, bidder i(l) has a profitable deviation, and there are only two possibilities: either

she could gain by increasing her bid or decreasing her bid. To gain by increasing her
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bid, she must weakly outbid the highest bid, while to gain from decreasing her bid,

either she must reduce her loss or increase her profit.

First, suppose bidder i(l) could gain by increasing her bid. Let al∗ be the highest

bid in the bid profile al. Thus, bidder i(l) can weakly outbid the highest bid al∗ and

make a positive profit. Then, in particular, bidding either al∗ or al∗+δ is a best reply

to al
−i(l) for bidder i(l). Let al+1 be the bid profile such that bidder i(l) bids such a

best reply to al
−i(l), and all other bidders j 6= i(l) continue to bid al+1

j = al
j . Note that

the result of this is that the price in the auction is at least as high as before. If al+1

is a pure Nash equilibrium of the game, then we are done. Otherwise, there exists a

bidder i(l + 1) 6= i(l) who could gain by unilaterally deviating when the bid profile

is al+1. This means that bidder i(l + 1) would like to weakly outbid the highest bid

a(l+1)∗ in the bid profile al+1. Let al+2
i(l+1) be a best reply to al+1

−i(l+1), which leads to

profile al+2. Note that, again, the price in the auction when the profile al+2 is used

is at least as high as the previous price. Again, either al+2 is a Nash equilibrium and

we are done, or it is not. But then, repeating the same argument a finite number of

times, this process, based on a non-decreasing price sequence, must end at a Nash

equilibrium.

Second, suppose bidder i(l) can gain by decreasing her bid, and recall once again

that all bidders are receiving non-negative expected payoffs. If at al, player i(l) can

profitably deviate by decreasing her bid, noting that her expected payoff is non-

negative, she must be winning the auction but she can still win at a lower price.

Thus, it must be that al∗
−i(l) < al

i(l) ≤ vi(l), where al∗
−i(l) is the highest bid among

the bids al
−i(l). Let al+1

i(l) ≥ al∗
−i(l) be a best reply to al

−i(l), thus defining al+1. Now,

either al+1 is a Nash equilibrium and we are done, or not. If not, it must be that one

of the other bidders (j 6= i(l)) has a profitable deviation. If this deviation consists

of increasing her bid, then we are back in the first case. So suppose that in al+1,

no bidder has an improving deviation that consists of increasing her bid. Thus, for

bidder j 6= i(l), the improving deviation consists of decreasing her bid. Since bidder

i(l) bids the highest in al+1, it must be that al+1
j = al+1

i(l) and bidder j obtains a

negative expected payoff in al+1. For any such j, bidding al+2
j = al+1

i(l) − δ is a better

reply than al+1
j . In this way, change the bid of any such bidder j to obtain the profile

al+2. The highest (but not necessarily unique) bidder in al+2 is i(l) and she does

not have an improving deviation in al+2 (in particular, she cannot gain by reducing

her bid to al+2
i(l) − δ because such a deviation at best ties her at the bid of al+2

i(l) − δ).

Clearly, none of the bidders who switched between al+1 and al+2 have an improving

deviation. Finally, the rest of the bidders did not want to change their bid when the
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highest opposing bid was al+1
i(l) = al+2

i(l) and so, they also do not have an improving

deviation. Hence, al+2 is a Nash equilibrium

Proof of Lemma 3.9: This proof and subsequent ones for Bertrand duopoly are

quite close to those for the first-price auctions, and hence we omit them (available

upon request).

Proof of Lemma 4.3: It is easy to see that if (σ1, . . . , σN ) is a pure ex-post

equilibrium, then it must be that RG(RM)(σ1, . . . , σN) = {(σ1, . . . , σN)}. Now, sup-

pose (σ1, . . . , σN) is not a pure ex-post equilibrium. Then it must be that there

exists a i ∈ N , (vi, v−i) ∈ V , (ai, a−i) ∈
∏

j∈N Aj(σj(vj)) and a′
i ∈ Ai such that

πi(vi, a
′
i, a−i) > πi(vi, ai, a−i). Define σ′

i as follows: for all v′
i 6= vi, let σ′

i(v
′
i) = σi(v

′
i)

and

σ′
i(vi, a

′′
i ) =















σi(vi, a
′′
i ) + 1

|Pvi
| , if a′′

i = a′
i

σi(vi, a
′′
i ) −

1
|Pvi

| , if a′′
i = ai

σi(vi, a
′′
i ), otherwise.

