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Abstract

Most of the economic literature on bargaining has focused on situations where the
set of possible outcomes is taken as given. This paper is concerned with situations
where decision-makers first need to identify the set of feasible outcomes before they
bargain over which of them is selected. Our objective is to understand how differ-
ent bargaining institutions affect the incentives to disclose possible solutions to the
bargaining problem, where inefficiency may arise when both parties withold Pareto
superior options. We take a first step in this direction by proposing a simple, stylized
model that captures the idea that bargainers may strategically withhold informa-
tion regarding the existence of feasible alternatives that are Pareto superior. We
characterize a partial ordering of “regular” bargaining solutions (i.e., those belonging
to some class of “natural” solutions) according to the likelihood of disclosure that
they induce. This ordering identifies the best solution in this class, which favors the
“weaker” bargainer subject to the regularity constraints. We also illustrate our result
in a simple environment where the best solution coincides with Nash, and where the
Kalai-Smorodinsky solution is ranked above Raiffa’s simple coin-toss solution. The
analysis is extended to a dynamic setting in which the bargainers can choose the
timing of disclosure.

1. INTRODUCTION

Bargaining theory aims to understand how parties resolve conflicting interests on
which outcome to implement. The economic literature has focused so far on the case
where the set of feasible alternatives is obvious, e.g. sharing some monetary value. There
are, however, many situations where this set is not commonly known. In these situations,
the bargainers themselves must propose feasible solutions to their conflict, and creativity
to identify new options is likely to be mutually beneficial.

One common situation with these features is the selection of a candidate, or a group
of candidates, for a task by several parties with conflicting interests: deciding which
candidate to hire for a vacant post, choosing a candidate to run for office, deciding on the
composition of some external committee, choosing an arbitrator, etc. Quite often it is
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not commonly known which potential candidates are suitable for the task, and which are
actually willing to be nominated. Hence, the parties responsible for making the decision
must propose names of candidates from which a selection can be made. Another example
is that of international conflicts, where different parties may have conflicting interests
on say, how to address the development of a nuclear program by hostile country, or how
to fight against terrorism or how to resolve an ethnic conflict. Possible solutions may
involve different forms of sanctions, a variety of military operations or the creation of
new reforms or laws. The parties who wish to resolve the conflict would need to suggest
concrete plans of actions.

Notice how monetary transfers are often not an option in the examples we have just
described. But even in cases where monetary transfers are feasible, such as in labor-
management negotiations, it is often important for the parties themselves to identify and
propose the specific details and dimensions over which compromises could be made (e.g.,
pension plans, overtime wages, paid holidays, tenure clocks, etc.). All these examples
share the feature that in order for the parties to resolve their decision problem or their
dispute, they need to come up with a concrete set of feasible options to choose from.

Such conflicts of interests have received much attention in the more applied or popular
literature (see e.g. Fisher et al. (1991), or the webpage of the Federal Mediation and Con-
ciliation Service). For example, one of the key steps in what is known as interest-based
(or integrative, or win-win, or mutual gains, or principled) bargaining technique is for
both parties to suggest feasible options, before implementing an agreed-upon objective
criterion (e.g. “traditional practices,” “what a court would decide,” “comparing the op-
tions’ market value,” “fairness,” etc.) to evaluate them. However, private incentives may
go against the systematic disclosure of win-win options: rational parties would anticipate
what is the potential impact on the final outcome of disclosing an option. Thus, even if a
party is aware of an alternative that is Pareto improving, it may decide to withhold that
information in the hope that another party will reveal a more profitable option that it is
not aware of. The popular literature on negotiations suggests that such strategic concerns
are real and may impede negotiations. For instance, the disputing parties are instructed
to suggest, one at a time and as rapidly as possible (which may be interpreted as a way
to limit strategic considerations), a number of solutions that might meet the needs of
the parties. It is often emphasized that evaluating the proposed options is irrelevant at
this stage, as selection will occur only after a satisfactory number of options have been
proposed or the parties have exhausted their ideas.1

While classical bargaining theory has taken the set of feasible agreements as an ex-
ogenous variable, this paper explores how options emerge endogenously. In particular,
our objective is to understand how different bargaining institutions affect the incentives
to disclose possible solutions to the bargaining problem, where inefficiency may arise
when both parties withold Pareto superior options. We take a first step in this direc-

1One vivid example of this appears in Haynes (1986), who discusses the role of mediators when
implementing an interest-based approach to divorce and family issues: “If the mediator determines that
the parties are withholding options with a covert strategy in mind, the mediator can cite a similar situation
with another couple and describe different options they considered. This can helps break the logjam by
forcing the couple to examine the options and including them on their list, thereby creating a greater level
of safety for other options that are developed after one goes up on the board.” In our model, though,
feasible options can only be disclosed by the bargainers themselves - there will be no mediator with extra
information to break the logjam.
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tion by proposing a simple, stylized model that captures the idea that bargainers may
strategically withhold information regarding the existence of feasible alternatives that are
Pareto superior. Section 2 presents our basic model, which investigates the case where
each bargainer knows only about one feasible solution to the bargaining, and his decision
problem is whether or not to disclose his information. More specifically, there are two
bargainers, who each has learned (in the sense of obtaining verifiable evidence) about the
feasibility of some option. Neither bargainer knows what option the other has learned
about, but they both have a common prior on the payoffs associated with the potentially
feasible options. The bargainers first decide (simultaneously) whether or not to disclose
their options, and then in the second stage, they apply a bargaining solution, which is
modeled as a function that assigns to every set of disclosed options a lottery on the union
of this set and the disagreement point. Attention is restricted to a class of bargaining
solutions (referred to as “regular”) with some reasonable properties, which in our basic
set-up contains all the classical solutions such as Raiffa, Kalai-Smorodinsky and Nash.
We interpret the “regularity” properties of a bargaining solution as “descriptive” prop-
erties in the sense that parties to a dispute would want to use bargaining procedures
that possess these properties (they may be viewed as “normative” properties when one
takes the set of agreements as given). We emphasize that our model abstracts from many
details that accompany real-life negotiations (such as those described above) and may fit
some situations better than others. Its purpose is not to give a one-to-one mapping of
reality but rather, to provide a tractable framework that enables us to isolate the effect
of the bargaining procedure on the incentives to disclose feasible options.

Focusing on the symmetric Bayesian Nash equilibria of the disclosure game, we show
in Section 3 that each bargaining solution induces a unique, strictly positive, probability
of no-disclosure (and hence, disagreement). This probability uniquely determines the
ex-ante welfare of the bargainers in our model. In Section 4, we define a partial ordering
on regular bargaining solutions, and show that being superior according to that ordering
implies a higher degree of efficiency in the symmetric equilibrium of the disclosure game.
In the simple environment we begin with, this partial ordering implies that the level
of inefficiency is systematically lower when the Nash solution is applied than when the
Kalai-Smorodinsky solution is applied, and in turn lower than when the Raiffa solution
is applied. Moreover, in this environment the Nash solution induces the minimal level of
inefficiency among all regular solutions. As a dual result, we also derive an upper-bound
on the level of inefficiency that is possible when picking the final option according to
a regular bargaining solution. In addition, we show that our partial ordering induces
a lattice structure on the set of regular bargaining solutions: given any pair of regular
solutions, we can construct a new pair of regular solutions, one which is more efficient
than each of the original solutions, and another, which is less efficient.

When evaluating the efficiency of bargaining solutions, our approach is to take as
given the set of solutions that are used (with the interpretation that most disputes are
resolved via some regular bargaining solution), and ask which procedures perform better
in terms of disclosure. An analagous approach is taken in the literature that exam-
ines the incentives to engage in costly information acquisition under different committee
designs or under different auction formats (see Persico (2000, 2004)). An alternative,
implementation-theoretic approach, which is not taken in this paper, is to try and in-
ternalize the incentive to disclose information by designing an optimal mechanism that
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assigns to every pair of bargainer types a probability of disclosure and a probability
distribution over the feasible outcomes.2

In Section 5, we address the question of disclosure over time, where pure inefficiency
now becomes a delay. In equilibrium, a bargainer immediately discloses an option if it is
relatively favorable to him, and will delay disclosure for less favorable options, where the
rate of delay is independent of the bargaining solution. However, the likelihood of disclos-
ing immediately varies with the solution, and it turns out that the normative comparison
derived for the one-shot game carries over to the dynamic game: delay is uniformly lower
if the solution that is applied is larger according to the incomplete ordering defined in
Section 4, and the Nash solution is thus optimal if the objective is to minimize the level
of inefficiency. While in general, we cannot compare the bargainers’ welfare in the static
and dynamic game, we show that for a uniform distribution of bargainer types, the ex-
ante expected welfare under the Raiffa, Nash and Kalai-Smorodinsly solutions are strictly
lower in the dynamic game than in the static game. We conclude Section 5 by examining
a variant of the dynamic disclosure game where bargainers have the possibility to react
immediately after the other had disclosed his option, i.e. before the bargaining solution is
applied. In that case, the equilibrium probability of immediate disclosure is independent
of the bargaining solution. Furthermore, for every regular bargaining solution and for
every bargainer type, the timing of disclosure is delayed relative to the original dynamic
disclosure game.

Section 6 extends the analysis of the static game to a more general environment, where
we characterize the most efficient regular bargaining solution (which reduces to the Nash
solution in the simple emvironment of Section 2). This solution has the property that
whenever two options have been disclosed, it seeks to maximize the expected payoff of the
“weaker” bargainer (in the sense that his minimal payoff from the two disclosed options
is lower than the minimal payoff of the other bargainer) subject to the constraint that the
stronger bargainer obtains as close as possible to half of the maximal attainable surplus.

The final section of the paper, Section 7, provides some concluding remarks. Some
proofs are relegated to the Appendix.

2. MODEL

Consider two bargainers who each learn about the feasibility of an option, represented
in the space of utilities as a pair of non-negative real numbers (x1, x2). The set X, of all
payoff pairs associated with the potentially feasible options, has the following properties.
First, no element in X Pareto dominates another. Second, X is symmetric in the sense
that if (x1, x2) ∈ X then (x2, x1) ∈ X. We normalize the lowest and highest payoffs that
any bargainer can achieve to zero and one, respectively. We will first focus on the case in
which X is the line joining (1, 0) to (0, 1). In Section 6, we will discuss how our analysis
can be extended to more general sets X with the above properties.

Bargainers do not know what option his opponent has learned is feasible. His beliefs
regarding the payoffs from his opponent’s option is described by a common symmetric
density f on X with full support. Symmetry here means that f(x1, x2) = f(x2, x1), for

2To illustrate the difference betwen these two approaches, compare Persico (2004) that studies the
incentives to acquire information under prevalent committee designs (specifically, threshold voting rules),
with Gerardi and Yariv (2008) that characterize the ex-ante optimal collective decision-making procedure.
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each (x1, x2) ∈ X. For notational simplicity, individual i’s type will be summarized by
his own payoff in the option he is aware of. This is without loss of generality since the
other component is the complementary number that guarantees a sum of 1.

The two bargainers play the following game. First, in the disclosure stage, they decide
independently whether or not to disclose the feasibility of the option they are aware of.
We assume that when bargainer i discloses an option, then the payoffs associated with
that option, (x, 1−x), become common knowledge (henceforth, we identify an option with
the payoffs it induces).3 Second, in the bargaining stage, an outcome is selected according
to a lottery (referred to as the “bargaining solution”) over the set of disclosed options
and the disagreement outcome, which is assumed to give a zero payoff to both players.
The bargaining solution may be a reduced-form to describe the equilibrium outcome of
some specific bargaining procedure, or to describe the outcome following arguments in an
unstructured bargaining situation, as those investigated, for instance, in the axiomatic
literature.

We denote by b(x, y) the pair of expected payoffs for the bargainers when applying
the bargaining solution b if bargainer i disclosed the option (x, 1 − x) and bargainer j
disclosed the option (1− y, y). If only one bargainer, say i, disclosed an option (x, 1−x),
then the pair of expected payoffs is denoted b(x, ∅). The bargaining solution is regular if
the following properties are satisfied for i = 1, 2.

1. (Ex-post Efficiency) b(x, ∅) = (x, 1−x) and for all x, y ∈ [0, 1], there exists α ∈ [0, 1]
such that b(x, y) = α(x, 1− x) + (1− α)(1− y, y).

2. (Symmetry) bi(x, y) = bi(1− y, 1− x) and bi(x, y) = bj(y, x).

3. (Monotonicity) x′ ≥ x, y′ ≤ y ⇒ bi(x
′, y′) ≥ bi(x, y), for all x, x′, y, and y′ in [0, 1].

Our analysis will be limited to regular bargaining solutions, except where stated
otherwise. It will prove useful to note that the three regularity conditions have the
following implication.

Lemma 1 If b is a regular bargaining solution, then for all x, x′ such that x′ > x, there
exists a subset Y of [0, 1] with strictly positive measure such that bi(x

′, y) > bi(x, y), for
all y in Y .

Proof: See the appendix. �

Discussion

Before we analyze the equilibria of this game, we comment on several key features of
the model. Our model addresses situations in which there is a very large set of potentially
feasible options, but parties do not know a priori which ones are actually feasible and/or
what are their associated payoffs. The parties may have learned about the feasibility
of an option and its associated payoff by chance, or they might have actively searched
through the set of potential options until they discovered one which is actually feasible and

3Types are verifiable once disclosed, and hence an agent cannot report anything else than what he
knows.
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identified its associated payoffs. In that latter case, our work should be understood as a
building block of a more elaborate model. Investigating the incentives to search in the first
place remains an interesting open question. The density f can be interpreted as encoding
the bargainers’ subjective beliefs regarding what their opponent might know, and/or as
the objective distribution of payoffs associated to feasible options in a situation where they
do not know how these payoffs maps to physical options. As an illustration of the latter
interpretation, consider two parties with conflicting objectives who need to agree on a
person to hire. While the parties may know the distribution of the potential candidates’
characteristics in the population, they may not necessarily know the characteristics of
a specific candidate, and whether a candidate is interested in being considered for the
position.

In addition, we consider those situations where the parties can only select from a
set of concrete options for which there is verifiable evidence attesting to their feasibility
(and from which the payoffs can be inferred). For example, when a group of individuals
need to make a hiring decision for a vacant post, they can only choose among a list of
candidates that was presented to them. Even though they might know the distribution
of talents in the population, they will not consider the possibility of hiring a randomly
drawn candidate. Similarly, when heads of countries meet to decide on a response to
terrorism, they will only consider those concrete plans ofaaa actions that were presented
to them.

