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Abstract

We present a model of repeated games in large buyer-seller networks in the
presence of reputation networks via which buyers share information about past
transactions. The model allows us to characterize cooperation networks - networks
in which each seller cooperates (by providing high quality goods) with every buyer
that is connected to her. To this end, we provide conditions under which: [1] the
incentives of a seller s to cooperate depend only on her beliefs with respect to her
local neighborhood - a subnetwork that includes seller s and is of a size that is
independent of the size of the entire network; and [2] the incentives of a seller s
to cooperate can be calculated as if the network was a random tree with seller s
at its root. Our characterization sheds light on the welfare costs of relying only
on repeated interactions for sustaining cooperation, and on how to mitigate such
costs.

Keywords: Networks, moral hazard, graph theory, repeated games.

1 Introduction

In many markets, successful execution of mutually bene�cial economic transactions re-

lies on informal contracts that are enforced by social pressure and reputation.1 Informal

�We are grateful to Susan Athey, Drew Fudenberg, and Al Roth, for many discussions and invaluable
comments. We also bene�ted from the help of Ilan Lobel and TheoWeber, and from the useful comments
of James Burns, Ben Golub, Roberto Serrano, Adrien Vigier, and seminar participants at Harvard
University and Microsoft Research New England.

yCorresponding author. Department of Economics, Brown University, Providence, RI 02906. E-mail:
Itay_Fainmesser@Brown.edu

zOperations Research Center, MIT, Cambridge, MA, 02139, E-mail: dag3141@mit.edu
1Macaulay (1963) points out that social pressure and reputation are perhaps more widely used than

formal contracts and enforcement.
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enforcement mechanisms include personal and community enforcement mechanisms.2 It

is by now widely recognized that when transactions between two parties are su¢ ciently

frequent, personal enforcement is highly e¤ective.3 Community enforcement can over-

come the limitations of personal enforcement when transactions between two parties are

infrequent, yet transactions in the population are frequent. In large markets, community

enforcement is e¤ective if third-party observability is available.4

However, despite the abundance of research on repeated games and community en-

forcement, the frequency of interactions, as well as the level of third-party observability

are mostly treated as �black boxes�or modeled for highly specialized cases. For exam-

ple, in much of the literature, either any two parties interact in every period or random

matching is assumed. In contrast, it is well known that in many markets with buyers

and sellers, each buyer has access to a di¤erent subset of the sellers in the market, and

chooses to purchase from even a smaller subset. Moreover, each buyer often learns about

the outcomes of a di¤erent subset of the interactions in the market.5

To address these issues, we develop a model of repeated interactions and community

enforcement in networked markets with buyers and sellers. Consider a group of sellers

with limited supply and a group of buyers with limited demand. Each buyer can purchase

a good from only a subset of sellers to whom he is connected. The connections between

buyers and sellers de�ne a buyer-seller trade network G. In every period, sellers meet

sequentially with buyers that are connected to them and decide whether to exert costly

e¤ort and provide a high quality product (cooperate) or to shirk (defect). If a buyer b

purchases a good from seller s, he learns the quality of the good (after the purchase).

A subset of the other buyers also learn the quality of the good that b purchased from

s; such buyers are said to be connected to buyer b. The connections between buyers

de�ne a reputation network R that captures the level of third-party observability in the

2In personal enforcement mechanisms cheating triggers retaliation by the victim, whereas in com-
munity enforcement mechanisms dishonest behavior against one partner causes sanctions by several
members in the society.

3For a good survey on long term relationships see Mailath and Samuelson (2006).
4See Kandori (1992), Greif (1993), and Ellison (1994).
5The economic literature o¤ers extensive evidence for the presence of networks of cooperation and

trust within markets. For example, see Fafchamps (1996), McMillan and Woodru¤ (1999), Hardle and
Kirman (1995), Kirman and Vriend (2000), Weisbuch et al. (1996), and Karlan et al. (2009).

2



market. The combined network, N = (G;R) captures the market structure. We then

ask the following questions: what structures of the network N allow for equilibria in

which only high quality goods are traded? How does the answer depend on the patience

of sellers? What is the optimal network structure that allows for the maximal volume

of trade in high quality goods, and can we do better with formal contracts?

We provide conditions under which a networkN is a Cooperation Network - a network

in which a seller that expects all other sellers to always cooperate �nds it optimal to

always cooperate (with buyers that are connected to her). As expected, we �nd that

adding a large number of links to a reputation network R increases the set of buyer-seller

networks G such that N = (G;R) is a cooperation network (Proposition 1). When R

is su¢ ciently dense we �nd that networks in which there are fewer sellers, each having

more connections (in G), and more buyers, each having fewer connections (in G), are

cooperation networks for a larger set of discount factors (Proposition 2). Finally, we show

that a su¢ ciently dense reputation network R guarantees that the fraction of trade lost

due to the incentive constraints goes to zero as the size of the market grows to in�nity

(Corollary 2). This is in spite of the fact that the optimal cooperation network achieves

only a fraction (< 1) of the volume of trade that formal contracts could facilitate in any

�nite market with signi�cantly more sellers than buyers - a fact that is driven by the

observation that in every cooperation network some sellers are permanently excluded

from the market.

Much of the previous work on games in networks analyzes static network games

(Galeotti et al. 2010, Ballester et at. 2006, Bramoullé, D�Amours, and Kranton 2010).

In static network games a player�s payo¤ depends only on the actions taken by her

immediate neighbors. As a result, beliefs on the network structure are used by a player

only to establish a prior over the actions that her neighbors will take, and Galeotti et

al. (2010) �nd that assuming that a player has incomplete knowledge of the network

structure simpli�es the analysis. In contrast, in our framework, due to the dynamic

nature of the interactions and the limited supply and demand, a seller�s incentives to

cooperate generally depend on the entire network structure and on the actions taken by

all of the buyers and sellers in the network. In large markets this makes the problem
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prohibitively complex, and there is no a priori reason to expect that assuming incomplete

knowledge of the network structure will simplify the problem. In fact, in any �nite

network, a seller who has incomplete knowledge of the network is required to compute

her incentives in every network that has positive probability according to her prior.

Thus, our contributions in this paper are two-fold, making both a newmethodological

contribution in the form of a novel method for moving beyond the framework in which a

player�s payo¤ function depends only on the actions taken by her immediate neighbors,

and a more applied contribution in the form of a study of repeated interactions and

community enforcement in networked markets with buyers and sellers.

At the core of our methodological contribution is a newmethod for reducing questions

about the global properties of a network (e.g. equilibrium in which payo¤s depend on

all other players in the network) to questions about the local properties of the network.

This allows us to provide conditions under which the incentives of a seller s to cooperate

with buyer b depend only on her beliefs with respect to her local neighborhood - a

subnetwork that includes seller s and is of a size that is independent of the size of the

entire network (Theorem 1). Thus, we are able to analyze large networks as if they were

small. To derive these �local conditions�we make use of recent results in the graph theory

literature by Gamarnik and Goldberg (2010) - hereby GG - who study a simple matching

algorithm called GREEDY and ask the following question: �When does the performance

of GREEDY depend only on the local properties of the network?�By relating our market

dynamics to the dynamics of GREEDY, we are able to use the tools developed in GG

to analyze market equilibria. We note that the question of when the global properties

of a graph are determined by the graph�s local structure (a.k.a. a decay of correlations

phenomenon occurs) has a long history.6

Along the same lines, we propose a natural model of beliefs over the network structure

that captures the idea that: [1] there is a strong random component in the formation of

6Lauer et al. (2007) and Goring et al. (2007) study localization phenomenon for greedy algorithms,
and Bayati et al. (2007) study the correlation decay phenomenon for the matchings of a graph. We
also note that several recent works study related questions pertaining to when an (approximate) Nash
equilibrium can be computed in a distributed / local manner using the tools of correlation decay, see
e.g. Weber (2010) and Kanoria et al. (2010).
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networks, and [2] each seller knows more about her immediate neighborhood than about

the rest of the network. For this model of beliefs, we prove that if the network N is

large and all other sellers always cooperate, then the incentives of seller s to cooperate

in N can be approximated by the incentives of s to cooperate in a simple network - a

random tree with known distributions over the numbers of connections of buyers and

sellers in the network. The approximation improves as the network grows and the error

goes asymptotically to zero (Theorem 2). This result is based on a key graph theoretic

lemma that we prove: consider a large bipartite graph G that is chosen uniformly at

random (u.a.r.) conditional on the (�nite support) distributions of the number of links

attached to nodes in the graph, then G is asymptotically locally like a random tree

(Lemma 2). Although results of a similar �avor are well-known in the random-graph

community (see Wormald 1999 and the references therein), they have not been used in

the economics literature. We hope that this paper helps to bridge between the two.

We also note that Lemma 2 provides a microfoundation to previous reduced form

assumptions used in the networks literature. For example, Jackson and Yariv (2007)

assume that each player in a network has expectations on the number of connections of

each of the other players connected to her that are captured by a �xed degree distribu-

tion. Our result provide su¢ cient conditions under which this assumption is consistent

with a common prior.7

Networks have been used to model market structure in many recent works in eco-

nomics (see Jackson 2008 and Goyal 2007 for extensive surveys). In particular, most of

the literature on buyer-seller networks has focused on the way that the network struc-

ture interacts with the price setting procedure (see also Kranton and Minehart 2001,

and Blume et. al. 2007).

This paper is more closely related to the very recent developments in the study of

repeated games in networks (see Kinateder 2008, Lippert and Spagnolo 2006, Mihm et al.

2009, Jackson et al. 2010, and works in progress by Miller and Nageeb as well as by Nava

7Kets (2010) shows that the assumed independence in Jackson and Yariv (2007) does not allow them
to explore the entire range of strategic outcomes. Lemma 2 provides su¢ cient conditions under which
the results by Jackson and Yariv overcome Kets�critique.
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and Piccione) and to the literature on trust and social collateral (see Karlan et al. 2009).

An important di¤erence from this literature is that we separate the analysis of the trade

network from that of the communication network and allow both to vary in economically

meaningful ways. Moreover, in our model, buyers and sellers have capacity constraints.

In particular, supply and demand do not grow automatically with the number of an

agent�s links. This setup is realistic in many markets in which the roles of buyers and

sellers are well de�ned.

Finally, most related to this paper is Fainmesser (2010a) who uses a similar frame-

work. Fainmesser (2010a) characterizes cooperation networks in markets in which third-

party observability is nonexistent (R is the empty reputation network), such as in many

developing countries or in markets in which strategic considerations prevent the di¤usion

of information. In such markets, incentive constraints restricts the volume of trade even

in large markets. The framework presented here is more general and allows for di¤erent

levels of third-party observability.

1.1 Third-party observability and Word-Of-Mouth (WOM)

The source and degree of third-party observability among traders in real-world markets

varies widely across contexts.8 One especially natural interpretation of R is as a network

of WOM.

