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Abstract

We develop powerful new size-correction procedures for nonstandard hypothesis
testing environments in which the asymptotic distribution of a test statistic is discon-
tinuous in a parameter under the null hypothesis. Examples of this form of testing
problem are pervasive in econometrics and complicate inference by making size diffi-
cult to control. This paper introduces two sets of new size-correction methods that
correspond to two different general hypothesis testing frameworks. The new methods
are designed to maximize the power of the underlying test while maintaining correct
asymptotic size uniformly over the parameter space specified by the null hypothesis.
They involve the construction of critical values that make use of reasoning derived from
Bonferroni bounds. The first set of new methods provides complementary alternatives
to existing size-correction methods, entailing substantially higher power for many test-
ing problems. The second set of new methods provides the first available asymptotically
size-correct tests for the general class of testing problems to which it applies. This class
includes hypothesis tests on parameters after consistent model selection and tests on
super-efficient/hard-thresholding estimators. We detail the construction and perfor-
mance of the new tests in three specific examples: testing after conservative model
selection, testing when a nuisance parameter may be on a boundary and testing after
consistent model selection.
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1 Introduction

Nonstandard econometric testing problems have gained substantial attention in recent years.

In this paper, we focus on a very broad class of these problems: those for which the null

limit distribution of a test statistic is discontinuous in a parameter. The problems falling

into this class range from tests in the potential presence of identification failure (e.g., Staiger

and Stock, 1997 and Andrews and Cheng, 2012) to tests after pretesting or model selection

(e.g., Leeb and Pötscher, 2005 and Guggenberger, 2010) to tests when a parameter may lie

on the boundary of its parameter space (e.g., Andrews, 1999, 2001). Though test statistics

that do not exhibit this type of discontinuity exist for some problems (e.g., Kleibergen, 2002),

they do not for others. Moreover, such test statistics may not necessarily be preferred to

parameter-discontinuous ones when good size-correction procedures are available, as they

can have low power. However, we sidestep the important issue of choosing a test statistic in

this paper, taking it as given.

The usual approximation to the size of a test is the asymptotic probability of rejecting

a true null hypothesis (null rejection probability) at a fixed parameter value. For the types

of problems studied in this paper, such an approximation is grossly misleading. In fact, the

discrepancy between this point-wise null rejection probability (NRP) and the (asymptotic)

size of a test can reach unity less the nominal level. This problem does not disappear,

and often worsens, as the sample size grows. The inadequacy of point-wise asymptotic

approximations and the resulting pitfalls for inference have been studied extensively in the

literature. See, for example, Dufour (1997) in the context of inference on the two-stage least

squares estimator, Leeb and Pötscher (2005) in the context of inference after model selection,

Stoye (2009) in the context of inference on partially identified parameters and Andrews and

Guggenberger (2009a) (AG henceforth) in the context of inference on the autoregressive

parameter in a first-order autoregressive model. In the parameter-discontinuous testing

framework of this paper, one must examine the maximal NRP uniformly, over the entire

parameter space, as the sample size grows in order to determine the asymptotic size of the

test (see e.g., the work of Mikusheva, 2007 and Andrews and Guggenberger, 2009b, 2010b).

When using the test statistics considered in this paper, one typically takes a conservative

approach to control size, leading to highly non-similar tests, i.e., tests for which the point-

wise NRP differs substantially across parameter values. This often results in very poor

power.

In this paper, we develop novel size-correction methods with the goal of minimizing the
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degree of “conservativeness” of the test, and hence maximizing its power, while maintaining

correct asymptotic size. We do so under two different frameworks that allow for different

null limiting behavior of a given test statistic. For the first, termed the single localized limit

distribution (SLLD) framework, we adopt the framework studied by AG as it is quite broad in

scope. For the second, termed the multiple localized limit distributions (MLLDs) framework,

we generalize the SLLD framework in order to accommodate certain complicated asymptotic

behaviors of test statistics. To our knowledge, this latter, more general framework has not

yet been studied. It includes examples of testing after consistent model selection and testing

on super-efficient/hard-thresholding estimators.

