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1 Introduction

Estimation of economic models is frequently complicated by the problem of sample selection: the variable

of interest is only observed for a non-random subsample of the population. A prominent example in labor

economics consists in the estimation of the determinants of female wages. Individuals are assumed to o¤er

positive labor supply only if their potential wage exceeds their reservation wage. Starting with Gronau

(1974) and Heckman (1974, 1976 and 1979), the last 40 years have seen a proliferation of work adressing

this di¢ cult problem. Although the suggested estimators have progressively weakened the distributional

and parametric assumptions originally made, none of them is robust to the presence of heteroscedasticity

or higher order dependence between the error terms and the covariates (after controlling for the selection

probability).

However, dependence in general� and heteroscedasticity in particular� is ubiquitous in the �elds where

sample selection models are applied. As suggested by Mincer (1973) in his famous human capital earnings

model, residual wage dispersion should increase with experience and education. In line with this �nding,

the large majority of the quantile regression applications in labor economics �nd signi�cant heterogeneity

in the returns to education and experience. Thus, the conditional independence assumption has neither

theoretical nor empirical support in most economic applications. In this paper we discuss the importance

of this assumption in sample selection models, its implication for the quantile functions, and we suggest a

test of its validity.

Buchinsky (1998a and 2001) is the �rst to propose a sample selection correction for quantile regression.

He extends the series estimator of Newey (2009) to the estimation of quantiles. The suggested estimator

has been applied to many data� among others in both original articles� to analyze the heterogeneous

e¤ects of the explanatory variables on the distribution of the outcome. The �rst contribution of this paper

is to show that this estimator is consistent only in two uninteresting cases: when all quantile regression

slopes are equal or when selection is random. The reason is that Buchinsky (1998a) assumes that the error

terms are independent from the regressors given the selection probability. This implies that all quantile

slope coe¢ cients and the mean coe¢ cients are identical; i.e., it excludes heterogeneous e¤ects even though

their analysis has been the main motivation for using quantile regression in recent applications.

The estimator proposed by Buchinsky is nevertheless useful for two reasons, which were the initial

motivations for quantile regression: it is robust and can be used as a basis for a test of independence.

Koenker and Bassett (1978) also assume independence in their seminal paper and motivate quantile

regression purely from a robustness and e¢ ciency point of view in the presence of non-Gaussian errors.

Similarly, the estimator of Buchinsky has a bounded in�uence function (in the direction of the dependent

variable) so that it is more robust than mean regression.

Chronologically, the next motivation for quantile regression (in Koenker and Bassett 1982) was to

provide a basis for a test for heteroscedasticity. The second contribution of this paper is to apply this
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testing idea to sample selection models. In the absence of sample selection, the lack of independence

between the error terms and the regressors does not a¤ect the consistency of the estimators; it is only a

minor nuisance for inference. In the presence of sample selection, the conditional independence assumption

is an identifying assumption; its violation leads to the inconsistency of most sample selection estimators

(including those only concerned with mean e¤ects). To the best of our knowledge, ours is the �rst test of

this identifying assumption.

Under the null hypothesis of conditional independence the slope coe¢ cients are constant as a function

of the quantile, and the procedure proposed by Buchinsky (1998a) consistently estimates them. Under the

alternative hypothesis, the estimates do not converge to the true values but will be a nontrivial function

of the quantile. These two properties justify testing the conditional independence assumption by testing

whether the coe¢ cients vary across quantiles. In order to detect any violation of the null hypothesis, our

testing approach is based on the Kolmogorov-Smirnov and Cramér-von-Mises statistics, applied to the

entire conditional quantile process (after trimming the tails and conditioning on the selection probability).

The presence of an unknown nuisance parameter under the null hypothesis jeopardizes the nuisance-free

asymptotic distribution of these statistics; Koenker and Xiao (2002) call this situation the Durbin problem.

Chernozhukov and Fernández-Val (2005) overcome this complication by estimating the critical values using

resampling procedures. Since the computation of the estimates is quite demanding, Chernozhukov and

Hansen (2006) resample the in�uence functions instead of recomputing the whole process. They apply this

procedure to standard and IV quantile regression respectively; we demonstrate that their conditions for

the validity of the tests are satis�ed in our sample selection model. Monte Carlo simulations calibrated

to �t characteristics of typical applications show that this procedure performs well in reasonably sized

samples.

Finally, we apply our tests to examine whether violations of the conditional independence assumption

are an empirically relevant phenomenon. We use data from the 2011 outgoing rotation groups of the

Current Population Survey to estimate a traditional Mincer wage regression for women. The number

of children (measured in three age brackets) is used as instrument for selection and excluded from the

outcome equation. This is a typical application of sample selection models; a prominent recent example

is given by Mulligan and Rubinstein (2008). We reject the conditional independence assumption at any

conventional signi�cance level. The working paper version of this article (Huber and Melly 2011) contains

two other applications with similar conclusions. Therefore, we suspect that this problem is not limited to

a few cases but is widespread in �elds where sample selection models have been used.1

This paper contributes to the literatures on sample selection and quantile regression. The ability to

consistently estimate econometric models in the presence of non-random sample selection is one of the

1The codes for the simulations and applications and the datasets used in this paper can be downloaded at

http://www.econ.brown.edu/fac/Blaise_Melly/code_R_selection.html. The interested researchers can, therefore, easily ver-

ify whether our claim is true or not in their applications.
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most important innovations in microeconometrics, as illustrated by the Nobel Prize received by James

Heckman. Gronau (1974) and Heckman (1974, 1976 and 1979) addressed the selectivity bias and proposed

fully parametric estimators, assuming that the residuals are independent and jointly normally distributed.

This approach may yield inconsistent results if the distribution of the error term is misspeci�ed. Therefore,

Cosslett (1991), Gallant and Nychka (1987), Powell (1987), and Newey (2009) proposed semiparametric

estimators for the sample selection model. They relaxed the distributional assumption but kept the single

index structure in both the selection and the outcome equation. In addition, Ahn and Powell (1993)

dropped the index structure in the selection equation. More recently, Das, Newey, and Vella (2003)

considered fully nonparametric sample selection models.

Quantile regression has progressively emerged as the method of choice to analyze the e¤ects of variables

on the distribution of the outcome. In the absence of selection, Koenker and Bassett (1978) proposed a

parametric (linear) estimator for conditional quantile models. Due to its ability to capture heterogeneous

e¤ects, its theoretical properties have been studied extensively and it has been used in many empirical

studies; see, for example, Powell (1986), Guntenbrunner and Jureµcková (1992), Buchinsky (1994), Koenker

and Xiao (2002), Angrist, Chernozhukov, and Fernández-Val (2006), and Chernozhukov, Fernández-Val,

and Melly (2012). Buchinsky (1998b), Koenker and Hallock (2000), and Koenker (2005) provide a com-

prehensive discussion of quantile regression models and recent developments.

The remainder of this paper is organized as follows. In Section 2 we describe the sample selection

model of Buchinsky (1998a) and discuss the role of the independence assumption in sample selection

models. Section 3 outlines the test procedure and proves its asymptotic validity. In Section 4 Monte Carlo

simulations document the power and size properties of the proposed test. Section 5 o¤ers an empirical

application showing the relevance of the problem at the heart of this paper. Section 6 concludes.

2 The conditional independence assumption in sample selection

models

2.1 The model

We consider the quantile sample selection model of Buchinsky (1998a), which is similar to the semipara-

metric models for the mean in Cosslett (1991), Powell (1987), and Newey (2009). The outcome equation

and the latent selection function are assumed to be linear in the covariates like in the seminal work of

Heckman (1974, 1976, and 1979). The error terms in both equations are independent of the covariates

conditional on the selection probability but, in contrast to the model of Heckman, their joint distribution

is unknown. At this point, we would like to emphasize that the choice of linear outcome and selection

equations are made for completeness and to simplify the comparison with important existing estimators.
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The importance of the independence assumption, its implication for quantile models, and its testability

are all preserved in more general models. This includes models with a nonparametric selection equation

as in Ahn and Powell (1993) or a nonparametric outcome equation as in Das, Newey, and Vella (2003),

albeit a di¤erent testing approach may be required in more general cases.