Studying the interplay between WOM, the structure of the trade network, and coop-

eration is especially interesting due to recent changes in technology that a¤ect the extent

and nature of WOM: traditionally, WOM disseminated in small reputation networks be-

tween friends, neighbors, and family members. The internet extended these networks;

we read user reviews before we buy a computer or book a hotel, consult Yelp.com be-

fore going to a restaurant or choosing a mechanic, and look at a prominent economist�s

website to �nd recommendations for cafes around the world.9 ;10

There are many theories of di¤erent aspects of WOM in networks. Acemoglu et

8See also Esfahani and Salehi-Isfahani (1989) and Banerjee and Newman (1998).
9See http://arielrubinstein.tau.ac.il/univ-co¤ee.html
10The idea that consumers are a¤ected by reported experience of other people is obvious in online

communities such as Yelp.com and Chowhound.com. In the context of reputation systems, Resnick and
Zeckhauser (2002) show that sellers with better reputations are more likely to sell their items.
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al. (2010), DeMarzo et al. (2003), Ellison and Fudenberg (1995), Gale and Kariv

(2003), Golub and Jackson (2010), and Niehaus (2010) study information aggregation

in networks, whereas Galeotti and Goyal (2009), and Niehaus (2010) consider the e¤ect

of WOM on the di¤usion of new products. There is also an extensive literature on the

incentives for truthful reporting of past transactions to centralized reputation systems

and on the informativeness of reputation scores.11 In this paper, we suggest that WOM

can be captured by a reputation network in which connected buyers are able to share

information credibly with each other.

1.2 Outline

In section 2 we lay out our model of a networked market, discuss the knowledge of sellers

with respect to the network structure, and de�ne a notion of a cooperation network.

We conclude the section by setting up the planner�s problem and de�ning a notion of

e¢ ciency loss that captures the fraction of transactions that must be forfeited in order

for cooperation to persist. In section 3 we review our main results. Section 4 reviews the

implications of our results to the analysis of social networks and suggests that our results

provide new insights that are useful for the study of market structure more broadly. In

section 5 we o¤er concluding remarks.

2 Model

Consider a market with a set of sellers S � f1; 2; :::; nsg and a set of buyers B �

f1; 2; :::; nbg. Time is discrete (t = 1; 2; :::;1). Sellers live forever and have a discount

factor �. In every period, each seller is active with probability � 2 [0; 1] and inactive

otherwise. The realization of whether a seller is active in a given period is i.i.d. across

sellers and periods. In a period in which a seller s is active, she can choose to produce

at most one unit of exactly one of two goods, H or L. Producing H has a positive cost

of c > 0, whereas the production of L is costless. We interpret H and L to be quality

variants of the same good that are indistinguishable to the buyers before purchase.

11See Dellarocas (2000 and 2001), Bolton et al. (2009), Resnick et al. (2000), and Resnick and
Zeckhauser (2002).
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An inactive seller cannot produce. The probability that a seller is active (�) captures

potential noise in the production technology. Introducing noise in quality determination

of the product does not make any di¤erence in the analysis as long as a seller knows the

quality that she produces.

We abstract from the price determination mechanism and assume that the ongoing

price for a good is �.12 For price �, each buyer b has demand for one unit of H in every

period. Buyers have no demand for L (even for a price of zero).

Sellers and buyers are embedded in a two-sided network of connections between

buyers and sellers. A buyer can purchase only from sellers that are connected to her.

In every period, meetings between sellers and buyers that are connected in the network

occur in a random order, i.i.d. across periods. Formally, the buyer-seller network is

represented by a bipartite graph G, with buyer partite B (one node for each of the nb

buyers) and seller partite S (one node for each of the ns sellers). Let E � S � B be

the set of edges in the graph. An edge (s; b) between seller s and buyer b represents a

potential interaction. In each period t, edges are chosen in an order �t selected uniformly

at random (u.a.r.), independent of all else, from the set of all jEj! possible orderings on

the edges of G. When an edge (s; b) is chosen, the potential interaction between seller s

and buyer b is realized.13

We now explain informally the decisions that seller s and buyer b make when the

potential interaction between s and b is realized. The decision of buyer b is of the form:

�conditional on me not having already bought a unit of good and seller s being active

and seller s not having already sold a unit of any good in the current period, will I

purchase a unit of the good from s?�. The decision of an active seller s is of the form:

�conditional on me not having already produced and sold a unit of a good in the current

period, and assuming buyer b is willing to purchase from me, will I produce and sell

H to b (cooperate), or L to b (deviate)?�. We assume that an active seller s cannot

refuse a trade with a willing buyer, and thus s cannot choose to produce nothing for a

12Any reasonable bargaining model will preserve the main insights of this paper. Incidentally, in a
bargaining procedure in which sellers make take-it-or-leave-it o¤ers, it is straightforward to construct
equilibria for which our analysis goes through without changes.
13Our analysis is independent of whether sellers and buyers learn �t after it is chosen.
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buyer b that is willing to purchase from s (assuming s has not yet made any sales that

period). An inactive seller does not have any decision to make. Note that a seller s does

not produce a product during period t until she encounters a buyer who is willing to

purchase from s during t (e.g. seller s is a service provider).

We now formalize the above. For a given seller s (buyer b), letN1(s) � fb 2 Bj (s; b) 2 Eg�
N1(b) � fs 2 Sj (s; b) 2 Eg

�
denote the set of buyers (sellers) with which s (b) may

potentially interact. At the start of each period t, each buyer b constructs a trust func-

tion J tb : N1(b) ! f0; 1g, where J tb(s) = 1(0) implies that conditional on b not having

already bought a unit of good and seller s not having already sold a unit of a good by

the time potential interaction (s; b) is realized in �t, buyer b will (won�t) be willing to

purchase a unit of a good from s. Similarly, at the start of each period t each active

seller s constructs a quality function Qts : N1(s) ! f0; 1g, where Qts(b) = 1(0) implies

that conditional on s not having already produced and sold a unit of a good and buyer

b not having already purchased a unit of good by the time potential interaction (s; b) is

realized in �t and J tb(s) = 1, s will produce and sell a unit of H (L) to b.

2.1 Reputation networks

Each buyer has access to information about the outcomes of all of his past transactions,

as well as limited information about other buyers�past transactions which he learns

through his reputation network (e.g. via Word-Of-Mouth, reputation systems, or other

mechanisms for third-party observability). More formally, there is a (reputation) graph

R on node set B, where edge (b; b0) is present in R if and only if b is informed when

any seller s sells either H or L to buyer b0. The self-loop (b; b) is present in R for all

b, and the graph is undirected (and thus (b; b0) 2 R if and only if (b0; b) 2 R). Our

results extend immediately to the directed graph case as well. Let R(b; b0) denote the

indicator for whether or not (b; b0) 2 R. We also let NR(b)
�
=
S
b0:R(b;b0)=1 b

0 denote the

set of buyers that share with buyer b observations of past transactions, and EsR(b)
�
=S

b02NR(b)\N1(s)(s; b
0) denote the set of edges (in G) between seller s and buyers that share

with buyer b information about past transactions.

We are interested in the incentives of sellers to produceH conditional on the structure
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of G and R. To this end, we simplify the analysis by restricting attention to buyers that

use the following heuristic: each buyer agrees to purchase from exactly those sellers

who (to the best of his knowledge) have never deviated and sold anyone a good L. We

call this heuristic a reputation based grim trigger strategy and analyze below Bayesian

equilibria of the sellers�behaviors given this buyers�strategy. Fainmesser (2010a) veri�es

that the buyers�strategies considered here are equilibrium strategies in the entire family

of equilibria considered.

Formally, for each seller s and buyer b, let I t(s; b) denote the indicator of the event

that s sold a unit of a good to b in period t. Then at period 1, each buyer b sets J1b (s) = 1

for all s 2 N1(b) - that is, each buyer begins with the assumption that all sellers that

are connected to him are honest and agrees to purchase from any of them. At the start

of period t (for t � 2), buyer b sets

J tb(s) = max

�
J t�1b (s)�

X
b02B

R (b; b0) I t�1(s; b0)
�
1�Qt�1s (b0)

�
; 0

�
:

Given fI t(s; b)g1t=1 and fQtsg1t=1, the total payo¤ of seller s is

us =
1X
t=1

�t�1
X
b2N(s)

I t(s; b)
�
� � c �Qts(b)

�
We notice that I t(s; b) depends on N , �t, and fQ�s0(b)gs02S;�=1;:::;t. Consequently, the

sellers� information and beliefs with respect to the network structure N play a major

role in sellers�expectations over their utility from choosing strategies fQtsg
1
t=1.

2.2 The network structure - sellers�knowledge and beliefs

As we will primarily be concerned with the case in which the network is very large, it

would be unreasonable to assume that each seller has complete knowledge of N . We �rst

describe a general framework that captures any sellers�beliefs about the network struc-

ture and then suggest one particularly natural model in which sellers have incomplete

knowledge of the network structure and stochastic beliefs with respect to their missing

information.

Consider a seller s that assigns some probability distribution Ds on the set of all
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possible networks N , where a member of the set N is speci�ed by a 2-vector N = (G;R)

consisting of both a buyer-seller graph G and a reputation graph R. We call Ds a belief

of seller s.14

Note that a seller�s global beliefs - her beliefs about the global structure of the network

- may be complicated, while her local beliefs may be more tractable. By global beliefs, we

will generally be referring to her beliefs about the potential interactions between buyers

and sellers separated from her in the network by a distance on the same order as the

entire network. By local beliefs, we will generally be referring to her beliefs about the

potential interactions between buyers and sellers separated from her in the network by

a distance that is some small constant (e.g. 20) whose order is much smaller than that

of the entire network, which may be arbitrarily large.

To explain the idea of local versus global beliefs more formally we need to de�ne the

notion of a distance between two nodes in a graph. A path of length l in G between node

v and node v0 is a sequence of edges f(v0; v1) ; (v1; v2) ; :::; (vl�1; vl)g such that v0 = v,

vl = v
0, and for every i 2 f1; 2; ::; lg, (vi�1; vi) 2 G. We say that the distance between

v and v0 in G is l if the length of the shortest path between node v and node v0 in G

equals l.

We now make the distinction between local and global beliefs more formal. For a

given seller s, recall that N1(s) is the set of buyers adjacent to s, and let N2(s) denote

the set that includes the set of buyers in N1(s) as well as the set sellers adjacent to the

buyers in N1(s), etc. In other words, a node v is in Nd(s) if and only if the length of the

shortest path in G between s and v does not exceed d. For a given belief distribution

Ds, we let Dds denote the distribution induced by Ds on Nd(s). For example, if Ds places

probability 1 on the complete binary tree with 100 levels and s at the root, then D3s
would place probability 1 on the complete binary tree with 3 levels and s at the root.

To measure how di¤erent two belief distributions are we use the notion of total

variational distance. For two random variables (r.v.) X;Y with support on some count-

ably in�nite set X , the total variational distance between X and Y , TV D(X; Y ), is

14By de�nition, any network formation process, either deterministic or stochastic, induces a proba-
bility distribution over the set of all possible networks, and can be captured by some fDsgs2S .
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de�ned as
P

x2X jPr(X = x) � Pr(Y = x)j. Then for two belief distributions Ds;Ds0,

TV D(Dds ;D0ds ) < � implies that the belief seller s has about her depth-d neighborhood

under Ds is �within ��of the belief seller s has about her depth-d neighborhood under

D0s.