The basic idea behind the size-corrections we introduce is to adaptively learn from the

data how far the true parameters are from the point that causes the discontinuity in the

asymptotic behavior of the test statistic in order to construct critical values (CVs) that

control the size of the test but are not overly conservative. We do this under a “drifting

sequence” framework by embedding the true parameter values in a sequence indexed by the

sample size and a localization parameter. Within this framework, we estimate a correspond-

ing localization parameter to find a set of drifting sequences of parameters relevant to the

testing problem at hand. We then examine the CVs corresponding to the null limiting quan-

tiles of the test statistic that obtain under the drifting sequences within this set. Though

the localization parameter cannot be consistently estimated under these drifting sequences,

it is often possible to obtain estimators that are asymptotically centered about their true

values and hence to construct asymptotically valid confidence sets for the true localization

parameter.

Based upon this estimator and corresponding confidence sets, we examine three different

size-correction methods in increasing order of computational complexity. For the first, we

search for the maximal CV over a confidence set, rather than the maximal CV over the

entire space of localization parameters, to reduce the degree of conservativeness of a given

hypothesis test. Inherent in this construction are two levels of uncertainty: one for the

localization parameter and one for the test statistic itself. We use procedures based on

Bonferroni bounds to account for both. For the second, we also search for a maximal

CV over a confidence set but, instead of using Bonferroni bounds, we account for the two

levels of uncertainty by adjusting CV levels according to the asymptotic distributions that

arise under drifting parameter sequences. This method compensates for the asymptotic

dependence structure between the test statistic and the CV, leading to more powerful tests.

For the third, we find the smallest CVs over sets of those justified by the first and second,
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leading to tests with high power over most of the parameter space.

For testing problems within the scope of the SLLD framework, our new size-correction

methods can be constructed to be either uniformly more powerful asymptotically than exist-

ing least-favorable (LF) methods or are more powerful over most of the relevant parameter

space. In the latter case, the portions of the parameter space for which LF methods dominate

tend to be very small and such dominance tends to be nearly undetectable even within these

portions. The finite-sample power dominance of our new methods can be very pronounced,

sometimes reaching nearly 100% over most of the parameter space. Our size-corrections can

also be constructed to direct power toward different regions of the parameter space while

sacrificing very little in others. We also develop the first size-correction procedures we are

aware of to provide tests with correct asymptotic size for all testing problems falling within

the MLLDs framework. Since they are adapted from the size-correction procedures used in

the SLLD framework to this generalized framework, they also adopt many desirable power

properties.

The scope of problems to which our size-correction methods may be applied is quite wide.

For illustration, we provide detailed applications to three nonstandard testing problems.

Two of these examples concern testing after model selection/pretesting. The first, taken

from AG, involves testing after conservative model selection and falls within the scope of the

SLLD framework. The second, taken from Leeb and Pötscher (2005), considers testing after

consistent model selection and falls within the scope of the MLLDs framework. The other

example we detail concerns testing when a nuisance parameter may be on a boundary of its

parameter space, taken from Andrews and Guggenberger (2010b). We also briefly discuss a

subset of the numerous other examples for which our size-corrections can be used. We focus

on testing after model selection in the examples because at present, available uniformly valid

inference methods tend to be extremely conservative. Inference after model selection is an

important issue that is all too frequently ignored, sometimes being referred to as “the quiet

scandal of statistics”. See, for example, Hansen (2005a) for a discussion of the importance

of this issue. Moreover, excluding the results of AG and Kabaila (1998), the literature

has been quite negative with regards to solving this inference problem (e.g., Andrews and

Guggenberger, 2009b, Leeb and Pötscher, 2005, 2006 and 2008), especially with regards to

inference after consistent model selection.

The recently developed methods for uniform inference of AG are closely related to the

methods developed here. AG also study a given test statistic and adjust CVs according to

a drifting parameter sequence framework. However, our methods tend to be (oftentimes,
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much) less conservative than theirs. Existing inference procedures that make use of Bonfer-

roni bounds are also related to those developed here. Some of the CVs we employ can also be

interpreted as smoothed versions of those based on binary decision rules that use an incon-

sistent estimator of the localization parameter. Our CVs are also related to those that use

a “transition function” approach to interpolate between LF and standard CVs. In contrast

to these approaches, ours do not necessitate an ad hoc choice of transition function. Rather,

they use the data and the limiting behavior of the test statistic to adaptively transition be-

tween CVs. See Sections 3.1 and 3.3 for details and references on these related procedures.