Bearing this in mind, we maintain the following assumption, which is equation 2 in Buchinsky (1998a):

Assumption 1 (potential outcome) The potential outcome of interest, Y �, is determined by

Y � = X 0
2�0 + U

where X2 denotes a vector of regressors, �0 is the vector of slope coe¢ cients and U is an error term.

Note that X2 does not include a constant term because the latter is only identi�ed through an

identi�cation-at-in�nity argument. The constant is incorporated in the error term, U . We do not observe

the latent variable Y � but only Y , which is de�ned in Assumption 2.

Assumption 2 (observation rule and selection equation) The observed outcome, Y , is determined

by

Y = Y � if D = 1 and not observed otherwise.

D = 1 (X 0
1
0 + " � 0) ,

where 1 (�) is the indicator function, X1 is a superset of X2, and " is a second error term.

The indicator function for being selected, D, is determined by a latent single-index crossing model,

which corresponds to equation (5) in Buchinsky (1998a). We do not impose any parametric restriction on

the distribution of (U; ") but we require X1 to include at least one continuous variable which is not in X2

and has a non-zero coe¢ cient in the selection equation.

Assumption 3 (conditional independence) The joint density of (U; ") is independent of X1 con-

ditionally on the latent selection index,

fU;"(�jX1) = fU;"(�jX 0
1�0).

Assumption 3 is the conditional independence that, combined with the additivity of the outcome in

Assumption 1, is at the center of this paper. It corresponds to Assumption E in Buchinsky (1998a).2

2 In some sample selection models concerned with identifying the mean function, only a conditional moment restriction

(such as E [U jX1; D = 1] = E
�
U jX0

1�0; D = 1
�
) is imposed without assuming full independence. However, the latter often

serves as a justi�cation for the moment restriction. Departures from full independence that still satisfy the moment condition

are not substantial. E.g., the moment condition allows for heteroscedastic measurement errors a¤ecting the dependent variable

but not for heteroscedastic wage functions, see the discussion in Newey and Powell (2003).
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2.2 Identi�cation and testability

We �rst show how Assumptions 1 to 3 identify the parameter �0. Let QV (� jW ) denote the �th conditional

quantile of V given W , for any random variables V and W . Then, for any 0 < � < 1,

QY (� jX1; D = 1) = X 0
2�0 +QU (� jX1; D = 1)

= X 0
2�0 +QU (� jX1; X 0

1
0 � �")

= X 0
2�0 +QU (� jX 0

1
0; X
0
1
0 � �")

= X 0
2�0 +QU (� jX 0

1
0; D = 1)

� X 0
2�0 + h� (X

0
1
0) .

The �rst line holds by Assumption 1, the second line by Assumption 2, the third line by Assumption 3,

and the fourth line again by Assumption 2. In the last line we de�ne h� (X 0
1
0) � QU (� jX 0

1
0; D = 1).

This result has three important consequences. First, it implies that �0 is identi�ed and can be estimated

by the �th quantile regression of Y on X2 and a nonparametric function of X 0
1
̂ in the selected sample

(
̂ being a consistent estimate of 
0). Second, since this is true for any quantile � , Assumptions 1 to

3 imply that the slopes of all quantile regressions are identical. In addition, these slopes are also equal

to the slopes of the corresponding mean regression. However, in the majority of cases where quantile

methods are applied the researcher is particularly interested in the heterogeneity of the coe¢ cients across

the distribution. In the sample selection model, the identifying assumptions exclude such a possibility.

Third, this result also implies that the model de�ned by Assumptions 1 to 3 can be tested by comparing

the slope coe¢ cients obtained at di¤erent quantiles. Heterogeneity of the slope coe¢ cients across several

quantiles points to the violation of (at least) one identifying assumption. We suggest such a test based on

the quantile estimator of Buchinsky (1998a) in Section 3. Our test bears great relevance for empirical work,

as the conditional independence assumption is a necessary condition for the consistency of the estimators

suggested in Heckman (1979), Cosslett (1991), Gallant and Nychka (1987), Powell (1987), and Newey

(2009), to name only a few. Even though the importance of this assumption in sample selection models

has not remained unnoticed in the literature, see for instance Angrist (1997), we appear to be the �rst

ones to suggest a formal test.

Although the null hypothesis of our test is the validity of Assumptions 1 to 3, it seems particularly

powerful against deviations from the conditional independence in Assumption 3 (together with the addi-

tivity of the outcome equation in Assumption 1). Because of that and for brevity, we will simply call it a

test of the independence assumption. It is, however, clear that in some cases this test may also be able to

detect violations of the exclusion restriction or of the correct parametrization of both equations even if it

is not the most direct way to test these assumptions.
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2.3 Two examples

Two examples will convey the intuition about the inconsistency of traditional estimators when indepen-

dence is violated and about the testability of this assumption. These two examples correspond to the data

generating processes used in Section 4 to assess the �nite sample properties of our tests. We �rst consider

a simple multiplicative heteroscedastic model. If we replace Assumption 1 with

Y � = X 0
2�0 + (� +X

0
2�X) � U , (1)

then it follows that

E [Y jX1; D = 1] = X 0
2�0 + (� +X

0
2�X) � E [U jX 0

1
0; D = 1] .

We see that controlling for the selection probability (as done by sample selection mean estimators) is no

longer su¢ cient to identify �0. If we �x X
0
1
0 to a speci�c value, the slope estimates in the selected sample

will converge to

�0 + �X � E [U jX 0
1
0; D = 1] .

There is no bias only if (i) �X = 0 (i.e. Assumptions 1 to 3 are satis�ed) or (ii) E [U jX 0
1
0; D = 1] = 0

(i.e. selection is random).

The same type of bias also arises for the quantile regression estimator of Buchinsky (1998a):

QY (� jX1; D = 1) = X 0
2�0 + (� +X

0
2�X) �QU (� jX 0

1
0; D = 1) .

On the bright side, this demonstrates the possibility to test the validity of our model because the slope of

the �th quantile regression in the selected population after �xing X 0
1
0 is

�0 + �X �QU (� jX 0
1
0; D = 1) .

Thus, the slope is constant as a function of � if and only if �X = 0, i.e. if and only if conditional

independence holds. In other words, our test is asymptotically capable to detect any deviation from

independence when the true model is given by (1).

Figure 1 illustrates this example with 500 simulated realizations of (X2; Y �) from model (1) with

�0 = 1. X1 has been chosen such that the conditional selection probability is 0:5 for each observation.

Selection is positive, which can be seen from the fact that we observe more realizations (symbolized by

boxes around the crosses) above than below the median. The error terms are independent in the left panel

and heteroscedastic in the right panel (� = 0 vs. � = 0:5).3 In the �rst case, selection induces a shift in

the conditional median of Y but this bias is constant across observations due to the constant participation

probability, resulting in a correct slope. In the heteroscedastic case, the bias is increasing as a function

of X2 because the variance of the errors is increasing with X2, resulting in an excessive slope. In general,

3More details about the data generating process can be found in Section 4.1.
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the sign of the bias corresponds to the product of the sign of �X and the direction of the selection. Figure

1 makes also clear that the independence assumption can be tested by comparing the slopes of several

quantile regressions.

Figure 1 here

After this stylistic example we consider a more realistic one. We now replace Assumption 1 with a

linear quantile model for all conditional quantiles:

Y � = � (U) +X 0
2� (U) , U jX1 � U (0; 1) ,

where u 7! � (u) + x02� (u) is strictly increasing in u for each value of x2 in the support of X2. In this

model,

QY (� jX1; D = 1) = � (QU (� jX 0
1
0; D = 1)) +X2� (QU (� jX 0

1
0; D = 1)) . (2)

Thus, if we �x X 0
1
0, the slope of the quantile function is given by � (QU (� jX 0

1
0; D = 1)). Again, there is

no bias only if (i) � (�) = � (0:5) for all � (i.e. Assumptions 1 to 3 are satis�ed) or (ii) QU (� jX 0
1
;D = 1) =

� (i.e. selection is random at the quantile of interest).

