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Abstract. This paper considers a marriage market with two-sided search and trans-

ferable utility in which the match payoff depends on age. It characterizes a set of

payoff functions consistent with two salient marriage age patterns, (1) assortative

matching by age, and (2) “differential age matching”, a formalization of the age dif-

ference at marriage between men and women. Some simple conditions on slope and

curvature of the payoff function in partners’ ages are shown to achieve both, whereas

supermodularity is not necessary for positive assortative matching, and in fact many

common supermodular functions lead to negative sorting. (JEL C78, D83, J64)
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1. Introduction

Age patterns of marriage exhibit remarkable regularities. As an example, figure

1 depicts the marriage ages of women and their spouses in four different countries

according to the latest Demographic and Health Surveys. While there are clearly

differences, in all four countries there is strong sorting by age, and women often marry

men considerably older than themselves, whereas an age difference in the opposite

direction is less common and if anything usually small. Similar patterns are found in

almost all countries; for example, Goldman et al. (1984) draw a similar graph using

marriages from the United States in 1976-78. Consistent with these patterns men’s

average marriage age is higher than women’s practically everywhere – the sole exception

being San Marino with women on average 0.2 years older than men – and spousal age

is highly correlated (United Nations (2000), Choo and Siow (2006b)). Marriage age

patterns are of interest since they have implications for education, fertility and maternal

health, and they affect decision making e.g. on labor supply and savings. They also

play a role in the supply and demand of spouses, since population growth and the age

difference at marriage determine the relative numbers of men and women in the market

(see Tertilt and Neelakantan (2008), Bhat and Halli (1999) and others).

This paper develops a search model with transferable utility in which the joint payoff

to a match, f(i, j), depends on age i of the woman and j of the man at the time

of marriage. Individuals stay in the market from age zero to at most age I and J

for women and men, respectively. A matched pair leaves the market, and there is

no remarriage. The ratio of unmarried men and women in the market and their age

distributions are the endogenous outcome of market entry at age zero and exit from

the market through marriage.

In the context of marriage the payoff function f captures individuals’ preferences

over their own and their spouse’s age, which may be based for instance on fertility

and health considerations, current wealth, or labor market value. But the model also

applies more broadly to settings in which coalitions of two have to form and payoffs
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Figure 1

Age at first marriage (jittered), women born before 1981 and partners, latest DHS for each

country (left to right: India n = 16802 (sampled from 37706 obs.), Peru n = 16802, South

Africa n = 5410, Morocco n = 5410 (sampled from 8836 obs.).

depend on time-until-match. Examples are the trade of perishable goods or time-

sensitive information, or the formation of professional teams, like an executive and her

assistant, or an engineer and an architect. There can be gains or losses to “aging”: the

value of filling a vacancy may rise over time while the skills of an unemployed worker

erode, an entrepreneur and an investor may have preferences over the exact timing of

capital injection and expansion, and so on.

The purpose of this paper is to characterize a set of payoff functions under which

there is positive or negative assortative matching, that is the matching of similars

(young-young, old-old) or opposites (young-old), as well as “differential age matching”,

a formalization of the difference in marriage age between men and women. Differential

age matching (DAM) means that, if a woman of age b and a man of age a < b marry

in equilibrium, then a man b and a woman a will marry as well. DAM together with

positive assortative matching (PAM) implies that a man’s set of partners is “younger”

than that of a woman at the same age, consistent with prevailing marriage patterns all

over the world.

The theory of two-sided matching and search has long been interested in conditions

for assortative matching. Usually it is assumed that the match payoff depends on a

heterogenous, but fixed characteristic, for example the partners’ productivity or what
2



Burdett and Coles (1997) call “pizzazz”. Becker (1973) shows that positive assortative

matching arises in a static, frictionless setting with transferable utility if the matching

partners’ types are complements, or equivalently if the payoff function f is supermodu-

lar (f(x1, y1)+f(x2, y2) ≥ f(x1, y2)+f(x2, y1) for types x2 > x1 and y2 > y1). Sattinger

(1995) introduces search frictions into this model, and Shimer and Smith (2000) gener-

alize an earlier result by Lu and McAfee (1996) for this setting and show that positive

assortative matching requires supermodularity of the production function as well as

log supermodularity of fx and fxy. Atakan (2006) recovers assortative matching under

supermodularity alone by introducing an explicit additive search cost into the model.1

The present paper is closely related to Shimer and Smith’s work, but instead of fixed

productivity types x and y the marriage payoff depends on the partners’ ages, or equiv-

alently the time that they have spent searching in the market. As a consequence, an

individual’s value of search is subject to change over time, and even though all indi-

viduals are ex ante identical there will be a distribution of agents with different payoffs

to marriage in the market.2 The conditions for sorting in this setting will be shown

1Log supermodularity of a (positive) function f means f(x1, y1)f(x2, y2) ≥

f(x1, y2)f(x2, y1). There is also a rich literature on sorting with nontransferable utility.

Becker showed that without search frictions both sides must have monotone preferences

in their partner’s type. With frictions, Smith (2006) proves that the type space can be

partitioned into intervals which only match among themselves if the production func-

tion satisfies log supermodularity. Similar results for less general production functions

have been proven earlier, most notably by Burdett and Coles (1997) (see Smith (2006)).

Finally, Legros and Newman (2007) extend the analysis to partially transferable utility.
2Age-dependent match payoffs have been studied in search models of the labor

market before (Ljungqvist and Sargent (1998), Coles and Masters (2000)), but in these

papers only one side of the market is heterogenous (e.g. workers’ productivity depends

on the duration of unemployment, but all vacancies are the same) and they therefore

investigate policy questions and the effects of labor market shocks, but not matching

patterns per se.
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to involve the slope and curvature of f in each partner’s age. For instance, if f is

decreasing in i and increasing in j at a fast enough rate, the net marriage surplus – the

payoff f minus the couple’s outside options – will fall in i and rise in j as well, and this

guarantees PAM (as well as DAM). Remarkably, however, the conditions for sorting

do not directly restrict the cross derivatives of f , and supermodularity of the payoff

function is neither necessary nor sufficient for PAM. In fact, many standard supermod-

ular production functions, most notably Cobb-Douglas functions, can be shown to lead

to negative sorting instead. This highlights the fundamentally different role of prefer-

ences over (time-variant) age and other (fixed) characteristics for partners’ matching

decisions.

This paper also contributes indirectly to a body of literature on the possible causes

of the positive age difference at marriage. Bergstrom and Bagnoli (1993) argue for

example that men’s match quality is revealed later than women’s, so that high-quality

men do not enter the marriage market but wait until their quality becomes common

knowledge. In Siow (1998) and Giolito (2004) the marriage age difference is a conse-

quence of women’s shorter fecundity span. Coles and Francesconi (2007) propose that

“fitness” decreases with age, but “success” increases, so that young individuals can

trade their fitness for an old partner’s success. They argue that young women match

with older men more often than the reverse because their labor market opportunities

are more limited.3

Many of these papers use specific assumptions on preferences and payoffs from mar-

riage to explain the age difference at marriage between men and women. My focus is

instead on characterizing a family of functions which guarantee differential age match-

ing, providing a direct test of whether a particular “micro-foundation” for the marriage

payoff function is consistent with DAM. Section 3 gives an example of a payoff function

3Choo and Siow (2006a) also study marriage payoffs by age empirically in a dynamic

model without search frictions.
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that is derived from a gradual loss in fecundity for women and satisfies the conditions

for both PAM and DAM.

The next section describes the model and proves existence of a steady-state equilib-

rium. In section 3 I first define assortative matching and differential age matching.

Then I illustrate the most important concepts using basic sufficient conditions on the

payoff function that lead to PAM and DAM and show that a large family of payoff

functions actually imply negative sorting, before giving a full set of general conditions.

Section 4 concludes. Any omitted proofs are found in the appendix.

2. The Search Model and Marriage Market Equilibrium

The description of the model begins with the steady-state age distribution of men

and women in the market. For an unmarried individual, the probability of meeting

a person of the other sex at a certain age depends on the age composition of the

unmarried population. This composition is the result of entry by young cohorts on the

one hand, and of exit through marriage or upon reaching the final marriage age on the

other. The market is in a steady state when the age distributions of singles at different

ages and the relative number of men and women are constant in every period. I will

start by deriving the steady-state “singles distribution”, consisting of the men’s and

women’s age distributions m and w.