For a given network N = (G;R) and a node v 2 S [ B, let dv � jN1 (v)j denote the

degree (number of neighbors) of v in G, and let deg(N) denote the supremum, taken

over all buyers and sellers v 2 S [ B, of dv. For a given belief Ds, let deg(Ds) denote

the supremum, over all networks N to which Ds assigns strictly positive probability, of

deg(N). Note that deg(Ds) may be in�nite.

Finally, for simplicity, we assume throughout that sellers do not use information

from their interactions throughout the game to update their beliefs on the network

structure
�
fDsgs2S

�
. While clearly restrictive, we believe that the analysis of repeated

games with �xed beliefs on the network structure is an important �rst step and that our

results are qualitatively robust. The analysis of learning the network structure through

repeated interactions is beyond the scope of this paper and is left for future research.

In addition, Fainmesser (2010a) proposes an example of a network generating process

in which small changes to the network structure prevent sellers from learning the exact

network structure beyond certain comparative statics. A speci�c model of beliefs that

is consistent with the example in Fainmesser (2010a) is the GF model presented in the

following subsection.

2.2.1 The Global Fractions (GF) model

For some of our results, it is useful to focus on a speci�c model of sellers�knowledge and

beliefs with respect to the network structure, which we call the Global Fractions (GF)

model. The GF model is based on the idea that the underlying process of the formation

of the network has a signi�cant random component, but that (in large networks) the

fraction of sellers and buyers with a given degree is more or less constant and therefore

known.15 Due to the random component, sellers have only partial information on the

15For evidence on consistency in degree distributions in large networks, see also Barabási and Albert
(1999).
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network structure, and each seller may hold di¤erent private information about her own

local area of the network.

Formally, assume that before period 1 the network N is chosen u.a.r. from all of the

networks with a set of sellers S, a set of buyers B, and a given degree distribution that

speci�es for all d: 1. the fraction of buyers that have degree d, and 2. the fraction of

sellers that have degree d. This underlying process of the selection of the network is

common knowledge.

In addition, each seller s has access to private local information including: N1(s), db

for all b 2 N1(s), and R(b; b0) for all b; b0 2 N1(s). The (Bayesian) posterior of seller s is

denoted by DGF (sjN). We note that DGF (sjN) assigns equal probability to any network

satisfying 1., 2., has sets of sellers and buyers S and B respectively, and is consistent

with the seller�s private local information.

Note that specifying the aforementioned fractions is equivalent (under a simple trans-

formation) to instead specifying the probability that the buyer (seller) in an edge (s; b)

selected u.a.r. from all edges of the network has degree d (for all d).16 Furthermore,

note that specifying nb along with these probabilities fully determines ns.

Thus, for any ds 2 Z+;�b (s) 2 (Z+)ds ; nb 2 Z+ and probability distributions Gs;Gb

each with bounded support on Z+ and assigning each integer a rational probability, we

let N (ds;�b (s) ; R; nb;Gs;Gb) denote the set of all networks in which seller s has degree

ds, the sorted vector of degrees of the buyers in N1(s) is equal to �b (s), the reputation

network R(b; b0) for all b; b0 2 N1(s) is given by R, the total number of buyers in the

network is nb, and the probability that the seller (buyer) s0(b0) in an edge (s0; b0) selected

u.a.r. from all edges of the network has degree d is equal to Pr(Gs = d)
�
Pr(Gb = d)

�
.

Suppose further that Pr(Gs = ds) > 0, and Pr(Gb = �bi (s)) > 0 for all i. It is well-known

that for any �xed ds;�b (s) ; R;Gs;Gb there exists an in�nite strictly increasing sequence

of integers fnbg s.t. N (�jnb; s) 6= ;. This follows from the Gale-Reyser Theorem (see e.g.

Krause 1996), and (in our particular setting) Theorem 1.3 of Greenhill et al. (2006).17

16Let Ps (d) the proportion of sellers with degree d, and let ds =
P

d Ps (d) � d be the average sellers�
degree. Then the probability that a seller s in an edge that is chosen u.a.r. has degree d is, Ps(d)�d

ds
.

17All statements should be read as holding only for nb s.t. the aforementioned set is non-empty.

13



Consequently, if the true underlying network is N 2 N (ds;�b (s) ; R; nb;Gs;Gb), then

the posterior of seller s is that the network is selected u.a.r. from all networks in N (�).

We denote this belief by DGF (sjN) = DGF (ds;�b (s) ; R; nb;Gs;Gb).

Remark 1 The economic literature o¤ers several models of network formation (see also
Goyal 2007 and Jackson 2008 and references therein). By construction, our general
model allows for any such process and captures each process via the induced distribution
over the set of networks. This leaves the analysis �formation mechanism free�. The GF
model adds more structure and captures a scenario in which an individual �has no clue�
how networks are formed and therefore has a prior that is not informative about the
network structure, with the exception of her knowledge of her local neighborhood, and
some basic aggregate statistics. Our analysis of the GF model goes through immediately
if we allow for individuals that are less informed about the network structure, and can
be modi�ed to allow for more information such as knowledge of the degrees of neighbors
of neighbors and so forth. Changing the GF model beyond that will change the portion
of the results that builds on the GF model.

2.3 Cooperation networks

We are interested in studying the interplay between the network structure N , sellers�

knowledge and beliefs, and sellers� cooperation. In particular, we identify conditions

under which the set of strategies in which all sellers always cooperate is a strict pure

Bayes-Nash equilibrium of the above in�nitely repeated game.

We now de�ne what it means for a given market that is consistent with the vector
�!m = (�; c; �; �; fDsgs2S) to have a totally cooperative strict Bayes-Nash equilibrium,

in which case we say that �!m admits a cooperation network. Informally, �!m admits a

cooperation network if for each seller s, given that all other sellers choose to always

cooperate with all buyers connected to them, the unique best response of s (under her

belief distribution) is to cooperate with all buyers connected to her.

Consider a seller s that has a particular belief Ds that places probability 1 on the

network N = (G;R), and assume that all other sellers s0 6= s always cooperate. Without

loss of generality, any strategy of s can be described as a mapping f s(t; f��gt�1�=1 jDs =

N) = Qts, t � 1. This is true independent of whether sellers observe f��g1t=1 or not.

This follows by a simple induction since: [1] the only freedom seller s has is to set her

function Qts; [2] Q
t
s must be a function of the information available to seller s through

14



stage t� 1; [3] conditional on all other sellers s0 6= s always cooperating this information

is fully captured by fQ�sgt�1�=1 and fI� (s; b)gb2N1(s);�=1:::t�1; [4] fI
� (s; b)gb2N1(s);�=1:::t�1 is

deterministic given fQ�sgt�1�=1 and f��g
t�1
�=1; and [5] Q

1
s must be a function of Ds alone.

In fact, we can say more. Note that the periods of the repeated game are probabilis-

tically identical until seller s deviates in some interaction. Hence, there will always exist

an optimal strategy in which Qts = Q
1
s up until the smallest t such that s deviates for

the �rst time in period t (which we denote by t1s). Similarly, denoting by t
k
s the period

in which seller s deviates for the k-th time, it follows that there will always exist an

optimal strategy in which Qts is constant for t 2 [1; t1s]; (t1s; t2s]; : : :.

Let ON denote some strategy for s that maximizes the expectation of her total

payo¤ conditional on her having a particular belief Ds that places probability 1 on the

network N = (G;R), and assuming that all other sellers s0 6= s always cooperate. Let

ON(Q) denote the same object but with the additional restriction that Q�s = Q for every

� � t1s. Let Qc denote the strategy in which s always cooperates with all buyers in all

periods. Let uN(Q) denote the expected total payo¤ for s due to playing strategy Q

conditional on her having belief Ds = N , and assuming that all other sellers s0 6= s

always cooperate. For ease of notation, let uN (Q)
�
= uN (ON(Q)) ; uN

�
= uN (ON) ; and

and ucN
�
= uN (Q

c). Note that the only way in which any buyer b�s trust function can be

updated at the end of the �rst round is by setting J2b (s) to 0, which will happen exactly ifP
b02B R (b; b

0) I1(s; b0)
�
1�Q1s(b0)

�
= 1 (since

P
b02B I

1(s; b0) 2 f0; 1g), and is equivalent

to removing (s; b) from the set of potential interactions. For a belief N = (G;R) and a

set of edges E 0 of G, letN nE 0 denote (GnE 0; R). Let Pr
�
I tN(s; b)

�
denote the probability

that I t(s; b) = 1 in a network N conditional on J tb (s) = 1 for every (s; b) 2 N . Then by

the stationarity of the game (until period t1s), for any belief N and strategy Q,
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uN (Q) =
X

b2N1(s):Q(b)=1

Pr
�
I1N(s; b)

�
(� � c+ � � uN (Q)) (1)

+
X

b2N1(s):Q(b)=0

Pr
�
I1N(s; b)

� �
� + � � uNnEsR(b)

�

+

0@1� X
b2N1(s)

Pr
�
I1N(s; b)

�1A � � � uN (Q)
In particular,

ucN = (� � c) �
X

b2N1(s)

Pr
�
I1N(s; b)

�
+ � � ucN (2)

It follows that,

(uN (Q)� ucN) =
�
c+ � �

�
uNnEsR(b) � u

c
N

��
�
P

b2N1(s):Q(b)=0 Pr (I
1
N(s; b))

1� � + � �
P

b2N1(s):Q(b)=0 Pr (I
1
N(s; b))

(3)

Since
P

b2N1(s):Q(b)=0 Pr
�
I1N(s; b)

�
> 0, it follows from (3) that when for every seller s,

Ds consists of a single and �xed network N , the vector �!m = (c; �; �; �; fDsgs2S) admits

a totally cooperative strict Bayes-Nash equilibrium if and only if for all sellers s and

each buyers b 2 N1(s),

c < � �
�
ucN � uNnEsR(b) (Q)

�
:

We now formally de�ne a cooperation network by rephrasing these results as expectations

taken over general distributions fDsgs2S.

De�nition 1 Cooperation Network:

For a given vector �!ms = (c; �; �; �;Ds), let IC(�!ms)
�
= minb s.t. Pr(b2N1(s)jDs)>0 �(EDs [u

c
N ]�

EDs [uNnEsR(b)])� c. We refer to IC(
�!ms) as the (su¢ cient statistic for the) Incentives

of s to Cooperate. Then,

1. We say that the vector �!m = (c; �; �; �; fDsgs2S) admits a cooperation network if

and only if mins2S IC(
�!ms) > 0.

2. Let �!mGF (N) = (c; �; �; �; fDGF (sjN)gs2S). We say that a network N is a GF

cooperation network if and only if �!mGF (N) admits a cooperation network.
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2.4 Optimal trade networks

We are also interested in the following design problem: for given sets of buyers and

sellers, what network maximizes aggregate welfare?