Then (σ′
i, σ−i) ∈ RG(RM)(σi, σ−i).

Proof of Proposition 4.4: We first argue that Σ̂ is a CUSOAEBR set if and

only if whenever the dynamics MRM/G(q) reaches any state in Σ̂, it does not leave

Σ̂. Suppose Σ̂ is such that whenever the dynamics reaches any state in Σ̂, it never

leaves Σ̂. We argue that RG(RM)(σ1, . . . , σN) ⊆ Σ̂, ∀(σ1, . . . , σN) ∈ Σ̂. Pick any

(σ′
1, . . . , σ

′
N) ∈ RG(RM)(σ1, . . . , σN ). If (σ′

1, . . . , σ
′
N ) = (σ1, . . . , σN), then the argu-

ment is trivial. So suppose (σ′
1, . . . , σ

′
N) 6= (σ1, . . . , σN ) and let I be the set of

positions i such that σ′
i 6= σi. We know that (σ′

1, . . . , σ
′
N) ∈

∏

i∈N Σi(σi) and that

there exist (v1, . . . , vN ) ∈ V and (a1, . . . , aN) ∈
∏

i∈N Ai(σi(vi)) such that for all

i ∈ I, we have vi = v
(σi,σ′

i)
i , ai = a

(σi,σ′

i)
i and

πi(v
(σi,σ′

i)
i , a′

i
(σi,σ′

i), a−i) > πi(v
(σi,σ′

i)
i , a

(σi,σ′

i)
i , a−i).

In state (σ1, . . . , σN), there is a positive probability that the valuation profile of the

randomly matched players is (v1, . . . , vN ) and these players play the action profile

(a1, . . . , aN ) since (a1, . . . , aN ) ∈
∏

i∈N Ai(σi(vi)). There is a positive and indepen-

dent probability that a player either does not switch her action or switches her action

if she has positive regret. Hence, there is a positive probability that, for all i ∈ I,

the player of valuation vi switches to a′
i
(σi,σ′

i) while for all j /∈ I, the player of valua-
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tion vj continues to play aj . Furthermore, there is no change in the distributions of

actions in all other populations because none of the players from these populations

is matched. Hence, there is a positive probability that for all i ∈ I, the distributions

of actions in population Pi in the next period will be σ′
i while for all j /∈ I, the

distributions of actions in population Pj in the next period will remain σj . Thus, the

dynamics will move from (σ1, . . . , σN) to (σ′
1, . . . , σ

′
N ) in one period with a positive

probability. Therefore, it must be that (σ′
1, . . . , σ

′
N ) ∈ Σ̂. Hence, Σ̂ is a CUSOAEBR

set. Next, suppose Σ̂ is a CUSOAEBR set. Then for all (σ1, . . . , σN) ∈ Σ̂, we have

RG(RM)(σ1, . . . , σN ) ⊆ Σ̂. A player switches her action with a positive probability

only if she has positive regret and at most a single player in any population Pi

switches her action in one period (since only one such player is matched). Hence,

once the dynamics reaches a state in Σ̂, it never leaves Σ̂. It follows that Σ̂ is a

recurrent class if and only if it is a minimal CUSOAEBR set.

Proof of Lemma 4.5: If (σ1, . . . , σN) is any pure ex-post equilibrium of the

game, then clearly {(σ1, . . . , σN )} is a minimal CUSOAEBR set. Now, pick any

σ1 = (σ1
1 , . . . , σ

1
N ) that is not a pure ex-post equilibrium of the game and suppose

σ1 is an element of some minimal CUSOBR set Σ̂. Since G(RM) is weakly acyclic

under adjacent-ex-post-better replies, there exists a pure ex-post equilibrium σL and

an adjacent-ex-post-better-reply path σ1, . . . , σL such that for any σl, σl+1 in the

path, σl+1 ∈ RG(RM)(σ
l). Since σ1 ∈ Σ̂, it must also be that σL ∈ Σ̂. But {σL} is a

minimal CUSOAEBR set, a contradiction.