We suggest to test the model de�ned by Assumptions 1 to 3 by testing whether � (QU (� jX 0
1
0; D = 1))

is constant across all quantiles � . Our test asymptotically detects any violation of independence under

a minor additional assumption: If there exist at least two quantiles ~� and �� with �
�
~�
�
6= �

�
��
�
and

Pr
�
D = 1jU = ~�

�
> 0 and Pr

�
D = 1jU = ��

�
> 0, then the slopes of the ~� = Pr

�
U � ~�jD = 1

�
and

�� = Pr
�
U � ��jD = 1

�
conditional quantile regressions in the selected sample will di¤er. In other words,

when the true model is a linear quantile regression model then our test has power against any deviation

from independence as long as the heterogeneous quantiles are not completely unobserved.

Figure 2 shows the biases that can arise in such a data generating process when the parameters take

realistic values, which are de�ned in detail in Section 4.2. The true quantile function is the male wage

function in the 2011 Current Population Survey, the selection equation is the female selection equation

during that year, and the copula between U and " is Gaussian. We plot the values to which the estimator

of Buchinsky (1998a) converges when the correlation between U and " is set to �0:99, �0:5, 0, 0:5, and

0:99. The true values correspond to the values for zero correlation. The quantile regression coe¢ cients� in

particular the way they change with the quantile of interest� are quite di¤erent for di¤erent correlations.

In an application, we do not know the correlation between U and " and this value is not identi�ed without

distributional assumptions, possibly leading to an incorrect analysis. Furthermore, the di¤erence between

the coe¢ cients in two time periods is also biased when the correlation changes over time. The main �nding

in Mulligan and Rubinstein (2008) is precisely that selection into work changed from negative to positive.

Figure 2 here
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3 Test Procedure

The discussion in Section 2 shows that we can test the validity of the independence assumption by testing

whether the coe¢ cients on X2 in the quantile regression of Y on X2 and h� (X 0
1
0) are constant as a

function of the quantile. Our testing approach is based on the Kolmogorov-Smirnov and Cramér-von-

Mises statistics, which are de�ned on the empirical quantile regression process. We follow Buchinsky

(1998a) and approximate the unknown function h� (X 0
1
0) by a power series in X

0
1
0. We estimate the

unknown parameter 
0 using the Klein and Spady (1993) estimator for binary choice models. In Section

3.1 and 3.2 we describe step by step the estimation and testing algorithms. In Section 3.3 we give the

formal inference results.

3.1 Estimation

The �rst step consists of estimating the selection equation, i.e. the parameter 
0. The formal inference

results do not depend on the speci�c estimator of 
0 but only require
p
n consistency and asymptotic

linearity of the in�uence function. In our simulations and application we estimate the selection equation

by the semiparametric binary choice estimator suggested in Klein and Spady (1993):


̂ � argmax



nX
i=1

n
Di log[Ê(DjX 0

1i
)] + (1�Di) log[1� Ê(DjX 0
1i
)]

o
, (3)

where

Ê(DjX 0
1i
) =

Pn
j=1Dj�((X

0
1i
 �X 0

1j
)=bn)Pn
j=1 �((X

0
1i
 �X 0

1j
)=bn)
. (4)

bn is a bandwidth that depends on the sample size n and �(�) denotes the kernel function. This estimator

satis�es our regularity conditions under the assumptions detailed in Klein and Spady (1993) and it at-

tains the semiparametric e¢ ciency bound for this model. Heteroscedasticity is allowed to depend on the

regressors only through the linear index.

In the second step, the function h� (X 0
1
0) is approximated by a power series expansion. As suggested by

Buchinsky (1998a), we use a power series expansion of the inverse Mill�s ratio of the normalized estimated

index but other bases of power functions also satisfy our assumptions. The order of the approximation,

J , must increase with the sample size to ensure the consistency of the estimator. �̂(�) solve the following

optimization problem: �
�̂ (�) ; �̂ (�)

�
= argmin

(�;�)

X
i:di=1

t̂i�� (yi � x02i� ��J (x01i
̂) �) (5)

where �� (A) = A(� � 1 (A � 0)) is the check function suggested by Koenker and Bassett (1978). Further-

more, t̂i is a trimming function,

t̂i = 1 (x
0
1i
̂ 2 X ) ,
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where X is a one-dimensional compact set. Trimming is required for proving several asymptotic results

(some of which we borrow from Lee 2007), even though we do not expect it to be important empirically.

�J (x
0
1i
̂) is a polynomial vector in the inverse Mill�s ratio, �J(x

0
1i
̂) = (1; �(x

0
1i
̂); �(x

0
1i
̂)

2; :::; �(x01i
̂)
J),

where �(�) = � (�) =� (�) is the ratio of the normal pdf to the normal cdf.

3.2 Tests

Our testing problem is given by

H0 : � (�) = � (0:5) ; 8 � � T (6)

versus H1 : � (�) 6= � (0:5) ; for some � � T , (7)

where T is a closed subset of [e; 1� e], 0 < e < 1, and � (�) denotes the true � quantile regression coe¢ cient

de�ned as

� (�) = argmin
�

E [�� (Yi �X 0
2ib� h� (X 0

1
0))] .

Buchinsky (1998a) gives the joint asymptotic distribution of �̂ (�) for a �nite number of quantiles. Based

on his results, we can use a �nite number of quantile regressions and apply a Wald test as proposed by

Koenker and Bassett (1982) in the absence of sample selection. Even asymptotically, this test does not

have power against all deviations from the null because the number of quantiles considered is �xed. In

addition, it is tempting to choose the quantiles used by the test after having seen the results, which may

distort the size of the test. Our tests use the whole quantile process and are therefore consistent against

all global departures from H0.

We measure the deviations from the null hypothesis by the Kolmogorov-Smirnov (KS) and Cramér-

von-Mises (CM) statistics applied to the empirical process �̂ (�)� �̂ (0:5):

TKSn = sup
��T

p
njj�̂ (�)� �̂ (0:5) jj�̂� and TCMn = n

Z
T
jj�̂ (�)� �̂ (0:5) jj2

�̂�
d� , (8)

where jjajj�̂� denotes
p
a0�̂�a and �̂� is a positive weighting matrix satisfying �̂� = �� + op(1), uniformly

in � . �� is positive de�nite, continuous and symmetric, again uniformly in � .

Inference requires the knowledge of the asymptotic distributions of TKSn ; TCMn . In Section 3.3 we derive

the asymptotic distribution of the quantile regression process
p
n
�
�̂ (�)� � (�)

�
, which would allow us

to derive the distribution of the test statistic if the null hypothesis was not estimated. The presence of a

nuisance parameter (the median coe¢ cients vector) jeopardizes this possibility.

As suggested by Chernozhukov and Fernández-Val (2005) we could calculate the critical values by

resampling the centered inference process �̂ (�)� �̂ (0:5). But the repeated computation of the coe¢ cients

(in our case especially of 
̂) for each bootstrap sample can be quite costly, in particular when the sample

size is large. For this reason, we follow Chernozhukov and Hansen (2006) and resample the score functions
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instead, which are linear approximations of the empirical processes. We show in Appendix A that

p
n(�̂ (�)� �̂ (0:5)) = 1p

n

nX
i=1

si(�) + op(1). (9)

A precise de�nition of the score function si(�) as well as its estimator ŝi(�) is given in the next subsection.

We draw B samples of size b and denote such samples as �j , 1 � j � B. The KS and CM statistics for

the jth iteration are

TKSn;b;j � sup
��T

p
bjj1=b

X
i��j

ŝi(�)jj�̂� and TCMn;b;j � b
Z
T
jj1=b

X
i��j

ŝi(�)jj2�̂� d� .