Consider a market with ns sellers and nb buyers and parameters c; �; �; �. Let �N

be a probability distribution over network structures N = (G;R). In the unconstrained

design problem, a planner chooses �N and compels all sellers to follow strategy QcD

(always cooperate). In the cooperation constrained design problem, the planner chooses

�N and recommends that all sellers follow strategy QcD; sellers are then informed of �N

and follow the planner�s recommendation only if (c; �; �; �;�N) admits a cooperation

network. Let nb (N) (ns (N)) be the number of buyers (sellers) whose degree in G is at

least 1. If nb (N) < nb (ns (N) < ns) we say that nb�nb (N) buyers (ns�ns (N) sellers)

are excluded from the market in N .

For a given network N , let E[V (N)] = E
hP

s2S
P

b2N1(s) Pr (I
1
N(s; b))

i
denote the

expected volume of trade (number of transactions) in good H that is achieved in a given

period if all sellers follow strategy QcD. Denote by E[V (�N)] the corresponding value

given a probability distribution �N over networks. Let N 2 N (nb; ns) if nb (N) � nb
and ns (N) � ns, and let Nuc (nb; ns; c; �; �; �) (N

c (nb; ns; c; �; �; �)) be the solution to

the unconstrained (constrained) design problem. Then,

Nuc (nb; ns; c; �; �; �) = argmax
�N jsupp(�N)�N (nb;ns)

E[V (�N)]

and
N c (nb; ns; c; �; �; �) = argmax

�N jsupp(�N)�N (nb;ns)
E[V (�N)]

;mins2S IC(c;�;�;�;�N)>0

;

where mins2S IC(c; �; �; �;�N) > 0 guarantees that (c; �; �; �;�N) admits a coopera-

tion network.

Thus, the proportion of welfare loss due to the constraints on the structure of coop-

eration networks is

WL (nb; ns; c; �; �; �) = 1�
E[V (N c (nb; ns; c; �; �; �))]

E[V (Nuc (nb; ns; c; �; �; �))]

If WL (nb; ns; c; �; �; �) = 0, then cooperation networks achieve the �rst best in a

market with (nb; ns; c; �; �; �).
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3 Main results

3.1 Cooperation based on local beliefs

Our �rst result, which provides the foundation for later results, shows that whether or

not a given vector �!m admits a cooperation network is asymptotically independent of the

sellers�global beliefs, and depends only on their local beliefs. We do that by showing that

a seller can determine whether or not to cooperate given only local information about

the network, making our model computationally (and analytically) attractive. This is

quite surprising, since the fact that we focus on networks with bounded degree implies

that the overwhelming majority of information about other buyers and sellers is not

included in a seller�s local beliefs.

Theorem 1 Local Beliefs Theorem:

For any �xed c; �; �; �; � 2 Z+, and � > 0, there exists a �nite constant d = d(c; �; �; �;�; �)

independent of the size of the entire network s.t. for any belief Ds satisfying deg(Ds) �

�, ��IC(c; �; �; �;Ds)� IC(c; �; �; �;Dds)�� < �:
Theorem 1 implies that whenever we can make comparative statements about coop-

eration under beliefs fDdsgs2S, we can also make (asymptotic) comparative statements

about cooperation under beliefs fDsgs2S.

A special case of Theorem 1 is when sellers have complete knowledge of the true

underlying network. Formally, consider a true network N , and for every s 2 S, let Ds
place probability 1 on N . In this case, an implication of Theorem 1 is that whenever

we can make comparative statements about cooperation given the local neighborhoods

of all sellers (i.e. fNd (s)gs2S), we can also make (asymptotic) comparative statements

for the entire network N . This later interpretation of Theorem 1 suggests that when

a seller s determines whether or not to cooperate she "discounts" links that are at a

large distance from her and can asymptotically do as good by considering only her local

neighborhood.
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The proof of Theorem 1 builds on recent developments in graph theory, and in par-

ticular on GG who study randomized greedy algorithms for matchings in a graph, and

the relationship between the local and global properties of the set of matchings of a graph.

Proof. We prove Theorem 1 for the following restricted domain of seller�s beliefs: for

any seller s the belief Ds is such that Pr (b 2 N1(s)jDs) 2 f0; 1g. Namely, for any

b 2 B, either seller s believes that she is connected to b with probability 1, or she

believes (with probability 1) that she is not connected to b. The proof of the case that

Pr (b 2 N1(s)jDs) 2 [0; 1] follows the same argument but requires additional notation

and is omitted.

Now, let us �x any network N , and let N (s; d) denote the depth�d neighborhood of

seller s inN . Note that one may interpret the quantity Pr
�
I1N(s; b)

� �
Pr
�
I1N(s;d)(s; b)

��
as the probability that edge (s; b) is chosen to belong to the random graph matching

constructed by examining the edges of N
�
N (s; d)

�
(with each seller deleted w.p. �) in

a random order (selected u.a.r.) and including an edge if no incident edges have already

been examined. Noting that this randomized greedy matching construction is identical

to the matching algorithm GREEDY studied in GG, it follows from Lemma 6 of GG

and a simple conditioning argument (to account for �) that

Lemma 1 Locality Lemma:

For any �xed c; �; �; �; � 2 Z+, and � > 0, there exists a �nite constant d = d(c; �; �; �;�; �)

independent of the size of the entire buyer-seller network s.t. for any network N sat-

isfying deg(N) � �,

jPr
�
I1N(s; b)

�
� Pr

�
I1N(s;d)(s; b)

�
j < �:

Theorem 1 - proof (cont.): Second, Equations (1) and (2) imply that

ucN = (� � c) �
P

b2N1(s) Pr (I
1
N(s; b))

1� � (4)
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and

uN = max
Q
[uN (Q)] = (5)

= max
Q

 
�
P

b2N1(s) Pr (I
1
N(s; b))� c

P
b2N1(s):Q(b)=1 Pr (I

1
N(s; b))

1� � + �
P

b2N1(s):Q(b)=0 Pr (I
1
N(s; b))

+
�
P

b2N1(s):Q(b)=0 Pr (I
1
N(s; b))

1� � + �
P

b2N1(s):Q(b)=0 Pr (I
1
N(s; b))

� uNnEsR(b)

!

Finally, noting that in a network of maximum degree �, one has Pr
�
I1N(s; b)

�
2

[ 1
2��1 ; 1] for all edges (s; b), Theorem 1 follows by interpreting Equation (5) as a dynamic

program (for computing uN), combined with Lemma 1 and a simple induction, and

applying the same logic to (4).

3.2 Cooperation and network structure in the GF model

For given �; c; �, and � , a key question is: what network structures have a totally

cooperative strict Bayes-Nash equilibrium? In this section, we focus on sellers whose

knowledge and beliefs are consistent with the GF model and derive conditions on a

network N such that N is a GF cooperation network.

We �rst show that for all �nite support distributions Gs;Gb and for every seller s in

any asymptotically large network N with degree distributions Gs;Gb, the belief of seller

s (DGF (sjN)) is asymptotically identical to the belief that the network looks locally

like a corresponding simple random tree.

For given d0 � 0, �b 2 (Z+)d0 , distributions Gs;Gb with �nite support on Z+, and

d � 1, let T (d0;�b; R;Gs;Gb; d) denote the random depth�d tree such that the root r

has degree d0, the sorted vector of degrees of the children of r is �b, all subsequent non-

leaf nodes at an even depth have a number of children drawn i.i.d. from Gs � 1, all

subsequent non-leaf nodes at an odd depth have a number of children drawn i.i.d. from

Gb � 1, the underlying reputation network for N1(s) is R, and for all other buyers pairs

(b; b0), R(b; b0) is 1 with probability (w.p.) 0:5, and 0 w.p. 0:5. Then we have

Lemma 2 Locally Tree-Like Lemma:
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For all d0;�b; R, and �nite support Gs;Gb, and for all d > 0,

lim
nb!1

TV D
�
DdGF (d0;�b; R; nb;Gs;Gb); T (d0;�b; R;Gs;Gb; d)

�
= 0

The proof of Lemma 2 is presented in Appendix A. In particular, the key to proving

Lemma 2 is the so-called con�guration method (see Wormald 1999). Using this tech-

nique, a random graph is related to a di¤erent random object - the con�guration model.

In the con�guration model, each buyer is viewed as a bucket, and each seller is viewed as

a bucket. Each bucket is endowed with a number of points equal to the desired degree of

the corresponding buyer (seller). The points in the buckets are then matched randomly,

and a seller and buyer are connected if a point from that seller bucket is matched to a

point of the corresponding buyer bucket. There is a vast literature that both analyzes

the con�guration model, and relates it back to many random-graph models of interest

(see e.g. Greenhill et al. 2006, Wormald 1999). Such relations often involve subtle

counting and conditioning arguments - for more details the reader is referred to the

proof in Appendix A. We note that results of this nature are often quite useful, since it

may be easier to develop intuition about a network which looks locally tree-like.

Lemma 2 implies that in a large networkN , the sequence of beliefsDdGF (d0;�b; R; nb;Gs;Gb),

d = 1; 2; : : :, converges in a sense to a belief on an �in�nite tree�. As a result, in a large

network N , and as long as sellers�beliefs are consistent with the GF model, many rele-

vant quantities can be described in terms of the associated limits. Most relevant for the

characterization of large cooperation networks, Theorem 2 establishes the connection

between the incentives of seller s to cooperate with buyer b in a network N and the

corresponding incentives in the corresponding �in�nite random tree�.

Theorem 2 Asymptotic Characterization of Cooperation Networks I:

For all c; �; �; �; d0;�b, and �nite support Gs;Gb, limd!1 IC(c; �; �; �; T (d0;�b; R;Gs;Gb; d))

and limnb!1 IC(c; �; �; �;DGF (d0;�b; R; nb;Gs;Gb)) both exist, and equal one-another.

Proof. The theorem follows from Theorem 1 and Lemma 2.

Theorem 2 implies an explicit asymptotic characterizations of cooperation networks
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in terms of a dynamic program that is based on the belief that the network is a random

tree. Moreover, in a particularly interesting limit case we can give an especially simple

characterization.

Let R1 be a reputation network such that for all b0 and b, R1(b0; b) = 1. We say that

R1 is the complete reputation network which captures a situation in which each buyer

shares information with all other buyers.

Corollary 1 Asymptotic Characterization of Cooperation Networks II:

Let c; �; �; �; d0;�b;Gs;Gb be �xed and Gs;Gb have �nite support. For a seller s, let Nd;s
denote the belief T (d0;�b; R;Gs;Gb; d). Then limd!1

P
b2N1(s) Pr

�
I1Nd;s(s; b)

�
exists, and

sign

�
lim

nb!1
IC(c; �; �; �;DGF (d0;�b; R1; nb;Gs;Gb))

�
= sign

0@�(� � c)
1� � lim

d!1

X
b2N1(s)

Pr
�
I1Nd;s

(s; b)
�
� c

1A :
(6)

Proof. That the necessary limit exists follows from Lemma 1. To derive (6) we �rst

describe how Equation (3) simpli�es in the special case where the reputation network is

captured by R1. Since in this case uNnEsR(b) = 0 for all b, it follows from (3) that for any

�xed belief N and strategy Q,

(uN (Q)� ucN) =
(c� � � ucN) �

P
b2N1(s):Q(b)=0 Pr (I

1
N(s; b))

1� � + � �
P

b2N1(s):Q(b)=0 Pr (I
1
N(s; b))

(7)

The Corollary then follows from (7), (4), and Theorem 2.