Proof of Lemma 4.7: Suppose σ1 = (σ1
1, . . . , σ

1
N) is not a pure ex-post equilibrium

of SPA(RM). Then there exists a i ∈ N , an ex-post realization of types, (vi, v−i),

and action profile, (ai, a−i) ∈
∏

j∈N Aj(σ
1
j (vj)), such that bidder i could gain by

unilaterally deviating in this ex-post event. Since bidding equal to one’s valuation

is a weakly dominant strategy, it must be that ai 6= vi. Moreover, unilaterally de-

viating to bidding vi is a better reply for bidder i in this ex-post event. Let σ2 be

the strategy profile such that σ2
j = σ1

j for all j 6= i and σ2
i is adjacent to σ1

i with

σ2
i (vi, ai) < σ1

i (vi, ai) and σ2
i (vi, vi) > σ1

i (vi, vi). If σ2 is a pure ex-post equilibrium

of the game, then we are done. Otherwise, repeat the above argument. Since the

strategy profile in which all types of all bidders only bid truthfully is a pure ex-post

equilibrium of the game, it should be clear that in a finite number of steps, we will

reach a strategy profile σL that is a pure ex-post equilibrium of the game. Thus, the

game is weakly acyclic under adjacent-ex-post-better replies.
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Proof of Proposition 4.9: Before we prove this proposition, let’s define the resis-

tance r(σ, σ′) of going from state σ to state σ′ when the probability of moving from

σ to σ′ in one period is zero under the Markov process MRM/G(q, α). Consider all

paths σ1, . . . , σL from σ = σ1 to σ′ = σL such that there is a positive probability of

moving from each σl to σl+1 in one period. Then r(σ, σ′) is the lowest total resistance

over all such paths, and the path with the lowest total resistance is called the path

of least resistance from σ to σ′.

The following lemma will be used in the proof.

Lemma 6.1. Suppose there is a positive probability of moving from σ to σ′ in one

period under the Markov process MRM/G(q, α). If σ′ /∈ RG(RM)(σ), then r(σ, σ′) ≥ 1
γ
.

Proof : Let σ = (σ1, . . . , σN) and σ′ = (σ′
1, . . . , σ

′
N). Since there is a positive proba-

bility of moving from σ to σ′ in one period, it must be that σ′
i ∈ Σi(σi), ∀i (there is a

single match in every period). However, σ′ /∈ RG(RM)(σ). Then let I = {i|σi 6= σ′
i}.

It follows that for all (v1, . . . , vN) ∈ V and (a1, . . . , aN) ∈
∏

i∈N Ai(σi(vi)) with

vi = v
(σi,σ′

i)
i and ai = a

(σi,σ′

i)
i for all i ∈ I, there exists a j ∈ I such that

πj(v
(σj ,σ′

j)

j , a′
j
(σj ,σ′

j), a−j) ≤ πj(v
(σj ,σ′

j)

j , a
(σj ,σ′

j)

j , a−j).

Hence, in every possible match, there exists a player who switches her action without

ex-post regret. Therefore, r(σ, σ′) ≥ 1
γ
.

Let σ, σ′ be the outgoing edge described. By construction, σ′ ∈ RG(RM)(σ).

Consider an σ-rooted tree with the lowest total resistance. Add the directed edge σ, σ′

to the σ-rooted tree. In the resulting graph, there exists a directed cycle σ1, . . . , σL

that starts and ends at σ. We argue that there exists a l with 2 ≤ l < L, such that

r(σl, σl+1) > r(σ, σ′). For all l such that 2 ≤ l < L, let σ[l]1, . . . , σ[l]Kl be the path

of least resistance from σl to σl+1.

• If there exists a l′, with 2 ≤ l′ < L, and k, with 1 ≤ k < Kl′ , such that

σ[l′]k+1 /∈ RG(RM)(σ[l′]k), then r(σ[l′]k, σ[l′]k+1) ≥ 1
γ

(using Lemma 6.1). Then,

r(σl′, σl′+1) ≥ 1
γ

> r(σ, σ′).