The critical values of a size � test are the 1 � �th quantiles of TKSn;b;j and T
CM
n;b;j , i.e. cKSn;b (�) =

inf
n
c : B�1

PB
j=1 1

�
TKSn;b;j � c

�
� 1� �

o
and similarly for the CM statistic. The level � tests reject H0

if TKSn > cKSn;b (�) and T
CV
n > cCMn;b (�).

3.3 Formal inference results

We prove that our tests have asymptotically the correct size and are consistent against all global alternative

hypotheses by verifying the conditions of Theorem 5 in Chernozhukov and Hansen (2006). To do so, we

heavily borrow from the results in Lee (2007) who considers an instrumental variable estimator that is

almost identical to the Buchinsky sample selection estimator from a computational point of view. To

establish these results, we make the following additional assumptions:

Assumption 4 (sampling) The data f(yi; x1i; di) : i = 1; :::; ng are i.i.d. realizations of (Y;X1; D)

and take values in a compact set.

Assumption 5 (non-singularity) (a) De�ne

�b;� = E[fU (QU
�
� jx01i
0

�
jx01i
0))mim

0
i],

mi = tidi (x2i � E [X2jx01i
0; D = 1]) .

�b;� is non-singular uniformly in � 2 T .

(b) De�ne

�J (�) = E [tifU (QU (� jX 0
1
0; D = 1))PJP

0
J jD = 1]

PJ = D � [X2;�J (X 0
1
0)] .

Uniformly in � 2 T the smallest eigenvalue of �J (�) is bounded away from zero for all J , and the largest

eigenvalue of �J (�) is bounded for all J .

Assumption 6 (continuity) (a) The joint distribution of (U; ") is absolutely continuous with respect

to Lebesgue measure. The density of U in the selected sample, fU (ujX1; D = 1), is bounded above and

away from zero and is twice continuously di¤erentiable in u uniformly in u and in X1.
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(b) h� (X 0
1
0) is r-times continuously di¤erentiable with respect to X

0
1
0 uniformly in � 2 T .

(c) As a function of X 0
1�0, E [fU (QU (� jX 0

1
0) jX 0
1
0))X2jX 0

1
0; di = 1] is continuously di¤erentiable

uniformly in � 2 T .

Assumption 7 (number of approximating functions) J = Cn� for some constant C satisfying

0 < C <1 and some � satisfying 1
2r < � <

1
9 .

Assumption 8 (�rst stage) There exists an invertible matrix �P and a bounded ki � K (x1i; di; 
)

such that E [ki] = 0, E [kik0i] exists and is non-singular and

p
n(
̂ � 
0) = ��1P

Pn
i=1 kip
n

+ op (1) .

There is an estimator �̂P of �P such that �̂P ! �P .

These assumptions are the sample selection equivalent of the assumptions in Lee (2007). Assumption

5(a) is satis�ed if X1 includes at least one continuous variable which is not in X2 and has a non-zero

coe¢ cient in the selection equation (and the components of X2 are not linearly dependent). Assumption

5(b) ensures the non-singularity of the second moment matrix of the estimator. Assumption 6(a) is

standard in quantile models because quantiles are well-de�ned and have a standard asymptotic distribution

only for continuous random variables. It corresponds to Assumption C in Buchinsky (1998a). Assumptions

6(b) and 6(c) require that the approximated functions are su¢ ciently smooth. Assumption 7 restricts

the growth rate of J . Together with Assumption 6(b), it requires that h� (X 0
1
0) is at least �ve times

di¤erentiable (r � 5). Assumption 8 imposes regularity conditions on the estimation of 
0. The estimator

suggested by Klein and Spady (1993) satis�es this condition with

�P = E

�
@Pi(
)

@


����

=
0

@Pi(
)
0

@


����

=
0

1

Pi(
0)(1� Pi(
0))

�
and ki =

@Pi(
)

@


����

=
0

Di � Pi(
0)
Pi(
0)(1� Pi(
0))

,

where Pi(
) = Pr(D = 1jX 0
1
 = x

0
1i
0).

Under Assumptions 1 to 8 the in�uence function of �̂ (�) is given by (see Appendix A for details)

p
n(�̂ (�)� � (�)) = ��1b;�

1p
n

nX
i=1

(`i (�) + �
�
�1
P ki) + op (1) , (10)

where

`i (�) = (� � 1 (yi < x02i�0 + h� (x01i
0)))mi,

�
 = E[tif"(Q" (� jx01i
0)
dh� (x

0
1i
0)

d
0
mi].

si(�) is simply the di¤erence between the in�uence function of �̂ (�) and the in�uence function of �̂ (0:5).

We estimate the in�uence functions by their sample analogs. In particular, we estimate the densities using
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the kernel method as in Powell (1986), Buchinsky (1998a), and Lee (2007):

^̀
i (�) = (� � 1

�
yi < x

0
2i�̂ (�) + �J (x

0
1i
̂) �̂ (�)

�
)m̂i;

�̂b;� = (nhn)
�1

nX
i=1

t̂i�

�
"̂i (�)

hn

�
m̂im̂

0
i;

�̂
 = (nhn)
�1

nX
i=1

t̂i�

�
"̂i (�)

hn

�
d�J (x

0
1i
̂)

d

m̂i;

"̂ (�) = yi � x02i�̂ (�)��J (x01i
̂) �̂ (�) ;

where m̂i is the vector of residuals from the regression of X2 on �J (X 0
1
̂) evaluated at x1i and multiplied

by t̂idi. We impose the following restrictions on the kernel and bandwidth:

Assumption 9 (kernel and bandwidth) The kernel function � has support [�1; 1], is bounded

and symmetrical about 0 and satis�es
R 1
�1 � (u) du = 1,

R 1
�1 u� (u) du = 0, and

R 1
�1 u

2� (u) du < 1.

hn = Chn
�� for some positive �nite Ch and some � satisfying �=2 < � < (1� 4�) =4.

Under these conditions our tests are asymptotically correctly sized and consistent against any global

alternative hypothesis:

Proposition 1 Suppose Assumptions 1 to 9 hold. Then as B !1, b!1, n!1: (1) Under the null

hypothesis P
�
TKSn > cKSn;b (�)

�
! � and P

�
TCMn > cCMn;b (�)

�
! �; (2) Under the alternative hypothesis

P
�
TKSn > cKSn;b (�)

�
! 1 and P

�
TCMn > cCMn;b (�)

�
! 1.

Chernozhukov and Hansen (2006) develop new inference tools in the context of their instrumental

variable quantile regression estimator but they state the conditions in a form that is general enough to

apply to other estimators. We prove Proposition 1 by verifying the conditions for inference of their Theorem

5. Similar tests based on resampling the estimates (instead of the scores) are also valid by Theorem 1 in

Chernozhukov and Fernández-Val (2005) because their conditions are weaker than the conditions that we

check in Appendix A. In addition to the statement of our Proposition 1, Chernozhukov and Fernández-Val

(2005) also show that this test has nontrivial power against local alternatives.

3.4 Practical details

Smoothing parameters. We follow a pragmatic approach and use the generalized cross validation criterion

(GCV) proposed in Craven and Wahba (1979) to select the smoothing parameters� bn and J� required

to implement our estimators. The same method was used in Buchinsky (1998a) and Newey, Powell, and

Walker (1990), among others. We do not claim any optimality of this method for our estimation and

inference problem but it works well in our simulations.4

4The optimal choice of smoothing parameters in semiparametric models remains an important topic for future research.

Härdle, Hall, and Ichimura (1993) and Delecroix, Hristache, and Patilea (2006) suggest to estimate the bandwidth and the
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Discretization. The theoretical results still hold if, instead of T , we use a grid Tn with the largest cell

size converging to 0 as n!1. In the simulations and application, we use for simplicity a grid with mesh

size 0:01 but the results are not sensitive to the choice of the mesh size as long as it is small enough. The

di¤erences between the results with a mesh of size 0:005, 0:01, and 0:02 are completely negligible.