We now use Corollary 1 and the corresponding tree structure described in Lemma

2 and Theorem 2 to make comparative statements about the structure of cooperation

network.

3.3 Third-party observability, network structure, and cooperation

In this section, we focus on the following question: how do the patterns of third party

observability, as captured by the reputation component of the network (R), a¤ect the

ability of di¤erent patterns of repeated interactions, as captured by the buyer-seller com-

ponent of the network (G), to facilitate cooperation? We �rst establish that third-party

observability helps cooperation and allows a bigger set of buyer-seller networks to sus-

tain cooperation. The intuition is consistent with much of the literature on community
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enforcement; when more buyers are aware of a seller�s deviation, the seller faces a larger

punishment for deviating.

Proposition 1 Weak Monotonicity of Cooperation in Third-Party Observability:

Let c; �; �; �; d0;�b;Gs;Gb be �xed and Gs;Gb have �nite support, and let

ICDGF (R; nb) = IC(c; �; �; �;DGF (d0;�b; R; nb;Gs;Gb)). Then, for any reputation net-

work R, ICDGF (R; nb) � ICDGF (R1; nb).18

Proof. By de�nition,

ICDGF (R; nb) = minb2N1(s) �
�
EDGF (d0;�b;R;nb;Gs;Gb)[u

c
N ]� EDGF (d0;�b;R;nb;Gs;Gb)[uNnEsR(b)]

�
� c:

The lemma then follows from the fact that: [1] For allR, EDGF (d0;�b;R;nb;Gs;Gb)[uNnEsR(b)] �

0; [2] EDGF (d0;�b;R1;nb;Gs;Gb)[uNnEsR1 (b)] = 0; and [3] EDGF (d0;�b;R;nb;Gs;Gb)[u
c
N ] =

EDGF (d0;�b;R1;nb;Gs;Gb)[u
c
N ].

An implication of Proposition 1 is that the complete reputation network R1 allows

for the largest set (in the sense of set inclusion) of buyer-seller cooperation networks (G)

for any c; �; �; �.

Note that ideally one would like to prove a stronger form of monotonicity of cooper-

ation in third-party observability. Namely, that adding links to a reputation networks

always weakly improves cooperation. We conjecture that this claim is also true, but

cannot provide a proof at this stage.

We now focus on networks that take the form N = (G;R1) and make comparative

statements with respect to the incentives of sellers to cooperate as a function of G.

Given Proposition 1, this exercise provides insights on the limits of cooperation and on

the types of ine¢ ciencies that can (and those that cannot) be circumvented by improving

observability in a market.

A fundamental observation that is captured by Corollary 1 is that when R = R1,

sellers who expect to sell with higher overall probability (larger
P

b2N1(s) Pr
�
I1N(s; b)

�
)

have stronger incentives to cooperate. As a result, cooperation is better sustained when

sellers� (buyers�) degrees are large (small). To see why, note that [1] the probability

that a seller s sells in a given period is an increasing function of her degree; and [2] the

18Proposition 1 extends immediately to the general belief model (Ds).
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probability that s sells in a given period is an increasing function of the degree of any

seller that is connected to a buyer that s is connected to. The latter is true because

sellers with high degrees are less likely to sell to each one of the buyers to whom they

are connected. More generally, when sellers�degrees are large and buyers�degrees are

small, there are more buyers and less sellers that can be involved in trade. Consequently,

sellers sell with high probability and expect large payo¤s. Figure 1 provides a simple

deterministic example of the general rule that is captured by Proposition 2.

s’

b

s s’

b

s

b’
Buyers

Sellers

Figure 1: Consider the two networks above and assume that � = 1 and that in the
rightmost network buyer b and buyer b0 are connected and share information on their past
transactions with seller s0. In the leftmost network, seller s expects to sell a good with
probability 1

2 in any given period. As a result, conditional on cooperation between s
0 and

b, seller s cooperates with b if and only if �
1�� (� � c) �

1
2 > c. In the rightmost network,

seller s0 has an additional link. Clearly, this increases the probability that seller s0 sells in
a given period. However, this also increases the probability that seller s sells in a given
period from 1

2 to
2
3 . As a result, conditional on cooperation between s

0 and b, as well as
between s0 and b0, seller s cooperates with b if and only if �

1�� (� � c) �
2
3 > c.

Proposition 2 Monotonicity of Cooperation in Degree:

Let c; �; �; � be �xed. Suppose that for all d � 1, the random tree T 2 =

T (d20;
�b2; R1;G2s;G2b; d) can be constructed (on the same probability space) from the ran-

dom tree T 1 = T (d10;
�b1; R1;G1s;G1b; d) by performing only the two operations: [1] ap-

pending (as children) subtrees to seller nodes in an arbitrary way, and [2] removing (as

children) subtrees from buyer nodes in an arbitrary way. Then,

limnb!1 IC
�
c; �; �; �;DGF

�
d10;
�b1; R1; nb;G1s;G1b

��
> 0 implies

limnb!1 IC
�
c; �; �; �;DGF

�
d20;
�b2; R1; nb;G2s;G2b

��
> 0.

Proof. Consider a randomized matching algorithm that progresses by examining the

edges of a network in a random order (selected u.a.r.) and including an edge if no

incident edges have already been examined. GG study the properties of this algorithm
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which they name GREEDY . It will be useful �rst state an important monotonicity

property of GREEDY , which follows from Proposition 1 of GG and a straightforward

induction/coupling argument.

Lemma 3 Suppose that bG;G are (rooted) tree networks, and bG can be constructed from
G by performing only the two operations: [1] appending (as children) subtrees to nodes

at even depth in G in an arbitrary way, and [2] removing (as children) subtrees from

nodes at odd depth in G in an arbitrary way (where the depth of the root is 0 by default).

Then the probability that GREEDY matches the root of bG when run on bG is at least

the probability that GREEDY matches the root of G when run on G.

The proof of Proposition 2 then follows from Lemma 3 and interpreting Pr
�
I1N(s; b)

�
as the probability that edge (s; b) is selected by GREEDY .

We note that to some extent the opposite occurs in networks with sparse reputation

networks, but we do not formalize that here.19. The perfect alignment between a seller�s

probability of selling and her incentives to cooperate have an additional, more powerful

implication: consider two networks N 0 = (G0; R1) and N 00 = (G00; R1), and assume that

conditional on full cooperation, the minimal probability of selling of any seller is weakly

higher in N 00 than in N 0 �min
s

P
b2N 00

1 (s)
Pr (I1N 00(s; b)) � min

s

P
b2N 0

1(s)
Pr (I1N 0(s; b))

�
.

Then N 0 being a cooperation network implies that N 00 is a cooperation network.

In networks in which all sellers are symmetric, the perfect alignment between the

probability of selling and the incentives to cooperate implies that the expected aggre-

gate volume of trade and the incentives of a seller to cooperate are aligned. We now

demonstrate this insight using a special family of buyer-seller networks which we call

semi-regular networks. In a semi-regular network all sellers have the same degree dS

and all buyers have the same degree dB. We also show that adding a su¢ ciently large

number of links to a buyer-seller network (G) guarantees that: [1] if R = R1, sellers

have (asymptotically) the maximal incentives to cooperate possible given ns; nb; and

[2] conditional on N being a cooperation network, the expected number of transactions

19Fainmesser (2010a) characterizes the structure of cooperation networks when the reputation network
is given by R0 - a reputation network such that for all b0 6= b, R0(b0; b) = 0.
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in every period is (asymptotically) maximal given ns; nb. The proof of Theorem 3 is

presented in Appendix B.

Theorem 3 Dense Networks Maximize Welfare and Incentives to Cooperate:

Suppose there exist positive integers dS; dB s.t. Pr(ds = dSjDGF ) = 1; P r(db = dBjDGF ) =

1. Then,

sign

�
IC
�
c; �; �; �;DGF (R1; nb; dS ; dB

��
= sign

�
�(� � c)
1� � � 1

ns
� E
�
V
�
DGF (R1; nb; dS ; dB)

��
� c
�

and

lim
nb!1

E [V (DGF (R1; nb; dS; dB)]
min(� � nb � dBdS ; nb)

� 1�
�
max(dS; dB)� 1

��1
:

Moreover, nb
ns
= dS

dB
. Thus, min(� �nb � dBdS ; nb) = min(� �ns; nb), which equals the maximal

volume of trade possible conditional on nb and ns.20

Theorem 3 implies an asymptotic lower bound on the incentives to cooperate.

lim
nb!1

IC
�
c; �; �; �;DGF (R1; nb; dS ; dB)

�
� �(� � c)

1� � �min(�; dS
dB
) �
�
1�
�
max(dS ; dB)�1

��1��c: (8)
Expression (8) highlights the importance of the ratio dS

dB
(or nb

ns
) in determining whether

repeated interactions can sustain cooperation in a market that gives positive probability

for any of ns sellers to sell and any of nb buyers to buy. If the ratio
nb
ns
is large enough,

cooperation can asymptotically be sustained and maximal volume of trade facilitated

even with limited (yet large) degrees. Corollary 2 shows that Theorem 3 has implications

to welfare that go beyond the semi-regular setup.

Recall thatWL (nb; ns; c; �; �; �) is de�ned in section 2.4 as the proportion of welfare

loss due to the constraints on the structure of cooperation networks. Recall further that

if �(��c)
1�� � � � c < 0 then no network (apart from the empty network) is a cooperation

network. This is true because even a seller who is guaranteed to sell whenever she

produces, and expects to lose her entire future payo¤ if she sells good L, will still

20From an algorithmic perspective it is interesting to note that in addition to being easy to implement
and leading to a tractable analysis, the simple matching mechanism governing our buyer-seller market
is also asymptotically welfare maximizing w.r.t. the volume of trade when all sellers cooperate, and
all sellers (buyers) have the same (large) degree dS(dB). This is surprising, since the mechanism is
quite simplistic, and corresponds better to a random decentralized market than to known algorithms
for constructing optimal matchings.
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deviate. Consequently, �(��c)
1�� � � � c < 0 implies that WL (nb; ns; c; �; �; �) > 0 for any

nb; ns. Corollary 2 covers the more interesting case where
�(��c)
1�� � �� c > 0. The proof

is deferred to Appendix B.