• Next suppose that for all l such that 2 ≤ l < L and for all k such that

1 ≤ k < Kl, σ[l]k+1 ∈ RG(RM)(σ[l]k). This, in addition to the fact that

σ′ ∈ RG(RM)(σ), implies that there exists a weighted cycle in the weighted-

adjacent-ex-post-better-reply graph that contains the edge σ, σ′. Hence, if σ

is such that there does not exist any weighted cycle containing the edge σ, σ′,
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then we have a contradiction and we are done. Otherwise, there exists an edge

on this weighted cycle whose weight is greater than the weight of the edge σ, σ′.

Hence, there must exist a l, with 2 ≤ l < L, such that r(σl, σl+1) > r(σ, σ′).

Now, delete the branch σl, σl+1 from the directed cycle σ1, . . . , σL to obtain an σl-

rooted tree with a lower total resistance than the stochastic potential of σ. Thus, σ

is not stochastically stable.

Proof of Lemma 4.10: Recall the definition of R̃G(RM) and accordingly define

R̃FPA(RM). Let σ̂ = (σ̂1, . . . , σ̂N) be such that σ̂i(0, 0) = σ̂i(δ, 0) = 1 and σ̂i(vi, δ) =

1, ∀vi > δ. Pick any σ = (σ1, . . . , σN) and consider the iteration

R̃FPA(RM)({σ}) ⊆ R̃2
FPA(RM)({σ}) ⊆ . . . ⊆ R̃l

FPA(RM)({σ}) ⊆ . . .

We argue that there exists a l̂ such that σ̂ ∈ R̃l̂
FPA(RM)({σ}). Suppose σ is such

that there exists a 0 valuation type of some player who plays a positive bid with a

positive probability. Let z be the greatest positive bid played by any 0 valuation

type of any player. Without loss of generality, let player i be such that σi(0, z) > 0.

Let σ1
i ∈ Σi(σi) be such that σ1

i (0, 0) > σi(0, 0) and σ1
i (0, z) < σi(0, z). Then the

strategy profile σ1 = (σ1
1, . . . , σ

1
N ) such that σ1

j = σj , ∀j 6= i is in R̃FPA(RM)({σ}).

This is because in the ex-post event (v1, . . . , vN) such that vj = 0, ∀j ∈ N and

(a1, . . . , aN ) ∈
∏

j∈N Aj(σj(0)) such that ai = z, player i obtains a negative expected

payoff and hence, the bid of 0 is a better reply to a−i. If σ1 is such that there exists a

0 valuation type of some player who plays a positive bid with a positive probability,

then repeat this argument until we reach a σl such that all 0 valuation types of all

players surely bid 0. By construction, σl ∈ R̃l
FPA(RM)({σ}). Suppose σl is such

that there exists a δ valuation type of some player who plays a positive bid with a

positive probability. Let z′ be the greatest positive bid played by any δ valuation

type of any player. Without loss of generality, let player i be such that σi(δ, z
′) >

0. Let σl+1
i ∈ Σi(σ

l
i) be such that σl+1

i (δ, 0) > σl
i(δ, 0) and σl+1

i (δ, z′) < σl
i(δ, z

′).

Then the strategy profile σl+1 = (σl+1
1 , . . . , σl+1

N ) such that σl+1
j = σl

j , ∀j 6= i is in

R̃FPA(RM)({σ
l}) and hence, in R̃l+1

FPA(RM)({σ}). This is because in the ex-post event

(v1, . . . , vN) such that vj = 0, ∀j 6= i and vi = δ, and (a1, . . . , aN) ∈
∏

j∈N Aj(σ
l
j(vj))

such that aj = 0, ∀j 6= i and ai = z′, player i obtains at most an expected payoff of

0 and hence, the bid of 0 is a better reply to a−i. If σl+1 is such that there exists a

δ valuation type of some player who plays a positive bid with a positive probability,

then repeat this argument until we reach a σl′ such that all 0 and δ valuation types
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of all players surely bid 0. By construction, σl′ ∈ R̃l′

FPA(RM)({σ}). Suppose σl′ is

such that there exists a valuation type v′
i > 2δ of player i who bids z′′ 6= δ with

a positive probability. Let σl′+1
i ∈ Σi(σ

l′

i ) be such that σl′+1
i (v′

i, δ) > σl′

i (v′
i, δ) and

σl′+1
i (v′

i, z
′′) < σl′

i (v′
i, z

′′). Then the strategy profile σl′+1 = (σl′+1
1 , . . . , σl′+1

N ) such

that σl′+1
j = σl′

j , ∀j 6= i is in R̃FPA(RM)({σ
l′}) and hence, in R̃l′+1

FPA(RM)({σ}). This is

because in the ex-post event (v1, . . . , vN) such that vj = 0, ∀j 6= i and vi = v′
i, and