Choice of �� . In order to improve the power of the test we set �� = V ar [si(�)]
�1. Note that by

construction V ar [si(0:5)] = 0, which forces us to cut out the part of Tn close to the median. In our

simulations and application we disregard [0:46; 0:54]. We estimate V ar [si(�)] by V ar [ŝi(�)].

Choice of b and T . We experiment in our simulations and application with several rules for the choice

of the block size, b. Though our empirical results are not sensitive to the choice of the block size, the

bootstrap has better size and power properties in our simulations while the tests are conservative when

the subsample size is smaller. Concerning T , in principle we would like to use a large range of quantiles in

order to increase the asymptotic power of the tests. However, the quantile regression estimator performs

poorly in the tails of the distribution if we do not make strong assumptions about the density of Y . In the

simulations we experiment with several ranges ([0:05; 0:95], [0:1; 0:9] and [0:2; 0:8]).

4 Simulations: Power and size properties of the tests

In this section, we present Monte Carlo evidence about the size and power properties of the tests that we

have proposed in Section 3. We �rst consider a simple data generating process (DGP) that was used by

Koenker and Xiao (2002) and Chernozhukov and Fernández-Val (2005) with the di¤erence that we observe

only a nonrandom sample from the population. Second, we will use a more realistic multivariate example

calibrated to the data used in Section 5.

4.1 A simple heteroscedastic DGP

The �rst DGP is the following linear multiplicative heteroscedastic model:

D = 1 (X2 +W + " > 0) ;

Y � = X2 + (1 +X2�) � U; (11)

X2 � N(0; 1); W � N(0; 1)

where

(U; ") � N

0@0@ 0

0

1A ;
0@ 1 0:8

0:8 1

1A1A .
parameters of the binary equation simultaneously. However, they do not show the optimality of the procedure. Although

they are probably not optimal, as noted by Newey (2009) our choice of J should satisfy the rate condition of Assumption 7.

In addition our choice of bn is in the range of values allows by Delecroix, Hristache, and Patilea (2006) for
p
n consistency.
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We consider three di¤erent values for the parameter �, which gauges heteroscedasticity. Under the null

hypothesis, � = 0, such that the regressor X2 is independent of the error U and has a pure location shift

e¤ect. This case allows us to analyze the empirical size of our tests. We also evaluate the power of our

tests in two location scale shift models with � = 0:2 and 0:5, such that errors are heteroscedastic.

In the simulations, we consider �ve sample sizes from n = 400 to n = 6400. We run 1000 Monte Carlo

replications and draw 250 bootstrap samples within each replication. The theoretical level of signi�cance

is set at 5%. For the sake of brevity, we only report the rejection frequencies for the bootstrap, i.e., for

the block size m = n. The results for subsampling (i.e., for some m smaller than n) are comparable and

available from the authors upon request. Results are presented for three di¤erent regions T over which

the quantile coe¢ cients are estimated: [0:05; 0:95], [0:1; 0:9], and [0:2; 0:8].

Table 1

Empirical rejection frequencies for 5% bootstrap tests

Normal distribution, 1000 replications, 250 bootstrap draws

Kolmogorov-Smirnov test


 = 0 
 = 0:2 
 = 0:5

� � [0.05,0.95] [0.10,0.90] [0.20,0.80] [0.05,0.95] [0.10,0.90] [0.20,0.80] [0.05,0.95] [0.10,0.90] [0.20,0.80]

n = 400 0.016 0.012 0.013 0.133 0.054 0.024 0.774 0.494 0.169

n = 800 0.027 0.020 0.013 0.556 0.333 0.147 0.998 0.988 0.881

n = 1600 0.036 0.025 0.012 0.936 0.849 0.585 1.000 1.000 1.000

n = 3200 0.041 0.036 0.030 1.000 0.996 0.927 1.000 1.000 1.000

n = 6400 0.049 0.042 0.035 1.000 1.000 1.000 1.000 1.000 1.000

Cramér-von-Mises test


 = 0 
 = 0:2 
 = 0:5

� � [0.05,0.95] [0.10,0.90] [0.20,0.80] [0.05,0.95] [0.10,0.90] [0.20,0.80] [0.05,0.95] [0.10,0.90] [0.20,0.80]

n = 400 0.008 0.007 0.007 0.149 0.105 0.048 0.912 0.790 0.465

n = 800 0.019 0.019 0.016 0.571 0.447 0.236 1.000 0.999 0.973

n = 1600 0.032 0.029 0.018 0.957 0.900 0.721 1.000 1.000 1.000

n = 3200 0.033 0.027 0.028 1.000 0.999 0.969 1.000 1.000 1.000

n = 6400 0.049 0.046 0.043 1.000 1.000 1.000 1.000 1.000 1.000

The empirical rejection frequencies reported in Table 1 suggest that the bootstrap score tests have

good size and power properties. In the presence of independent errors (
 = 0), both the KS and CM tests

are conservative, at least for the sample sizes considered. However, the empirical size slowly converges to

the theoretical size of 5% as the sample size increases. Under heteroscedasticity, the rejection probabilities

correctly converge to 100% as n becomes larger. As expected, this happens at a faster pace for 
 = 0:5

than for 
 = 0:2. The power properties of the KS and CM tests are rather similar, albeit the latter become

relatively more powerful in larger samples and/or for a higher 
. The empirical power increases as the
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range of quantiles considered increases and this holds true for both test statistics and both values of 
.

Summing up, the KS and CM tests seem to perform well in �nite samples with Gaussian errors. Under

sample sizes of several thousand observations, they are powerful in any scenario considered.

The results in Koenker and Xiao (2002) and Chernozhukov and Fernández-Val (2005) provide useful

benchmarks. In order to compare our results with theirs we must take into account that we observe Y �

only for half of the sample. Therefore, it seems fair to compare our results for 1600 observations with theirs

for 800 observations. In this case, we see for instance that with 
 = 0:2 our empirical power is 0:936 and

0:957, the power in Koenker and Xiao (2002) is 0:982 (in the best case) and the power in Chernozhukov and

Fernández-Val (2005) is 1. In general, the price to pay for allowing for nonrandom selection is moderate

in this DGP.

4.2 A realistic multivariate DGP

In this subsection we analyze the properties of our tests in a more realistic setup. We calibrate our DGP

to �t several characteristics of the CPS data sets used in the application in Section 5. We draw the Monte

Carlo samples of X1 from the female sample distribution in 2011 (containing 45,296 observations). We

consider a model with four regressors (experience, experience squared, a high school dummy and a college

dummy) and three exclusion restrictions (number of children in three age brackets). These covariates are

only a subset of those used in our application because we also consider samples of moderate sizes, which

would lead to frequent multicollinearity problems with the 19 regressors of the application.

The conditional distribution of the potential wage is generated by a linear quantile model:

Y � = � (U) +X 0
2� (U) , U jX1 � U (0; 1) .

We consider two sets of functions for � (�) and � (�). The �rst one satis�es the null hypothesis with a

constant � (�) set to the value of the median regression coe¢ cient estimates in the male sample.5 In the

second case, we set the coe¢ cients to the unrestricted quantile regression estimates in the male sample.6

This ensures that the violation of the null hypothesis is realistic and allows us to see the power of our tests

in a typical application. The selection equation is

D = 1 (X1
 + " > 0) ;

where " � N (0; 1) and 
 is set to the probit estimates of the female participation equation in 2011.

5� (�) and � (�) are calibrated using the male sample to avoid the sample selection problem, as the employment probability

is high for men. If we took the female sample then we could �nd violations of the independence assumption due to the

selection bias. Alternatively, we could use the female sample and correct for the selection bias but this would require making

distributional assumptions which seem quite arbitrary.
6We approximate the U (0; 1) distribution of U with a discrete uniform distribution with 1000 points. This means that

1000 quantile regression are used to approximate the conditional distribution.
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Finally, the copula between " and U is Gaussian with a correlation coe¢ cient of 0:233, which is the

estimate obtained by Mulligan and Rubinstein (2008) in the period 1990-1995.