Our analysis focuses on situations where the bargainers are completely symmetric ex-
ante. Any asymmetry between the two bargainers is either at the interim stage because
of their realized type and the actions they decide to take, or it is at the ex-post stage
as a result of the bargaining solution. We, therefore, assume that the players make
their disclosure decisions simultaneously (i.e., we do not impose any exogenous sequence
of moves). This may be interpreted as a situation in which the two bargainers have
scheduled a meeting to discuss the alternative solutions to their bargaining problem, and
prior to the meeting, each bargainer needs to decide whether or not to bring all the
documents that provide a detailed description of the option he knows.. Alternatively,
the bargaining solution may represent the decision of an arbitrator, who requests the two
parties to send him the evidence they have. In other words, we take the view, that the
disclosure stage is unstructured, and that any pre-assigned sequence of disclosure cannot
be enforced.4

The regularity conditions are meant to capture common features of prevalent bar-
gaining procedures. These are interpreted as properties that most bargainers would find
appealing, so much so that they would see their violation as a reason for not using the
procedure to resolve their conflict. In this sense, we interpret the regularity conditions as
descriptive properties of bargaining solutions, which were designed without taking into
account their implication on disclosure. In Section 4 we discuss the case in which these
conditions are relaxed.

Finally, as will become clear in the next section, our analysis will not change quali-
tatively (but will become messier) if we allowed for the possibility that a bargainer may
fail to learn about any option.

4This view is motivated by case studies of real-life negotiations, where one rarely reads about a pre-
specified order by which the parties are asked to disclose their evidence. Section 5 analyzes the case where
one bargainer may disclose before another, but the timing of disclosure will be endogenous.
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3. POSITIVE ANALYSIS OF THE DISCLOSURE GAME

A mixed-strategy for player i in the disclosure stage is a measurable function σi :
[0, 1] → [0, 1], where σi(x) is the probability that i announces his option while of type
x. A pair of mixed strategies, one for each bargainer, forms a Bayesian Nash equilibrium
(BNE) of the disclosure game if the action it prescribes to each type of each player is
optimal against the strategy to the opponent. The BNE is symmetric if both bargainers
follow the same strategy.

The key variables to consider to identify the BNEs of the game are the players’
expected net gain of revealing over withholding when of a specific type and given the
opponent’s strategy:

ENG1(x, σ2) = x

∫ 1

y=0
(1− σ2(y))f(y)dy +

∫ 1

y=0
σ2(y)[b1(x, y)− (1− y)]f(y)dy,

for each type x ∈ [0, 1] and each strategy σ2. The expected net gain of player 2 is
similarly defined. We start by establishing two key properties of this function: it is
strictly increasing in one’s own type (independently of the opponent’s strategy), and
strictly decreasing in the likelihood of disclosure by the opponent.

Lemma 2 1. ENGi(x, σ−i) is strictly increasing in x.

2. If σ̂−i(y) ≥ σ−i(y), for each y ∈ [0, 1], then ENGi(x,̂ σ−i) ≤ ENGi(x, σ−i).

Proof: We assume i = 1. A similar argument applies to player 2. The fact that
it is non-decreasing in x follows immediately from the monotonicity condition on b. If
{y ∈ X|σ2(y) < 1} has a strictly positive measure, then it is strictly increasing in x via its
first term. Otherwise, the function is strictly increasing in x, as a consequence of Lemma
1.

The second property follows from the fact that b1(x, y)− (1−y) ≤ x, for each (x, y) ∈
[0, 1]2, which itself follows from the fact that b1(x, y) ≤ max{x, 1 − y}, since b selects a
convex combination between (x, 1− x) and (1− y, y). �

Using this lemma, we can characterize the symmetric BNE of the disclosure game.5

Proposition 1 The disclosure game has a unique symmetric BNE in which every player
discloses his option if and only if his type is greater or equal to a threshold

θ = sup{x ∈ [0,
1

2
] | xF (x)−

∫ 1

y=x
(b1(x, y)− (1− y))f(y)dy < 0}. (1)

Hence, a positive measure of types withhold their information in the symmetric equilib-
rium. In addition, if the symmetric BNE is the unique BNE, then it is also the unique
profile of strategies that survive the iterated elimination of strictly dominated strategies.

5Notice that the existence of a BNE is guaranteed even without any requirement of continuity on b.
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Proof: The first property from Lemma 2 implies that there exists a best response
to any strategy, and that any such best response coincides almost everywhere with a
threshold strategy. More precisely, if σ∗i is a best response against σ−i, then there exists
a unique θi ∈ [0, 1] such that σ∗i coincides almost everywhere with the threshold strategy

σθii , where σ∗i (x) = 0, for each x such that x < θi, and σ∗i (x) = 1, for each x ∈ [0, 1] such
that x > θi. The existence of a symmetric BNE is thus equivalent to the existence of a
fixed point to the correspondence that associates i’s optimal threshold strategy to each
of the opponent’s threshold strategies, or θi = BRi(θ−i) for short. This will follow from
Brouwer’s fixed-point theorem after showing that BRi is continuous. Let thus (θ(k))k∈N
be a sequence of real numbers in [0, 1] that converges to some θ. Suppose on the other
hand that BRi(θ(k)) converges to some θ′ 6= BRi(θ). To fix ideas, we’ll assume that
θ′ > BRi(θ) (a similar reasoning applies if the inequality is reversed). Hence there exists

K such that BRi(θ)+θ
′

2 < BRi(θ(k)), for all k ≥ K, and

ENGi(
BRi(θ) + θ′

2
, σθ(k)) < 0.

Taking the limit on k, we get

ENGi(
BRi(θ) + θ′

2
, σθ) ≤ 0,

by continuity of the integral with respect to its bounds, but which thus leads to a con-

tradiction, since BRi(θ)+θ
′

2 > BRi(θ). Hence BRi is indeed continuous, and admits a
fixed-point.

The first property of Lemma 2, and the definition of the expected net gain, imply that
BR1(θ2) = sup{x ∈ [0, 1

2 ] | xF (x)−
∫ 1
y=x(b1(x, y)− (1− y))f(y)dy < 0}. We will thus be

done showing that all symmetric BNE’s must satisfy (1) after proving that the threshold
must fall below 1/2. We start by proving that the expected net gain from disclosing for
type 1

2 is zero when his opponent always discloses his type. To see this, note that the
expected net gain from disclosing of some player, say 1, when his type is 1

2 and σ2(y) = 1
for all y ∈ [0, 1] is given by ∫ 1

y=0
[b1(

1

2
, y)− (1− y)]f(y)dy

This expression can be decomposed into two parts: one where the opponent’s type is below
1
2 , and another where his type is above 1

2 . The second component may be rewritten as
follows. First, using the symmetry of b we replace b1(1

2 , y) = b2(y, 1
2). Since b selects a

point on the line joining (x, 1 − x) and (y, 1 − y), we have that b2(y, 1
2) = 1 − b1(y, 1

2).
By symmetry of b, we have that b1(y, 1

2) = b1(1
2 , 1 − y). Define the random variable

y′ ≡ 1 − y with density function f ′. Note that by the symmetry of f, we have that
f ′(y′) = f(y) for any y′ ∈ [0, 1

2 ] and y = 1 − y′. It follows that the net expected gain of
type 1

2 equals∫ 1
2

y=0
[b1(

1

2
, y)− (1− y)]f(y)dy −

∫ 1
2

y′=0
[1− b1(

1

2
, y′)− y′)]f(y′)dy,
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which is equal to zero. Part 1 of Lemma 2 implies that BRi(0) = 1/2. Part 2 of Lemma
2 implies that BRi(θ) ≤ 1/2, for all θ ∈ [0, 1], as desired.

We now show that the symmetric BNE must be unique. Suppose, on the contrary,
that there were two symmetric BNE’s. Let θ and θ′ be the two corresponding common
thresholds that the two players are using. Assume without loss of generality that θ′ > θ,
and let θ̂ be a number that falls between θ and θ′. Lemma 2 and the definition of the
thresholds imply:

0 < ENG1(θ̂, σθ2) ≤ ENG1(θ̂, σθ
′

2 ) < 0,

which is impossible. This establishes the uniqueness of the symmetric BNE.
Finally, let Σ be the set of strategies, for either player,6 that survive the iterated

elimination of strictly dominated strategies. Let then

θ = sup{x ∈ [0, 1]|(∀σ ∈ Σ) : σ = 0 almost surely on [0, x]}

θ′ = inf{x ∈ [0, 1]|(∀σ ∈ Σ) : σ = 1 almost surely on [x, 1]}.

Obviously, θ ≤ θ′. Observe also that θ ≤ BRi(BRi(θ)) if the disclosure game admits a
unique BNE. Otherwise, the function that associates x−BRi(BRi(x)) to each x between
0 and θ is strictly positive at θ and non-positive at 0, and hence admits a zero by
the intermediate values theorem. Let thus θ∗ be an element of [0, θ) such that θ∗ =
BRi(BRi(θ

∗)). Notice that the pair of strategies (σθ
∗
, σBR2(θ∗)) then forms a BNE,

which implies that σθ
∗ ∈ Σ and contradicts the definition of θ.

Any strategy in Σ for i’s opponent has him withhold his information for almost every
type between 0 and θ. The more his opponent reveals, the lower i’s expected net gain,
according to lemma 1. Hence if player i wants to disclose his type when his opponent
uses σθ, then a fortiori he wants to disclose it when his opponent plays some strategy in
Σ (because there is more disclosure with σθ than with any strategy from Σ). This means
that against any strategy in Σ, player i’s best response satisfies that he discloses his type
whenever it is above BRi(θ). Hence θ′ ≤ BRi(θ).

The second property in Lemma 2 implies that BRi is non-increasing, and hence
BRi(θ

′) ≥ BRi(BRi(θ)). In the same way we proved that θ′ ≤ BRi(θ), Lemma 2 and
the definition of θ implies that θ ≥ BRi(θ′), and hence θ ≥ BRi(BRi(θ)), by transitivity.
Combining this with our earlier observation, we conclude that θ = BRi(BRi(θ)) and
hence the pair of strategies (σθ, σBR2(θ)) forms a BNE. Uniqueness of the BNE implies
that this is in fact the symmetric BNE. Hence we must also have that θ = BRi(θ), which
implies that θ′ = θ, and we are done proving that the unique symmetric BNE is also
the unique profile of strategies that survive the iterated elimination of strictly dominated
strategies when the disclosure game admits a unique BNE. �

Because the two bargainers are completely symmetric (ex-ante) in our set-up (both
have equal bargaining abilities - symmetric b - and both are equally likely to discover the
feasibility of any given alternative - symmetric f), our analysis focuses on the symmetric
BNE. The disclosure game may also have asymmetric BNEs in addition to the unique
symmetric one. Our next result establishes that a large class of bargaining solutions will
induce an inefficient outcome at any BNE of the disclosure game.

6Indeed, the set of strategies that survive the iterated elimination of strictly dominated strategies is
the same for both players because the game is symmetric.

9



A bargaining solution b is strictly compromising if it never selects the best option of
a player when they disagree on their most preferred alternative: b1(x, y) is different from
both x and 1− y, for all x, y ∈ [0, 1] such that x 6= 1− y.

Proposition 2 If b is strictly compromising, then inefficiency occurs with positive prob-
ability at any BNE of the disclosure game.

Proof: Assume there exists a BNE in which player 1 always discloses his type. Then,
as shown in the proof of Proposition 1, player 2’s expected net gain when of type 1/2
is equal to zero. Lemma 2 implies that it is a strictly dominant action for player 2 to
reveal his type whenever it is larger than 1/2. Hence, player 1’s expected net gain from
disclosure when his type is x and player 2’s type is lower or equal to 1

2 is at most xF (1/2),
which equals 1

2x by the symmetry of f. Define

λ =

∫ 3/4

y=1/2
[(1− y)− b1(

1

4
, y)]f(y)dy.

This is player 1’s expected net loss from disclosure when his type is 1
4 and player 2’s types

between y = 1/2 up to 3/4. By our assumption that b is strictly compromising, λ > 0.
In addition, by the monotonicity of b, player 1’s expected net loss from disclosure when
his type is x < 1

4 and player 2’s types between y = 1/2 up to 3/4 is at least λ. Let

δ(x) ≡
∫ 1

1−x
[b1(x, y)− (1− y)]f(y)dy

This is player 1’s expected net gain from disclosing when his type is x and player 2’s type
is higher than 1− x. Since b is strictly compromising,

δ(x) <

∫ 1

1−x
[x− (1− y)]f(y)dy.

Hence, for any x > 0, we have that

δ(x) <

∫ 1

1−x
xf(y)dy = x[1− F (1− x)] <

1

2
x

where the last inequality follows from symmetry of f. It follows that player 1’s expected
net gain from disclosure when his type is x < 1

4 is smaller or equal to

1

2
x− λ+

1

2
x = x− λ

(note we have not even taken into account the expected loss that occurs when player 2’s
type is between 1

4 and 1 − x). Hence, any type x < min{1
4 , λ} would strictly prefer not

to disclose his type, a contradiction. �

We now illustrate the mechanics of the disclosure game with some classical bargaining
solutions and a uniform distribution f .
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Raiffa

Perhaps the most natural bargaining solution when only two options are available
is to simply toss a coin. This is precisely the definition of Raiffa’s discrete bargaining
solution (see Luce and Raiffa (1957, Section 6.7)):

bR(x, y) = (
x+ (1− y)

2
,
(1− x) + y

2
)

for all x, y ∈ [0, 1]. Recall from the proof of Proposition 1 that the best response to any
strategy is a threshold strategy, and hence one may restrict attention to best responses
in terms of the thresholds. Because the Raiffa solution is continuous, player 1’s best
response threshold θ1 as a function of player 2 threshold θ2 is obtained by looking for the
root of player 1’s expected net gain function:

ENGbR1 (θ1, σ
θ2
2 ) = θ1θ2 +

∫ 1

y=θ2

θ1 − (1− y)

2
dy = 0

or
θ1 + θ2 + θ1θ2

2
− 1 + θ2

2

4
= 0

which gives for i = 1, 2 and j 6= i:

θi = BRi(θj) =
(1− θj)2

2(1 + θj)

One can thus conclude that the disclosure game admits a unique BNE, which is the
symmetric equilibrium with common threshold −2 +

√
5 ∼ 0.236.

Kalai-Smorodinsky

Consider now Kalai and Smorodinsky’s (1975) bargaining solution. When applied to
two points on the line X, it will pick the lottery so as to equalize the two players’ utility
gains relative to the best feasible option for them (usually called the “utopia point”).
Formally:

bKS(x, y) = (
max(x, 1− y)

max(x, 1− y) + max(1− x, y)
,

max(1− x, y)

max(x, 1− y) + max(1− x, y)
).

Using the fact that the Kalai-Smorodinsky solution is continuous, equation (1) charac-
terizing the unique symmetric BNE becomes:

θ2
KS +

∫ 1−θKS

y=θKS

[
1− y

1− θKS + 1− y
− (1− y)]dy +

∫ 1

y=1−θKS
[
θKS

θKS + y
− (1− y)]dy = 0.

Re-arranging, developing, and making the change of variables z = 1− y in the first part
of the second term yields:

θ2
KS −

∫ 1

y=θKS

(1− y)dy +

∫ 1−θKS

z=θKS

z

1− θKS + z
dz +

∫ 1

y=1−θKS

θKS
θKS + y

dy = 0.
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Using integration by parts, this equation reduces to7

3θ2
KS − 2θKS + 1

2
− (1− θKS)ln(2− 2θKS)− θ2

KSln(1 + θKS) = 0.

Solving this equation numerically yields that θKS is approximately 0.22.