Corollary 2 Barrier to Entry and Asymptotic E¢ ciency:

Consider a market with nb buyers and nb sellers, and �xed c; �; � s.t. � 2 [0; 1). Let
�(��c)
1�� � c > 0. Then,

1. For any , WL (nb; nb; c; �; � = 1; �) = 0.

2. Let � < 1. There exists  (�) such that WL (nb; nb; c; �; �; �) > 0 for any  > .

3. For any � 2
h
c � 1��

�(��c) ; 1
i
and  2 Q+

limnb!1WL (nb; nb; c; �; �; �) = 0

Part 1 of Corollary 2 asserts that when there is no stochastic element in the produc-

tion technology (� = 1), the incentive constraints do not restrict welfare. In particular,

when � = 1, a network that consists of pairs of buyers and sellers and some excluded

buyers or sellers (but not both) provides the maximal volume of trade as well as the

maximal incentives to cooperate. On the other hand, part 2 of the Corollary addresses

the case of stochastic production technology. If � < 1 the maximal volume of trade

cannot be achieved if any seller is excluded from the market. At the same time, if there

are many more sellers than buyers, all cooperation networks exclude some sellers from

the market. This leads to a welfare loss. Figure 2 provides an example.

s’

b

s s’’

b’
Buyers

Sellers

Figure 2: Assume that � = 1. In the above network, seller s cooperates with buyer b (and
seller s0 cooperates with buyer b0), if and only if �

1�� (� � c) > c. Moreover, conditional
on cooperation between every buyer and seller that are connected, two goods will be sold
in every period. This is the maximal number of goods that can be sold in one period in a
network with three sellers and two buyers. Now assume that � < 1. There exists positive
probability that in a given period only sellers s and s00 are active. Thus, any network in
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which seller s00 is not connected to any buyer limits the number of trades to less than two
even though two sellers are active.

Part 3 of Corollary 2 is encouraging; in large markets (asymptotic) e¢ ciency is

restored. Theorem 3 provides the necessary intuition: let dS = dB
0 and �x 

0, then as

long as 1 � 0 � �,

lim
nb!1

lim
dB!1

IC
�
DGF (R1; nb; dS; dB)

�
=
�(� � c)
1� � � �� c

and as long as 1 � 0 � �,

lim
nb!1

lim
dB!1

E [V (DGF (R1; nb; dS; dB))]
nb

= 1

Going back to part 3 of Corollary 2, no matter how large is ns
nb
, a planner can choose

�N in the following way: [1] set R = R1; and [2] pick large positive integers dS; dB s.t.
dS
dB
= � and choose G u.a.r. from the set of buyer-seller networks s.t. Pr(db = dB) = 1,

Pr(ds = dS) =
nb
ns
� 1
�
, and Pr(ds = 0) = 1 � nb

ns
� 1
�
. Then, the planner achieves

(asymptotically in dS; dB) both high incentives to cooperate and maximal volume of

trade. This is interesting as the planner does not need to create a complete network. In

fact, dB (dS) does not need to be in the order of ns (nb) and can be much smaller. The

implications of our results in the context of barriers to entry and e¢ ciency are discussed

further in section 4.3.

4 Discussion

In this section, we �rst highlight the implications of our methodological contribution to

social networks analysis in economics, sociology, and psychology. Then, we provide an

interpretation of our characterization of cooperation networks in a more traditional con-

text of market structure and discuss the implications for barriers to entry and e¢ ciency.

4.1 The (un)importance of global beliefs

The recent literature on static network games suggests that when players have incomplete

knowledge of the networks structure, the analysis of the induced (Bayesian) game is

much simpler than the corresponding analysis when players know the entire network
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structure. Galeotti et al. (2010) summarize that "the key insight is that when players

have limited information about the network they are unable to condition their behavior

on its �ne details and this leads to a signi�cant simpli�cation". However, this does not

mean that global knowledge of the network is not important. In fact, Galeotti et al.

provide several examples in which changing the information structure changes the set of

equilibria signi�cantly.

Kets (2010) shows that when a game is local and players have a common prior,

there are weak conditions under which small changes to the priors do not change the

equilibrium payo¤s. While it is not straightforward to de�ne small changes in priors over

the network, Kets de�nes small changes for the family of static network games studied

by Galeotti et al.

Theorem 1 provides a �rst stab at evaluating the importance of di¤erent changes

to players�priors in the context of repeated games in networks. In our model, for the

family of totally cooperative equilibria, any change to a belief of a seller that keeps the

seller�s belief over her local neighborhood intact is a small change in the sense that it

does not a¤ect the seller�s best response correspondence. In that sense, global beliefs

are strategically unimportant.

The result that global beliefs are strategically unimportant is also true for many

static network games. However, the problem studied here is more complex. Due to

the dynamic nature of the interactions and the limited supply and demand, a seller�s

incentives to cooperate generally depend on the entire network structure even if she

conditions on the actions taken by all of the buyers and sellers in the network. This

makes the result even more surprising and suggests that similar results may be derived

even when the patterns of interaction are complex.

Moreover, the methodology used in this paper can be applied to other setups. For

example, Theorem 1 can be easily modi�ed to include networks that are not bipartite

and allow for a model in which agents can be buyers in some periods and sellers in

others.
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4.2 Random network formation and random trees

The following three ideas raise separate interest in economics, sociology, and psychology:

[1] the formation process of many social networks has a strong stochastic component;

[2] individuals do not know the exact structure of the (social) network in which they are

embedded; and [3] individuals often consider separate interactions as independent (even

when they are not).21 Lemma 2 (and to some extent Theorem 2) o¤ers a connection

between these three observations: if the underlying process of the network formation

is su¢ ciently stochastic, and if individuals cannot observe perfectly or learn the entire

network structure, then in a large network the correct prior of an individual is that

her local environment is a random tree. In a random tree separate observations of

individual i are asymptotically independent. Notably, this is only a �rst stab at an

important question; the idea that simpli�ed heuristics that people use to adjust for

incomplete knowledge of their network can be explained as �averaging�over a stochastic

prior deserves further exploration.

A by-product of Lemma 2 is the provision of su¢ cient conditions under which a

network is expected to exhibits no degree correlation. �No degree correlation�is often

assumed in theoretical models of games in networks (e.g. Jackson and Yariv 2007).

Lemma 2 provides a plausible microfoundation. For an application of Lemma 2 in the

context of network based hiring in entry level labor markets see also Fainmesser (2010b).

4.3 Third-party observability, barriers to entry, and e¢ ciency

Proposition 1 suggests that su¢ cient WOM and third-party observability allow for a

larger set of buyer-seller networks to be cooperation networks. As cooperation increases

aggregate welfare in our model, Proposition 1 suggests that facilitating credible commu-

nication between buyers is welfare enhancing. Theorem 3 provides a more direct positive

result: in the presence of perfect communication channels between buyers, for large nb
21DeMarzo, Vayanos, and Zwiebel (2003) propose a model in which individuals learn from their

neighbors about the state of the world. In their model, individuals experience persuasion bias - each
individual i continuously updates her prior based on her neighbors�opinions ignoring the fact that her
neighbors�opinions depend on the network structure and on information that was previous accessible
to i. Golub and Jackson (2010) develop a similar model that allows for more �exibility in the updating
rule, but maintains the assumption that an individual updates her prior ignoring the network structure.
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and ns, networks that maximize the volume of trade and networks that maximize the

incentives to cooperate are approximately identical. In such �optimal� networks, the

degrees of buyers and sellers are large.

However, Theorem 3 and Corollary 2 also suggest that there are some non-degenerate

scenarios in which even with perfect third-party observability there is no network N =

(G;R) such that: [1] all sellers in S have an opportunity to trade, and [2] N is a

cooperation network. This observation carries welfare implications. We now provide an

illustrating example and thereafter discuss the implications of Theorem 3 in the context

of the example.

Example 1 Consider c; �; �; �; nb; and ns such that
nb
ns
< �,

�(� � c)
1� � � nb

ns
� c < 0; (9)

and
�(� � c)
1� � � �� c > 0: (10)

By Theorem 3, condition 9 guarantees that no network N in which Pr(ds = 0jN) = 0

can be a cooperation network. On the other hand, condition 10 assures us that there exists

a non-empty cooperation network. For example, a network in which Pr(db = 1jN) = 1,

Pr(ds = 1jN) = nb
ns
, and Pr(ds = 0jN) = 1� nb

ns
is a cooperation network.

In example 1, some sellers are excluded permanently from the market in any cooper-

ation network. Depending on the (unmodeled) network formation mechanism in a given

market, this observation lends itself to several interpretations: [1] the need to sustain

cooperation may create a barrier to entry, or [2] the existence of barriers to entry may

be necessary to facilitate cooperation in some markets.

In an environment in which � < 1, for any �nite ns and nb, the exclusion of sellers

from the market lowers the maximal volume of trade that can be achieved with ns sellers

and nb buyers. To see why, note that even if ns > nb, in periods in which more than nb

sellers produce, the volume of trade is at most nb whereas if less than nb of the connected

sellers produce, the volume of trade is bounded above by the number of the connected

sellers that produce.
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Nevertheless, in large networks this problem is eliminated. As long as condition (10)

holds, there exists an (asymptotically) welfare maximizing cooperation network. We

use example 1 to demonstrate this latter point which is an immediate implication of

Theorem 3.

Example 1 (cont.) We now focus on the special case where there exist positive integers

dB and dS, and �s 2 (0; 1) s.t. Pr(ds = dSjDGF (�)) = �s, Pr(ds = 0jDGF (�)) = 1� �s,

and Pr(db = dBjDGF (�)) = 1. Let ens be the number of sellers who have degree dS.
By construction, ens = �s � ns = nb�dB

dS
. As long as nbfns � �, condition 10 implies that

�(��c)
1�� � nbfns � c > 0.
Consider ��s such that ens = nb

�
. Note that �xing �s implies a �xed ratio

dB
dS
. Then

by Theorem 3, limdB!1 limnb!1

�
E[V (DGF (nb))]

nb
j��s
�
= 1; and

lim
dB!1

lim
nb!1

�
IC (DGF (nb))�

�
�(� � c)
1� � � �� c

�
j��s
�
� 0

which guarantees that given large enough nb and ns, there exists a cooperation network

that facilitates the maximal expected volume of trade possible (which equals the number

of buyers in the market).

5 Conclusion

This paper presents a model of repeated games in buyer-seller networks with a reputation

network that allows buyers to share information about past transactions with di¤erent

sellers. The model allows us to vary separately the cooperation network between buyers

and sellers and the reputation network between buyers, and examine how the quality of

the reputation network a¤ects the ability to sustain cooperation in any given buyer-seller

network.

More broadly, our contributions are two-fold, making both a newmethodological con-

tribution in the form of a novel method for moving beyond the assumption that a player�s

payo¤ function depends only on the actions taken by her immediate neighbors, and an

applied contribution in the form of a study of repeated interactions and community

enforcement in networked markets with buyers and sellers.
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At the core of our methodological contribution is a newmethod for reducing questions

about the global properties of a networked market to questions about the local properties

of the network. This allows us to analyze large networks as if they were small. Our

methodology can be applied to various economically important network interaction as

long as the e¤ect of one economic agent on another is a decreasing function of the

network distance between the two agents on the equilibrium path.

The introduction of incomplete knowledge of the network structure allows us to

approximate any small neighborhood of the network with a simple representative network

- a random tree. This contribution simpli�es the analysis of any environment for which

we can reduce questions about the global properties the network to questions about

the local properties of the network. Both Theorem 1 and Lemma 2 can be modi�ed to

include networks that are not bipartite; allowing for a richer set of interactions.