(a1, . . . , aN ) ∈
∏

j∈N Aj(σ
l′

j (vj)) such that aj = 0, ∀j 6= i and ai = z′′, the expected

payoff of player i is either v′
i/N if z′′ = 0 or v′

i − z′′ if z′′ > δ and hence, in any

case, the bid of δ with the payoff v′
i − δ is a better reply to a−i. If σl′+1 is such

that there exists a valuation type v′
j > 2δ of some player j who plays a bid other

than δ with a positive probability, then repeat this argument until we reach a σl′′

such that all 0 and δ valuation types of all players surely bid 0 and all valuation

types of all players with valuations greater than 2δ surely bid δ. By construction,

σl′′ ∈ R̃l′′

FPA(RM)({σ}). Suppose σl′′ is such that there exists a valuation type 2δ of

player i who plays a bid ẑ 6= δ with a positive probability. Let σl′′+1
i ∈ Σi(σ

l′′

i ) be

such that σl′′+1
i (2δ, δ) > σl′′

i (2δ, δ) and σl′′+1
i (2δ, ẑ) < σl′′

i (2δ, ẑ). Then the strategy

profile σl′′+1 = (σl′′+1
1 , . . . , σl′′+1

N ) such that σl′′+1
j = σl′′

j , ∀j 6= i is in R̃FPA(RM)({σ
l′′})

and hence, in R̃l′′+1
FPA(RM)({σ}). This is because in the ex-post event (v1, . . . , vN) such

that vj = 3δ, ∀j 6= i and vi = 2δ, and (a1, . . . , aN) ∈
∏

j∈N Aj(σ
l′′

j (vj)) such that

aj = δ, ∀j 6= i and ai = ẑ, the payoff of player i is at most 0 and hence, the bid of δ

is a better reply to a−i. If σl′′+1 is such that there exists valuation type 2δ of some

player j who plays a bid other than δ with a positive probability, then repeat this

argument until we reach σ̂. By construction, σ̂ ∈ R̃l̂
FPA(RM)({σ}) for some l̂.

It follows that any CUSOAEBR set must contain σ̂ and hence, there exists a

unique minimal CUSOAEBR set.

Pick any player i of valuation v′
i ∈ [3δ, 1] and ai ∈ [δ, v′

i − 2δ]
⋂

Z. If v′
i = 3δ,

then ai = δ and we already have σ̂ ∈ Σ̂ such that σ̂i(3δ, δ) = 1. So pick v′
i ∈ [4δ, 1].

Let σ̂1
i ∈ Σi(σ̂i) be such that σ̂1

i (v
′
i, 2δ) > σ̂i(v

′
i, 2δ) and σ̂1

i (v
′
i, δ) < σ̂i(v

′
i, δ). Then

the strategy profile σ̂1 = (σ̂1
1, . . . , σ̂

1
N) such that σ̂1

j = σ̂j , ∀j 6= i is in R̃FPA(RM)({σ̂}).

This is because in the ex-post event (v1, . . . , vN) such that vj = 3δ, ∀j 6= i and vi = v′
i,

and (a1, . . . , aN) ∈
∏

j∈N Aj(σ̂j(vj)) such that aj = δ, ∀j ∈ N , player i obtains an ex-

pected payoff of (v′
i−δ)/N and hence, the bid of 2δ with a payoff of v′

i−2δ is a better

reply to a−i. By repeating this argument we will reach a σ̂l such that for all j ∈ N ,

σ̂l
j(vj , 0) = 1, ∀vj ∈ [0, δ], σ̂l

j(vj , δ) = 1, ∀vj ∈ [2δ, 3δ] and σ̂l
j(vj, 2δ) = 1, ∀vj ∈ [4δ, 1].