Nash

Consider now Nash’s (1950) bargaining solution. When applied to two points on the
line X this solution picks the lottery that brings the players’ utilities as close as possible
to (1/2, 1/2). Formally:

bN (x, y) =


(x, 1− x) if min{1

2 , 1− y} ≤ x ≤ max{1
2 , 1− y}

(1− y, y) if min{1
2 , 1− x} ≤ y ≤ max min{1

2 , 1− x}
(1

2 ,
1
2) otherwise

As in the previous examples, one may restrict attention to best responses in terms of
thresholds, and the Nash solution being continuous, player 1’s best response threshold
θ1 as a function of player 2’s threshold θ2 is obtained by looking for the root of player
1’s expected net gain function. Following an earlier reasoning, we know that it is a
dominant strategy for both players to reveal their types when above 1/2, and hence one
can restrict atttention to to cases where θ1 and θ2 are no greater than 1/2. The root is
thus characterized by the following equation:

ENGbN1 (θ1, σ
θ2
2 ) = θ1θ2 +

∫ 1/2

y=θ2

[
1

2
− (1− y)]dy+

∫ 1−θ1

y=1/2
0dy+

∫ 1

y=1−θ1
[θ1− (1− y)]dy = 0

or
θ2

1

2
+ θ1θ2 +

θ2

2
− θ2

2

2
− 1

8
= 0

which gives for i = 1, 2 and j 6= i:

θi = BRi(θj) = −θj +

√
2θ2
j − θj +

1

4

One can thus conclude that the disclosure game admits three BNEs, two in which one
player reveals all his types while the other reveals only when his type is above 1/2,8 and the
unique symmetric equilibrium where the common threshold equals (−1 +

√
3)/4 ∼ 0.183.

7Integrating by parts, one gets
∫

w
α+w

= w − αln(α+ w), for each α such that α+ w > 0. Hence the

sum of the third and fourth terms is equal to [z − (1 − θ)ln(1 − θ + z)]1−θz=θ + θ[y − θln(θ + y)]1y=1−θ, or
1− 2θ − (1− θ)ln(2− 2θ) + θ[θ − θln(1 + θ)].

8Notice that the Nash bargaining solution is not strictly compromising when both options falls on the
same side of X compared to (1/2, 1/2), and this explains why one gets efficient asymmetric equilibria
without contradicting the content of Remark 1. The fact that it is not strictly compromising probably
makes the Nash solution less convincing as a positive description of reasonable bargaining outcomes,
which is related to Luce and Raiffa’s (1957) and Kalai and Smorodinsky’s (1975) criticisms of the Nash
solution, but it does provides good incentives for the participants to disclose their information regarding
feasible options (more on this in the next Section).
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4. NORMATIVE ANALYSIS: HOW TO FAVOR DISCLOSURE?

We now introduce a partial ordering on bargaining solutions that will allow us to
compare their performance in terms of efficiency when taking the disclosure game into
account. For any two bargaining solutions b and b′, we will write b′ � b whenever the
following condition holds: (∀x ≤ 1/2)(∀y ≥ x) : b′1(x, y) ≥ b1(x, y) (the symmetry of b
and b′ also imply that (∀y ≤ 1/2)(∀x ≥ y) : b′2(x, y) ≥ b2(x, y)).

Proposition 3 If b′ � b, then the probability of inefficiency in the symmetric equilib-
rium of the disclosure game associated with b′ is smaller or equal to the probability of
inefficiency in the symmetric equilibrium of the disclosure game associated with b.

Proof: Recall from the proof of Proposition 1 that the unique symmetric BNE of
the disclosure game associated with any regular bargaining solution involves threshold
strategies, whose common threshold falls in the interior of [0, 1

2 ]. Let θ be the threshold
associated to b, and θ′ be the threshold associated to b′. Notice that player 1’s expected
net gain of revealing over withholding under b when of type θ′ while the opponent plays
the threshold strategy associated to θ′ is non-positive:

ENGb1(θ′, σθ
′

2 ) ≤ 0. (2)

Indeed, this inequality actually holds pointwise, since b′ � b and player 2 withholds his
information when y < θ′, and is thus preserved through summation.

We are now ready to conclude the proof by showing that θ ≥ θ′ (indeed, the probability
of ending up with an inefficient outcome, i.e. the disagreement point, is equal to the square
of the BNE threshold). Suppose, on the contrary, that θ < θ′, and let θ̂ be a number that
falls between θ and θ′. Remember our first observation in the proof of Proposition 1 that
a player’s expected net gain is increasing in his own type. Inequality (2) thus implies that

ENGb1(̂θ, σθ
′

2 ) < 0.

Remember also the second observation from the proof of Proposition 1, namely that a
player’s expected net gain does not increase when the opponent reveals more, and hence

ENGb1(̂θ, σθ2) < 0,

but this contradicts the fact that the threshold strategies associated to θ forms a BNE
of the disclosure game associated to b (as it should be optimal for player 1 to reveal his
option at θ̂ since it is larger than θ). �

Corollary 1 The probability of inefficiency in the symmetric equilibrium of the disclosure
game associated with any regular bargaining solution is larger or equal to the probability
of inefficiency in the symmetric equilibrium of the disclosure game associated with the
Nash bargaining solution.

Proof: This follows from the previous Proposition, after proving that bN � b, for any
regular bargaining solution b. Let x be a number smaller or equal to 1/2, and let us prove
that bN (x, y) is more advantageous to player 1 than b(x, y), for all y ≥ x. This is obvious
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when y ≥ 1/2 since the Nash bargaining solution picks the right-most option in that
region. Since b is symmetric, it must be that b(x, x) = (1/2, 1/2). Monotonicity implies
that b1(x, y) ≥ 1/2 for each y ∈ [x, 1/2], hence, the desired inequality when compared to
the Nash bargaining solution which always picks 1/2 in that region. �

A key property of the Nash solution, which helps explain why it maximizes disclosure
(within the class of regular solutions) is that this solution favors the “weak” party in the
bargaining.

Definition. Given any pair of options, (x, 1−x) and (1−y, y), bargainer 1 is said to be
in a weaker bargaining position than bargainer 2 if min{x, 1 − y} < min{1 − x, y}, and
vice versa if the former is smaller than the latter.

In other words, a bargainer is in a better position if the worst payoff he can get, given
the disclosed options, is higher than the worst payoff of the other bargainer. Note that
all regular bargaining solutions indeed give a higher final payoff to the bargainer who is
stronger in the above sense.9

Let the utilitarian sum be the maximal sum of expected payoffs over all payoffs on
the line connecting the disclosed options. Note that when the utility frontier is linear, the
sum of expected payoffs is constant. Note also that in our setting the term ‘utilitarian’
does not imply interpersonal comparisons since the symmetry we impose in the space
of utilities amounts to a normalization of the Bernoulli functions.10 The Nash solution
then maximizes the expected payoff of the weaker bargainer, subject to the constraint
that the stronger bargainer receives at least half of the utilitarian sum. An alternative
way to describe the Nash solution is to say that it selects the Pareto optimal point (i.e.,
on the line connecting the payoffs associated with the disclosed options) that gives the
strongest bargainer an expected payoff that is as “close as possible” to half the utilitarian
surplus. As we show in Section 6, this defines the most efficient bargaining solution when
the utility frontier is not necessarily linear.

The minimal amount of disclosure

A dual to Corollary 1 gives us an upper bound on the probability of inefficiency
associated with any regular bargaining solution. Consider the bargaining solution that
maximizes the maximum of the two players’ payoffs,

bMM (x, y) =


(x, 1− x) if x < y
(1− y, y) if y < x
(1/2, 1/2) if x = y

(in other words, this solution picks the point that is the furthest from (1/2, 1/2), i.e., it
minimizes the product of the bargainers’ payoffs). It is easy to check that bMM is regular.
It is obvious that b � bMM , for any regular bargaining solution b, since bMM picks the
left-most point in X whenever player 1 reports an option x ≤ 1/2 and player 2 reports

9Indeed, suppose, for instance, that 1 is weaker than 2 and that x ≤ 1 − y to fix ideas (a similar
argument applies in the other cases). In that case, x ≤ y. Symmetry implies that b1(x, x) = 1/2.
Monotonicity implies that b1(x, y) ≤ 1/2, and hence b1(x, y) ≤ b2(x, y).

10Similarly, the Kalai-Smorodinsky solution is a scale-covariant solution, but can be described as the
egalitarian principle applied to the problem where the utopia point has been normalized to (1,1).
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an option y > x (both solution equal (1/2, 1/2) when they both report x, by symmetry).
Proposition 3 allows us to conclude that the probability of inefficiency at the symmetric
equilibrium in the disclosure game associated with any regular bargaining solution is
smaller or equal to the probability of inefficiency at the symmetric equilibrium in the
disclosure game associated with the above bargaining solution. Simple computations in
the case of a uniform f yields that the common threshold in the unique symmetric BNE
is equal to 1−

√
1/2 ∼ 0.293.

Kalai-Smorodinsky vs. Raiffa

We also have bKS � bR, and hence, the equilibrium outcome associated with the
Kalai-Smorodinsky solution is never less efficient than the one associated with the Raiffa
solution. To see this, let x ≤ 1/2 and y ≥ x. We need to prove that player 1’s payoff
under the Kalai-Smorodinsky solution is larger than his payoff under the Raiffa solution
when he reports x and his opponent reports y. Consider first the case where y ≤ 1− x,
for which the relevant inequality to check is

1− y
(1− y) + (1− x)

≥ x+ (1− y)

2
.

Simple algebra shows that this inequality is equivalent to 0 ≥ x(1− x)− y(1− y), which
indeed holds true since the function f(z) = z(1− z) is symmetric around 1/2, increasing
before 1/2 and decreasing after 1/2. Similarly, the relevant inequality to check when
y ≥ 1− x is

x

x+ y
≥ x+ (1− y)

2
.

Simple algebra shows that this inequality is equivalent to 0 ≥ −x(1−x)+y(1−y), which
again holds true because of the properties of the function.

Combining bargaining solutions

Proposition 3 implies an algorithm that transforms any pair of regular solutions into
a regular solution, which is at least as efficient as each of the two original solutions. A
similar procedure yields a regular solution, which is less efficient than each of the original
solutions. In other words, the partial ordering of solutions according to their efficiency
induces a lattice structure over regular bargaining solutions.

For any pair of regular bargaining solutions, b and b′, let b ∨ b′ be the bargaining
solution defined as follows. First,

(b ∨ b′)1(x, y) =

{
max{b1(x, y), b′1(x, y)} if min{x, 1− y} ≤ min{1− x, y}
min{b1(x, y), b′1(x, y)} if min{x, 1− y} ≥ min{1− x, y}

where (b ∨ b′)2(x, y) = 1− (b ∨ b′)1(x, y). Second, (b ∨ b′)(x, ∅) = (x, 1− x) and similarly,
(b ∨ b′)(∅, y) = (1− y, y). In an analogous way we define b ∧ b′, where the only difference
is the following: if bargainer 1 is weak, then (b ∧ b′)1(x, y) equals min{b1(x, y), b′1(x, y)},
and if bargainer 2 is weak , then (b ∧ b′)1(x, y) equals max{b1(x, y), b′1(x, y)}.

15



Proposition 4 (i) b ∨ b′ and b ∧ b′ are regular solutions, (ii) b ∨ b′ � b and b ∨ b′ � b′,
and (iii) b � b ∧ b′ and b′ � b ∧ b′.

Proof: To establish (i), first notice that b∨ b′ and b∧ b′ are well-defined, as min{x, 1−
y} = min{1− x, y} if and only if x = y, in which case b1(x, y) = b′1(x, y) = 1

2 . Next, it is
easy to check that b∨b′ and b∧b′ satisfy efficiency and symmetry. Next, consider a pair of
real-valued functions, φ(·) and ϕ(·), defined over some subset of R. If both φ(·) and ϕ(·)
are non-decreasing then so are max{φ(·), ϕ(·)} and min{φ(·), ϕ(·)}. Also, if α is a real
number such that φ(α) = ϕ(α), then h(·), where h(z) = φ(z) if z ≤ α and h(z) = ϕ(z)
if z ≥ α, is also non-decreasing. Hence b ∨ b′ and b ∧ b′ is monotone (apply these simple
facts to x and y in turn). We conclude by establishing (ii) and (iii). For any x ≤ 1/2
and y ≥ x, we have that min{x, 1 − y} ≤ min{1 − x, y}, in which case (b ∨ b′)1(x, y) is
equal to max{b1(x, y), b′1(x, y)}. By the definition of the partial order �, it follows that
b ∨ b′ � b and b ∨ b′ � b′. A similar argument implies that b � b ∧ b′ and b′ � b ∧ b′. �

Regularity and disclosure

As mentioned above, the regularity conditions may be interpreted as reasonable prop-
erties of a bargaining solution, which is meant to reach a compromise between parties
with conflicting preferences. However, in the simple environment of the previous subsec-
tions, these properties restrict the extent to which bargainers would be willing to disclose
options in equilibrium. This is easily seen by noting that a dictatorial bargaining solution
guarantees efficiency in our model as it becomes a weakly dominant strategy to always
disclose. Disclosure is also weakly dominant under an (ex-post) inefficient bargaining
solution that implements disagreement unless both bargainers disclose their options.

However, these solutions would not guarantee efficiency in the following two extensions
of our model: (i) introducing an exogenous probability p that a bargainer has no option
to disclose, and (ii) expanding the set of potentially feasible options such that the option
known to one bargainer may be Pareto inferior to the option known to the other bargainer.
While the first extension can be easily accommodated, the second extension is more
challenging. For example, consider the case where each bargainer independently draws a
type from a distribution on [0, 1]2. The difficulty here is that a bargainer’s net expected
gain from disclosing is not necessarily increasing in his type, and hence, proving existence
of a symmetric pure-strategy equilibrium is not straightforward. Furthermore, it is not
clear how such equilibria (if they exist) would look like (i.e., what would be the analogue
of the cutoff strategies of the “one-shot” game).

While monotone bargaining solutions may be appealing to parties in conflict, they
restrict the extent to which bargainers are willing to disclose feasible options. To see why
a non-monotonic solution may out-perform any regular solution, consider the bargainer
solution that selects the disclosed option, which maximizes the payoff for the weak bar-
gainer. Note this is a “deterministic” variant of the Nash solution, which always picks
the option that maximizes the product of the players’ payoffs without ever trying to com-
promise through the use of lotteries. This solution violates the monotonicity condition
that is part of the definition of a regular solution. Indeed, it picks (1/2, 1/2) if the set of
available options is {(1/3, 2/3), (1/2, 1/2)}, and (1/3, 2/3) if the set of available options
is {(1/3, 2/3), (3/4, 1/4)}. Player 1’s payoff thereby decreases, while the available options
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become more favorable to him. When f is uniform, the one-shot disclosure game induced
by this solution has a symmetric BNE where the probability of disclosure in equilibrium
is given by

σ(x) =

{
−1

3 + 4
3( 1

2−4x)
3
2 if x ≤ 1

4

1 if x > 1
4

The aggregate probability with which a bargainer withholds his information is equal to
0.138, and hence, the overall probability of inefficiency is lower than under any regular
bargaining solution.