Table 2

Empirical rejection frequencies for 5% bootstrap tests

Empirical data, 1000 replications, 250 bootstrap draws

Kolmogorov-Smirnov test: size

� � [0.05,0.95] � � [0.10,0.90] � � [0.20,0.80]

all exp exp2 hs col all exp exp2 hs col all exp exp2 hs col

n = 400 0.033 0.006 0.007 0.017 0.005 0.026 0.004 0.003 0.021 0.000 0.028 0.002 0.004 0.015 0.002

n = 800 0.037 0.006 0.007 0.032 0.005 0.032 0.004 0.006 0.025 0.004 0.028 0.004 0.005 0.022 0.005

n = 1600 0.021 0.020 0.023 0.024 0.016 0.009 0.016 0.013 0.018 0.010 0.009 0.009 0.009 0.015 0.011

n = 3200 0.030 0.023 0.030 0.029 0.034 0.017 0.020 0.022 0.017 0.031 0.010 0.019 0.019 0.015 0.028

n = 6400 0.035 0.041 0.043 0.022 0.041 0.025 0.031 0.030 0.024 0.038 0.022 0.027 0.026 0.017 0.035

Kolmogorov-Smirnov test: power

� � [0.05,0.95] � � [0.10,0.90] � � [0.20,0.80]

all exp exp2 hs col all exp exp2 hs col all exp exp2 hs col

n = 400 0.026 0.006 0.004 0.019 0.009 0.025 0.004 0.002 0.020 0.003 0.023 0.004 0.002 0.019 0.002

n = 800 0.042 0.015 0.013 0.020 0.089 0.028 0.011 0.010 0.015 0.058 0.022 0.009 0.009 0.014 0.042

n = 1600 0.229 0.112 0.069 0.043 0.346 0.080 0.047 0.038 0.018 0.136 0.020 0.020 0.022 0.009 0.043

n = 3200 0.694 0.261 0.156 0.109 0.755 0.340 0.150 0.105 0.053 0.421 0.090 0.093 0.072 0.022 0.146

n = 6400 0.986 0.518 0.343 0.178 0.972 0.808 0.329 0.228 0.091 0.815 0.329 0.200 0.155 0.041 0.352

Cramér-von-Mises test: size

� � [0.05,0.95] � � [0.10,0.90] � � [0.20,0.80]

all exp exp2 hs col all exp exp2 hs col all exp exp2 hs col

n = 400 0.002 0.005 0.003 0.004 0.005 0.001 0.003 0.002 0.002 0.003 0.000 0.001 0.001 0.003 0.004

n = 800 0.004 0.012 0.009 0.007 0.012 0.003 0.011 0.009 0.006 0.010 0.002 0.009 0.007 0.005 0.009

n = 1600 0.011 0.020 0.023 0.018 0.022 0.003 0.022 0.020 0.011 0.020 0.003 0.014 0.016 0.010 0.015

n = 3200 0.026 0.039 0.040 0.029 0.042 0.020 0.038 0.040 0.020 0.041 0.013 0.032 0.035 0.015 0.041

n = 6400 0.034 0.043 0.035 0.038 0.043 0.032 0.034 0.034 0.032 0.039 0.022 0.029 0.029 0.024 0.038

Cramér-von-Mises test: power

� � [0.05,0.95] � � [0.10,0.90] � � [0.20,0.80]

all exp exp2 hs col all exp exp2 hs col all exp exp2 hs col

n = 400 0.002 0.008 0.005 0.003 0.013 0.001 0.005 0.003 0.002 0.010 0.001 0.003 0.001 0.003 0.004

n = 800 0.014 0.017 0.014 0.009 0.080 0.009 0.015 0.012 0.008 0.061 0.007 0.013 0.010 0.007 0.048

n = 1600 0.134 0.095 0.071 0.033 0.260 0.068 0.076 0.057 0.019 0.157 0.014 0.041 0.035 0.009 0.071

n = 3200 0.491 0.212 0.157 0.069 0.570 0.298 0.166 0.126 0.042 0.380 0.101 0.104 0.098 0.022 0.176

n = 6400 0.904 0.455 0.338 0.106 0.901 0.700 0.361 0.284 0.069 0.717 0.361 0.246 0.206 0.051 0.364

When there are several regressors, the identifying assumptions 1 to 3 imply that the whole vector � (�)

is constant as a function of � . Thus, the tests suggested in Section 3 simultaneously use all coe¢ cients
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and weight them by the inverse of the covariance matrix (of the di¤erence between �̂ (�) and �̂ (0:5)). In

addition, we can also separately test whether each element of the vector is constant as a function of the

quantile. This will inform the researcher about the sources of the rejection when the global test rejects

the null hypothesis.

The results in Table 2 give the empirical rejection probabilities of our tests when the coe¢ cients are

homogeneous (empirical size) and heterogeneous (empirical power). Our tests are somewhat conservative

with none of the empirical sizes being above the theoretical size of 5%. However, under the null hypothesis

the rejection probability does converge to the intended one even if it does not yet attain it with 6400

observations. The power of the tests is very low when n = 400 but attains 98:6% when n = 6400 for the

KS statistic, which tends to be more powerful than the CM statistic. The dataset used in our application

contains 45; 296 observations such that we can expect our tests to be extremely powerful. The widest

range of quantiles that we considered, [0:05; 0:95], delivers the best performance.

The tests of the constancy of a single coe¢ cient are also slightly conservative. When n is large the

empirical power of all tests are above 5%, which shows that all variables contribute to the rejection of the

null hypothesis. The return to a college degree is the most heterogeneous coe¢ cient with rejection rates

close to those obtained when jointly testing all variables.

5 Female wage distribution in the USA

The estimation of the female wage function is the most frequent application of sample selection estimators,

see e.g. Buchinsky (1998a) and Mulligan and Rubinstein (2008). We use the 2011 Merged Outgoing

Rotation Groups of the Current Population Survey, which o¤er a good measure of hourly wages. Similarly

to many examples in the wage regression literature, we restrict our sample to white non-Hispanic adults who

are between 25 and 54 years old and exclude individuals who are self-employed, have allocated earnings,

or work in the military, agricultural, and public sectors.

We classify females as either working or not according to whether they worked at least 35 hours

during the week preceding the surveys. The dependent variable, Y , is the log hourly wage. Our vector

of regressors, X2, contains �ve educational dummies (at least high school, some college, associate degree,

bachelor degree, and advanced degree), potential experience and potential experience squared as well as

their interaction with educational attainment in years, three regional dummy variables, and an indicator

for being married. The vector X1 consists of the same elements plus the numbers of children in three age

brackets (0-2, 3-5 and 6-13 years) and their interaction with the marital indicator.7 Descriptive statistics

can be found in Appendix B. We use the CPS earning weights for all our calculations.

7Due to data coding, in about 5% of cases we are only able to determine lower and upper bounds on the number of

children in the three age brackets. We impute the average between the lower and upper bound in these cases. In contrast,

the total number of children is always known.
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We implement our test procedure as described in Section 3. The estimates of the selection equation by

the Klein and Spady estimator, reported in Table 3, show that the coe¢ cients on all six variables excluded

from the outcome equation are strongly signi�cant. The signs of the other coe¢ cients are also as expected

with a higher employment probability for non-married and high-educated women. The bandwidth, deter-

mined by GCV, was set to 0:25 times the standard deviation of the �tted index X 0
1
̂.