By construction, σ̂l ∈ R̃l
FPA(RM)({σ̂}). Now, pick v′

i ∈ [5δ, 1]. Let σ̂l+1
i ∈ Σi(σ̂

l
i) be

such that σ̂l+1
i (v′

i, 3δ) > σ̂l
i(v

′
i, 3δ) and σ̂l+1

i (v′
i, 2δ) < σ̂l

i(v
′
i, 2δ). Then the strategy
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profile σ̂l+1 = (σ̂l+1
1 , . . . , σ̂l+1

N ) such that σ̂l+1
j = σ̂l

j , ∀j 6= i is in R̃FPA(RM)({σ̂
l}) and

hence, in R̃l+1
FPA(RM)({σ}). This is because in the ex-post event (v1, . . . , vN) such

that vj = 4δ, ∀j 6= i and vi = v′
i, and (a1, . . . , aN) ∈

∏

j∈N Aj(σ̂
l
j(vj)) such that

aj = 2δ, ∀j ∈ N , player i obtains an expected payoff of (v′
i − 2δ)/N and hence,

the bid of 3δ with a payoff of v′
i − 3δ is a better reply to a−i. By repeating this

argument we will reach a σ̂l′ such that for all j ∈ N , σ̂l′

j (vj, 0) = 1, ∀vj ∈ [0, δ],

σ̂l′

j (vj , δ) = 1, ∀vj ∈ [2δ, 3δ], σ̂l′

j (4δ, 2δ) = 1, and σ̂l′

j (vj , 3δ) = 1, ∀vj ∈ [5δ, 1]. By

construction, σl′ ∈ R̃l′

FPA(RM)({σ̂}). It should be clear that the statement in the

lemma can be proved after a finite number of repetitions of the above argument.

Proof of Proposition 4.11: We use the weighted cycle test to prove this proposi-

tion. However, we need to modify the weighted-adjacent-ex-post-better-reply graph

of FPA(RM) to incorporate the fact that in the event of a tie at the winning bid, the

ex-post payoff of a bidder need not equal her expected payoff (where the expectation

is with respect to the tie-breaking lottery). This is achieved by redefining RFPA(RM)

as follows: (σ′
1, . . . , σ

′
N) ∈ RFPA(RM)(σ1, . . . , σN) if and only if

1. (σ′
1, . . . , σ

′
N) ∈

∏

i∈N Σi(σi) and

2. if (σ′
1, . . . , σ

′
N) 6= (σ1, . . . , σN), then let I = {i|σi 6= σ′

i}. There must exist

(v1, . . . , vN) ∈ V and (a1, . . . , aN ) ∈
∏

i∈N Ai(σi(vi)) such that for all i ∈ I, we

have vi = v
(σi,σ′

i)
i , ai = a

(σi,σ′

i)
i and the expected payoff of player i of valuation

v
(σi,σ

′

i)
i from bidding a′

i
(σi,σ

′

i) against a−i is greater than her payoff in some ex-

post event (i.e., after the realization of the tie-breaking lottery) following her

bid of ai
(σi,σ′

i) against a−i.

Now, use this redefined RFPA(RM) to modify the weighted-adjacent-ex-post-reply

graph of FPA(RM) by adding an edge from a strategy profile σ to σ′ 6= σ if and

only if σ′ ∈ RFPA(RM)(σ). The weight of this edge is the resistance r(σ, σ′) (note

that we don’t have to modify the definition of the resistance since it was already

defined with respect to ex-post regrets). The weighted cycle test is also valid for this

modified weighted-adjacent-ex-post-reply graph of FPA(RM).

We prove by induction that a state σ is stochastically stable only if ∀n = 0, . . . , 1
δ
,

the support of σi(nδ), Ai(σi(nδ)) ⊆
[

(n−1)δ
2

, (n+1)δ
2

]

⋂

Z, ∀i ∈ N .

First, we show that the statement is true for n = 0. Consider any state σ such

that there exists a bidder of 0 valuation who plays a positive bid. Let z be the

greatest positive bid played by any 0 valuation type of any bidder. Without loss

of generality, let position i be such that σi(0, z) > 0. Let σ1
i ∈ Σi(σi) be such that
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σ1
i (0, 0) > σi(0, 0) and σ1

i (0, z) < σi(0, z). Then the strategy profile σ1 = (σ1
1 , . . . , σ

1
N)

such that σ1
j = σj , ∀j 6= i is in RFPA(RM)({σ}). This is because in the ex-post event

(v1, . . . , vN) such that vj = 0, ∀j ∈ N and (a1, . . . , aN) ∈
∏

j∈N Aj(σj(0)) such that

ai = z, bidder i obtains a negative payoff and hence, the bid of 0 is a better reply to

a−i. Hence, r(σ, σ1) < 1
γ

since only a single bidder of valuation 0 in population Pi

switches from a positive bid to a bid of 0 and there exists an ex-post event in state

σ in which this bidder has positive regret from bidding her positive bid instead of 0.