By applying our methodology to the study of repeated games in networks, we show

that while good reputation networks allow for cooperation in markets that could not

sustain cooperation otherwise, they do not guarantee cooperation in every market. Sur-

prisingly, a market with high quality reputation networks between buyers can exhibit

barriers-to-entry because the number of sellers that can be a part of any cooperation

network is a bounded function of the number of buyers in the market. The exclusion of

sellers from the market can hinder e¢ ciency in any small market. However, as a market

grows, a high quality reputation network that allows for optimal welfare emerges. Such

network facilitates the maximal volume of trade as well as sustains cooperation between

every seller and buyer that are connected.

6 Appendix A: proof of Lemma 2

Lemma 2 has implications that go beyond its role in the analysis of repeated games
in networks. For example, Fainmesser (2010b) employs a variant of the Lemma for
simplifying the analysis of networked labor markets in a static setting. Results of a
similar �avor have also been found useful in other disciplines.22 To this end, we present
the proof of Lemma 2 as a stand-alone section and follow the conventions of the graph
theoretic literature with respect to notation and de�nitions. We hope that this will make
it easier for our more technical readers to appreciate the generality of the result and to

22See Richardson and Urbanke (2008) for an example from coding theory.

33



be able to adopt the result or parts of it to be used in further applications.

6.1 Notations and de�nitions

A graph � = (V;E) is a set of nodes V and a set of edges E, where each edge e = (v1; v2)
speci�es that there is a connection between nodes v1 and v2. To prove Lemma 2 we
introduce a particular randomization scheme (which we will soon describe in depth).
We �rst formalize the class of graphs over which we randomize, and the di¤erent notions
of degree distribution (d.d.) that we will use. A graph � is bipartite if and only if � can
be partitioned into two sets (e.g. S(ellers) and B(uyers)) such that all edges contain
exactly one node from S and one node from B. A bipartite graph is said to be bicolored
if the nodes of the one partite are distinguished from the nodes of the other partite. For
example, the bicolored property guarantees that the graph on three nodes in which one
seller node is connected to two buyer nodes is distinguished from the graph on three
nodes in which one buyer node is connected to two seller nodes. We say that a bicolored
bipartite graph is labeled if each node in partite S have a distinct label from the set
f1; :::; nsg, and each node in partite B have a distinct label from the set f1; :::; nbg. A
graph � is rooted if one of the nodes on � is labelled in a special way to distinguish it
from the graph�s other nodes. This special node is called the root of the graph. For
two rooted graphs �1;�2, we say that �1 = �2 if the two graphs are isomorphic with
respect to the root. For a node v in a graph �, recall that dv denotes the degree (number
of neighbors) of v in �. Sometimes to make the underlying graph explicit, we use the
notation d�v .
For a graph � and a subset of nodes V 0 of �, the subgraph induced by V 0 will refer

to the subgraph of � consisting of the nodes V 0 and all edges in � that connect nodes in
V 0. Recall that for a given node v and depth d, Nd(v) was earlier de�ned as the set of
nodes whose graphical distance from v is at most d. For the remainder of Appendix A,
Nd(v) should be read as referring not just to the given set of nodes, but the subgraph
induced by that set of nodes. Sometimes, to make the reference graph explicit, we use
the notation N�

d (v). Also, for a given node v in a graph G, we let FG(v) denote the
set of degrees of the nodes adjacent to v in G. Recall that the set of degrees of a given
bipartite graph � may be de�ned in two distinct ways. Let Hs

�(Hb
�) denote the random

variable (r.v.) representing the degree of a seller (buyer) node selected u.a.r. from all
seller (buyer) nodes. Alternatively, let Gs�(Gb�) denote the r.v. representing the degree of
the seller (buyer) belonging to an edge selected u.a.r. from all edges of �.
For concreteness, let us �x some given degree distributions Hs;Hb with �nite, non-

negative support and rational probabilities. We letmH denote some integer bound on the
support of both Hs and Hb. Let Gs;Gb denote the corresponding degree distributions
under the random edge interpretation. Let G(nb) denote the set of labeled bicolored
bipartite graphs that satisfy d.d. Gs;Gb, and in which the buyer partite has nb nodes.
We let ns denote the corresponding number of nodes in the seller partite (determined
uniquely by nb and Gs;Gb). Let R(nb) denote a graph selected u.a.r. from G(nb). Let
RS(nb)

�
RB(nb)

�
denote the set of nodes in the seller (buyer) partite of R(nb). Let F

denote the set of vectors f s.t. Pr(FR(nb)(v) = f) > 0 for some v 2 R(nb) (note that F
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is dictated by Hs;Hb; nb).
Note that the random graph R(nb) has some non-trivial dependencies. Indeed, if

one conditions on there being an edge between nodes s and b, the precise e¤ect of
this conditioning on the degrees of the other nodes is di¢ cult to characterize exactly;
large-scale dependencies are introduced by the condition that the graph has the global
structure dictated by Hs;Hb. In spite of this, we prove that the local structure of R(nb)
is quite simple, namely that of a tree in which the degrees are chosen i.i.d. Let T (d; r)
denote a rooted depth-d tree generated as follows. The degree of the root equals r. Each
node at an even depth k � d � 1 is given an i.i.d. number of children distributed as
Gb � 1, and each node at odd depth k � d � 1 is given an i.i.d. number of children
distributed as Gs � 1.
Note that to prove Lemma 2, it su¢ ces to show the following.

Lemma 4 For all f 2 F and trees T ,

limnb!1 supv2RS(nb)

���Pr(NR(nb)
d (v) = T jFR(nb)(v) = f)� Pr(T (d; dv) = T jFT (d;dv)(v) = f)

��� = 0.
6.2 Con�guration method

To analyze R(nb) and prove Lemma 2, it will be convenient to analyze the well-known
pairing (a.k.a. con�guration) method for generating R(nb) (see e.g. Greenhill et al.
2006, Section 2). First, construct ns seller buckets S1; S2; :::; Sns and nb buyer buckets
B1; B2; :::; Bnb. Second, for each d � 1, populate a Pr(Hs = d)

�
Pr(Hb = d) fraction

of seller (buyer) buckets with exactly d indistinguishable points. Here we let jSij(jBjj)
denote the number of points assigned to bucket Si(Bj), and nb;p (ns;p) denote the total
number of buyer (seller) points as dictated by nb, Hs, and Hb. Third, select a matching
M(nb) between the seller points and the buyer points u.a.r. Fourth, construct a labeled
bicolored bipartite graph R0(nb) such that there are nb buyer nodes, ns seller nodes,
and an edge connecting seller node si and buyer node bj i¤ at least one point belonging
to seller bucket Si was matched to a point belonging to buyer bucket Bj. Note that
it is possible that in M(nb), there exist buckets Si; Bj such that two points in Si are
connected to two points in Bj, in which case the d.d. of R0(nb) need not be the same as
that of R(nb).
Our approach to proving Lemma 4 will be to �rst prove an analogue (but without

the conditioning involving F) for R0(nb).

Lemma 5 For all trees T , limnb!1 supv2R0S(nb)
jPr(NR0(nb)

d (v) = T ) � Pr(T (d; dv) =
T )j = 0.

Proof. Note that we may construct the random matching M(nb) in the following
manner. First, we pick an arbitrary seller or buyer point p1 of our choice. Then, if p1 was
a seller point, we select a point p2 u.a.r. from all buyer points. Alternatively, if p1 was a
buyer point, we select a point p2 u.a.r. from all seller points. We then add edge (p1; p2) to
M(nb); eliminate p1 and p2 from the set of remaining points; and repeat until all points
are matched. It follows that we may constructM(nb) by selecting the points in an order
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such that for any bucket Si of our choosing, Nd(si) is �generated �rst�. Roughly speaking,
we �rst pair o¤ those points whose buckets will eventually correspond to neighbors
of a seller si in R0(nb); we then pair o¤ those points whose buckets will eventually
become neighbors of neighbors of si in R0(nb), etc. More precisely, we may construct the
matchingM(nb) using the following algorithm. We proceed through a series of stages,
indexed by k. We will decide which point we pair o¤ next (more precisely the bucket
containing that point) by assigning the buckets labels as the algorithm proceeds.

RANDGEN :

Initialize: k = 1. Assign bucket Si the label 1.
While there exists at least one unmatched point:
While there exists at least one bucket with label k:
Select a bucket U u.a.r. from all buckets with label k:
Select an unmatched point p u.a.r. from U :
Select an unmatched point p0 u.a.r. from all unmatched seller (buyer) points;
Add edge (p; p0) toM(nb);
Remove points p; p0 from the set of remaining points;
Assign the bucket containing point p0 the label k + 1;

If there does not exist a bucket with label k + 1 containing at least one unmatched
point:

Select a bucket U u.a.r. from all seller(buyer) buckets with � 1 unmatched point;
Assign bucket U label k + 1;

k = k + 1;

A simple proof by contradiction shows that RANDGEN always terminates, and a
simple induction shows that no bucket is ever assigned two di¤erent labels. Note that
since each time we pick a point we match it u.a.r. to a remaining point of the �other�
partite, RANDGEN indeed returns a matching distributed u.a.r.
Let Ei;� be the event that no bucket with label k � � + 1 was assigned its label

more than once.

Observation 1 Conditional on the event Ei;�, N
R0(nb)
� (si) is acyclic.

By a simple induction, at most 2(mH +mH(mH � 1) +mH(mH � 1)2 + :::+mH(mH �
1)��1) � 2�m�

H points are matched while k � �. Let p1; p2 be any two points belonging
to sellers�buckets matched during stage k � � for k even. Then the probability that
p1; p2 were matched to points q1; q2 belonging to the same buyer�s bucket is at most

mH�1
nb;p�2�m�

H
. Indeed, w.l.o.g. assuming p1 was matched �rst (with q1), there are at most

mH� 1 points out of at least nb;p� 2�m�
H remaining points which q2 could be matched

to so that q1; q2 belong to the same bucket. Since there are at most
�
2�m�

H
2

�
pairs of

points such that both are matched during stage k � �, it follows from a union bound
that

Pr(Ei;�) � 1�
�
2�m�

H
2

�
mH � 1

nb;p � 2�m�
H
= 1�O( 1

nb
): (11)
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Let U be any seller bucket assigned label k � �, and p any point in U that is matched
during stage k. It follows from (11) and the previous discussion that for any i, regard-
less of the value of dsi and the actions taken by RANDGEN before p was matched, the
probability that p is matched to a point q contained in a bucket Bi satisfying d

R0(nb)
bi

= l
is at least Pr(Hb = l) � O( 1

nb
). Similarly, the probability that p is matched to a point

q contained in a bucket Bi satisfying d
R0(nb)
bi

= l is at most Pr(Hb = l) + O( 1
nb
). We

note that corresponding bounds hold with the role of buyers and sellers interchanged.
It follows that the number of points in the bucket chosen next by RANDGEN is as-
ymptotically independent and identically distributed, where the associated distributions
(which depend only on whether the current bucket is a buyer or seller bucket) corre-
spond to Hs;Hb. Lemma 5 then follows from a standard coupling argument, in which
we construct T (d; dv) and Nd

R0(nb)
(v) on the same probability space.