Table 3

Female wage distribution in the USA

Selection equation Outcome equation - Buchinsky (1998a)

Klein and Spady � = 0:25 � = 0:5 � = 0:75

Experience 0.013 (0.012) 0.021 (0.003) 0.031 (0.003) 0.034 (0.003)

Experience squared -0.001 (3e-4) -3e-4 (7e-5) -5e-4 (7e-5) -5e-4 (8e-5)

High school 1.848 (0.255) 0.147 (0.032) 0.260 (0.033) 0.273 (0.035)

Some college 0.216 (0.071) 0.117 (0.017) 0.132 (0.015) 0.146 (0.018)

Associate 0.630 (0.100) 0.088 (0.020) 0.128 (0.020) 0.203 (0.022)

Bachelor 0.234 (0.078) 0.229 (0.020) 0.255 (0.021) 0.230 (0.024)

Advanced 0.437 (0.097) 0.232 (0.023) 0.236 (0.023) 0.241 (0.024)

Exp.�education -0.005 (0.002) 2e-3 (5e-4) 3e-3 (5e-4) 4e-3 (7e-4)

Exp.2�education 5e-5 (6e-5) -4e-5 (1e-5) -6e-5 (1e-5) -8e-5 (2e-5)

Married -0.392 (0.065) 0.035 (0.013) 0.033 (0.012) 0.020 (0.014)

# children [0; 2] -1.000

# children [3; 5] -0.530 (0.130)

# children [6; 13] -0.249 (0.067)

Married�# children [0; 2] -0.262 (0.152)

Married�# children [3; 5] -0.339 (0.113)

Married�# children [6; 13] -0.336 (0.069)

Note: Column 1 contains the coe¢ cients of the selection equation obtained by the Klein and Spady (1993) estimator.

Columns 2-4 show the quantile regression coe¢ cients obtained by the Buchinsky (1998a) estimator. Standard errors are

reported in parentheses. Three regional dummy variables are also part of the regressors but are not shown for brevity. These

coe¢ cients are consistent only if the independence assumption is satis�ed or if selection is random. Our tests in Table 4

reject the independence assumption.

Table 3 also contains the 0:25, 0:5, and 0:75 quantile regression coe¢ cients estimated using the Buchin-

sky (1998a) estimator. Figure 3 shows all quantile coe¢ cients between the 2nd and the 98th percentile of

four of the most important covariates. The order of the power series in the inverse Mill�s ratio, also deter-

mined by GCV, is 5, which is large compared to the literature. Note that the coe¢ cients are consistent

only if the independence assumption is satis�ed or if selection is random. They are provided here because

they serve� among other quantile coe¢ cients� as a basis for our tests.

The linear term in experience is more or less monotonically increasing as we move up the distribution.
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At the same time, the quadratic term is decreasing as a function of the quantile. In other words, the

whole shape of the experience-wage function is changing with the quantile. This is a clear hint against the

independence assumption. In addition, the returns to education are also increasing in the quantile. The

returns are becoming �atter as a function of the quantile only for the highest levels of education, maybe

due to a more homogeneous population.

Figure 3 here

Table 4 reports the p-values of our tests of the conditional independence assumption. The null hy-

pothesis tested in the �rst row is the constancy of the whole quantile regression vector, i.e. the validity

of the model de�ned by Assumptions 1 to 9. The remaining rows give the p-values for each coe¢ cient

separately. The results are reported for two choices of block size (b = n and b = 20 + n1=2:01) and two

ranges of quantiles (T = [0:02; 0:98] and T = [0:2; 0:8]).8 The number of bootstrap replications B was set

to 1; 000.

Table 4

Empirical application - test results

Statistic Kolmogorov-Smirnov Cramér-von-Mises

� � [0:02; 0:98] [0:20; 0:80] [0:02; 0:98] [0:20; 0:80]

b (block size) 45,296 227 45,296 227 45,296 227 45,296 227

All variables 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Experience 0.000 0.000 0.002 0.011 0.000 0.000 0.013 0.019

Experience2 0.006 0.018 0.130 0.159 0.015 0.024 0.237 0.244

High school 0.003 0.048 0.010 0.046 0.000 0.008 0.016 0.029

Some college 0.002 0.014 0.422 0.381 0.028 0.028 0.781 0.722

Associate 0.007 0.027 0.004 0.014 0.000 0.000 0.000 0.000

Bachelor 0.113 0.179 0.387 0.351 0.195 0.218 0.275 0.300

Advanced 0.188 0.219 0.303 0.270 0.386 0.349 0.628 0.553

Exp.�education 0.338 0.317 0.242 0.190 0.131 0.169 0.076 0.113

Exp.2�education 0.438 0.343 0.291 0.223 0.233 0.221 0.172 0.171

Married 0.140 0.161 0.354 0.311 0.151 0.149 0.323 0.304
Note: 45,296 observations. Critical values obtained using 1,000 bootstrap repetitions.

The hypothesis of the validity of the sample selection model de�ned in Section 2 is clearly rejected in

any set up as the p-values are always zero. A one by one investigation of the covariates shows that this

rejection is mainly due to heterogeneous returns to experience and to lower level education degrees (in

particular high school and associate degrees). These results and those for two other data sets reported in

the working paper version of this article (Huber and Melly 2011) cast serious doubts on the validity of

8Not reported are the results for two other block sizes and two other ranges of quantiles, which are extremely similar.
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traditional sample selections models in female wage regressions. The conclusion suggests a few tracks to

explore without assuming homogeneous coe¢ cients.

6 Conclusion

Assuming additivity and conditional independence of the error term in the outcome equation is rather

restrictive. It implies that all individuals with the same selection probability react identically to changes

in the observable characteristics. In economic models, the unobservable random terms are not simply

measurement errors but they often have important economic interpretations. The recent econometric

literature has relaxed many restrictions on the interaction between observed and unobserved variables.

Advances have been reported in selection on observables, instrumental variables, and panel data models,

among many others (for a discussion, see e.g. Matzkin 2007).

Somewhat surprisingly, the sample selection model has been excluded from this trend. The consistency

of almost all sample selection estimators hinges on the additivity and conditional independence of the error

term. This is also the case in the quantile regression model of Buchinsky (1998a). However, in the quantile

regression framework the conditional independence assumption implies that the quantile slope coe¢ cients

are equal to the mean slope coe¢ cients. In other words, the heterogeneity that we want to analyze is

excluded by assumption. Applications of the sample selection correction for quantile regression that have

found signi�cant di¤erences across the coe¢ cients estimated at distinct quantiles have merely proven the

violation of the underlying assumptions and the inconsistency of the estimator.

A general lesson to draw from this example is the dangerousness of importing one-to-one mean recipes

to quantile models. Another example is given by the �tted value approach in endogenous models, which is

justi�ed only by a similar independence assumption. The �tted value IV estimators suggested by Amemiya

(1982), Powell (1983), and Chen and Portnoy (1996) are, therefore, not useful for analyzing heterogeneity

(which was not the intention of their authors). Similarly, the control function estimators in Lee (2007),

Blundell and Powell (2007), and Carneiro and Lee (2009) are consistent only if the coe¢ cients do not vary

across quantiles.

Given the importance of conditional independence for the identi�cation of (mean and quantile) sample

selection models, we propose the �rst formal test for this assumption. Our test is based on the conditional

quantile regression process estimated by the procedure of Buchinsky (1998a), which is consistent under

the null hypothesis, and compares the coe¢ cients obtained at di¤erent quantiles. Monte Carlo simulations

provide evidence on the satisfactory power and size properties of our tests. We clearly reject the conditional

independence assumption in an application to recent US wage data.

What can be done if the independence assumption is rejected? Unfortunately, the parameters of

interest are then no longer point identi�ed. In our companion paper (Melly and Huber 2012), we derive

the sharp bounds on the quantile regression parameters when this assumption is no longer imposed.
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It appears that there are only two ways to recover point identi�cation.9 The �rst one is to impose a

parametric assumption on (at least) the copula function between the error terms in the selection and

outcome equations. Donald (1995) makes one step in this direction and proposes a two-step estimator that

allows for conditional heteroscedasticity but requires the error terms to be bivariate normally distributed.