Thus, in the weighted-adjacent-ex-post-better-reply graph, there exists an outgoing

edge from σ to σ1 with a weight of less than 1
γ
. Now, consider any weighted cycle

containing this outgoing edge. Since σ1
i (0, 0) > σi(0, 0), it must be that there exist

two states σl, σl+1 such that σl+1 ∈ RFPA(RM)(σ
l) and σl+1

i (0, 0) < σl
i(0, 0). That

is, there exists a bidder of valuation 0 in population Pi who switches from bidding

0 to some positive bid. However, there does not exist any a−i such that bidder i

of valuation 0 would strictly prefer to bid some positive bid instead of 0. Hence,

r(σl, σl+1) ≥ 1
γ
. Thus, the state σ passes the wighted cycle test and hence, it is not

stochastically stable.

Now, suppose the statement is true for all n′ ≤ n. We argue that it is also true

for n + 1. Consider a state σ such that ∀j ∈ N and vj ≤ nδ, we have Aj(σj(vj)) ⊆
[

vj−δ

2
,

vj+δ

2

]

⋂

Z but there exists a bidder of valuation (n+1)δ in population Pi who

bids z /∈
[

nδ
2
, (n+2)δ

2

]

⋂

Z.

First suppose z > (n+2)δ
2

. Let σ1
i ∈ Σi(σi) be such that σ1

i ((n + 1)δ, δ) > σi((n +

1)δ, δ) and σ1
i ((n + 1)δ, z) < σi((n + 1)δ, z). Consider the ex-post event (v1, . . . , vN)

such that vj = 0, ∀j 6= i and vi = (n + 1)δ, and (a1, . . . , aN) ∈
∏

j∈N Aj(σj(vj))

such that aj = 0, ∀j 6= i and ai = z. Then bidding δ is a better reply to a−i

than z and bidder i’s ex-post regret is z − δ. Hence, r(σ, σ1) ≤ 1
z−δ

< 1
γ

since

only a single bidder of valuation (n + 1)δ in population Pi switches from the bid

of z to the bid of δ and there exists an ex-post event in state σ in which this

bidder has positive ex-post regret of z − δ from bidding z instead of δ. Thus, in the

weighted-adjacent-ex-post-better-reply graph of FPA(RM), there exists an outgoing

edge from σ to σ1 with a weight of less than 1
γ
. Now, consider any weighted cycle

containing this outgoing edge. Since
∑

z′≥z σ1
i ((n + 1)δ, z′) <

∑

z′≥z σi((n + 1)δ, z′),

it must be that there exist two states σl, σl+1 such that σl+1 ∈ RFPA(RM)(σ
l) and

∑

z′≥z σl+1
i ((n + 1)δ, z′) >

∑

z′≥z σl
i((n + 1)δ, z′). That is, there exists a bidder of

valuation (n + 1)δ in population Pi who switches from bidding z̃ < z to some ẑ ≥ z.

However, the bidder i of valuation (n+1)δ can gain a positive amount from increasing

her bid from z̃ to ẑ against any a−i only if ẑ < (n + 1)δ and the maximum such gain
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equals (n+1)δ−ẑ (when she turns from loosing at z̃ to winning at ẑ). Since ẑ > (n+2)δ
2

,

the maximum gain from such a switch is less than nδ
2

. Hence, r(σl, σl+1) > 2
nδ

> 1
z−δ

since z > (n+2)δ
2

. Thus, the state σ passes the wighted cycle test and hence, it is not

stochastically stable.

Finally, suppose z < nδ
2

. This is possible only if n ≥ 1. Let z∗ be the least

bid greater than or equal to nδ
2

. Let σ1
i ∈ Σi(σi) be such that σ1

i ((n + 1)δ, z∗) >

σi((n + 1)δ, z∗) and σ1
i ((n + 1)δ, z) < σi((n + 1)δ, z).