Note that the equilibrium threshold induced by the above bargaining solution is ac-
tually higher than the threshold induced by the monotonic Nash solution. The reason
the non-monotonic solution is more efficient stems from the fact that every type discloses
with some positive probability. This highlights the difficulty in characterizing the most
efficient bargaining solution among those that are symmetric and ex-post efficient, but
not necessarily monotone. Providing such a characterization remains an open problem.

5. DISCLOSURE OVER TIME

One may argue that players would not remain silent if the outcome of the static game
is inefficient because none of them spoke up. It is thus important to discuss the dynamic
extension of our game. The bargainers now decide when to speak, and the solution is
implemented as soon as at least one option has been disclosed. For simplicity, we will
restrict attention right away to symmetric pure-strategy Bayesian Nash equilibria. A
strategy is a measurable function τ : [0, 1] → R+ ∪ {∞}, which determines for each
type x the time τ(x) at which to reveal x.11 Measurability means that the inverse
image of any Lebesgue measurable set (in particular any interval) is Lebesgue measurable:
τ−1(T ) = {x ∈ [0, 1]|τ(x) ∈ T} is Lebesgue measurable if T is Lebesgue measurable. It
guarantees that a player’s expected utility when his opponent is known to reveal over some
given interval of time, is well-defined. Utilities are discounted exponentially over time
following a discount factor δ < 1. The outcome when player 1 is of type x, while player 2
is of type y, and they both implement the strategy τ , is x at time τ(x) if τ(x) < τ(y), y
at time τ(y) if τ(x) > τ(y), and b(x, y) at time τ(x) if τ(x) = τ(y). The strategy τ is part
of a symmetric Bayesian Nash equilibrium if, for every type x ∈ [0, 1], the expected net
gain of revealing at any time t ≥ 0 different from τ(x) is non-positive, where a player’s
expected net gain - let’s say player 1 to fix notations - is given by the following formula
when t > τ(x) (a similar formula applies in the other case):

ENG1(t vs. τ(x), x) = x(e−δt − e−δτ(x))

∫
y∈τ−1(]t,∞])

f(y)dy

+

∫
y∈τ−1(t)

(e−δtb1(x, y)− e−δτ(x)x)f(y)dy

+

∫
y∈τ−1(]τ(x),t[)

(e−δτ(y)(1− y)− e−δτ(x)x)f(y)dy

11τ(x) =∞ means that the player never discloses his option when of type x.
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+

∫
y∈τ−1(τ(x))

e−δτ(x)((1− y)− b1(x, y))f(y)dy.

This dynamic disclosure game is similar in spirit to a war of attrition since both
parties incur the cost of delay when neither gives in. There are two important distinctions
between the two games. First, in contrast to the war of attrition, when a player discloses
no sooner than his rival, that player’s payoff depends on the rival’s type. Second, the
players’ preferences are not quasi-linear in the cost of delay. Both distinctions imply that
the standard techniques used to solve the war of attrition do not apply here.

We will need the following additional assumption on b to establish the uniqueness of
the symmetric BNE:12

b1(x,
1

2
) < x,∀x > 1/2, and b1(x,

1

2
) > x,∀x < 1/2. (3)

The weak inequality is implied by the first regularity condition. Requiring a strict in-
equality is a mild additional requirement which is satisfied by all the classical solutions
(Kalai-Smorodinsky, Nash and Raiffa). Notice, on the other hand, that the max-max
solution (bMM ) does not satisfy this additional condition.

Proposition 5 Let τ∗ be the strategy defined as follows:

τ∗(x) =

{
0 if x ≥ θ∫ θ
x

(1−2y)f(y)
δyF (y) dy if x ≤ θ,

where

θ = sup{x ∈ [0, 1/2]|
∫ 1

y=x
(b1(x, y)− (1− y))f(y)dy < 0}. (4)

Then (τ∗, τ∗) forms a symmetric Bayesian Nash equilibrium of the dynamic disclosure
game. If b satisfies condition (3),13 then it is essentially14 the unique symmetric BNE of
the game.

Proof: We prove that the strategy τ∗ is indeed part of a symmetric BNE. The proof
of uniqueness is relegated to the Appendix.

We start by showing that reporting at τ∗(x) is optimal, for any x ∈ [0, θ[. Consider
first the possibility of revealing at positive times. The function τ∗ being invertible on
[0, θ[, we can identify any positive time with the type speaking at that time. The expected
utility from revealing at τ∗(z) when of type x is equal to

U(z|x) := xF (z)e−δτ
∗(z) +

∫ 1

y=z
(1− y)e−δτ

∗(y)f(y)dy,

12A similar pair of conditions necessarily hold for player 2 as well, as a consequence of the second
regularity condition.

13We conjecture that the uniqueness result remains valid even without this extra condition, but this
remains an open problem.

14Formally, (τ, τ) is a symmetric BNE if and only if τ = τ∗ on ]0, 1] and τ(0) ≥ τ∗(0). If
∫ θ
x

(1−2y)f(y)
δyF (y)

dy
does not diverge when x tends to zero, then there are multiple equilibria but they differ only in the zero
type action.
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for each z ∈ [0, θ[. This expression is differentiable, and the derivatives is equal to

xf(z)e−δτ
∗(z) − δx(τ∗)′(z)F (z)e−δτ

∗(z) − (1− z)f(z)e−δτ
∗(z),

or
(1− z)
z

f(z)(x− z)e−δτ∗(z)

after rearranging the terms and using the definition of τ∗ to compute (τ∗)′. We see that
the first order condition is satisfied at z = x, and that the derivative is positive when
z < x and negative when x < z. Hence there is no profitable deviation to a positive time
different from τ∗(x), when of type x. Deviating to report at zero is not profitable either,
as the expected payoff in that case is

xF (θ) +

∫ 1

y=θ
b1(x, y)f(y)dy

which is equal to

U(θ|x) +

∫ 1

y=θ
(b1(x, y)− (1− y))f(y)dy.

For any ε > 0 small enough, using the third regularity condition, this expression is lower
or equal to

U(θ|x) +

∫ 1

y=θ−ε
(b1(θ − ε, y)− (1− y))f(y)dy +

∫ θ

y=θ−ε
((1− y)− b1(θ − ε, y))f(y)dy.

The second term is negative, for all ε > 0, by definition of θ. Hence, taking the limit when
ε decreases to zero, we get that the expected utility of reporting at zero is no greater than
U(θ|x), which in turn, by our previous reasoning, is smaller than the expected utility of
reporting at τ(x). This establishes the optimality of τ∗, for any type strictly in between
0 and θ.

Consider now a type x ∈ [θ, 1]. The expected utility of revealing at a time t is equal
to U(z|x), where z is the unique real number in [0, θ[ such that τ∗(z) = t. Our earlier
reasoning regarding U ’s derivative implies that this expected utility is no larger than
U(θ|x) (since z < θ ≤ x), which is equal to xF (θ) +

∫ 1
y=θ(1− y)f(y)dy. This, in turn, is

no larger than

xF (θ) +

∫ 1

y=θ
(1− y)f(y)dy +

∫ 1

y=θ+ε
(b1(θ, y)− (1− y))f(y)dy,

for all ε > 0, by definition of θ. Taking the limit when ε tends to zero, the last expression
is then equal to the expected utility of type xwhen revealing at zero. We have thus proved
the optimality of τ∗ for any type no smaller than θ. �

The equilibrium behavior in the dynamic game is a natural variant of the equilibrium
behavior in the static game studied previously. Indeed, there is a threshold above which
players reveal their options, while lower types now reveal with delay instead of withholding
their information forever due to the rules of the game. It turns out that the partial
ordering identified in Proposition 3 continues to predict the efficiency of disclosure in the
dynamic game as well.
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Proposition 6 Let b and b′ be two regular bargaining solutions that satisfy (3), and let τ
and τ ′ be the strategies in the symmetric BNE of the dynamic disclosure game associated
to b and b′ respectively. If b′ � b, then τ ′(x) ≤ τ(x), for each x ∈ [0, 1].

Proof: Given the characterization of the symmetric BNE in Proposition 5, we see
that proving τ ′(x) ≤ τ(x), for each x ∈ [0, 1], is equivalent to proving θ′ ≤ θ, where θ and
θ′ are the thresholds defined in (4) for b and b′ respectively. Suppose, to the contrary of
what we want to prove, that θ′ > θ. Then for any ε > 0 small enough so that θ′ − ε > θ,
we have: ∫ 1

y=θ′−ε
(b1(θ′ − ε, y)− (1− y))f(y)dy ≥ 0,

by definition of θ. Since b′ � b, we must also have∫ 1

y=θ′−ε
(b′1(θ′ − ε, y)− (1− y))f(y)dy ≥ 0,

but this contradicts the definition of θ′. Hence θ′ ≤ θ, as desired. �

Hence, disclosure is faster with Nash, than with Kalai-Smorodinsky, than with Raiffa,
and any pair of regular solutions can be combined as in the previous Section to derive a
solution where disclosure is faster, and another where disclosure is slower.

Dynamic vs. static

In comparing between the dynamic and the static versions of the disclosure game, we
begin by showing that for any regular bargaining solution satisfying condition (3), the
lowest type to disclose in the static game is lower than the lowest type who discloses
immediately in the dynamic game.

Proposition 7 Let b be a regular bargaining solution that satisfies (3). Let θS and θD
be the thresholds given by (1) and (4), respectively (i.e., the former is the cutoff of the
one-shot simulatenous game, while the latter is the cutoff of the dynamic game). Then
θS ≤ θD.

Proof: Assume θS > θD and let θ̂ be a player type between θS and θD. Consider
the static disclosure game first. Assume player j uses the symmetric equilibrium strategy
associated with the threshold θS . Then for type x of player i, the expected net gain from
disclosing, given by

xF (θS) +

∫ 1

θS

[bi(x, y)− (1− y)]f(y)dy

is positive for all x > θS and negative for all x < θS . In particular, it is negative for
x = θ̂ < θS . Since θ̂F (θS) is strictly positive, it follows that∫ 1

θS

[bi(θ̂, y)− (1− y)]f(y)dy < 0
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Because θS ≤ 1
2 , we have that 1− y > θ̂ for all θ̂ ≤ y ≤ θS . Hence, bi(θ̂, y) ≤ (1− y) for

all θ̂ ≤ y ≤ θS . Therefore, ∫ 1

θ̂
[bi(θ̂, y)− (1− y)]f(y)dy < 0

This contradicts the definition of θD < θ̂ in Proposition 7. �

Example 1. To illustrate Proposition 7, we compute the equilibrium threshold of the
dynamic game associated with the Raiffa ( θRD), Kalai-Smorodinsky ( θKSD ) and Nash so-
lutions ( θND ) for a uniform distribution. By the continuity of these bargaining solutions,
the three thresholds are given by the solutions between 0 and 1

2 to the following equations:∫ 1

y=θRD

θRD − (1− y)

2
dy = 0

which yields θRD = 1
3 (compared with θRS = 0.24 in the static game),∫ 1−θKSD

y=θKSD

[
1− y

1− θKSD + 1− y
− (1− y)]dy +

∫ 1

y=1−θKSD
[
θKSD

θKSD + y
− (1− y)]dy = 0

which yields θKSD ≈ 0.34 (compared with θKSS ≈ 0.22 in the static game), and∫ 1/2

y=θND

[
1

2
− (1− y)]dy +

∫ 1

y=1−θND
[θND − (1− y)]dy = 0

which yields θND = 1
4 (compared with θNS ≈ 0.18 in the static game).

Proposition 7 raises the following question: given a regular bargaining solution satisfy-
ing (3), are bargainers better off in the symmetric Nash equilibrium of the static game or
the dynamic game? We address this question in the special case where f is uniform. Let
b be a (regular) bargaining solution, and let θS be the common threshold for disclosing
in the static game. Observe that the ex-ante expected sum of payoffs is equal to

1− θ2
S (5)

since the sum of the bargainers’ payoffs equals 1 when at least one of them dicloses his
option, and 0 otherwise. Since the two bargainers are ex-ante symmetric, the ex-ante
expected payoff of each is equal to (1− θ2

S)/2.
A similar reasoning implies that the sum of bargainers’ ex-ante expected payoffs in

the symmetric BNE of the dynamic game is equal to

1− θ2
D +

∫ θD

x=0

∫ θD

y=0
e−δτ(max{x,y})dxdy (6)

where

τ(x) =

∫ θD

x

1− 2y

δy2
dy = − 1

δθD
+

1

δx
− 2

δ
ln θD +

2

δ
lnx (7)
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for x ≤ θD and uniform f . In the Appendix we show that (6) is then equal to

1− θ2
D − 2e1/θD · θ2

D · Ei(−
1

θD
) (8)

where Ei(x) denotes the exponential integral.15 Again, symmetry implies that the each
bargainer’s ex-ante expected payoff is 1/2 of this expression. Note it does not depend on
the discount factor.

Substituting into (5) and (8) the equilibrium thresholds computed earlier yields that
a bargainer’s ex-ante expected payoff (which equals half of the sum of expected payoffs)
in the static game is higher than his expected payoff in the dynamic game for each of the
three bargaining solutions. Specifically, the ex-ante expected payoff for the Raiffa solution
is 0.472 in the dynamic game and 0.474 in the static game; for Kalai-Smorodinsky, the
ex-ante expected payoff is 0.473 in the dynamic game and 0.476 in the static game; and
finally, for the Nash solution, the ex-ante expected payoffs in the dynamic and static
games are 0.481 and 0.483, respectively. Though the magnitudes are not large, the
quantitative result is interesting. Without thinking much about the problem, one could
think that the dynamic procedure should perform better than the static one because
bargainers have an opportunity to speak if nobody has spoken right away. Of course
this need not be so because changing the procedure changes the bargainers’ incentives
to disclose their option, and will in fact make them less likely to disclose right away, as
shown in Proposition 7. These computations for a uniform distribution illustrates that
this negative effect may overcome the positive effect of letting the bargainers more time
to speak. It remains an open question whether this is true for all regular bargaining
solutions and for all symmetric distributions.

Dynamic disclosure with an opportunity to react

As a natural variant of our dynamic game, we study a situation where bargainers
have one last chance to disclose their option right after the other has proken, i.e. right
before b is implemented. Note that the strategies in this game are richer than those of
the original dynamic game. As in the original game, they specify the latest period in
which a bargainer would disclose if the other party has not done so. But in addition,
for every history which ended with disclosure by the other party, a bargainer’s strategy
also specifies whether or not he would disclose as a function of the other party’s disclosed
type and the period of disclosure. To eliminate notational complications and unlikely
off-equilibrium behavior, we focus on a slightly refined notion of BNE. Indeed, we will
assume that type x discloses right after the other party has disclosed a type y if and
only if y > 1 − x. In other words, we focus on equilibria in which a bargainer discloses
immediately after the other party has disclosed whenever it is optimal for him to do so
(whenever the the payoff from the other party’s option is lower than the payoff from his
own option). Given this restriction, strategies in a refined BNE are measurable functions
τ : [0, 1] → R+ ∪ {∞}, that describe when a player discloses his option as a function of
his type.