Arellano and Bonhomme (2011) obtain point identi�cation by parametrizing only the copula while keeping

the marginal distributions of the error terms nonparametric. The second way to recover point identi�cation

is to use an identi�cation-at-in�nity argument. The latter requires not only that some subpopulation

is observed with probability (close to) one but also that the slope parameters are identi�ed from this

subpopulation.

Another strategy consists in changing the estimand by considering a di¤erent population. Newey

(2007) analyzes a nonseparable model but shows identi�cation only in the selected population instead of

the entire population. In the absence of an exclusion restriction, Lee (2009), Lechner and Melly (2010),

and Huber and Mellace (2011) provide sharp bounds for several subpopulations. This is of interest in some

applications but clearly not in all. For instance, it does not allow comparing wages of di¤erent population

groups like male and female or white and nonwhite individuals. These wage comparisons were precisely

the reason for which Gronau (1974) developed corrections for the sample selection bias.

Appendix A: Proof of Proposition 1

We verify that the conditions for inference I.1-I.4 in Chernozhukov and Hansen (2006) are satis�ed; Propo-

sition 1 will then follow from Theorem 5 in Chernozhukov and Hansen (2006). Note that Chernozhukov

and Hansen (2006) develop these new inference tools in their IV quantile regression framework but state

the assumptions in a way that is general enough to cover other estimators such as standard quantile re-

gression and, as we will show, the Buchinsky (1998a) sample selection estimator.

Assumption I.1. in Chernozhukov and Hansen (2006) is satis�ed with R (�) = [1; 1; :::; 1] being a vector

of 1 of length dX � dim (x2i), � (�) being the vector of slope coe¢ cients � (�), and r (�) being the vector of

median coe¢ cients � (0:5). Our continuity assumptions imply that � (�) is a continuous function. Under

the null hypothesis, g (�) = 0 for all � and under the global alternative hypothesis g (�) 6= 0 for some � .

Our estimator de�ned in (5) corresponds almost exactly to the estimator de�ned in equation (7) of Lee

(2007). The �rst di¤erence is that in our case the estimation is performed only in the selected population

, while Lee (2007) uses the whole population. Our problem �ts, however, into his framework by rede�ning

the trimming function to be zero for observations with D = 0. The second di¤erence is that the �rst step

�tted values are estimated by the Klein and Spady (1993) estimator in our case, while Lee (2007) uses

9Naturally, it is also possible to add structure to the model or use auxiliary data. For instance, Chen and Khan (2003)

impose de facto a new type of exclusion restriction� the availability of a regressor that a¤ects the variance but not the

location of the dependent variable� to identify a multiplicative heteroscedastic model.
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quantile regression. This is not an issue because Lee (2007) states the assumptions in a way that allows

for other
p
n consistent and asymptotically linear estimators.

Our assumptions are the uniform in � 2 T and conditional on D = 1 versions of the assumptions of Lee

(2007). To simplify the notation we replace trimming with respect to X2 with a compactness assumption

on the distribution of X2. In addition, by Assumption 3, fU (ujx01i�0; x1i) = fU (ujx01i�0), such that we

can simplify the de�nition of mi. We apply Theorem 3.1 in Lee (2007) and obtain the following in�uence

function (equations 39 and 40 in Lee 2007):

p
n(�̂ (�)� �0) = A�J (�)

�1 1p
n

nX
i=1

(`2i (�) + �2
�
�1
P ki) + op (1) , (12)

where A denotes the [dX � (dX + J)] matrix such that A = (IdX ; 0dX+J), where IdX is the dX -dimensional

identity matrix, 0dX+J is the [dX � J ] matrix of zeros, dX is the dimension of x2i, and

`2i (�) = ti(� � 1 (yi < x02i�0 + h� (x01i�0)))pJi,

�2
 = E

�
tif"(Q" (� jx01i�0)

dh� (X
0
1�0)

d�0
pJi

�
.

The matrix A selects the relevant components of the dX + J score functions. The in�uence function can

equivalently be written as in equation (10). This satis�es Assumption I.3 of Chernozhukov and Hansen

(2006).10

We estimate the elements in the score function (10) by �̂b;� , ^̀i (�), �̂
 , �̂P , and K (x1i; di; 
̂). Under

assumptions 1 to 9, arguments identical to those used in Lemma A.9. in Lee (2007) imply that �̂b;�

is uniformly consistent for the nonsingular matrix �b;� . Similarly, arguments identical to those used in

Lemma A.11. in Lee (2007) imply that �̂
 is consistent for �
 . Since the trimming function is 0 when

x01i
̂ is outside of a compact set and x
0
1i takes value in a compact set, exploiting the boundedness and

monotonicity of the indicator function, it follows that the class of functions

T (� � 1 (Y < X 0
2� + h� (X

0
1
)))M , � 2 RdX and � 2 T

is Donsker. In addition, �
 , �
�1
P , and ki are bounded by assumption. Since sums and products of

Donsker functions are Donsker, this veri�es Assumption I.4 (a) of Chernozhukov and Hansen (2006).11

Assumption I.4 (b) of Chernozhukov and Hansen (2006) holds by our Assumptions 1 to 3 that imply

that x02i�0 + h� (x
0
1i
0) is the � conditional quantile of yi given x1i and di = 1. Assumption I.4. (c) of

Chernozhukov and Hansen (2006) holds by the bounded density assumption.

By the central limit theorem for empirical processes indexed by Donsker classes of functions (Van der

Vaart and Wellner 1996), �b;�
p
n(�̂ (�) � �0) converges in distribution to a zero mean Gaussian process

z (�) with covariance function � (� ; � 0):

� (� ; � 0) = [min (� ; � 0)� �� 0] � E [mim
0
i] + �
�

�1
P var (ki) .

10Buchinsky (1998a) obtains the same score function in a more heuristic way.
11The veri�cation of this condition follows almost directly from Lemma B.2.II. in Chernozhukov and Hansen (2006).
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This satis�es Assumption I.2 of Chernozhukov and Hansen (2006). The result of Proposition 1 follows from

Theorem 5 in Chernozhukov and Hansen (2006), parts (a) and (b), where the continuity of the distribution

of the test statistic follows from part (c).

Appendix B: Descriptive statistics

Table A1

Means of the relevant variables

All observations Employed full-time Not employed full-time

High school 0.904 0.951 0.865

Some college 0.626 0.694 0.570

Associate 0.447 0.521 0.387

Bachelor 0.318 0.374 0.273

Advanced 0.089 0.113 0.070

Experience 21.76 21.41 22.044

Married 0.718 0.668 0.759

# children [0; 2] 0.162 0.103 0.211

# children [3; 5] 0.204 0.138 0.259

# children [6; 13] 0.496 0.392 0.582

Number of obs. 45,296 20,789 24,507
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Figure 1. Sample selection under independence and heteroscedasticity.

 

Note: Random samples of 500 observations. Only the observations surrounded by a box are observed. All 
observations have X₁ set such that Pr(D=1|X₁)=0.5. 
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Figure 2. Asymptotic estimates in realistic DGPs.

 

Note: Details about the data generating process can be found in Section 4.2. The true coefficients correspond to 
the male coefficients in log wage regressions in the CPS 2011. The plotted lines give the values to which the 
estimates of Buchinsky (1998a) converge for five different correlations between the error terms in the selection 
and outcome equation, ε  and U. 
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Figure 3. Quantile regression coefficients corrected for sample selection

 

Note: Quantile regression coefficients estimated using the estimator of Buchinsky (1998a). Pointwise 95% 
confidence intervals are also plotted. In addition to the four variables the coefficients of which are plotted, the 
vector of regressors also contains: three regional dummy variables, indicators for some college, associate degree, 
advanced degree, and being married, and interactions between experience and experience squared with 
education in years. These coefficients are consistent only if the independence assumption is satisfied or if selection 
is random. Our tests in Table 4 reject the independence assumption.  
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