Let i ∈ [0, I] be the age of a woman, and j ∈ [0, J ] that of a man.4 Age zero is the

(normalized) age of entry into the marriage market, and I and J are the last possible

marriage ages. The size of the female singles population at time t is Wt, Wt(i) denotes

the measure of single women at age i, and wt(i) = Wt(i)
Wt

describes the age distribution

of single women. Equivalently use Mt, Mt(j) and mt(j) for single men. The singles sex

ratio at t is rt = Mt

Wt
. It is assumed that equal numbers of men and women enter the

4As distinct from fixed types x and y used in many matching models.
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marriage market at every point in time, so Wt(0) and Mt(0) are equal and constant for

all t.5

Men and women meet randomly at a rate that depends on the ratio of single men to

women rt. This is modeled by assuming that the arrival rates of a potential match on

each side of the market follow a Poisson process with parameters λm(rt) for the men

and λw(rt) for the women. One-to-one matching requires that the number of men who

meet someone in any given period equals the number of women who do. The Poisson

parameters must therefore satisfy

rt ≡
Mt

Wt

=
λw(rt)

λm(rt)

for any given rt. Let λw and λm be positive, continuous and bounded functions (i.e.

there are some minimal frictions of search). It is plausible to assume that λw is increas-

ing and λm decreasing, so that a higher rt raises the chance of a meeting for women

and lowers that for men, since it means there are relatively more men available. As

an example, λw(rt) = r0.5
t and λm(rt) = r−0.5

t describe symmetric meeting probabilities

for the two sides of the market.6

Given that an individual meets someone, the model must specify the conditional

probability that this person is of a particular age as a function of wt, mt and rt. I will

here assume proportional conditional meeting probabilities, that is, the probability

that the encounter is with a person of a particular age equals the proportion of that

age in the singles population. In terms of the matching function of traditional search

models, this assumption implies that the matching technology has constant returns to

5This assumption can be relaxed e.g. to allow for a constant population growth rate

or an unequal (but fixed) ratio of W (0) and M(0).
6Note however that this cannot hold for all possible rt, or else λw and λm are

unbounded. Bounds could be introduced by assuming, say, that the maximal meeting

frequency allows on average two encounters per period. We would then have λm(rt) = 2

for any rt < 0.25 and therefore λw(rt) = 2rt, and similarly λm(rt) = 2r−1
t and λw(rt) =

2 for rt > 4).
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scale (CRS), so that only relative numbers of men and women matter for the meeting

probabilities. Other functional forms for the meeting probabilities can be adopted

without changing the conclusions of the paper, provided the CRS property remains

satisfied.

Upon meeting, couples decide if they want to marry. The marriage decision for a pair

(i, j) is captured by a measurable marriage indicator function α : [0, I]× [0, J ]→ [0, 1].

If α lies strictly between zero and one the couple is using a mixed strategy between

marrying and staying single. For given marriage behavior α, the mass of single women

at age i in t can be written as

Wt(i) = e−
∫ i
0 λw(

∫ J
0 α(x,y)mt−i+x(y)dy)dxWt−i(0).

The exponential term is equivalent to the survival function in a hazard model, that is, it

describes the probability of staying in the market past age i. The exponent of the sur-

vival function is the integral of the hazard function, here given by λw
∫ J

0
α(i, y)mt(y)dy,

from 0 up to i. The hazard function describes the instantaneous rate of leaving the

market at age i in time t, conditional on still being single. It combines the probability

of meeting (λwmt(y)) and of marrying (α(i, y)) any man between 0 and J years of age.

Normalizing by the overall population size at t, the age distribution at t is

wt(i) =
Wt(i)

Wt

=
e−

∫ i
0 λw(

∫ J
0 α(x,y)mt−i+x(y)dy)dx∫ I

0
e−

∫ u
0 λw(

∫ J
0 α(x,y)mt−i+x(y)dy)dxdu

.

A similar expression can be written for the men’s market side. In a steady state, the

age distributions are invariant, so that the time index can be suppressed and we have

w(i) =
e−

∫ i
0 λw(r)(

∫ J
0 α(x,y)m(y)dy)dx∫ I

0
e−

∫ u
0 λw(r)(

∫ J
0 α(x,y)m(y)dy)dxdu

(2.1)

m(j) =
e−

∫ j
0 λm(r)(

∫ I
0 α(x,y)w(x)dx)dy∫ J

0
e−

∫ u
0 λm(r)(

∫ I
0 α(x,y)w(x)dx)dydu

,(2.2)

where the ratio of men to women r = M
W

equals w(0)
m(0)

(this follows from the observa-

tion that w(0) = 1/W and m(0) = 1/M). Clearly the age distribution functions are
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decreasing for all ages: after entering the market, each singles cohort is reduced grad-

ually by those who marry. Different marriage ages for men and women are reflected in

different w and m; if for instance women marry earlier than men, the age distribution

of unmarried women will be more concentrated at the low ages, and there will be over-

all more single men than women, since each man remains in the market longer (and

m0 < w0 so that r < 1).

The next step is to characterize marriage behavior described by α. When a man and

a woman meet, they make their marriage decision by comparing the payoff to marrying

with the outside value of remaining in the market and meeting other partners in the

future, when they are themselves older. This outside value depends on the relative

numbers of men and women at each age available for marriage, in other words, the

singles distribution given by w and m, and the age of the individual i or j. In a steady-

state equilibrium each individual’s outside option is described by a (time-invariant)

value function. To derive it I will focus on the women’s side of the market, stating the

equivalent expressions for the mens’ side without derivations.

Denote by fw(i, j) and fm(i, j) the (expected) payoffs of marriage for a woman and

a man at age i and j, respectively, and let d(i, j) be the transfer paid by the bride to

the groom. A couple will marry upon meeting if they both prefer marrying each other

over continuing search. The woman agrees to marry if the net payoff fw(i, j)− d(i, j)

exceeds the value of searching at age i, V (i). Equivalently, the man compares search

value H(j) with fm(i, j) + d(i, j). Following the literature (e.g. Pissarides (1990)), the

expected marriage transfer between ages i and j is assumed to be the generalized Nash

product, given by

d(i, j) = arg max
d

[fw(i, j)− d− V (i)]θ [fm(i, j) + d−H(j)](1−θ)

where θ describes the woman’s bargaining power. The woman’s payoff from marrying

is

V (i) + θ (fw(i, j) + fm(i, j)− V (i)−H(j)) ,
8



her outside option plus a share θ of the net marriage surplus.7 As long as this share is

positive, she will agree to marry. Similarly, the groom gets his outside option plus a

(1 − θ) share of the net surplus. This implies that the marriage decisions of a couple

(i, j) coincide and can be described by a single function α indicating a positive net

marriage surplus. For the value function (but not the transfer d(i, j)) the source of the

marriage payoff is not important, so fw(i, j) + fm(i, j) can be summarized as f(i, j). I

assume that f is continuous and positive for at least some (i, j).

Define the net marriage surplus as S(i, j) = f(i, j)−V (i)−H(j) and let the discount

rate be ρ. The value functions are described by a system of differential equations (see

appendix for the derivation) where the final conditions are given by the value of being

single when leaving the marriage market, V for the woman and H for the man. V and

H are assumed to be nonnegative.8

V̇ (i) = −λw(r)θ

∫ J

0

max {S(i, y), 0}m(y)dy + ρV (i)(2.3)

V (I) = V(2.4)

Ḣ(j) = −λm(r)(1− θ)
∫ I

0

max {S(x, j), 0}w(x)dx+ ρH(j)(2.5)

H(J) = H.(2.6)

The first term in V̇ (i) describes the reduction in the value of search when age i passes

and with it the chance of marrying someone for a surplus of S(i, y). Note that the term

is weakly negative, so V (i) can be at most increasing by ρV (i). This second term is

7A possible interpretation is that either the man or the woman gets to make an

ultimatum proposal for the division of the surplus, where the probability of being the

proposer equals the bargaining power.
8Implicit in this is the normalization of the payoff of being single in the market to

zero. Thus, V and H describe the value to being single, but not searching anymore.