Finally, the recent work of Elliott et al. (2012) takes a somewhat different approach to some

of the problems discussed here by attempting to numerically determine tests that approach

an asymptotic power bound.

The remainder of this paper is composed as follows. Section 2 describes the general class

of nonstandard hypothesis testing problems we study, subsequently detailing the SLLD and

MLLDs frameworks and providing examples. Section 3 goes on to specify the size-correction

methods of this paper under the two localized limit distribution frameworks and provides

the conditions under which some of these size-corrections yield correct asymptotic size. To

conserve space, some of the conditions used to show size-correctness of procedures in the

MLLDs framework are relegated to Appendix III, which also contains some auxiliary suffi-

cient conditions. Specifics on how to construct some of the size-corrected CVs are provided

for three econometric examples in Sections 4, 5 and 6. The finite sample performance of

two of the examples, corresponding to testing after model selection, is also analyzed there.

Section 7 concludes. Appendix I contains proofs of the main results of this paper while Ap-

pendix II is composed of derivations used to show how the example testing problems fit the

assumptions of the paper. All tables and figures can be found at the end of the document.

To simplify notation, we will occasionally abuse it by letting (a1, a2) denote the vector

(a′1, a
′
2)′. The sample size is denoted by n and all limits are taken to mean as n → ∞. Let

R+ = {x ∈ R : x ≥ 0}, R− = {x ∈ R : x ≥ 0}, R−,∞ = R− ∪ {−∞}, R+,∞ = R+ ∪ {∞} and

R∞ = R∪{−∞,∞}. 1(·) denotes the indicator function. Φ(·) and φ(·) are the usual notation

for the distribution and density functions of the standard normal distribution. “
d−→” and

“
p−→” denote weak convergence and convergence in probability while O(·), o(·), Op(·) and

op(·) denote the usual (stochasitc) orders of magnitude.
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2 Parameter-Discontinuous Asymptotic Distributions

In this paper, we are interested in performing hypothesis tests when the asymptotic distribu-

tion of the test statistic is discontinuous in a parameter under the null hypothesis. We take

the test statistic as given and examine the tasks of controlling size and maximizing power for

the given statistic. The important separate issue of choosing a test statistic depends on the

specific testing problem at hand and is not the focus of this paper. In order to analyze this

problem, we adopt the same general testing framework as AG. Consider some generic test

statistic Tn(θ0) used for testing H0 : θ = θ0 for some finite-dimensional parameter θ ∈ Rd.

Under H0, Tn(θ0) and its asymptotic distribution depend on some parameter γ ∈ Γ. Refer

to this limit distribution as Fγ. We decompose γ into three components, viz. γ = (γ1, γ2, γ3),

depending on how each component affects Fγ as follows. The distribution Fγ is discontinuous

in γ1, a parameter in Γ1 ∈ Rp, when one or more of the elements of γ1 is equal to zero. It also

depends on γ2, a parameter in Γ2 ∈ Rq, but γ2 does not affect the distance of γ to the point

of discontinuity in Fγ. The third component γ3 may be finite- or infinite-dimensional, lying

in some general parameter space Γ3(γ1, γ2) that may depend on γ1 and γ2. The component

γ3 does not affect the limit distribution Fγ but may affect the properties of Tn(θ0) in finite

samples. Formally, the parameter space for γ is given by

Γ = {(γ1, γ2, γ3) : γ1 ∈ Γ1, γ2 ∈ Γ2, γ3 ∈ Γ3(γ1, γ2)}. (1)

To complete the preliminary setup, we impose the following product space assumption on

Γ1. This assumption is identical to Assumption A of AG. Let b (c) denote the left (right)

endpoint of an interval that may be open or closed.