15For real, nonzero values of x, the exponential integral Ei(x) is defined as −
∫∞
−x e

−t/tdt.
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Proposition 8 The modified dynamic disclosure game admits an essentially unique re-
fined symmetric Bayesian Nash equilibrium. The equilibrium disclosure strategy t∗ for
both players is the following:

t∗(x) =

{
0 if x ≥ 1/2∫ 1/2
x

(1−2y)f(y)
δyF (y) dy if x ≤ 1/2.

Proof: We prove that the strategy t∗ is indeed part of a symmetric BNE. The proof
of uniqueness is relegated to the Appendix.

We start by showing that reporting at t∗(x) is optimal, for any x ∈ [0, 1/2[. Consider
first the possibility of revealing at positive times. The function t∗ being invertible on
[0, 1/2[, we can identify any positive time with the type speaking at that time. The
expected utility from revealing at t∗(z) when of type x is equal to

U(z|x) := xF (z)e−δt
∗(z) +

∫ 1−x

y=z
(1− y)e−δt

∗(y)f(y)dy +

∫ 1

y=1−x
b1(x, y)e−δt

∗(y)f(y)dy,

for each z ∈ [0, 1/2[. It is easy to check that this expression is differentiable, and has the
same derivative as the similar expression in the proof of Proposition 5 (because the third
term does not depend on z), i.e.

(1− z)
z

f(z)(x− z)e−δt∗(z).

We see that the first order condition is satisfied at z = x, and that the derivative is
positive when z < x and negative when x < z. Hence there is no profitable deviation to
a positive time different from t∗(x), when of type x. Deviating to report at zero is not
profitable either, as the expected payoff in that case is

x

2
+

∫ 1

y=1/2
b1(x, y)f(y)dy

which is equal to

U(1/2|x) +

∫ 1−x

y=1/2
(b1(x, y)− (1− y))f(y)dy,

and the second term of this expression is non-positive, as y ≤ 1−x implies that x ≤ 1−y
and hence b1(x, y) ≤ 1− y.

Consider now a type x ∈ [1/2, 1]. The expected utility of revealing at a positive time
t, corresponding to a z < 1/2, is equal to

xF (z)e−δt
∗(z) +

∫ 1−x

y=z
(1− y)e−δt

∗(y)f(y)dy +

∫ 1

y=1−x
b1(x, y)e−δt

∗(y)f(y)dy,

if z ≤ 1− x, and to

xF (z)e−δt
∗(z) +

∫ 1

y=z
b1(x, y)e−δt

∗(y)f(y)dy,
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if z ≥ 1− x. The expression when z ≤ 1− x is non-decreasing in z, as was U(z|x) when
x was smaller than 1/2. The expression when z ≥ 1 − x is also non-decreasing because
its derivative is equal to

(
1− z
z

x− b1(x, z))f(z)e−δt
∗(z).

Notice that z ≥ 1 − x implies x ≥ 1 − z and hence b1(x, z) ≤ x. On the other hand,
z ≤ 1/2 implies that (1 − z)/z ≥ 1, and hence b1(x, z) ≤ (x(1 − z))/z, which implies
that the last derivative in non-negative, as desired. The expected utility of revealing at
a positive t is thus no larger than when taking the limit of that expected utility when z
tends to 1/2, i.e. x

2 +
∫ 1
y=1/2 b1(x, y)f(y)dy. But this is exactly the expected utility the

player gets by revealing at zero, which shows that there are no profitable deviations when
x ∈ [1/2, 1] either. �

By Proposition 8, the timing of disclosure in the unique refined symmetric BNE is
independent of the bargaining solution. Furthermore, independently of the bargaining
solution, every type above 1

2 delays the latest time at which he would disclose, relative to
his timing of disclosure in the original dynamic game (where a bargainer cannot disclose
immediately after his rival). Hence, for every bargaining solution, the ex-ante expected
payoff of a bargainer is lower in this dynamic game than in the original game discussed
above. Again, one sees that more opportunities to speak can in fact be damaging in terms
of welfare.

6. MORE GENERAL UTILITY FRONTIERS

In this section we investigate how our analysis of the static disclosure game would
change, if the utility frontier X was not linear. We first note that all of our general
results (i.e., those that did not involve the specific bargaining solutions of Raiffa, Kalai-
Smorodinsky and Nash) in Sections 3 and 4 continue to hold for any bounded utility
frontier u2 = g(u1), which is symmetric (if X contains a point where bargainer 1 gets x
and bargainer 2 gets y, then X also contains the point where 1 gets y and 2 gets x) and
has no Pareto comparisons (to adapt the results to the more general environment, one
needs to replace 1− y with g−1(y)).

Extending the utility frontier beyond a line with slope −1 has several implications.
First, while the Raiffa solution is monotone independently of the shape of X, the Nash
and Kalai-Smorodinsky solutions need not be.16 Second, the Nash, Kalai-Smorodinsky
and Raiffa solutions may no longer be comparable according to the partial ordering
characterized in Proposition 3.17 Finally, as we show below, the Nash bargaining solution

16To see this in the case of the Nash solution, for instance, consider some concave frontier g and let
u∗ = g(u∗). Take a pair of symmetric options (x, g(x)) and (g(x), x), where x < u∗ < g(x). The Nash
solution gives each bargainer an expected payoff of 1

2
[x + g(x)], which is strictly lower than u∗. Next

consider the pair of options (u∗, u∗) and (g(x), x). The Nash solution associated with these options is
(u∗, u∗), and hence, bargainer 2’s expected payoff went up, even though (u∗, u∗) is worse for him than
(x, g(x)).

17For example, consider the following convex utility frontier: g(u1) = 1 − 2u1, if u1 ≤ 1
3
, and g(u1) =

1
2
− 1

2
u1, otherwise. For the pair ( 1

4
, 1
2
) and ( 5

12
, 7
24

) it easy to show that the Kalai-Smorodinsky solution
gives a higher expected payoff to bargainer 1 than the Nash solution, which in turn gives a higher
expected payoff than the Raiffa solution. However, for the pair ( 1

4
, 1
2
) and ( 7

24
, 5
12

), the Raiffa solution
gives bargainer 1 a higher expected payoff than the Kalai-Smorodinsky solution, which in turn, gives a
higher expected payoff than the Nash solution.
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Figure 1

is no longer the most efficient.
Characterizing the most efficient regular bargaining solution for any symmetric and

decreasing g remains an open question. However, Proposition 4 implies an algorithm
that transforms any pair of regular solutions into a regular solution, which is at least as
efficient as each of the two original solutions. By imposing additional structure on g, we
are able to say more than this. In particular, if we assume that g is differentiable and
is either convex or concave, then we are able to characterize the most efficient regular
bargaining solution.

Consider first the case in which g is differentiable and convex. Our first observation
is the set of regular bargaining solution still contains the well-known bargaining solutions
that we discussed.

Proposition 9 The Raiffa, Nash and Kalai-Smorodinsky solutions are all regular on X.

Proof: See the Appendix. �

Let b∗ be the bargaining solution defined as follows (see the discussion following
Corollary 1). If two options were disclosed, it selects the lottery over these two options,
which maximizes the expected payoff to the weak bargainer, subject to the constraint
that the expected payoff to the strong bargainer is at least half the utilitarian surplus
(see Figure 1). If only one option was disclosed, it selects that option with certainty.
Observe that b∗ describes the Nash solution when g is linear.

Lemma 3 b∗ is a regular bargaining solution.

Proof: See the Appendix. �
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We now prove that b∗ is the most efficient (in the sense of minimizing the probability
that no option is disclosed) regular bargaining solution when g is differentiable and convex.
To understand the intuition for this result, note that in order to motivate bargainers to
disclose, the solution needs to favor the weakest bargainer (this follows from Proposition
3). However, if the solution is too biased in favor of the weakest bargainer, it may
violate monotonicity. For example, suppose g(x) > x, g−1(y) > y, and y > x (as in
Figure 1 again). Then bargainer 1 is weaker than 2. Since g−1(y) > x, bargainer 1 would
like the solution to pick a point as close as possible to (g−1(y), y). Suppose there is a
regular bargaining solution b that picks this point. Then by symmetry it would give
each bargainer an expected payoff of 1

2 [x+ g(x)] when the two options are (x, g(x)) and
(g(x), x). But this violates monotonicity since bargainer 2’s payoff in (g−1(y), y) is higher
than in (g(x), x), but his expected payoff from the bargaining solution is actually lower
since y < 1

2 [g(x) + x]. Thus, in order to satisfy the monotonicity constraint, we cannot
give the second bargainer less than 1

2 [g(x) + x], which is half the utilitarian surplus in
this case.

Proposition 10 b∗ is the most efficient regular bargaining solution.

Proof: As pointed out in the beginning of this section, Proposition 3 is one of the
results that carry over to any symmetric X with no Pareto comparisons. Hence the result
will follow after showing that b∗ � b, for all regular bargaining solution b, which amounts
to show b∗1(x, y) ≥ b1(x, y), for all x ≤ u∗ and all y ≥ x, where u∗ is the real number
such that u∗ = g(u∗). We may also assume without loss of generality that y ≤ g(x),
as otherwise our argument applies by renaming (x, g(x)) (g−1(y), y), and vice-versa. We
will be done after showing that monotonicity on b implies that b2(x, y) is no smaller than
half the utilitarian surplus (since b∗1(x, y) is player 1’s largest feasible payoff under that
constraint). The utilitarian surplus is achieved at (x, g(x)), since g is convex. Changing
(g−1(y), y) into (g−1(x), x) does not increase player 2’s payoff (since x ≤ y), and leads to
a payoff for player 2 that is equal to half the utilitarian surplus of the original problem
(the new problem being solved by symmetry). �

To analyze the case where g is differentiable and concave, we use the following “du-
ality” argument. For any payoff pair (u, g(u)) we define a dual pair (v, h(v)) where
v ≡ 1 − u and h(v) ≡ 1 − g(1 − v). It follows that h(v) is differentiable, decreasing and
convex. Let b be a regular bargaining solution defined on the set of disclosable payoffs,
{(v, h(v)) : v ∈ [0, 1]}. Define the “dual solution” to b as follows: for any pair of disclosed
payoff pairs, (u, g(u)) and (g−1(u′), u′),

di(u, u
′) = 1− bi(1− u, 1− u′)

This mapping from the bargaining solution b to its dual solution d preserves the regularity
of the solutions as well as their ranking in terms of efficiency.

Proposition 11 (i) If b is regular, then so is d, and (ii) for any pair of regular bargaining
solutions, (b, b′) and their dual solutions (d, d′), we have that b � b′ implies d � d′.
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Proof: (i) By construction, the dual solution d is symmetric and ex-post efficient. To
establish monotonicity, suppose we move from the payoff pair (u, g(u)) and (g−1(u′), u′)
to (u∗, g(u∗)) and (g−1(u′), u′). If u∗ > u, then 1− u∗ < 1− u. Because b is monotone,

bi(1− u∗, 1− u′) ≤ bi(1− u, 1− u′)

Hence,
di(u

∗, u′) ≥ di(u, u′)

Essentially the same argument applies if we were to change (g−1(u′), u′) holding fixed
(u, g(u)).

(ii) Define φ as the value in [0, 1] that satisfies φ = g(φ). We have to show that

d′1(u, u′) ≥ d1(u, u′),

for all u ≤ φ and all u′ ∈ [u, g(u)]. By definition of d, this is equivalent to showing that

b′1(v, v′) ≤ b1(v, v′),

where v := 1− u and v′ := 1− u′. Since b(v, v′) and b′(v, v′) belong to the same segment
with negative slope, this is equivalent to

b′2(v, v′) ≥ b2(v, v′).

Symmetry of b implies that this is equivalent to

b′2(h(v′), h(v)) ≤ b2(h(v′), h(v)).

This inequality is indeed verified, since b′ � b (notice indeed that h(v) ≤ h(1 − φ) and
h(v′) ∈ [h(v), v], since u ≤ φ and u′ ∈ [u, g(u)]). �

Let d∗ be the dual of b∗, the regular bargaining solution defined above, which is most
efficient when g is convex. By Proposition 11, d∗ is the most efficient regular bargaining
solution when g is concave. Note that for each of the well-known bargaining solutions,
Raiffa, Nash and Kalai-Smorodinsky, defined over a convex g, there is a dual regular
bargaining solution when g is concave. However, apart for Raiffa, these dual solutions do
not correspond to the definition of the original bargaining solution (e.g., the dual of Nash
does not select the payoff pair, which maximizes the product of the bargainers’ payoffs).

7. CONCLUDING REMARKS

Most of the economic literature on bargaining and collective decision-making has
focused on situations where the set of possible outcomes is taken as given. It may include
a pre-determined list of candidates to be voted an offer, or it may consist of the possible
allocations of surplus among the negotiating parties. The non-cooperative literature
studies what outcomes would emerge as a function of the bargaining procedure, the
bargainers’ attitudes towards risk and delay and the information they have about these
attitudes. The axiomatic literature may be viewed as proposing bargaining procedures
that satisfy certain desirable properties when the set of possible outcomes is taken as
given. This paper is concerned with situations where decision-makers first need to identify
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the set of feasible outcomes before they bargain over which of them is selected. How do
different bargaining procedures - which may be normatively appealing when the set of
possible outcomes is given - affect the incentives of the parties to propose feasible solutions
to their conflict? Which type of procedures provide the most incentives to disclose relevant
information on options that are feasible?

This paper makes a first step towards addressing these questions. We characterize a
partial ordering of regular bargaining solutions (i.e., those belonging to some class of “nat-
ural” solutions) according to the likelihood of disclosure that they induce. This ordering
identifies the best solution in this class, which favors the weaker bargainer subject to the
regularity constraints. We also illustrate our result in a simple environment where the
best solution coincides with Nash, and where the Kalai-Smorodinsky solution is ranked
above Raiffa’s simple coin-toss solution. The analysis is then extended to a dynamic
setting in which the bargainers can choose the timing of disclosure.