Positive values might for example indicate a cost of searching, which is not incurred

after the individual leaves the market. A value of zero implies that the individual is

indifferent between spending a period in or out of the market.
9



greater than zero only if ρ > 0, that is, the market participants discount the future. It

describes the increase in the expected value of future matches that comes from reducing

the time span until the match payoff is realized. V (i) and H(j) are bounded below at

zero and above at max(i,j) f(i, j). It should be emphasized once more that the value

of search for an individual is a function of age, and therefore of time, even though

the market is in a steady-state. The distribution of ages and the value functions are

invariant, but an individual’s search value is not.9

To summarize, in a steady state equilibrium the singles age distributions depend on

marriage behavior, described by the indicator function α, and marriage behavior is in

turn determined by the marriage payoff function and the age distributions. Men and

women’s expectations about meeting probabilities later in life are correct and identical

to current market conditions. Formally, define:

Definition 2.1 (Steady-State Matching Equilibrium). For a given marriage payoff

function f and Poisson meeting rate functions λw and λm, a matching equilibrium is

given by an indicator function α, value functions V and H, and singles distributions

m and w such that

(1) α(i, j) = 1 if S(i, j) > 0, α(i, j) = 0 if S(i, j) < 0 and α(i, j) ∈ [0, 1] otherwise,

(2) m and w are age distributions for α satisfying equations (2.1) and (2.2), and

(3) V (i) and H(j) are the value functions for m and w given by (2.3)–(2.6).

To show that such an equilibrium exists I construct a self-map T on the set of value

functions and singles distributions whose fixed points coincide with the matching equi-

libria. Existence of a fixed point is then proved by applying the Eilenberg-Montgomery

fixed point theorem.

9In a typical search model with fixed productivity types, V and H themselves, not

their derivatives, are a function of the net surplus of matching. The equations here

cannot easily be solved for V and H (compare with equations (6) and (8) in Shimer

and Smith (2000)).
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Figure 2.

Theorem 2.2 (Existence of a Steady-State Matching Equilibrium). Suppose marriage

payoffs are given by f(i, j), and λw and λm are positive, bounded and continuous func-

tions that satisfy rλm(r) = λw(r). Then there exists a steady-state matching equilibrium

for this market.

Observe that a change to who matches with whom (i.e. the α) affects the entire singles

distribution and therefore each agent’s value of search, leading to potential multiplicity;

in other words, the equilibrium may not be unique.

3. Assortative Matching and Differential Age Matching

The discussion of equilibrium age matching patterns begins with the definitions for

assortative matching and differential age matching.

Denote the matching set of a man of age j by I(j) = {i|S(i, j) ≥ 0} and that of a

woman at age i by J(i) = {j|S(i, j) ≥ 0}. For later reference define M to be the set of

couples (i, j) in R2 who are willing to match with each other, i.e. M = {(i, j)|S(i, j) ≥

0}. Shimer and Smith (2000) have defined assortative matching for the search context.

Definition 3.1 (Positive assortative matching). Consider any t, s > 0. There is posi-

tive assortative matching (PAM) if for any i and j such that i ∈ I(j+t) and i+s ∈ I(j),

we have i+ s ∈ I(j + t) and i ∈ I(j). �
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The left panel of figure 2 illustrates PAM. Its counterpart is negative assortative

matching:

Definition 3.2 (Negative assortative matching). Let t, s > 0. There is negative as-

sortative matching (NAM) if for any i and j such that i ∈ I(j) and i+ s ∈ I(j + t), we

have i+ s ∈ I(j) and i ∈ I(j + t). �

The second pattern of interest is the difference in marriage age between men and

women. In a typical marriage market, a man’s partner is of equal age or considerably

younger than him, but rarely much older, whereas the opposite is true for women.

Correspondingly, the bulk of marriages in figure 1 lie to the upper left of the 45-degree

line. The following definition captures this asymmetry (see figure 2, right).

Definition 3.3 (Differential age matching). Consider ages a and b such that 0 ≤ a ≤

b ≤ I, J . There is differential age matching (DAM) if b ∈ I(a) implies b ∈ J(a). �

From this definition it follows immediately that with DAM a man at age a either

marries only women younger than himself, or, if he does marry any woman at age

b > a, then a woman at age a marries men of age b or older as well. Similarly, a woman

of given age b either marries only men older than b, or else if a < b is in her matching

set, then a man at age b marries a woman at age a as well. Put differently, let i1 and

i2 be the lowest and highest age in I(a), and j1 and j2 the lowest and highest matching

age in J(a), for some 0 ≤ a ≤ I, J . Then either i2 < a for man a or j2 ≥ i2 ≥ a; i.e.

everyone in the man’s matching set is either younger than himself or at least younger

than the oldest match of a woman of the same age. Equivalently, for a woman b, either

j1 ≥ b or i1 ≤ j1 < b, that everyone in her matching set is older than herself or at least

older than the youngest match of a man of equal age.

If there is in addition positive assortative matching, then DAM means that a woman

at age a considers a set of men acceptable for marriage that is “older” than the set of

women that a man at the same age a considers acceptable.

12



Lemma 3.4. Suppose there is PAM. Then DAM implies that j1 ≥ i1 and j2 ≥ i2 for

any man and woman of the same age, that is, the woman’s set of partners is “older”

than the man’s. If all women’s matching sets are nonempty intervals, the converse is

also true.

Proof: Consider a man of age a. By the argument above we only need to argue the

case where i2 < a. Suppose j2 < i2. Since (i2, a) match, by DAM so do (a, i2), and

PAM then implies (a, a) marry as well. But this contradicts that i2 and j2 are the oldest

ages that woman a and man a marry. Now take a woman at age b. Again, we only

need to consider cases in which j1 ≥ b. Assume i1 > j1. Since (i1, b) marry, DAM and

PAM imply that (b, i1) and thus (b, b) match, too, contradicting that i1 and j1 are the

youngest partners of men and women at age b, respectively. For the converse, suppose

women’s partners are older than men’s, and consider b > a so that (b, a) marry. Since

j2 ≥ i2 ≥ b, (a, j2) also marry, and by PAM so do (a, a) and (b, j2). But then woman

a marries j2 ≥ b and a < b, so by convexity b ∈ J(a). �

The definition of differential age matching deliberately does not use average ages,

but provides a distribution-free characterization similar in spirit to the definition of

assortative matching by Shimer and Smith (2000). Note that DAM would be equivalent

to men marrying on average younger women if the distributions m and w were identical,

but of course the matching asymmetry will lead to different m and w. Nonetheless in

many cases DAM will be accompanied by a positive average age difference between

spouses. In general, DAM implies a positive average age gap if w(a)m(b) ≥ w(b)m(a)

for all a < b.10

10To see this note that the difference in average marriage age is a multiple of
∫ ∫

(j−

i)α(i, j)w(i)m(j)didj. The integral is weakly positive on the set of ages with α(a, b) =

α(b, a). But α(a, b) > 0 and α(b, a) = 0 can occur only if a < b, so the term as a whole

must be positive.
13



Figure 3.

There is PAM and DAM if matching sets are intervals including J for the women and

0 for the men (left; matching sets shaded grey). For the latter S(i, j) must be

decreasing for all i (middle). There is NAM if matching sets include J and I (right).

3.1. Interval Matching, Sorting, DAM, and Supermodularity

Before introducing the most general conditions for the matching patterns of interest,

this section discusses some simpler sufficient conditions which illustrate the issues at

hand.

A straightforward case in which there will be both positive sorting and differential age

matching is if the matching set of each woman is an interval that includes the oldest

men at age J , and each man’s matching set includes the youngest (age zero) women.

This is illustrated in figure 3 on the left. The figure shows the matching set M shaded

in grey (keep in mind in this context that the graphs in figure 1 show realized matches

between couples (i, j), which occur with a relative frequency of α(i, j)m(j)w(i)). It is

easily verified that the conditions for PAM and DAM both hold: for any (i, j) who

marry, all (i′, j′) with i′ ≤ i and j′ ≤ j match as well.

Now consider a man at age j: since his outside option H(j) is fixed, the shape of his

matching set depends on f(i, j)−V (i) as a function of i. If f −V is greater than H on

an interval of ages i, the matching set of j will be that interval. To get the matching

pattern in figure 3 on the left it is therefore sufficient that f −V is decreasing in i (fig.

3, middle), and f −H is increasing in j.
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Proposition 3.5 (Sufficient conditions for PAM and DAM). Suppose f is continuously

differentiable and satisfies

(DEi) fi(i, j) ≤ −λwθmax
y
f(i, y) for all i, j, and λw, and

(INj) fj(i, j) ≥ ρf(i, j) for all i and j.