Case 1 : n is odd. Then z ≤ (n−1)δ
2

and z∗ = (n+1)δ
2

. Pick a j 6= i and vj = (n−1)δ. By

the induction hypothesis, there exists a z′ ∈
[

(n−2)δ
2

, nδ
2

]

⋂

Z such that σj(vj, z
′) > 0.

Then z′ = (n−1)δ
2

. Consider the ex-post event (v1, . . . , vN) such that vk = 0, ∀k 6= i, j,

vj = (n − 1)δ and vi = (n + 1)δ, and (a1, . . . , aN ) ∈
∏

k∈N Ak(σk(vk)) such that

ak = 0, ∀k 6= i, j, aj = z′ and ai = z. Since z ≤ z′, with a positive probability, bidder i

looses the auction. Therefore, in this ex-post stage, bidding z∗ is a better reply to a−i

than z and bidder i’s ex-post regret is (n + 1)δ− z∗. Hence, r(σ, σ1) ≤ 1
(n+1)δ−z∗

< 1
γ

since only a single bidder of valuation (n + 1)δ in population Pi switches from the

bid of z to the bid of z∗ and there exists an ex-post event in state σ in which

this bidder has positive ex-post regret of (n + 1)δ − z∗ from bidding z instead of

z∗. Thus, in the weighted-adjacent-ex-post-better-reply graph of FPA(RM), there

exists an outgoing edge from σ to σ1 with a weight of less than 1
γ
. Now, consider any

weighted cycle containing this outgoing edge. Since σ1
i ((n+1)δ, z∗) > σi((n+1)δ, z∗),

it must be that there exist two states σl, σl+1 such that σl+1 ∈ RFPA(RM)(σ
l) and

σl+1
i ((n+1)δ, z∗) < σl

i((n+1)δ, z∗). That is, there exists a bidder of valuation (n+1)δ

in population Pi who switches from bidding z∗ to some ẑ 6= z∗. Suppose ẑ > z∗.

The bidder i of valuation (n + 1)δ can gain a positive amount from increasing her

bid from z∗ to ẑ against any a−i only if ẑ < (n + 1)δ and the maximum such gain

equals (n + 1)δ − ẑ < (n + 1)δ − z∗ (when she turns from loosing at z∗ to winning

at ẑ). Next, suppose ẑ < z∗. The bidder i of valuation (n + 1)δ can gain a positive

amount from decreasing her bid from z∗ to ẑ against any a−i only if ẑ > maxj 6=i aj

and the maximum such gain equals z∗− δ < (n+1)δ− z∗ (when turns from winning

at z∗ to winning at the bid of δ). Hence, r(σl, σl+1) > 1
(n+1)δ−z∗

≥ r(σ, σ1). Thus,

the state σ passes the wighted cycle test and so, it is not stochastically stable.

Case 2 : n is even. Then n ≥ 2, z ≤ (n−2)δ
2

and z∗ = nδ
2

. Pick a j 6= i and

vj = (n − 2)δ. By the induction hypothesis, there exists a z′ ∈
[

(n−3)δ
2

, (n−1)δ
2

]

⋂

Z

such that σj(vj , z
′) > 0. Then z′ = (n−2)δ

2
. Consider the ex-post event (v1, . . . , vN)

such that vk = 0, ∀k 6= i, j, vj = (n − 2)δ and vi = (n + 1)δ, and (a1, . . . , aN) ∈
∏

k∈N Ak(σk(vk)) such that ak = 0, ∀k 6= i, j, aj = z′ and ai = z. Since z ≤ z′, with
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a positive probability, bidder i looses the auction. Therefore, in this ex-post stage,

bidding z∗ is a better reply to a−i than z and bidder i’s ex-post regret is (n+1)δ−z∗.

Hence, r(σ, σ1) ≤ 1
(n+1)δ−z∗

< 1
γ
. Thus, in the weighted-adjacent-ex-post-better-reply

graph of FPA(RM), there exists an outgoing edge from σ to σ1 with a weight of

less than 1
γ
. Like in case 1, we can easily argue that in any weighted cycle containing

this outgoing edge, there exists an edge with weight greater than r(σ, σ1). Hence, σ

is not stochastically stable.
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