There are several directions in which the next steps can be taken. One direction would
be to weaken the monotonicity requirement and search for the best (in terms of disclosure)
bargaining solution among those that are efficient and symmetric. We conjecture that the
best solution maximizes the expected payoff of the weaker bargainer (as in the example
given in Section 4). A second challenging direction is to consider situations in which the
bargainers are aware of a set of feasible options and need to decide which of these to
disclose. This direction can be explored using the framework of the “one-shot” disclosure
game, where each player independently draws a subset of options from some feasible set
(either the line or the square [0, 1]2). The difficulty here lies in constructing a simple type
space, which accommodates a tractable analysis. An alternative direction, which may
be more tractable, is to analyze a dynamic disclosure game in discrete time, where in
every period, each bargainer randomly draws an option from some feasible set and must
to decide whether or not to disclose one of his options.
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Appendix

Proof of Lemma 1. Consider a pair of types x, x′ such that x′ > x as in the statement
of the lemma, and let x̄ be any real number that falls strictly in between x and x′. Notice
that

x = b1(x, 1− x) ≤ b1(x̄, 1− x) = b1(x, 1− x̄) ≤ b1(x̄, 1− x̄) = x̄,

where the two inequalities follow from the monotonicity condition, and the equality follows
from the symmetry condition. Notice also that x < x̄, and that b1(x̄, 1− x̄) ≤ b1(x′, 1− x̄)
by monotonicity. So, if there is a positive measure of x̄’s strictly between x and x′

such that b1(x̄, 1 − x) = x, then we are done proving the property since b1(x, 1 − x̄) <
b1(x′, 1 − x̄), for all such x̄’s. Let us conclude the proof by an argument ad absurdum.
If the property we want to prove is wrong, then it must thus be that b1(x̄, 1 − x) > x,
for almost all x̄ strictly in between x and x′. Monotonicity implies that x < b1(x′, 1 −
x), or x < b1(x, 1 − x′) by symmetry, in that case. Monotonicity again implies that
x∗ < b1(x∗, 1 − x′), for all x∗ ∈ [x, b1(x′, 1 − x)[. At the same time, it must be that
b1(x∗, 1−x) ≤ x∗ since a bargaining solution picks a lottery defined over disclosed options.
Hence b1(x∗, 1− x) < b1(x∗, 1− x′), or b1(x, 1− x∗) < b1(x′, 1− x∗) by symmetry, for all
such x∗’s, and the property that we want to prove in fact holds, giving us the contradiction
that we wanted. �

Uniqueness of the Symmetric BNE in Proposition 5

Let b be a regular bargaining solution that satisfies condition (3), and let τ be a strategy
that is part of a symmetric BNE in the original dynamic game. We have to show that
τ = τ∗. We proceed in various steps.

Step 1
∫
y∈τ−1(∞) f(y)dy = 0.

Proof: Suppose, to the contrary of what we want to prove, that
∫
y∈τ−1(∞) f(y)dy > 0.

Let x > 0 be such that τ(x) =∞. Player 1’s expected net gain from revealing at a time
t instead of ∞ is:

e−δtx

∫
y∈τ−1(∞)

f(y)dy +

∫
y∈τ−1(]t,∞[)

(e−δtx− e−δτ(y)(1− y))f(y)dy

+

∫
y∈τ−1({t})

e−δt(b1(x, y)− (1− y))f(y)dy,

which is equal to e−δt times

x

∫
y∈τ−1(∞)

f(y)dy +

∫
y∈τ−1(]t,∞[)

(x− e−δ(τ(y)−t)(1− y))f(y)dy

+

∫
y∈τ−1({t})

(b1(x, y)− (1− y))f(y)dy,

which is greater or equal to

x

∫
y∈τ−1(∞)

f(y)dy −
∫
y∈τ−1(]t,∞[)

f(y)dy,
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since both x and b1(x, y) are non-negative, and both 1− y and e−δ(τ(y)−t)(1− y) are no
larger than 1. The first term of this last expression is strictly positive, and independent
of t, while the second can be made as small as needed by taking t large enough, as

lim
t→∞

∫
y∈τ−1(]t,∞[)

f(y)dy = 0,

by the measurability of τ . �

Step 2 If t ∈]0,∞[, then
∫
y∈τ−1(t) f(y)dy = 0.

Proof: Let x̄ be the supremum of τ−1(t), and x be the infimum of τ−1(t). For
expositional convenience, we start by assuming that both the infimum and the supremum
are reached in τ−1(∞), but we will show at the end of the proof how our argument extends
to the more general case.

We start by assuming that x ≤ 1 − x̄. Hence 1 − y ≥ b1(x, y), for all y ∈ τ−1(t). In
addition, 1 − y > b1(x, y) for each y ∈ τ−1(t) such that y < 1/2, as a consequence of
the third regularity condition (Monotonicity), and the fact that b1(x, x) = 1/2. We now
prove that

∫
y∈τ−1(t)∩[0,1/2[ f(y)dy = 0. Otherwise, the previous reasoning implies that∫

y∈τ−1(t)((1− y)− b1(x, y))f(y)dy > 0. Given that τ is a measurable function, we know
that

lim
k→∞

∫
y∈[0,1] s.t. t<τ(y)≤t+ 1

k

f(y)dy =

∫
y∈[0,1] s.t. t<τ(y)≤limk→∞ t+ 1

k

f(y)dy = 0,

and hence one can always find a k as large as necessary such that there is a very small
probability for the other player to speak in between t and t+ 1

k . Player 1’s expected net
gain of revealing at t+ 1

k instead of t when of type x is

x(e−δ(t+
1
k

) − e−δt)
∫
y∈τ−1(]t+ 1

k
,∞])

f(y)dy +

∫
y∈τ−1(t+ 1

k
)
(e−δ(t+

1
k

)b1(x, y)− e−δtx)f(y)dy

+

∫
y∈τ−1(]t,t+ 1

k
[)

(e−δτ(y)(1− y)− e−δtx)f(y)dy +

∫
y∈τ−1(t)

e−δt((1− y)− b1(x, y))f(y)dy,

which is larger or equal to e−δt times

x(e−δ/k−1)

∫
y∈τ−1(]t+ 1

k
,∞])

f(y)dy − x
∫
y∈τ−1(]t,t+ 1

k
])
f(y)dy

+

∫
y∈τ−1(t)

((1− y)− b1(x, y))f(y)dy,

as it is indeed easy to check that the integrand of the second and third terms from
the previous expression are both larger or equal to −xe−δt. The first two terms of
the last expression can be made as small as needed by choosing a k large enough,
while the third one is strictly positive independently of k, and hence the possibility
of a profitable deviation, which contradicts the fact that τ is part of a symmetric BNE.
Hence we have proved, by contradiction, that

∫
y∈τ−1(t)∩[0,1/2[ f(y)dy = 0, and hence that
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∫
y∈τ−1(t) f(y)dy =

∫
y∈τ−1(t)∩[1/2,1] f(y)dy. If x̄ ≤ 1/2, then we are done proving that∫

y∈τ−1(t) f(y)dy = 0. Let’s thus assume that x̄ > 1/2.

Notice that x̄ ≥ b1(x̄, y), for each y ∈ τ−1(t) such that y ≥ 1/2. In fact, x̄ > b1(x̄, y) for
each y ∈ τ−1(t) such that y > 1/2, as a consequence of condition (3), the second regularity
condition, and the fact that b1(x̄, x̄) = 1/2. Hence

∫
y∈τ−1(t)(x̄ − b1(x̄, y))f(y)dy > 0 if∫

y∈τ−1(t)∩]1/2,1] f(y)dy > 0. In that case, one can construct a profitable deviation to a

t′ < t for type x̄ (similar argument to the one developed in the previous paragraph). To
avoid this contradiction, on must accept that

∫
y∈τ−1(t)∩]1/2,1] f(y)dy = 0. Combined with

the result of the previous paragraph, one concludes that
∫
y∈τ−1(t) f(y)dy = 0, as desired.

A similar argument applies in the case where x ≥ 1− x̄, except that one must start to
work with x̄ to show that

∫
y∈τ−1(t)∩]1/2,1] f(y)dy = 0, and then work with x to conclude.

We now consider the case where x and x̄ do not necessarily belong to τ−1(t). Again,
we provide the argument only for the case were x ≤ 1− x̄, a similar argument applying if
the inequality is reversed. Let (xn)n∈N be a decreasing sequence in τ−1(t) that converges
to x, and let (x̄n)n∈N be an increasing sequence in τ−1(t) that converges to x̄ such that
xn ≤ 1− x̄n, for each n. For notational simplicity, let αn be the following real number:

αn :=

∫
y∈τ−1(t)∩[xn,x̄n]

((1− y)− b1(xn, y))f(y)dy,

for each n ∈ N. Notice first that these numbers are non-decreasing in n. Indeed, consider
m < n. We have:

αn =

∫
y∈τ−1(t)∩[xn,xm]

((1− y)− b1(xn, y))f(y)dy

+

∫
y∈τ−1(t)∩[xm,x̄m]

((1− y)− b1(xn, y))f(y)dy

+

∫
y∈τ−1(t)∩[x̄m,x̄n]

((1− y)− b1(xn, y))f(y)dy.

Since xn ≤ 1 − x̄n, we must have b1(xn, y) ≤ 1 − y, for each y ∈ [xn, x̄n], and hence
the first and the third terms must be non-negative. The third regularity condition also
implies that the second term is larger or equal to αm, since xm ≥ xn, and hence αn ≥ αm,
as desired.

We now show that
∫
y∈τ−1(t)∩[0,1/2] f(y)dy = 0. Otherwise, there exists N such that∫

y∈τ−1(t)∩[0,1/2]∩[xn,x̄n] f(y)dy > 0, for each n ≥ N . The reasoning that we did at the

beginning of the proof when the infimum and the supremum are reached implies that
αn > 0, for each n ≥ N , and in particular αN > 0. Notice that∫
y∈τ−1(t)

((1− y)− b1(xn, y))f(y)dy = αn +

∫
y∈τ−1(t)\[xn,x̄n]

((1− y)− b1(xn, y))f(y)dy,

for each n ≥ N . The first term is larger or equal to αN , which is strictly larger than 0
and independent of n, while the second term converges towards zero as n increases, since
the integrand is bounded and

∫
y∈τ−1(t)\[xn,x̄n] f(y)dy converges towards zero, and we are
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done proving that the expression on the left-hand side must be strictly positive for n
large enough. As before, this implies that player 1 of type xn prefers to disclose his type
slightly later than at t, thereby contradicting the definition of a BNE. It must thus be
the case that

∫
y∈τ−1(t)∩[0,1/2] f(y)dy = 0, as desired.

Adapting the argument to show that
∫
y∈τ−1(t)∩[1/2,1] f(y)dy = 0 when the infimum

and the supremum are not reached, and thereby conclude the proof, is similar and left to
the reader. �

Step 3 τ is strictly decreasing with respect to time in the following sense: if x′ > x and
τ(x) > 0, then τ(x′) < τ(x); if x′ > x and τ(x) = 0, then τ(x′) = 0.

Proof: Let x, x′ ∈ [0, 1] be such that x′ > x, and
∫
y∈[0,1] s.t. τ(y)>τ(x) f(y)dy > 0.

Suppose that τ(x′) > τ(x). In that case, ENG1(τ(x′) vs. τ(x), x′) ≥ 0, since (τ, τ) is
a BNE, and hence18 ENG1(τ(x′) vs. τ(x), x) > 0, thereby contradicting the optimality
of reporting at τ(x) when of type x. Hence, one must conclude that τ(x′) ≤ τ(x).

Suppose now that τ(x) > 0. We know from the previous paragraph that τ(x′′) ≤ τ(x),
for all x′′ ∈]x, x′[. Steps 1 and 2 imply that there exists x′′ ∈]x, x′[ such that τ(x′′) <
τ(x). The reasoning from the previous paragraph implies that τ(x′) ≤ τ(x′′), and hence
τ(x′) < τ(x).

We have thus established the two desired properties, but under the assumption that∫
y∈[0,1] s.t. τ(y)>τ(x) f(y)dy > 0. We now show that this inequality must in fact hold for

any x > 0. Suppose first that x is such that τ(x) = 0. If the inequality does not hold,
then it means that the opponent will reveal his type with probability 1 at time 0. Then it
is easy to check that

∫
y∈[0,1] b1(x, y)f(y)dy <

∫
y∈[0,1](1− y)f(y)dy, for any x ∈ [0, 1] that

is small enough. A reasoning similar to the one developed in the second paragraph of the
proof of Step 2 would imply a contradiction, namely that a slight delay is a profitable
deviation for any such x. Consider now an x such that τ(x) > 0, let t∗ = infy∈[0,x] τ(y),
and let (xk)k∈N be a sequence in [0, x] such that (τ(xk))k∈N decreases towards t∗ as k
tends to infinity. Since τ is measurable, we have:

lim
k→∞

∫
y∈τ−1(]τ(xk),∞])

f(y)dy =

∫
y∈τ−1(] limk→∞ τ(xk),∞])

f(y)dy =

∫
y∈τ−1(]t∗,∞])

f(y)dy.

Notice that the right-most expression must be strictly positive. We just proved this if
t∗ = 0, while, if t∗ > 0, then the opponent does not speak before t∗ if his type is no greater
than x, and the probability of him speaking at t∗ is zero, by Steps 1 and 2. Hence there
exists K ∈ N such that

∫
y∈[0,1] s.t. τ(y)>τ(xk) f(y)dy > 0, for all k ≥ K. The result from

the previous paragraph implies that τ(x) ≤ τ(xk), for all such k’s, and hence τ(x) = t∗,
and

∫
y∈[0,1] s.t. τ(y)>τ(x) f(y)dy > 0, as desired.

Finally, τ(x′) < τ(0), for all x′ > 0. Otherwise we can find x′ ∈]0, 1] such that
τ(0) ≤ τ(x′). The previous argument in the proof implies that all the types strictly
between 0 and x′ report after τ(x′) and hence also after τ(0). The first argument in the
proof then implies that τ(x′) < τ(0), the desired contradiction. �

18The second term in the definition of the expected net gain, as stated before the
statement of this proposition, is zero, by Step 2.
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Step 4 Let α = inf{x ∈ [0, 1]|τ(x) = 0}. Then τ is continuous on ]0, α[, and limx→α−τ(x) =
0.

Proof: Let x ∈]0, α], and let (xk)k∈N be a sequence in [0, x] that converges to x. Step
3 implies that τ(xk) ≥ τ(x), for all k ∈ N. Suppose, to the contrary of what we want
to prove, that there exists η > 0 and K ∈ N such that τ(xk) > τ(x) + η, for all k ≥ K.
This implies that no type reveals after τ(x) and before τ(x) + η. Indeed, suppose on
the contrary that there exists y such that τ(y) ∈]τ(x), τ(x) + η[. Step 3 implies that y
is strictly smaller than x, and hence there exists k ≥ K such that y < xk < x. Step 3
implies that τ(xk) < τ(y) < τ(x) + η, which contradicts the definition of K. Consider
now a type y for which τ(y) is very close to the inf{τ(z)|τ(z) ≥ τ(x)+η} (i.e. y is smaller
than x, but very close to it). Then revealing a bit earlier, let’s say at τ(x) + η

2 instead of
τ(y), is a profitable deviation since the loss, coming from the opponent’s types between
y and x, can be made as small as needed, while the gain is larger than the gain from
getting y earlier by at least η/2 units of time for all the opponent’s type who reveal after
τ(y) (y is strictly positive if close enough to x, and so there is a positive probability that
the opponent reveals after τ(y)). This contradicts the optimality of revealing y at τ(y),
and hence we have established the left-continuity on ]0, α[, and that limx→α−τ(x) = 0.
A similar reasoning applies to show the right-continuity on ]0, α[. �

Step 5 τ(x) = 0 if and only if x ∈ [θ, 1], where

θ = sup{x ∈ [0, 1/2]|
∫ 1

y=x
(b1(x, y)− (1− y))f(y)dy < 0}.

Proof: Observe first that the function g : [0, 1/2] → R that associates
∫ 1
x (b1(x, y) −

(1− y))f(y)dy, to any x ∈ [0, 1/2], is strictly increasing. Suppose that x′ > x. We have:

g(x′) =

∫ 1

y=x′
(b1(x′, y)− (1− y))f(y)dy ≥

∫ 1

y=x′
(b1(x, y)− (1− y))f(y)dy

>

∫ 1

y=x
(b1(x, y)− (1− y))f(y)dy = g(x).