Then there is PAM and DAM.

The right-hand side of (DEi) is a lower bound for V̇ (i) as long as maxy f(i, y) ≥ 0,

so that f − V is decreasing on all relevant (i, j) (where f(i, j) ≥ 0). (INj) ensures that

fj ≥ ρH(j) ≥ Ḣ(j) whenever f(i, j) ≥ H(j), implying that S(i, j) must be increasing

in j if it is positive. These conditions guarantee that each man’s matching set is either

empty or an interval including 0, and each woman’s matching set is either empty or an

interval including J , thus delivering PAM and DAM.

A necessary condition for proposition 3.5 is that f is decreasing in i and increasing

in j wherever f(i, j) ≥ 0, so that the match payoff must be maximal at f(0, J). (INj)

and (DEi) do however clearly not require supermodularity of f (they do not preclude

it either; note that a supermodular function which satisfies (DEi) at J and (INj) at

i = 0 will automatically satisfy them at all i and j).

Next, consider a different case. Suppose (INj) holds as before, but now its counterpart

for i,

(INi) fi(i, j) ≥ ρf(i, j) for all i and j.

holds instead of (DEi). S(i, j) is then increasing in i and j, and all matching sets are

intervals including the oldest age I or J (figure 3, right). This means there is now

negative sorting: if any (i, j) marry, then i marries any j′ > j and j matches with all

i′ > i as well.

Proposition 3.6 (Sufficient Conditions for NAM). Suppose f is continuously differ-

entiable and satisfies (INi) and (INj). Then there is negative assortative matching.
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The family of functions for which 3.6 applies is large. In particular, it includes many

standard supermodular production functions, for example all Cobb-Douglas functions

f = Aiajb with a
I
, b
J
≥ ρ.11 Dividing through by f(i, j), (INi) and (INj) say that there

is negative assortative matching whenever f increases at a percentage rate greater than

the discount rate. As ρ → 0, this holds for any increasing function whose derivatives

are bounded away from zero, and if f is supermodular it is sufficient that fi(i, 0) and

fj(0, j) are strictly positive. Last but not least, if f(i, j) = 1
ρ
g(i, j), i.e. f is the present

value of the flow payoff g, and g satisfies (INi) and (INj), so does f . What this means

in turn is that the payoff function in a market that does not exhibit negative sorting

– like the marriage market – cannot be a member of any of these function families.

For example, the marriage payoff function cannot be increasing at a significant rate in

both ages, unless individuals are very impatient.

The intuition for this result is straightforward. In a market with fixed productivity

types, supermodularity of f implies that positive sorting maximizes the overall output

of the economy. Since high types are best matched with other high types, low types

have to marry each other as well. Even with search frictions, the market outcome

approximates this matching pattern if some additional conditions are satisfied. If f

instead depends on age and is increasing in both arguments, as required for prop. 3.6,

payoff is maximal at the highest ages (I, J), and it is again optimal if high types, i.e.

old ages, match with each other. However, this does not imply that young couples

should marry: on the contrary, both sides optimally wait until they are older, and the

youngest men and women do not marry at all. This leads to a matching pattern as in

figure 3 and therefore negative sorting.

It is possible to generalize the above conditions further, and this is done in the next

section. But first I will introduce another approach to age sorting that follows Shimer

and Smith (2000). They show that there is PAM (NAM) if the matching sets I(·) and

11Cobb-Douglas functions also satisfy the log supermodularity conditions in Shimer

and Smith (2000).
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J(·) are nonempty intervals, M is closed12, and there is “matching in the corners”, that

is, the couples (0, 0) and (I, J) marry ((0, J) and (I, 0) for NAM).

Since S(i, j) is continuous, the preimage of R+
0 under S, that is M, is closed. Moreover,

it is easy to guarantee that (I, J) marry each other: all that is required is f(I, J) ≥

V +H, i.e. marrying at the last possible ages is preferred to being single forever. The

two remaining conditions need a little more work.

The first step are conditions under which all matching sets are convex and nonempty.

From here on assume that f is twice differentiable.13 Before I showed that all matching

sets are intervals if S(i, j) = f(i, j)−V (i)−H(j), or equivalently, f −V , is monotonic

in i. Now consider a man at age j and suppose f − V is quasi-concave in i. Then j’s

matching set will be again an interval of ages i, except this time it need not include

0 or I. The following conditions (A·) will be shown to guarantee quasi-concavity of

S(i, j) in i and j, respectively:

fii(i, j) ≤ λwθmin
y
{fi(i, j)− fi(i, y)}+ ρfi(i, j) for all i and λw(Ai)

fjj(i, j) ≤ λm(1− θ) min
x
{fj(i, j)− fj(x, j)}+ ρfj(i, j) for all i.(Aj)

Equation (Ai) is an assumption on the curvature of f in i. The first term of the right-

hand side depends on the variation of fi in j, and it must be (weakly) negative, so that

for patient agents with ρ → 0 the condition is a strengthening of concavity of f in i

((A·) is a mnemonic for concAve).

Claim 1: Suppose that for all i on an interval (i1, i2), (Ai) holds for any λw, and

fi(i, j)− V̇ (i) ≤ 0. Then fi(i2, j)− V̇ (i2) ≤ fi(i1, j)− V̇ (i1).

The claim essentially says that f − V will be concave in i whenever it is decreasing,

as long as f itself is “concave enough” in i. This should be understood in relative

12This is equivalent to their original condition of upper hemicontinuity of the match-

ing correspondence I(j) or J(i), since the domain is compact.
13This can be relaxed to differentiability almost everywhere.
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terms: fii may be positive if ρ and fi are large and fi varies only little in j. (Aj) is the

equivalent of (Ai) for the men’s side, and a parallel statement to Claim 1 applies.

Lemma 3.7 (Single-peaked S(i, j)). Suppose for a given men’s age j, (Ai) is true for

all i. Then j’s matching set is a closed interval. Equivalently, if (Aj) holds for all j,

then i’s matching set is a closed interval.

The proof uses Claim 1 to show that whenever f(i, j)− V (i) is strictly decreasing at

i′, it will also be decreasing at all consecutive ages i′′ > i′, implying that S(i, j) is a

single-peaked function and therefore quasi-concave in i (and vice versa for f −H).

Next, to ensure that no matching sets are empty we need

Lemma 3.8 (Nonempty matching sets). Suppose f(i, j) is either nonincreasing in i

or in j for all (i, j), the matching sets are convex and (0, 0) and (I, J) match. Then

all individuals have nonempty matching sets.

Consider the women’s market side: this result stems from the observation that the

surplus from an age i’s best match forms an upper bound to the change in her outside

option at that point. All lower ages in the vicinity of i will therefore also match with

this best match. Put differently, if the payoff from marriage is decreasing in i for all j,

then there must be at least one j whom the age i woman would prefer to marry today

rather than tomorrow. The women’s matching sets are nonempty, and the union of

those sets, M, is (path)connected. If (0, 0) also marry and i = 0 has a convex matching

set, all matching sets must be nonempty. The same argument in reverse holds for the

men’s side.

Lemma 3.8 makes clear that the requirement of nonempty matching sets is here

an actual restriction, unlike in Shimer and Smith, where symmetry ensures that all

types match with themselves. It turns out that the requirement that (0, 0) marry is

demanding as well. Suppose for instance that f is decreasing in j so that all j have

nonempty matching sets. Then (0, 0) can be guaranteed to marry if f(i, 0) − V (i) is

decreasing, i.e. if (DEi) holds at j = 0. Equivalently, if the j have nonempty matching
18



sets then

(DEj) fj(i, j) ≤ −λm(1− θ) max
x

f(x, j) for all j and λm.

must hold at i = 0. But these requirements are fairly strong; a necessary condition for

both is for instance that f(0, 0) is the maximal possible marriage payoff.

Proposition 3.9. Suppose (Ai) and (Aj) hold and (I, J) marry. If f is decreasing in

i and (DEj) holds for i = 0, or if f is decreasing in i and (DEi) holds for j = 0, so

that (0, 0) match, there is positive assortative matching.