6.3 Relating the con�guration model back to the original model

We now relate R(nb) to R0(nb) probabilistically. Namely, it is well-known (see e.g.
Greenhill et al. 2006) that

Lemma 6 R(nb) is distributed exactly asR0(nb) conditioned to belong to the set G(nb).

We now bound the probability that R0(nb) belongs to G(nb). In particular, it follows
from Theorem 1.3 and Lemma 2.1 of Greenhill et. al. 2006 that for the �xed degree
distributions Hs;Hb,

Lemma 7 limnb!1 Pr (R0(nb) 2 G(nb)) > 0.

6.4 Completing the proof of Lemma 4

The only remaining hurdle to proving Lemma 4 is to �reincorporate�the conditioning
involving F . This can be proven directly by computing the relevant conditional prob-
abilities. However, we o¤er an alternative proof that is more general. We show that
for almost all graphs in G(nb), the fraction of nodes whose neighborhood is isomorphic
to any given tree T is approximately the same as the probability that a corresponding
i.i.d. random tree is isomorphic to T . Therefore, the fact that a seller knows her degree
and the degrees of buyers connected to her does not a¤ect the seller�s posterior over the
global network structure, or even over her local network structure that is not included
in her explicit knowledge. We do that by proving a concentration result, namely that
for any tree T , the variance of the number of sellers whose neighborhood looks like T in
R0(nb) goes to zero as nb goes to in�nity.

Lemma 8 For any rooted tree T , V ar[n�1s
P

si
I(N

R0(nb)
� (si) = T )] = O(

1
ns
).

Proof. After expanding the variance using its de�nition as the di¤erence between the
expected value of the square and the square of the expectation, the only non-trivial
step in proving Lemma 8 is bounding the covariance of the indicators I(NR0(nb)

� (si) =
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T ); I(N
R0(nb)
� (sj) = T ) for (arbitrary) nodes si; sj. To analyze this covariance, we con-

sider implementing RANDGEN in a slightly modi�ed manner- namely, we generate
�both�NR0(nb)

� (si) and N
R0(nb)
� (sj) ��rst�. More precisely, let RANDGEN 0 be the algo-

rithm that is equivalent to RANDGEN , except at initialization both buckets Si and
Sj are assigned the label 1. The covariance of I(N

R0(nb)
� (si) = T ); I(N

R0(nb)
� (sj) = T )

is then bounded by analyzing RANDGEN 0 to show that NR0(nb)
� (si) and N

R0(nb)
� (sj)

are asymptotically independent (in an appropriate sense). The analysis proceeds very
similarly to our proof of (11), and we omit the details.

7 Appendix B: additional proofs

Theorem 3 - Proof. As all sellers are symmetric, we have that
E [V (DGF (R1; nb; dS; dB))] = ns

P
b2N1(s) Pr(I(s; b) = 1), where s is any seller. Further-

more, as only those sellers which produce can trade, we have the further re�nement

E
�
V
�
DGF (R1; nb; dS; dB)

��
= �ns

X
b2N1(s)

Pr(I(s; b) = 1j s produces): (12)

Let T 1(d; dS; dB) denote the rooted depth-d tree (with root r1) s.t. the root has dS
children, each non-leaf node at odd depth has dB � 1 children, and each non-leaf node
at even depth has dS�1 children. For 0 < � < 1, let T 1(d; dS; dB; �) denote the random
rooted depth-d tree (with root r1) constructed by taking T 1(d; dS; dB) and deleting each
seller (other than r1) w.p. � (i.i.d. across sellers). For a graph G, let M(G) denote
the random greedy graph matching (on G) constructed by examining the edges of G
in a u.a.r. permutation, always including an edge i¤ no incident edge has already been
included (the same studied in GG). For a node v 2 G, let I

�
v 2 M(G)

�
denote the

indicator for the event that v is matched in G (equivalently v is incident to a selected
edge). Then it follows from Lemma 2, Lemma 6 of GG, and (12) that for any � > 0, there
exists N�;dS ;dB ;�; d�;dS ;dB ;� (depending only on �; dS; dB; �) s.t. for all ns; nb � N�;dS ;dB ;�
and d � d�;dS ;dB ;�,

jE [V (DGF (R
1; nb; dS; dB))]

ns
� �Pr

�
r1 2M

�
T 1(d; dS; dB; �)

��
j < �; (13)

and thus

E [V (DGF (R1; nb; dS; dB))]
ns

� �Pr
�
r1 2M

�
T 1(d; dS; dB; �)

��
� �: (14)

It follows from Lemma 3 that Pr
�
r1 2M

�
T 1(d; dS; dB; �)

��
� Pr

�
r1 2M

�
T 1(d; dS; dB)

��
,

since deleting sellers is equivalent to removing (as children) subtrees from buyer nodes.
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Combining with (14), we �nd that for all ns; nb � N�;dS ;dB ;� and d � d�;dS ;dB ;�

E [V (DGF (R1; nb; dS; dB))]
ns

� �Pr
�
r1 2M

�
T 1(d; dS; dB)

��
� �: (15)

We now treat two cases. First, suppose dS � dB. Then it follows from Lemma 3 that

Pr

�
r1 2M

�
T 1(d; dS; dB)

��
� Pr

�
r1 2M

�
T 1(d; dS; dS)

��
: (16)

But it follows from Corollary 6 of GG (in light of Lemma 6 of GG) that for all dS � 3,

lim
d!1

Pr

�
r1 2M

�
T 1(d; dS; dS)

��
= 1� (dS � 1)�

dS
dS�2 : (17)

Thus since dS
dS�2 � 1, we have that

lim
d!1

Pr

�
r1 2M

�
T 1(d; dS; dS)

��
� 1� 1

dS � 1
: (18)

Combining (15),(16), and (18) demonstrates the Theorem for the case dS � dB.

Now, suppose dB � dS. It follows from Lemma 2 that for any �xed d; �; dB; dS, there
exists a bipartite graph G(d; �; dB; dS) (with partites B; S) s.t.: 1. all nodes in par-
tite B have degree dB and all nodes in partite S have degree dS, and 2. a 1 � �
fraction of nodes in partite S (partite B) have depth-d neighborhoods isomorphic to
T 1(d; dS; dB)

�
T 1(d; dB; dS)

�
. By Lemma 6 of GG, for any �xed �; dB; dS we may select a

su¢ ciently large d �
= d(�; dB; dS) s.t. for any node s belonging to the (at least) (1� �)jSj

nodes of partite S with depth-d neighborhoods isomorphic to T 1(d; dS; dB); jPr
�
s 2

M
�
G(d; �; dB; dS)

��
� Pr

�
r1 2 M(T 1(d; dS; dB)

�
j < �. Also, for any node b belonging

to the (at least) (1 � �)jBj nodes of partite B with depth-d neighborhoods isomorphic

to T 1(d; dB; dS), jPr
�
b 2M

�
G(d; �; dB; dS)

��
�Pr

�
r1 2M

�
T 1(d; dB; dS)

�
j < �. Com-

bining the above, we �nd that for the graph G(d; �; dB; dS),

jE[
X
b2B

I

�
b 2M

�
G(d; �; dB; dS)

��
]� jBjPr

�
r1 2M

�
T 1(d; dB; dS)

��
j � 2�jBj; (19)

and

jE[
X
s2S

I

�
s 2M

�
G(d; �; dB; dS)

��
]� jSjPr

�
r1 2M

�
T 1(d; dS; dB)

��
j � 2�jSj: (20)
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Note that since the number of matched nodes in partite S always equals the num-

ber of matched nodes in partite B, one has E[
P

b2B I

�
b 2 M

�
G(d; �; dB; dS)

��
] =

E[
P

s2S I

�
s 2M

�
G(d; �; dB; dS)

��
]. It thus follows from (19) and (20) that

jPr
�
r1 2M

�
T 1(d; dB; dS)

��
� dB
dS
Pr

�
r1 2M

�
T 1(d; dS; dB)

��
j � 2�(1 + dB

dS
); (21)

and

lim
d!1

Pr

�
r1 2M

�
T 1(d; dB; dS)

��
=
dB
dS

lim
d!1

Pr

�
r1 2M

�
T 1(d; dS; dB)

��
: (22)

Combining with (15), we �nd that for any �xed �; dS; dB; � there exist N 0
�;dS ;dB ;�

; d0�;dS ;dB ;�
s.t. for all ns; nb � N 0

�;dS ;dB ;�
; d � d0�;dS ;dB ;�,

E [V (DGF (R1; nb; dS; dB))]
ns

� �dS
dB
Pr

�
r1 2M(T 1(d; dB; dS)

��
� �: (23)

It follows from Lemma 3 that Pr
�
r1 2M

�
T 1(d; dB; dS)

��
� Pr

�
r1 2M

�
T 1(d; dB; dB)

��
:

Combining with (18) (replacing dS by dB) and taking limits demonstrates the theorem
for the case dB � dS.

Corollary 2 - Proof. Part 1: Let � = 1 and  � 1. Let N = (G;R) be any
network that satisfy the following: [1] for every b 2 B, db = 1; and [2] max fdsgs2S =
1. The network N consists of nb buyer-seller pairs and nb � nb sellers that are note
connected to any buyer (R can be chosen arbitrarily). Let �N put probability 1 on the
network N . Then,

E[V (�N)] = nb and min
s2S

IC(c; �; �; �;�N) =
�(� � c)
1� � � �� c > 0: (24)

Plugging (24) into the de�nition of WL (nb; ns; c; �; �; �) complete the proof. The
proof for the case where  < 1 is symmetric.
Part 2: Assume by contradiction that for every  there exists  >  such that

WL (nb; nb; c; �; �; �) = 0. Let nts be the number of sellers that are able to produce
in period t. The contradiction assumption implies that there exists �N such that
in every period min fnb; ntsg trades take place and that mins2S IC(c; �; �; �;�N) > 0.
However, given that � < 1, to satisfy that in every period min fnb; ntsg trades take
place, �N must provide each seller with a positive probability of selling in every period
that she produces. Thus, for  > 1

�
, mins2S IC(c; �; �; �;�N) <

�(��c)
1�� � 1


� c which is

guaranteed to be negative for any  > �(��c)
(1��)c . This completes the proof by contradiction

to mins2S IC(c; �; �; �;�N) > 0.
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Part 3: Let  � 1
�
and ns = 1

�
� nb. Let �N assign identical probability to any

network that is possible conditional on the following: [1] ds = dS for exactly ns sellers
and ds = 0 for ns � ns seller; and [2] db = dB = 1

�
� dS for every b 2 B. Combining

Theorem 3 and Equation (8) we get that

lim
dS

lim
nb!1

E [V (�N)]

nb
� 1 ; and lim

dS
lim
nb!1

IC (c; �; �; �;�N) � �(� � c)
1� � � �� c > 0;

which completes the proof. The proof for the case where  < 1
�
is much simpler and

follows a similar logic and therefore omitted.
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