The weak inequality follows from the third regularity condition, while the strict inequality
follows from the fact that b1(x, y) − (1 − y) < 0, for each y ∈]x, x′[, as 1 − y > 1/2 and
b1(x, y) ≤ 1/2 (as a consequence of the second and third regularity conditions), for all
such y’s. Notice also that g(0) < 0. Indeed, b1(0, y) ≤ 1 − y, for all y ∈ [1/2, 1], by the
first regularity condition, and b1(0, y) ≤ 1/2 < 1 − y, for all y ∈ [0, 1/2[, by the second
and third regularity conditions. Notice finally that g(1/2) ≥ 0, as b1(1/2, y) ≥ 1− y, for
each y ∈ [1/2, 1], by the first regularity condition. Hence θ is well-defined, g(x) < 0, for
each x ∈ [0, 1/2] such that x < θ, and g(x) > 0, for each x ∈ [0, 1/2] such that x > θ.

We now prove that τ(x) > 0, for each x < θ. Otherwise, there exists x < θ such that
τ(x) = 0. Then g(x) < 0, and hence∫ 1

y=α
b1(x, y) <

∫ 1

y=α
(1− y)f(y)dy,
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where α = inf{y ∈ [0, 1]|τ(y) = 0}, because b1(x, y) ≤ 1 − y, for each y ∈ [α, x], by the
first regularity condition. A reasoning similar to the one we did in the second paragraph
proof of Step 2 implies that a bargainer of type x can improve his payoff by reporting at
some small positive time rather than at zero, thereby contradicting the optimality of τ .
Hence τ(x) > 0, for each x < θ, as desired.

We now prove that τ(x) = 0, for each x > θ. First notice that τ(x) = 0, for each
x > 1/2. Suppose, on the contrary, that τ(x) > 0, for some x > 1/2. The expected net
gain of reporting at 0 instead is strictly positive, as b1(x, y) − (1 − y) ≥ 0, for all the
opponent’s types y that report at 0, and x > 1 − y, for all the opponent’s types y > x
that report at a positive time lower than τ(x). So τ(x) = 0, for each x > 1/2, and
we have proved the statement for θ = 1/2. Suppose now that θ < 1/2. As before, let
α = inf{y ∈ [0, 1]|τ(y) = 0}. We know that α ≤ 1/2. Suppose, to the contrary of what
we want to prove, that α > θ. Let then x be smaller than α, but very close to it. Hence
τ(x) > 0. The expected net gain of revealing at zero instead is equal to:∫ 1

y=α
(b1(x, y)−(1−y))f(y)dy+

∫
y=x

α(x−e−δτ(y)(1−y))f(y)dy+x(1−e−δτ(x))

∫ x

y=0
f(y)dy,

which is greater or equal to∫ 1

y=α
(b1(x, y)− (1− y))f(y)dy +

∫
y=x

α(x− e−δτ(y)(1− y))f(y)dy,

which is equal to∫ 1

y=x
(b1(x, y)− (1− y))f(y)dy +

∫
y=x

α(x− e−δτ(y)(1− y)− b1(x, y) + (1− y))f(y)dy.

Notice that the first term is g(x), which is strictly positive if x > θ, and increasing with
x. The second term, on the other hand, can be made as small as desired, by choosing x
large enough, so as to be as closed as needed to α. Hence the expected net gain for such
a type to reveal at zero is strictly positive, which contradicts the optimality of τ . This
concludes the proof that τ(x) = 0, for each x > θ.

Finally, we prove that τ(θ) = 0. We have proved that θ = α. If τ(θ) > 0, then
τ(x) ≥ τ(θ), for all x < α, by Step 3, and limx→α− τ(x) > 0, which would contradict Step
4. Hence τ(θ) = 0, and we are done proving Step 5. �

Step 6 τ is differentiable on ]0, θ[, and

τ ′(x) =
(1− 2x)f(x)

δxF (x)
,

for all x ∈]0, θ[.

Proof: Let x ∈]0, θ[. The expected net gain of revealing at τ(x+ ε) instead of τ(x) is
equal to:∫ x+ε

y=x
(xe−δτ(x+ε) − (1− y)e−δτ(y))f(y)dy + x(e−δτ(x+ε) − e−δτ(x))

∫ x

y=0
f(y)dy,
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which is also equal to

−
∫ x+ε

y=x
(1− y)e−δτ(y)f(y)dy + x(e−δτ(x+ε)F (x+ ε)− e−δτ(x)F (x)).

In order for τ to be optimal, it must be that this expression is non-positive. Dividing by
ε, and taking the limit when ε decreases to 0, we get:

−e−δτ(x)(1− 2x)f(x)− xδ lim
ε→0+

[
τ(x+ ε)− τ(x)

ε
]e−δτ(x)F (x) ≤ 0.

A similar reasoning applied to the case that type x + ε is not better off by reporting at
τ(x) gives

e−δτ(x)(1− 2x)f(x) + xδ lim
ε→0+

[
τ(x+ ε)− τ(x)

ε
]e−δτ(x)F (x) ≤ 0.

Combining the two previous inequalities, we conclude that

lim
ε→0+

[
τ(x+ ε)− τ(x)

ε
] = −(1− 2x)f(x)

δxF (x)
.

A similar reasoning with ε < 0 implies that

lim
ε→0−

[
τ(x+ ε)− τ(x)

ε
] = −(1− 2x)f(x)

δxF (x)
,

which concludes the proof of this step. �

Step 7 τ = τ∗.

Proof: Step 5 establishes that τ = τ∗ on [θ, 1]. Step 6 implies that τ = C + τ∗ on
[0, θ[, for some real number C. The fact that limx→θ− θ(x) = 0, implies that C = 0, and
establishes that τ = τ∗ on [0, 1]. �

Uniqueness of the Refined Symmetric BNE in Proposition 8. Let b be a regular
bargaining solution, and let t be a strategy that is part of a refined symmetric BNE in the
dynamic game with an opportunity to react. We have to show that t = t∗. We proceed
in various steps.

Step 1
∫
y∈t−1(t)∩[0,1/2] f(y)dy = 0, for all t ∈ R+.

Proof: Player 1’s expected net gain of revealing at t′ > t instead of t, when of type x,
is equal to ∫

y∈t−1(]t′,∞])
min{x, b1(x, y)}(e−δt′ − e−δt)f(y)dy

+

∫
y∈t−1(t′)

(b1(x, y)e−δt
′ −min{x, b1(x, y)}e−δt)f(y)dy

+

∫
y∈t−1(]t,t′[)

(max{1− y, b1(x, y)}e−δt(y) −min{x, b1(x, y)}e−δt)f(y)dy
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+

∫
y∈t−1(t)

(max{1− y, b1(x, y)} − b1(x, y))e−δtf(y)dy,

which is larger or equal to∫
y∈t−1(]t′,∞])

min{x, b1(x, y)}(e−δt′ − e−δt)f(y)dy−
∫
y∈t−1(]t,t′])

min{x, b1(x, y)}e−δtf(y)dy

+

∫
y∈t−1(t)

(max{1− y, b1(x, y)} − b1(x, y))e−δtf(y)dy,

since the integrand of the second and third terms are both larger or equal to−min{x, b1(x, y)}.
Suppose, to the contrary of what we want to prove, that

∫
y∈t−1(t)∩[0,1/2] f(y)dy > 0,

for some t ≥ 0. Let’s focus on one of the types x that reveal at t, and that is small
enough so that

∫
y∈t−1(t)∩[x,1/2] f(y)dy > 0. Notice that max{1−y, b1(x, y)} ≥ b1(x, y), for

any y ∈ [0, 1], and that max{1 − y, b1(x, y)} > b1(x, y), for any y ∈ [x, 1/2[. Indeed, the
second regularity condition implies that b1(x, x) = 1/2, and the third regularity condition
implies that b1(x, y) ≤ 1/2 < 1 − y, for all such y’s. Hence the third term in the lower
bound on Player 1’s expected net gain of revealing at t′ instead of t is strictly positive,
and independent of t′. The first two terms, on the other hand, can be made as small as
needed by choosing t′ close enough to t (see Step 2 in the previous proof in this Appendix
for a similar argument), thereby leading to a contradiction of the optimality of t. �

Step 2 Let x, x′ ∈ [0, 1] be such that x′ < 1/2 < x. If
∫
y∈t−1([t(x),∞]) f(y)dy > 0, then

t(x′) ≥ t(x).

Proof: Let t = t(x) and t′ = t(x′). Suppose, to the contrary of what we want to prove,
that t > t′. Player 1’s expected net gain of revealing at t instead of t′, when of type x, is
equal to ∫

y∈t−1(]t,∞])
min{x, b1(x, y)}(e−δt − e−δt′)f(y)dy

+

∫
y∈t−1(t)

(b1(x, y)e−δt −min{x, b1(x, y)}e−δt′)f(y)dy

+

∫
y∈t−1(]t′,t[)

(max{1− y, b1(x, y)}e−δt(y) −min{x, b1(x, y)}e−δt′)f(y)dy

+

∫
y∈t−1(t′)

(max{1− y, b1(x, y)} − b1(x, y))e−δt
′
f(y)dy.

We now prove that this expected net gain does not decrease when replacing x by x′.
The third regularity condition implies that min{x, b1(x, y)} is non-decreasing in x, for
all y ∈ [0, 1]. Hence min{x, b1(x, y)}(e−δt − e−δt′) is non-increasing in x, as t > t′. If
t =∞, then b1(x, y)e−δt −min{x, b1(x, y)}e−δt′ = −min{x, b1(x, y)}e−δt′ , which again is
non-increasing in x, independently of y. If t is finite, then the integral in the second term
is equal to the integral when y ≥ 1/2, by Step 1. The integrand in that case is equal to
b1(x, y)(e−δt − e−δt′). The integrand has the same functional form when x is replaced by
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x′, for all y’s such that 1− y ≤ x′, which is thus no smaller than what it was with x, by
the third regularity condition. Consider now some y such that 1− y ∈]x′, 1/2[. We have:

b1(x, y)(e−δt − e−δt′) ≤ b1(1− y, y)(e−δt − e−δt′) = min{b1(1− y, y), 1− y}(e−δt − e−δt′)

≤ min{b1(x′, y), x′}(e−δt − e−δt′) ≤ b1(x′, y)e−δt −min{b1(x′, y), x′}e−δt′ ,

where the two first inequalities follow from the third regularity condition, since x′ <
1 − y < x, and the equality follows from the fact that b1(1 − y, y) = 1 − y. Let’s
consider now the integrand of the third term. First, if 1 − y > x, then it is equal to
(1− y)e−δt(y)− xe−δt′ . Then 1− y > x′ a fortiori, and therefore the integrand is equal to
(1−y)e−δt(y)−x′e−δt′ when x is replaced by x′, which is strictly greater than the previous
expression. If 1 − y < x′, then the integrand for x′ is equal to b1(x′, y)(e−δt(y) − e−δt′),
which is no smaller than the integrand for x, which is equal to b1(x, y)(e−δt(y)− e−δt′). A
similar comparison holds when x′ < 1− y < x:

max{1− y, b1(x, y)}e−δt(y) −min{x, b1(x, y)}e−δt′ = b1(x, y)(e−δt(y) − e−δt′)

≤ (1− y)(e−δt(y) − e−δt′) ≤ max{1− y, b1(x′, y)}e−δt −min{x′, b1(x′, y)}e−δt′ .

Finally, Step 1 implies that we can restrict attention to y ≥ 1/2 in the fourth term. In
that case, the integrand is equal to zero when of type x, while the integrand for x′ is
non-negative.

Given that
∫
y∈t−1([t,∞]) f(y)dy > 0, there must be a positive probability that player

2 discloses an option y for which 1 − y > x strictly after t′ and strictly before t. Notice
indeed that all the terms associated to other y’s in player 1’s expected net gain of revealing
at t instead of t′, when of type x, are non-positive, and in fact must sum up to a strictly
negative number when player 2 discloses an option with positive probability after t.
Remember our reasoning from the previous paragraph that the integrand involving y’s
such that 1−y > x, and that are disclosed strictly after t′ and strictly before t, are strictly
increasing when replacing x by x′. If t is part of a symmetric BNE, then it must be that
player 1’s expected net gain of disclosing his option at t instead of t′ is non-negative when
of type x, but our reasoning also shows that the same expected net gain is strictly larger
for x′ if t > t′, thereby contradicting the optimality of t. We have thus shown that t ≤ t′,
as desired. �

Step 3 t(x) = 0, for almost all x ∈]1/2, 1], i.e.
∫
x∈]1/2,1]∩t−1(]0,∞]) f(x)dx = 0.

Proof: Let X be the set of x’s in ]1/2, 1] such that
∫
y∈t−1([t(x),∞]) f(y)dy > 0, and

X̄ be its complement in ]1/2, 1]. Let also t be the infimum of t(x) when x varies in X̄,
and let (tk)k∈N be a decreasing sequence of non-negative real number such that (tk)k∈N
converges to t, and tk = t(xk) for some xk ∈ X̄, for each k ∈ N. We have:∫

x∈X̄
f(x)dx ≤

∫
y∈t−1([t,∞])

f(y)dy = lim
k→∞

∫
y∈t−1([tk,∞])

f(y)dy = 0.

We will now show that t(x) = 0, for all x ∈ X. This will allow us to conclude the
proof, since the probability of a player not revealing his option at t = 0 when of a type
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x ∈]1/2, 1] will then be known to be no larger than the probability of X̄, which we have
just shown is null.

Let thus x ∈]1/2, 1] be such that
∫
y∈t−1([t(x),∞]) f(y)dy > 0. Suppose, to the contrary

of what we want to prove that t = t(x) > 0. Player 1’s expected net gain of revealing at
0 instead of t is equal to∫

y∈t−1(]t,∞])
min{x, b1(x, y)}(1− e−δt)f(y)dy

+

∫
y∈t−1(t)

(min{x, b1(x, y)} − b1(x, y)e−δt)f(y)dy

+

∫
y∈t−1(]0,t[)

(min{x, b1(x, y)} −max{1− y, b1(x, y)}e−δt(y))f(y)dy

+

∫
y∈t−1(0)

(b1(x, y)−max{1− y, b1(x, y)})f(y)dy.

The integrand in the first term is clearly strictly positive. The integral in the second
term can be restricted to those y’s that are no smaller than 1/2, by Step 1, and the
integrand is equal to b1(x, y)(1 − e−δt). Again, this is strictly positive. We know from
Step 2 that y must be at least 1/2 be be revealed strictly before t. Hence 1 − y < x
for all such y’s, and the third integrand is equal to b1(x, y)(1− e−δt(y)), which is strictly
positive when t(y) > 0, while the integrand in the fourth term is null. Given that there is
a positive probability that the other player discloses his option at or after t, one concludes
that player 1’s expected net gain of revealing at 0 instead of t is strictly positive, which
contradicts the optimality of t. Hence t(x) = 0, and we are done with the proof. �

Step 4 t is strictly decreasing on [0, 1/2[.