As in the previous set of conditions, however, supermodularity plays no direct role for

positive sorting, and no log-supermodularity conditions are needed. From a technical

perspective, this difference arises because the derivative of the value function in Shimer

and Smith (2000) is nonlinear in the endogenous type distribution. Quasi-concavity

then requires a single-crossing argument that relies on log-supermodularity. By con-

trast, Ḣ and V̇ are linear in the singles distribution, making quasi-concavity easier to

achieve, a property this model shares with Atakan (2006).14

On a more intuitive level, the difference lies in the fact that time or age can change

the value of search. The productivity types x and y are defined by the production

function f(x, y), and if the types are relabeled, e.g. with a new production function

g(x, y) = f(1−x, 1−y), the economy remains essentially the same. Agents of different

types are only connected by the fact that they are searching in the same market.

By contrast, there is a natural link between different ages. Ages i′ > i and j′ > j

enter the value functions of a couple (i, j) because they are part of their future. The

model is fundamentally asymmetric in that old and young cannot be interchanged.

Most importantly, young men and women can transform themselves into older persons

simply by waiting. At early ages, both partners have all opportunities in this market

still ahead of them, so it may be profitable for patient agents to wait until a later age

and marry for a higher net surplus, even if the current marriage payoff given by f is

14I thank an anonymous referee for pointing this out to me.
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high. Conversely, even “good types” with high current payoffs from f may be willing

to make a “bad match” if their payoff function deteriorates quickly with age and the

value of further search is low.

3.2. General Conditions for Positive and Negative Sorting

In the previous section I did not introduce the most general conditions possible for

NAM and PAM. To begin with, it was noted that there is PAM if the women’s matching

sets are intervals including J and the men’s are intervals including 0. But there will

also be positive sorting (although not DAM) if the opposite holds, namely if the men’s

matching sets are convex and include I, and the women’s matching sets are intervals

including 0. Similarly, there is NAM if both the men’s and the women’s matching sets

are intervals including age 0.

In addition, it is possible to relax the conditions on f for decreasing and single-peaked

f − V and f −H themselves. As a first step, define conditions

fii(i, j) ≥ λwθmax
y
{fi(i, j)− fi(i, y)}+ ρfi(i, j)(Xi)

fjj(i, j) ≥ λm(1− θ) max
x
{fj(i, j)− fj(x, j)}+ ρfj(i, j)(Xj)

Claim 2: Suppose that for all i on an interval (i1, i2), (Xi) holds for any λw, and

fi(i, j)− V̇ (i) ≥ 0. Then fi(i2, j)− V̇ (i2) ≥ fi(i1, j)− V̇ (i1).

(Xi) is the counterpart to (Ai). Now strong enough convexity of f ensures that f −V

is convex (but again note the relative quality of the statement, as fii may still be

negative). (Xj) is again the same condition for the men’s side (the equation labels

stand for conveX). The next lemma uses (Xi) and (Xj) as part of conditions under

which f(i, j)−V (i) (f(i, j)−H(j)) is decreasing everywhere, so that all matching sets

are intervals including age 0.

Lemma 3.10 (Decreasing S(i, j)). Suppose the equivalent of (DEi) holds at i = I,

that is

fi(I, j) ≤ −λwθmax
y

[f(I, y)− V ] for all λw,

20



and either (DEi) or (Xi) holds for any i ∈ [0, I). Then an age j man’s matching set is

a closed interval starting at 0. Similarly, if

fj(i, J) ≤ −λm(1− θ) max
x

[f(x, J)−H] for all λm,

and either (DEj) or (Xj) holds on j ∈ [0, J), then the matching set of age i is a closed

interval starting at 0.

Proof: Fix j. f − V is decreasing at I and at all i where (DEi) holds. Now assume

by contradiction that f(i, j)−V (i) is not decreasing everywhere and let i1 be such that

fi(i1, j)− V̇ (i1) > 0. By continuity there must be i > i1 such that fi(i, j)− V̇ (i) = 0.

Let i2 be the smallest such i, so that fi(i, j) − V̇ (i) > 0 for all i ∈ [i1, i2). Since

(Xi) holds, claim 2 applies, and we have 0 = fi(i2, j) − V̇ (i2) ≥ fi(i1, j) − V̇ (i1), a

contradiction. �

For any subinterval on which (Xi) holds, (DEi) “anchors” fi − V̇ below zero at the

endpoint of the interval. But by (Xi) f is convex whenever it is weakly increasing, so

fi − V̇ cannot cross over into positive values and the payoff function must be falling

everywhere.

(Xi) can be substantially less demanding than (DEi) when there is little variation

in fi across j.15 Assume for example that f(I, j) ≤ V and fi is invariant in j. Then

(Xi) only requires that f is weakly convex, and as a direct corollary from proposition

3.5 we get that any f(i, j) = g(i) + h(j) with h′(j) > 0, g′(i) ≤ 0 and g′′(i) ≥ 0 will

exhibit PAM and DAM if agents are patient enough. Borrowing from the literature on

the marriage age difference mentioned in the introduction, an example could be that

the woman’s aging imposes a convex cost on the marriage, perhaps as a consequence

of the woman’s decline in “fitness” or fecundity, but that the value of the partnership

increases with the man’s rising labor market success. Lemma 3.10 also relaxes the

condition needed in proposition 3.9 to ensure that (0, 0) marry.

15An equivalent to this lemma for increasing S(i, j) is possible using (Ai) (see earlier

versions of this paper); but for ρ→ 0 (Ai) implies (INi).
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The next corollary quite literally pieces all the previous findings on the shape of S(i, j)

together into a general condition for a single-peaked surplus function S(i, j). Suppose

for instance the condition (Ai) from proposition 3.7 is satisfied on an interval from age

0 to i1, and condition (DEi) holds for all i > i1. Above i1, S(i, j) must be decreasing

in i, and below it is concave in i whenever it is decreasing (Claim 1), so the function

can be at most single-peaked. Taking this further, if (INi) holds initially S(i, j) must

be first increasing, then may turn downwards while (Ai) applies, and finally will be

decreasing for sure under (DEi).

Corollary 3.11 (Single-peaked S(i, j)). Suppose that there exist i1 and i2 so that (Ai)

is true for all i ∈ [i1, i2], (INi) holds below i1, and the conditions of lemma 3.10 for the

women’s side apply for (i2, I]. Then j’s matching set is a closed interval. Equivalently,

if (INj) holds below some j1, (Aj) holds on [j1, j2], and the conditions of 3.10 for the

men’s side apply on (j2, J ], then i’s matching set is a closed interval.

This proposition subsumes the previous conditions for interval matching, since i1 and

i2 may equal 0 and I, and j1 and j2 can be 0 or J .

Now the conditions for positive assortative matching can be generalized as follows.

Corollary 3.12 (Positive assortative matching). There is PAM if

(1) (IN ·) holds for one market side and the conditions in lemma 3.10 (decreasing

S(i, j)) hold for the other; or

(2) the conditions in lemma 3.10 hold for one market side, those in corollary 3.11

(single-peaked S(i, j)) hold for the other, and f(I, J)−V −H ≥ 0, so that (I, J)

match; or

(3) corollary 3.11 applies for i and j so that all matching sets are convex, f(i, j) is

decreasing in i (or j), and (I, J) and (0, 0) match.

Both (1) and (2) imply that one market side’s matching sets include age 0, and

the other side’s include I or J . To see this for (2), suppose the surplus function is

decreasing in i only, so that the men’s matching sets are convex and include 0 (lemma
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3.10 holds for the women’s side). If f(I, J) ≥ V + H and the women’s matching sets

are convex, there will be PAM, since J marries I and therefore all i, and convexity then

means that the women’s matching sets are intervals including J . The same argument

holds with the two market sides exchanged. Part (3) uses corollary 3.11 to generalize

proposition 3.9.

Parts (2) and (3) of the corollary rely on “matching in the corners” at (0, 0) and (I, J).

To make similar arguments for NAM, it would have to be ensured that (0, J) and (I, 0)

marry. This is a demanding condition, and it appears that it can only be guaranteed

if V = H = 0 and f(0, J) = f(I, 0) = max f (since V (0) and H(0) are bounded

by max f). This conflicts with a decreasing payoff function needed for nonempty and

convex matching sets. The generalization of proposition 3.6 is therefore more limited,

demonstrating again that the constraints on matching in the corners together with the

requirement of nonempty matching sets are quite strong in this setting.