Assumption D. (i) Γ satisfies (1) and (ii) Γ1 =
∏p

m=1 Γ1,m, where Γ1,m = bγl1,m, γu1,mc for

some −∞ ≤ γl1,m < γu1,m ≤ ∞ that satisfy γl1,m ≤ 0 ≤ γu1,m for m = 1, . . . , p.

This paper introduces testing methods that are asymptotically size-controlled. Asymp-

totic size control requires one to asymptotically bound the NRP uniformly over the parameter

space admissible under the null hypothesis. In order to assess the uniform limiting behavior

of a test, one must examine its behavior along drifting sequences of parameters (see e.g., An-

drews and Guggenberger, 2010b and Andrews et al., 2011). In this vein, we allow γ to depend

on the sample size, and emphasize this dependence by denoting it γn,h = (γn,h,1, γn,h,2, γn,h,3),

where h = (h1, h2) ∈ H ≡ H1 × H2 is a localization parameter that describes the limiting
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behavior of the sequence. The sets H1 and H2 depend on Γ1 and Γ2 as follows:

H1 =

p∏
m=1


R+,∞, if γl1,m = 0,

R−,∞, if γu1,m = 0,

R∞, if γl1,m < 0 and γu1,m > 0,

H2 = cl(Γ2),

where cl(Γ2) is the closure of Γ2 with respect to Rq
∞. Given r > 0 and h ∈ H, define {γn,h}

as the sequence of parameters in Γ for which nrγn,h,1 → h1 and γn,h,2 → h2. In this paper,

we consider two broad classes of testing problems: one for which the limiting behavior of the

test statistic is fully characterized by h under any drifting sequence of parameters {γn,h} and

the other for which this limiting behavior depends upon both h and the limiting behavior of

{γn,h,1} relative to another sequence.

2.1 Single Localized Limit Distribution Framework

We begin the analysis with the simpler of the two cases just described. This class of testing

problems can be broadly characterized by Assumption D and the following assumption.

Assumption S-B.1. There exists a single fixed r > 0 such that for all h ∈ H and corre-

sponding sequences {γn,h}, Tn(θ0)
d−→ Wh under H0 and {γn,h}.

Denote the limit distribution function for a given h as Jh, i.e., P (Wh ≤ x) = Jh(x) and

the (1− α)th quantile of Wh by ch(1− α). We refer to Jh as a “localized” limit distribution

as it obtains under a drifting sequence of parameters indexed by the localization parameter

h. Assumption S-B.1 is identical to Assumption B of AG. For every sequence of parameters

{γn,h} indexed by the same localization parameter h, the same limit distribution Jh obtains,

hence the term “single” in SLLD. We now introduce some new assumptions, noting that they

are applicable to most of the same econometric applications that satisfy the assumptions

imposed by AG.

Assumption S-B.2. Consider some fixed δ ∈ (0, 1).

(i) As a function in h from H into R, ch(1− δ) is continuous.

(ii) For any h ∈ H, Jh(·) is continuous at ch(1− δ).

Assumption S-B.2 is a mild continuity assumption. To obtain stronger results, we

strengthen part (i) as follows.
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Assumption S-BM.1. For some fixed α ∈ (0, 1) and pair (δ
¯
, δ̄) ∈ [0, α− δ̄]× [0, α− δ

¯
], as

a function of h and δ, ch(1− δ) is continuous over H and [δ
¯
, α− δ̄].

The quantity δ
¯

serves as a lower bound and α− δ̄ serves as an upper bound on the points

δ for which ch(1− δ) must be continuous. In many examples of interest, Wh is a continuous

random variable with infinite support so that ch(1) = ∞. For such examples δ
¯

can be set

arbitrarily close, but not equal, to zero. Assumptions D, S-B.1, S-B.2 and S-BM.1 and

the other assumptions for this framework introduced later in Sections 3.1 through 3.3 hold

in many nonstandard econometric testing problems of interest. The following are simple,

illustrative examples of such problems.