Proof: Consider x′ < x < 1/2, and let t = t(x) and t′ = t(x′). Let’s start by assuming
that

∫
y∈t−1([t(x),∞]) f(y)dy > 0. It is straightforward to check that the proof of Step 2 goes

through in this case as well, after noticing that the second term in the expected net gain
of revealing at t instead of t′ is null when t > t′, as the probability of a player revealing
at a strictly positive time is null thanks to Steps 1 and 3. Hence t(x′) ≥ t(x).

We may assume that t(x) > 0, as otherwise almost all types between x and 1/2 disclose
at 0, contradicting Step 1. We know from the previous paragraph that t(x′′) ≤ t(x), for
all x′′ ∈]x′, x[. Step 1 implies that there exists x′′ ∈]x′, x[ such that t(x′′) > t(x). The
reasoning from the previous paragraph implies that t(x′) ≥ t(x′′), and hence t(x′) > t(x).

We have thus established the desired property, but under the additional assumption
that

∫
y∈t−1([t(x),∞]) f(y)dy > 0. We now show that this inequality must in fact hold for

any x ∈]0, 1/2[, thereby proving the result by applying our previous arguments to x’s
that are as close to 1/2 as needed. Let x∗ be the supremum of the x’s in [0, 1/2[ for which
there is a strictly positive probability of disclosure on or after t(x). We thus have to show
that x∗ = 1/2. Suppose on the contrary that x∗ < 1/2. Let then t∗ = infy∈]x∗,1/2[ t(y),
and let (xk)k∈N be a sequence in ]x∗, 1/2[ such that (t(xk))k∈N decreases towards t∗, as k
tends to infinity. Since t is measurable, we have:

lim
k→∞

∫
y∈t−1([t(xk),∞])

f(y)dy =

∫
y∈t−1([limk→∞ t(xk),∞])

f(y)dy =

∫
y∈t−1([t∗,∞])

f(y)dy.
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Notice that the right-most expression must be strictly positive, since ]x∗, 1/2[⊆ t−1([t∗,∞]),
by definition of t∗. Hence there exists K ∈ N such that

∫
y∈[0,1] s.t. t(y)≥t(xk) f(y)dy > 0,

for all k ≥ K, leading to the desired contradiction, given the definition of x∗. �

Step 5 t = t∗.

Proof: We start by strengthening the result from Step 3, by showing that t(x) = 0,
for all x > 1/2. Suppose, to the contrary of what we want to prove, that t(x) > 0, for
some x > 1/2. Let us compute type x’s expected net gain of revealing at t(x) instead
of 0. This expression is the same as the one written in the proof of Step 2, if one takes
t = t(x) and t′ = 0. Notice also that the second term in the formula is null, since almost
all types above 1/2 reveal at zero (cf. Step 3), and the revelation strategy followed by
types smaller than 1/2 is strictly decreasing (cf. Step 4). The fourth term is zero as well,
because y ≥ 1/2 if revealed at zero (cf. Step 4), and max{1 − y, b1(x, y)} = b1(x, y), for
all such y’s. Hence the expected net gain can be rewritten as follows:∫
y∈t−1([t,∞])

min{x, b1(x, y)}(e−δt−1)f(y)dy+

∫
y∈t−1([0,t]), y≥1−x

b1(x, y)(e−δt(y)−1)f(y)dy

+

∫
y∈t−1([0,t]), y≤1−x

((1− y)e−δt(y) − x)f(y)dy.

Notice that this expression is strictly negative if
∫
y∈t−1([0,t]), y≤1−x f(y)dy = 0, which

would contradict the optimality of revealing at t = t(x) > 0 when of type x. Consider
now the expected net gain for a type x′ ∈]1/2, x[ to reveal at t instead of 0. A simple
rearrangement of terms in the integrals implies that it is equal to∫
y∈t−1([t,∞])

min{x′, b1(x′, y)}(e−δt−1)f(y)dy+

∫
y∈t−1([0,t]), y≥1−x

b1(x′, y)(e−δt(y)−1)f(y)dy

+

∫
y∈t−1([0,t]), y≤1−x

((1− y)e−δt(y) − x′)f(y)dy

+

∫
y∈t−1([0,t]), 1−x≤y≤1−x′

[((1− y)− b1(x′, y))e−δt(y) + (b1(x′, y)− x′)]f(y)dy.

The first two terms are no smaller than their counterpart with x instead of x′. The third
term, on the other hand, is strictly larger than its counterpart, since

∫
y∈t−1([0,t]), y≤1−x f(y)dy >

0. The fourth term, finally, is non-negative since y ≤ 1−x′ implies x′ ≤ b1(x′, y) ≤ 1− y.
Type x’s expected net gain of revealing at t instead of 0 being non-negative, it must
now be strictly positive for type x′. Hence all the types in ]1/2, x′] would reveal after 0,
thereby contradicting Step 3. This establishes that t(x) = t∗(x), for all x > 1/2.

Next, one can follows the arguments in the proofs of Steps 4 and 6 in the previous
proof in this Appendix to show that t is continuous of ]0, 1/2[, that limx→1/2− t(x) = 0,
and that t is differentiable on ]0, 1/2[ with

t′(x) =
(1− 2x)f(x)

δxF (x)
,
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for each x ∈]0, 1/2[. One can then follow the argument from the proof of Step 7 in the
previous proof in this Appendix to show that t = t∗. �

Derivation of the sum of bargainers’ ex-ante expected payoffs in the dynamic
disclosure game. Recall that the sum of bargainers’ ex-ante expected payoffs in the
symmetric BNE of the dynamic game is equal to

1− θ2
D +

∫ θD

x=0

∫ θD

y=0
e−δτ(max{x,y})dxdy (9)

where

τ(x) =

∫ θD

x

1− 2y

δy2
dy = − 1

δθD
+

1

δx
− 2

δ
ln θD +

2

δ
lnx (10)

for x ≤ θD and uniform f . Note that the last term in (9) is equal to∫ θD

x=0

∫ x

y=0
e−δτ(x)dxdy +

∫ θD

x=0

∫ θD

y=x
e−δτ(y)dxdy (11)

Note that the second term in the sum above may be rewritten as follows:∫ θD

x=0

∫ θD

y=x
e−δτ(y)dxdy =

∫ θD

y=0

∫ y

x=0
e−δτ(y)dxdy

Hence, (11) may be rewritten as

2

∫ θD

x=0

∫ x

y=0
e−δτ(x)dxdy = 2

∫ θD

x=0
xe−δτ(x)dx

From (10) it follows that

e−δτ(x) = e1/θD · e−1/x · θ2
D · x−2

Therefore,

2

∫ θD

x=0
xe−δτ(x)dx = 2

∫ θD

x=0
[e1/θD · θ2

D ·
e−1/x

x
]dx = −2e1/θD · θ2

D · Ei(−
1

θD
)

Substituting this expression into (9) yields:

1− θ2
D − 2e1/θD · θ2

D · Ei(−
1

θD
)

�

Proof of Proposition 9. By definition, all three bargaining solutions are symmetric
and ex-post efficient. It remains to verify that they are also monotone. By definition, the
Raiffa solution is monotone regardless of whether g is convex or not. To show that the
Nash solution is monotone, let (x, g(x)) and (y, g(y)) be two payoff pairs on the utility
frontier u2 = g(u1) such that y > x. The line connecting these two points is given by

u2 = g(y) + α(x, y) · (y − u1)
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where

α(x, y) ≡ g(x)− g(y)

y − x
Let bNi (x, y) be player i’s payoff at the Nash solution associated with (x, g(x)) and
(y, g(y)). The first bargainer’s payoff under the Nash solution is as close as possible
to half the intercept of the line going through ((x, g(x)) and (y, g(y)), and hence

bN1 (x, y) =


φ(x, y) if x < φ(x, y) < y
x if φ(x, y) ≤ x
y if φ(x, y) ≥ y,

where

φ(x, y) ≡ g(y)

2α(x, y)
+
y

2
.

Consider first a change from x = z to x = z′ such that y > z′ > z. We need to show
that bN1 (z′, y) ≥ bN1 (z, y) and bN2 (z′, y) ≤ bN2 (z, y). Note that because α(z′, y) < α(z, y) we
have that φ(z′, y) > φ(z, y). A priori there are nine cases to consider, with z and z′ falling
in the three different areas that define bN1 . It is straightforward to show that monotonicity
does occur, or that the combination of conditions are impossible, in all except perhaps
the following two cases. If z falls in the first region (x < φ(z, y) < y), while z′ falls in
the second region (φ(z′, y) ≤ z′), then bN1 (z, y) = φ(z, y) ≤ φ(z′, y) ≤ z′ = bN1 (z′, y),
and we are done proving monotonicity in that case. Also, it is impossible for z to fall
in the third area, and for z′ to fall in in the first or second area, since this would lead
to the contradiction y ≤ φ(z, y) < φ(z′, y) < y. It follows that bN1 (z′, y) ≥ bN1 (z, y). An
analogous argument shows that bN2 (z′, y) ≤ bN2 (z, y), and that monotonicity is satisfied
when y changes from y = z to y = z′ such that z′ > z > x.

As for the Kalai-Smorodinsky solution, let (x, g(x)) and (y, g(y)) be two points on
the frontier satisfying y > x (and hence, g(x) > g(y)). The KS solution to (x, g(x)) and
(y, g(y)) is given by the intersection of the line connecting the two points with the ray
going from the origin to the ”utopia” point (y, g(x)).

Suppose we increase y to y′. By the definition of KS, it is clear that the expected
payoff of player 1 assigned by KS will increase. It is not clear what happens to the
expected payoff of player 2. Let u2 be the expected payoff of player 2 in the KS solution
to (x, g(x)) and (y, g(y)). Let u′2 be player 2’s expected payoff at the solution assigned to
(x, g(x)) and (y′, g(y′)). We want to show that u2 > u′2.19

The KS solution to (x, g(x)) and (y, g(y)) is given by the equation

y

g(x)
u2 = x+ [

y − x
g(x)− g(y)

][g(x)− u2]

Let
δ ≡ y

g(x)

(the inverse of the slope of the ray) and

µ ≡ y − x
g(x)− g(y)

19Renaming variables implies that the subsequent reasoning also applies when decreasing y to y′, as
long as y′ remains above x. In that case, u′2 > u2, as needed for monotonicity.
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(the inverse of the absolute value of the slope of the line connecting the two points on
the frontier). In a similar way, define

δ′ ≡ y′

g(x)

and

µ′ ≡ y′ − x
g(x)− g(y′)

We can therefore solve for u2 and u′2 :

u2 =
x+ µg(x)

δ + µ

and

u′2 =
x+ µ′g(x)

δ′ + µ′

Assuming y′ > y, we want to show that u2 > u′2, or

x+ µg(x)

δ + µ
>
x+ µ′g(x)

δ′ + µ′

which is equivalent to (since the denominators are positive)

x(δ′ + µ′ − δ − µ) + g(x)(µδ′ − µ′δ) > 0

Since g(x) = y′/δ′ = y/δ, this is equivalent to

x(δ′ + µ′ − δ − µ) + y′µ− yµ′ > 0

which may be rewritten as

µ(y′ − x)− µ′(y − x) + x(δ′ − δ) > 0

Plugging in the expressions for (µ, µ′, δ, δ′) gives

(y − x)(y′ − x)

g(x)− g(y)
− (y′ − x)(y − x)

g(x)− g(y′)
+
x(y′ − y)

g(x)
> 0

Placing the first two terms under the same denominator, it thus amounts to show

(y − x)(y′ − x)[g(y)− g(y′)]

[g(x)− g(y)][g(x)− g(y′)]
+
x(y′ − y)

g(x)
> 0

The inequality indeed holds, as y′ > y > x and g(x) > g(y) > g(y′).
The fact that player 1’s payoff increases (decreases) and player 2’s payoff decreases

(increases) when increasing x to x′ whenever both x and x′ fall above y, follows from the
previous argument, after observing that the Kalai-Smorodinsky solution is anonymous.
�
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Proof of Lemma 3. Efficiency and symmetry follow by construction. Monotonicity
follows by construction in the following cases:
(i) Start from two points on the same side of the 45 degree line u2 = u1 and change only
one of the points such that both still remain on the same side of u2 = u1.
(ii) Start from (x, g(x)) and (z, g(z)) such that g(x) > x, g(z) < z and g(x) ≥ z. Fix
(x, f(x)) and change (z, f(z)) into (z′, f(z′)) such that it is still the case that g(x) ≥
max{z′, g(z′)}.

Monotonicity is more difficult to show in the last remaining case (all other cases follow
by symmetry): starts from (x, g(x)) and (z, g(z)) such that g(x) > x, g(z) < z, g(x) > z
and g(z) > x, then change (x, g(x)) into (x′, g(x′)) such that g(x′) > z.

We will prove monotonicity by checking the sign of the derivative of b∗1 with respect
to its first component in that last region. It is helpful to do the following change of
variable. For each (x, g(x)) falling in that last region, let α be the absolute value of the
slope of the line joining (z, g(z)) to (x, g(x)). Vice versa, each α > 1 determines a unique
(x, g(x)) that falls in that region (at the intersection of X and the line of slope −α that
goes through (z, g(z))). Let δ = x+g(x) (note that this is the utilitarian surplus). Then,
for each α > 1, we have:

δ(α)/2 = g(z) + α(z − b∗1(x(α), g(z))),

or

b∗1(x(α), g(z)) = z − δ(α)− 2g(z)

2α
.

Let now ε be any small strictly positive number. We have:

b∗1(x(α+ ε), g(z))− b∗1(x(α), g(z))

ε
=
δ(α)α+ δ(α)ε− 2g(z)ε− αδ(α+ ε)

2α(α+ ε)ε
.

Taking the limit as epsilon tends to zero, this expression is equal to

−δ
′(α)

2α
+
δ(α)− 2g(z)

2α2

(δ is differentiable because g is). Notice that δ(α + ε) is larger than the sum of the
components of the vector at the intersection of this new line (going through (z, g(z)) and
with angle −α − ε) and the vertical line going through (x, g(x)). This is so because the
intersection of the new line with the utility frontier falls on the left of x, and the slope
α+ε is larger than 1 (i.e. any decrease in the first component is more than matched by an
increase in the second component). The sum of the components of the vector associated
to the new line is x+ g(x) + (z − x)ε. Therefore,

δ′(α) = lim
ε→0

δ(α+ ε)− δ(α)

ε
≥ lim

ε→0

x+ g(x) + (z − x)ε− x− g(x)

ε
= z − x.

Hence
db∗1(x(α), g(z))

dα
≤ −α(z − x) + δ(α)− 2g(z)

2α2
=
x− g(z)

2α2
≤ 0,

where the equality follows from the fact that α(z, x) = g(x)− g(z) and δ(α) = x+ g(x),
and the last inequality follows from the fact that x ≤ g(z) (because g(x) ≥ z, g(z) < z and
g(x) > x). Finally, dx/dα being strictly negative, it must be that b∗1 varies monotonically
with x, as desired. �
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