Corollary 3.13 (Negative assortative matching). There is NAM if

(1) (INi) and (INj) hold for all i and j, or

(2) the conditions in lemma 3.10 (decreasing S(i, j)) hold for all i and j.

3.3. The Age Difference Between Couples

In addition to assortative matching, I would like to identify a set of conditions that is

sufficient for DAM and compatible with the conditions for positive assortative match-

ing. From figure 3 (left) and parts (1) and (2) of corollary 3.12 above it is clear that

there is a way to immediately get the desired result: if the conditions in 3.10 (de-

creasing S(i, j)) hold for the women’s side, so that men’s matching sets are intervals

including zero, and either (INj) holds for the men or the conditions in corollary 3.11

apply and I ∈ I(J), so that all women’s matching sets are convex and include J , there

will be not only PAM but also DAM.

For completeness, however, let us also consider conditions for DAM that do not

require matching at the youngest or oldest ages. Take any two ages 0 ≤ a < b ≤ I, J .
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Differential age matching is guaranteed whenever f(b, a) − V (b) − H(a) ≥ 0 implies

f(a, b) − V (a) − H(b) ≥ 0. That is the case if f(a, b) − f(b, a) − (V (a) − V (b)) ≥

H(b)−H(a), or equivalently either∫ b

a

fj(b, y)− Ḣ(y)dy ≥
∫ b

a

fi(x, b)− V̇ (x)dx for all x, y < b, or∫ b

a

fj(a, y)− Ḣ(y)dy ≥
∫ b

a

fi(x, a)− V̇ (x)dx for all x, y > a.

This requires that for a man and a woman of the same age, with spouses in the same age

ranges, the surplus from marriage falls faster (or rises less fast) in the female spouse’s

age than in the male spouse’s age. If this conditions holds the surplus between an old

man and a young woman is higher than between a young man and old woman at the

same ages. Thus, if it is known that fi(·, c)− V̇ (·) ≤ δ ≤ fj(c, ·)− Ḣ(·) for some δ and

all possible i, j > c (or all i, j < c), there must be differential age matching. The next

lemma guarantees just that. For given age c, consider the following conditions:

fi(i, c) + δ ≤ −λwθmax
y
f(i, y)(DEi’)

fii(i, c) ≥ max{0;λwθmax
y

[fi(i, c) + δ − fi(i, y)}+ ρ(fi(i, c) + δ)(Xi’)

fj(c, j) + δ ≥ ρf(i, j)(INj’)

fjj(c, j) ≤ min{0;λm(1− θ) min
x

[fj(c, j) + δ − fj(x, j)]}+ ρ(fj(c, j) + δ).(Aj’)

Comparing them with (DEi), (Xi) etc. shows that they are the same, except for an

additional “wedge” of −δ added to the first derivatives. However, δ can be positive

or negative, so that the new equations may be more or less demanding than the old

ones (and of course each of the conditions needs to hold only on a subset of (i, j)). For

example, even if (DEi’) and (INj) hold, f may be increasing in i or decreasing in j,

respectively.

Lemma 3.14. Let 0 ≤ c ≤ I, J .
24



(1) Suppose there exists δ such that (DEi’) holds at I and either (DEi’) or (Xi’)

are satisfied for all other i ∈ [c, I); and (INj’) holds at J and either (INj’) or

(Aj’) is satisfied for all j ∈ [c, J). Then fj(c, j) − Ḣ(j) ≥ δ ≥ fi(i, c) − V̇ (i)

for all i, j ≥ c.

(2) Alternatively, suppose (DEi’) holds at i = c and either (DEi’) or (Xi’) are

satisfied for all other i ∈ [0, c); and (INj’) holds at c and either (INj’) or (Aj’)

is satisfied for all j ∈ [0, c). Then fj(c, j) − Ḣ(j) ≥ δ ≥ fi(i, c) − V̇ (i) for all

i, j < c.

Now I can state:

Proposition 3.15 (Differential age matching). There is DAM if either

(1) the conditions in 3.10 (decreasing S(i, j)) hold for the women’s and (INj) for

the men’s side,

(2) the conditions in 3.10 hold for the women, those in corollary 3.11 (single-peaked

S(i, j)) hold for the men, and I ∈ I(J), or

(3) for any age c there is δc so that one set of conditions in lemma 3.14 holds.

Importantly, all sets of conditions in proposition 3.15 are compatible with PAM. This

is immediate for (1) and (2). The requirements in (3) may be combined with the

conditions in corollary 3.11 to obtain convex matching sets. With δc greater than zero,

f may be decreasing in j, so that the matching set is connected and every I(j) is

nonempty.

3.4. An Example

To show that the requirements for positive sorting and differential age matching are

satisfied under plausible preferences, I give an example of a marriage payoff function

that is explicitly derived from the assumption that marriage is a precondition for

(legitimate) children, and that life, or the fertile period of life, is finite and women’s

fecundity declines with age.
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Suppose the couple receives a payoff with present value Π from having a child. The

man’s fertility ends with certainty at J and the woman’s at I, and their outside options

V and H at that date equal zero. At any age the woman has a uniform probability of

losing fecundity, modeled by an exponential distribution with parameter γ. Conditional

on being married and fecund, the probability of conceiving is time independent, so that

the arrival rate of a child is again exponentially distributed with parameter β. Given

the woman’s age at marriage i, the density function of conceiving at i + t is thus the

probability for not having lost fecundity at that date (fecundity loss occurs at a date

after i + t), times the conditional density of conception: exp(−γ(i + t)) · β exp(−βt).

The expected discounted payoff from marriage at ages (i, j) of the woman and the man

at marriage is then

f(i, j) = Πβe−γi
∫ T

0

e−(γ+β+ρ)tdt

where T = I − i if i > j, and T = J − j if J − j ≤ I − i.

Note first that all propositions continue to hold even though f(i, j) is not differentiable

at I − i = J − j. Everywhere else, the first and second derivative with respect to j are

either both zero if J − j > I − i, or

fj(i, j) = −Πβe−γie−(γ+β+ρ)(J−j) ≤ 0 and fjj(i, j) = (γ + β + ρ)fj(i, j).

This means if γ + β ≥ λm(1 − θ), (Aj) holds everywhere, and the women’s matching

sets are convex (even though (DEj) may not be satisfied). Moreover, f(I, J) = 0, so

I and J marry. Lastly, the first derivative with respect to i is equal to −γf(i, j) if

I − i > J − j, and strictly less than that if the woman’s infertile age will occur sooner

than the man’s, i.e. I − i ≤ J − j. In both cases (DEi) is satisfied if γ ≥ λwθ. In other

words, there will be both PAM and DAM if γ + β is relatively high and the product

of meeting rate and bargaining share is low. Since the incidence of infertility (γ) must

be low relative to the incidence of conception (β), these conditions are more likely to

be satisfied if θ, the woman’s bargaining power, is small.
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This example demonstrates that PAM and DAM can arise from a very simple set of

assumptions about marriage preferences. More realistic payoff functions will also ac-

count for the effect of marriage on the partners’ lifetime incomes, as well as the benefits

to companionship, mutual insurance, or gains from specialization. The conditions in

this paper provide a direct check if such preferences are consistent with the matching

patterns observed in most marriage markets.

4. Conclusion

This paper studies a search model in which preferences depend on the age of both

partners at the time of matching. The model is most relevant for the marriage market,

but can also apply e.g. in contexts of skill loss and acquisition in the labor market.

The first result is a set of sufficient conditions on the slope and curvature of the

marriage payoff function under which there is assortative matching by age. It is shown

that super- or submodularity are not necessary for positive sorting by age, and that

many supermodular functions in fact lead to negative sorting. The discussion highlights

that the requirements of matching at (0, 0) and nonempty matching sets, needed for

assortative matching following the argument of Shimer and Smith (2000), can be quite

restrictive in the context of age-dependent preferences.

As its second result the paper defines differential age matching and shows that DAM

and PAM imply that men match with a younger set of partners than women of the

same age. It then provides conditions under which the marriage surplus declines faster

in a female than a male spouse’s age, leading to DAM. By way of example it is shown

that assortative matching and DAM can plausibly arise as a consequence of a simple

marriage payoff function which models the decline in fecundity with age.

Beyond the contribution to the theory of search and matching, the results of this paper

may be of use for the empirical identification of search models with age preferences. A

promising direction for future research would be a search model that allows for fully

general preferences over invariant characteristics as well as age.
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Omitted Proofs

Proofs Section 3

Derivation of the value function: Let p(n, dt) denote the probability of meeting

n potential marriage partners in period dt, and Vn(i+ t) the expected value of such n

meetings at the time of the first meeting i+ t. We have

V1(i+ t) =

∫ J

0

θmax {S(i+ t, y), 0}m(y)dy + V (i+ t).

The value of search for a woman at age i is, for any dt > 0,

V (i) = p(1, dt)Et(e
−ρtV1(i+t))+

∞∑
n=2

p(n, dt)Et(e
−ρtVn(i+t))+

(
1−

∞∑
n=1

p(n, dt)

)
e−ρdtV (i+dt)

where ρ is the discount rate and the expectation is formed over possible meeting times

0 < t < dt. In a Poisson process with parameter λ, 1
dt

∑∞
n=2 p(n, dt) goes to zero and

p(1, dt)→ λ as dt→ 0, so that

V̇ (i) = lim
dt→0

V (i+ dt)− V (i)

dt
= −λw(r)θ

∫ J

0

max{S(i, y), 0}m(y)dy + ρV (i).

Proof of Theorem 2.2: The proof uses the following version of the Eilenberg-

Montgomery fixed point theorem (Granas and Dugundji (2003), ch. 19, corollary 7.5):

Theorem. Assume that K is an absolute retract. Then any compact acyclic map T

of K into itself has a fixed point.

An acyclic map is a correspondence whose values are compact, upper hemi-continuous,

and acyclic. The proof constructs a map T described by the functions 2.1-2.2 and 2.3

and 2.5 and then verifies the conditions of the theorem.

Notation: For any functions h(x) and g(x, y), let h̄ = supx h(x) and ḡ = sup(x,y) g(x, y)

(on their respective domains). Similarly, let h = infx h(x) and g = inf(x,y) g(x, y) re-

spectively. These are taken to mean the max and min whenever they exist.

Let K be the product V × H × W ×M with function tuples k = (V,H,w,m) as

elements. V is the set of continuous functions on [0, I], bounded below by zero and
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above by f . Equivalently, H are the sets of continuous functions on [0, J ] bounded by

zero and f . W (M) are the continuous functions on [0, I] ([0, J ]), bounded by

w =
1

I
e−λ̄wI and w =

λ̄w

1− e−λ̄wI

m =
1

J
eλ̄mJ and m =

λ̄m

1− e−λ̄mJ

The mapping T is defined as follows. Let T [(V,H,w,m)] = (V̂ , Ĥ, ŵ, m̂). ŵ(i) and

m̂(j) equal the right-hand sides of (2.1) and (2.2); V̂ (i) and Ĥ(j) are given by

V̂ (i) = max

{
0, λw(r)θ

∫ I

i

∫ J

0

max {0, f(x, y)− V (x)−H(y)}m(y)dy − ρV (x)dx+ V

}
Ĥ(j) = max

{
0, λm(r)(1− θ)

∫ J

j

∫ I

0

max {0, f(x, y)− V (x)−H(y)}w(x)dx− ρH(y)dy +H

}

For any given k, denote the set of (i, j) where f(i, j) − V (i) − H(j) = 0 by Ak

and let Āk = [0, I] × [0, J ]\Ak. For short, also define Ak(i) = Ak ∩ ([0, i] × [0, J ])

and Āk(i) = Āk ∩ ([0, i] × [0, J ]). Finally, define α(i, j) to be 0 whenever S(i, j) < 0

and 1 if S(i, j) > 0, and let α(Ak) = c be a constant between 0 and 1. In other

words, α describes a particular mixed strategy in which all couples who are indifferent

between marrying and not marrying randomize in the same way. Note that T (k)|V= V̂

and T (k)|H= Ĥ are singletons for any k. T (k)|W and T (k)|M, on the other hand,

may be sets of functions ŵ and m̂ if Ak is a set with nonzero measure: in this case,

some couples may choose mixed strategies. These sets are described by varying c

continuously between 0 and 1.

Step 1: Endow K with the norm implied by the metric d(k1, k2) =

max(f∈{V,H,w,m}) [supx |f1(x)− f2(x)|]. Each of the function spaces constituting K is

closed and convex, so that K inherits those properties. A convex subset of a normed

linear space is an absolute retract.

Step 2: T is compact if its image is contained in a compact subset ofK. It is sufficient

to prove that the image of T on each subspace of K is a bounded, equicontinuous set,
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and has therefore a compact closure by the Arzelà-Ascoli theorem16. The product

C of these closures is compact (Tychonoff), and T (K) ⊂ C. We therefore consider

V̂ (i) and ŵ(i) separately (with the equivalent proofs for Ĥ(j) and m̂(j) omitted). It

is easily verified that they lie in V and W respectively, so we are left with proving

equicontinuity. For any (V,H,w,m) we have∣∣∣V̂ (i1)− V̂ (i2)
∣∣∣ =

∣∣ ∫ i2

i1

λw(r)θ

∫ J

0

max {0, f(x, y)− V (x)−H(y)}m(y)dy − ρV (x)dx|

≤ λ̄wθf̄ |i1 − i2|

Therefore |i1 − i2| < 1
λ̄wθf̄

ε implies
∣∣∣V̂ (i1)− V̂ (i2)

∣∣∣ < ε, for all V̂ ∈ T (K)∩V . Similarly,

|ŵ(i1)− ŵ(i2)| = ŵ(i1)

∣∣∣∣1− exp

(∫ i2

i1

λw(r)

∫ J

0

α(x, y)m(y)d(y)dx

)∣∣∣∣
≤ w

∣∣1− exp(−λ̄w |i1 − i2|)∣∣
This implies that |ŵ(i1)− ŵ(i2)| < ε whenever

|i1 − i2| <
1

λw
ln
(

1− ε

w

)
,

for all ŵ ∈ T (K) ∩W .

Step 3: Consider any ŵ in T (k)|W . There must be an α and c such that

(A.1) ŵ(i) =
e
−λw( w(0)

m(0))
(∫

Āk(i)α(x,y)m(y)d(x,y)+
∫
Ak(i)α(x,y) m(y)d(x,y)

)
∫ I

0
e
−λw( w(0)

m(0))
(∫

Āk(u)α(x,y)m(y)d(x,y)+
∫
Ak(u)α(x,y) m(y)d(x,y)

)
du
.

Observe that α is uniquely defined to be either 1 or 0 on Āk, and that α(x, y) = c on

Ak is unique as well (consider ŵ(0)). ŵ is continuous in c. Now let g(i, j, t) be defined

as follows:

g(i, j, t) =

 (1− t)c+ t if (i, j) ∈ Ak

α(i, j) else

16More precisely, by Arzelà-Ascoli a set of functions on a metric space is relatively

compact if it is bounded and uniformly equicontinuous, and a relatively compact set

has a compact closure. An equicontinuous set of functions is uniformly equicontinuous

if its domain is compact (see Ok (2007) p. 262-64).
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and define a function F : T (k)|W ×[0, 1]→ T (k)|W where F (ŵ, t)(i) is given by (A.1),

except that α(x, y) is replaced by g(x, y, t). Then F (ŵ, 0) = ŵ and F (ŵ, 1) is identical

for the entire set T (k)|W . This means T (k)|W is contractible and therefore acyclic, and

the same argument can be made for T (k)|M. Together this implies that T has acyclic

values.

Step 4: T is compact-valued: consider a convergent sequence k̂n ∈ T (k) with limit

k̂. There exists a sequence cn such that α(Ak) = cn for each k̂n and α(Ak) = c for

k̂, given w, m. Moreover, cn → c. But c must converge to a point in [0, 1], and this

implies k̂ ∈ T (k).

Step 5: Last I have to show that T is upper hemicontinuous. Consider a sequence

kn → k in K and let k̂n ∈ T (kn). Since the closure of T (K) is compact, k̂n has a

convergent subsequence; w.l.o.g. let it be k̂n. I need to show that this limit point lies in

T (k). First, let kn such that d(kn, k) = δ and denote V̂ n = T (kn)|V and V̂ = T (k)|V .

Now

∣∣∣V̂ n(i)− V̂ (i)
∣∣∣ ≤ |λw(rn)− λw(r)| Iθf̄

+Iλ̄wθf̄

∫ J

0

|mn(y)−m(y)| dy

+

∫ I

i

λ̄wθ

∫ J

0

m2(y) |V (x) +H(y)− V n(x)−Hn(y)| dydx

+ρ

∫ I

i

|V n(x)− V (x)| dx

≤
∣∣∣∣λw (wn(0)

mn(0)

)
− λw

(
w(0)

m(0)

)∣∣∣∣ Iθf̄ +
[
IJλ̄wθf̄ + 2Iλ̄wθ + ρI

]
δ

Since λw is continuous, for any ε there exists a small enough δ such that
∣∣∣V̂1(i)− V̂2(i)

∣∣∣ <
ε. Thus, V̂ n → V̂ and by a similar argument, Ĥn → Ĥ.
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In the same manner, let ŵn = kn|W and ŵ ∈ T (k)|W . Calling the numerator of (2.1)

φ(i) and the denominator Φ for short, we have

|ŵn(i)− ŵ(i)| =

∣∣∣∣φn(i)

ΦnΦ
(Φ− Φn) +

1

Φ
(φn(i)− φ(i))

∣∣∣∣
≤ w

2 |Φ− Φn|+ w |φn(i)− φ(i)|

≤
(
w

2
I + w

)
max
i
|φn(i)− φ(i)|

But maxi |φn(i)− φ(i)| is at most

max
i

∣∣∣∣1− exp

(∫ i

0

(
λw(r)

∫ J

0

α(x, y)m(y)dy − λw(rn)

∫ J

0

αn(x, y)mn(y)dy

)
dx

)∣∣∣∣

The expression in the exponent is bounded by

|λw(rn)− λw(r)|+ λ̄wIJ |m(y)−mn(y)|+
∫ I

0

∫ J

0

Iα(x,y)6=αn(x,y)m(y)dydx.

Thus, ŵ is a limit point of ŵn, provided that the size of the set of (i, j) at which the

signs of Sn(i, j) and S(i, j) differ shrinks to zero. But note that for any (i, j) ∈ Āk, since

S(i, j)n → S(i, j) 6= 0, there must be an n such that sign(S(i, j)n) = sign(S(i, j)).

If Ak has measure zero, we are done. Otherwise, for any (i, j) ∈ Ak there must be a

convergent sequence α(i, j)n → α, or else ŵn could not converge. But then there must

be some ŵ ∈ T (k)|W such that c = α on Ak, and this ŵ is the limit point of ŵn. The

same argument holds for m̂n. �
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Proofs Section 4

Proof of Claim 1 (p. 17): Using the value function equation (2.3),

V̇ (i2)− V̇ (i1) = λwθ

∫ J

0

[α(i1, y)− α(i2, y)][f(i1, y)− V (i1)−H(y)]m(y)dy

+ λwθ

∫ J

0

α(i2, y)[V (i2)− V (i1)− (f(i2, y)− f(i1, y))]m(y)dy + ρ(V (i2)− V (i1))

≥ λwθ

∫ J

0

α(i2, y)

[∫ i2

i1

(
V̇ (x)− fi(x, y)

)
dx

]
m(y)dy + ρ

∫ i2

i1

V̇ (x)dx

≥ λwθ

∫ J

0

α(i2, y)

[∫ i2

i1

(fi(x, j)− fi(x, y)) dx

]
m(y)dy + ρ

∫ i2

i1

fi(x, j)dx

≥
∫ i2

i1

fii(x, j)dx = fi(i2, j)− fi(i1, j).

The first inequality holds because the terms [α(i1, y)−α(i2, y)] and [f(i1, y)− V (i1)−

H(y)], if not zero, must have the same sign under optimal matching behavior. The

second inequality follows since for all x ∈ [i1, i2], V̇ (x) ≥ fi(x, j).The last step comes

from (Ai) (note that miny{fi(i, j)−fi(i, y)} ≤ 0). But this means that fi(i2, j)−V̇ (i2) ≤

fi(i1, j)− V̇ (i1). �

Proof of Claim 2 (p. 20):

V̇ (i2)− V̇ (i1) = λwθ

∫ J

0
[α(i1, y)− α(i2, y)] [f(i2, y)− V (i2)−H(y)]m(y)dy

− λwθ
∫ J

0
α(i1, y) [f(i2, y)− f(i1, y)− (V (i2)− V (i1))]m(y)dy + ρ(V (i2)− V (i1))

≤ λwθ

∫ J

0
α(i1, y)

[∫ i2

i1

(V̇ (x)− fi(x, y))dx

]
m(y)dy + ρ

∫ i2

i1

V̇ (x)dx

≤
∫ i2

i1

fii(x, j)dx = fi(i2, j)− fi(i1, j),

and therefore fi(i1, j)− V̇ (i1) ≤ fi(i2, j)− V̇ (i2). �

Proof of Lemma 3.8: Define a function S∗(i) = maxj f(i, j) − V (i) − H(j) for

i ∈ [0, I] and constant at S∗(0) for all i < 0, with the arg max denoted by j∗(i). Since

f , V and H are continuous, so is S∗. Assume that for some i′′, J(i′′) is nonempty. Now

suppose there exists an i < i′′ such that S∗(i) < 0. There must be an i′ ∈ (i, i′′) such
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that S∗(x) ≤ 0 for all x ∈ [i, i′] and S∗(i′) = 0. But then

V (i′)− V (i) = −λwθ
∫ i′

i

∫ J

0

α(x, y) [f(x, y)− V (x)−H(y)]m(y)dydx+ ρ

∫ i′

i

V (x)dx

≥ −λwθ
∫ i′

i

max{0, S∗(x)}dx+ ρ

∫ i′

i

V (x)dx ≥ 0.

Since f is decreasing in i, this means that f(i, j∗(i′))−V (i)−H(j∗(i′)) ≥ f(i′, j∗(i′))−

V (i′)−H(j∗(i′)) = S(∗(i′)) = 0; in other words, j∗(i′) must be in the matching set of

i (as well as all x). The connecting path for M is given by S∗(i)× i. �

Proof of Proposition 3.9: Suppose fi(i1, j) − V̇ (i1) < 0, but there exists an

i > i1 such that fi(i, j) − V̇ (i) > 0. There must be a point between i1 and i with

fi(i, j) − ˙V (i) = 0; let i2 be the smallest of them. By claim 1, fi(i2, j) − V̇ (i2) ≤

fi(i1, j)− V̇ (i1) < 0. �

Proof of Lemma 3.14: Hold j fixed at a. (DEi’) directly bounds fi(i, a)−V̇ (i) ≤ δ.

Suppose by contradiction that there is an i1 such that fi(i1, a) − V̇ (i1) > δ. Let i2

be the smallest i > i1 such that fi(i, a) − V̇ (i) = δ. Then V̇ (x) ≤ fi(x, a) − δ for all

x ∈ [i1, i2]. By an analog argument to that for claim 2,

V̇ (i2)− V̇ (i1) ≤ λwθ

∫ J

0
α(i1, y)

[∫ i2

i1

(V̇ (x)− fi(x, y))dx

]
m(y)dy + ρ

∫ i2

i1

V̇ (x)dx

≤ λwθ

∫ J

0
α(i1, y)

[∫ i2

i1

(fi(x, a)− δ − fi(x, y))dx

]
m(y)dy + ρ

∫ i2

i1

(fi(x, a)− δ)dx

≤
∫ i2

i1

fii(x, a)dx = fi(i2, a)− fi(i1, a)

and therefore fi(i1, a)−V̇ (i1) ≤ fi(i2, a)−V̇ (i2) = δ; contradiction. Similarly, let i = a.

(INj’) bounds fj−Ḣ above δ. Suppose that there is an j1 such that fj(a, j1)−Ḣ(j1) < δ.

Let j2 be the smallest age above j1 at which fj(a, j) − Ḣ(j) = δ. Then by a similar

argument

Ḣ(j2)− Ḣ(j1) ≥ λm(1− θ)
∫ I

0
α(x, j2)

[∫ j2

j1

(fj(a, y)− δ − fj(x, y))dy

]
w(x)dx+ ρ

∫ j2

j1

(fj(a, y)− δ)dy

≥
∫ j2

j1

fjj(x, a)dx = fj(j2, a)− fj(j1, a)

and fj(j1, a)− Ḣ(j1) ≥ fj(j2, a)− Ḣ(j2) = δ, contradiction. �
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