2.1.1 Testing After Conservative Model Selection

Various forms of hypothesis tests after model selection exemplify testing problems with

parameter-discontinuous null limit distributions. Conducting a t-test on a parameter of

interest after conservative model selection falls within the framework of Section 2.1, having

a SLLD. Conservative model selection includes, among others, methods based on the Akaike

information criterion (AIC) and standard pre-testing techniques. As an illustrative example,

consider the following problem described by AG. We have a model given by

yi = x∗1iθ + x∗2iβ2 + x∗′3iβ3 + σεi, (2)

for i = 1, . . . , n, where x∗i ≡ (x∗1i, x
∗
2i, x

∗′
3i)
′ ∈ Rk, β ≡ (θ, β2, β

′
3)′ ∈ Rk, x∗1i, x

∗
2i, θ, β2, σ, εi ∈ R,

x∗3i, β3 ∈ Rk−2, the observations {(yi, x∗i )} are i.i.d. and εi has mean zero and unit variance

conditional on x∗i . We are interested in testing H0 : θ = θ0 after determining whether to

include x∗2i in the regression model (2), that is, after determining whether to impose the

restriction β2 = 0. This decision is based on whether the absolute value of the pretest

t-statistic

|Tn,2| ≡

∣∣∣∣∣ n1/2β̂2

σ̂(n−1X∗′2 M[X∗
1 :X∗

3 ]X
∗
2 )−1/2

∣∣∣∣∣
exceeds a pretest CV c > 0, where c is fixed (i.e., does not depend on n), β̂2 is the standard

unrestricted OLS estimator of β2 in the regression (2) and σ̂2 ≡ (n − k)−1Y ′M[X∗
1 :X∗

2 :X∗
3 ]Y

with Y ≡ (y1, . . . , yn)′, X∗j ≡ [x∗j1 : . . . : x∗jn]′ for j = 1, 2, 3 and MA ≡ I − A(A′A)−1A′ for

some generic full-rank matrix A and conformable identity matrix I. The model selection

pretest rejects β2 = 0 when |Tn,2| > c and the subsequent t-statistic for testing H0 is based
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on the unrestricted version of (2) and is given by

T̂n,1(θ0) ≡ n1/2(θ̂ − θ0)

σ̂(n−1X∗′1 M[X∗
2 :X∗

3 ]X
∗
1 )−1/2

,

where θ̂ is the unrestricted OLS estiamtor from regression (2). Conversely, the model selec-

tion pretest selects the model without x∗2i, or equivalently restricts β2 = 0, when |Tn,2| ≤ c

and the resulting t-statistic for H0 is given by

T̃n,1(θ0) =
n1/2(θ̃ − θ0)

σ̂(n−1X∗′1 MX∗
3
X∗1 )−1/2

,

where θ̃ is the restricted OLS estimator from regression (2) with β2 restricted to equal zero.

Hence, for a two-sided test, the post-conservative model selection test statistic for testing

H0 is given by

Tn(θ0) = |T̃n,1(θ0)|1(|Tn,2| ≤ c) + |T̂n,1(θ0)|1(|Tn,2| > c).

With straightforward modification, the results described below also apply to one-sided testing

for this problem. See AG and Andrews and Guggenberger (2009c) for more details.1

Results in AG show how this testing problem satisfies Assumptions D and S-B.1. Specif-

ically, let G denote the distribution of (εi, x
∗
i ) and define the following quantities

x⊥i =

 x∗1i − x∗′3i(EGx∗3ix∗′3i)−1x∗3ix
∗
1i

x∗2i − x∗′3i(EGx∗3ix∗′3i)−1x∗3ix
∗
2i


Q = EGx

⊥
i x
⊥′
i , and Q−1 =

 Q11 Q12

Q12 Q22

 .

Then for this example, γ1 = β2/σ(Q22)1/2, γ2 = Q12/(Q11Q22)1/2 and γ3 = (β2, β3, σ,G)′ and

Tn(θ0)
d−→

 |Z̃1|1(|Z2| ≤ c) + |Ẑ1|1(|Z2| > c), if γ1 = 0

|Ẑ1|, if γ1 6= 0,

where Z̃1, Ẑ1 and Z2 are standard normal random variables with Z̃1 independent of Z2 and

Corr(Ẑ1, Z2) = γ2. The parameter spaces in (1) are given by Γ1 = R, Γ2 = [−1 + ω, 1 − ω]

for some ω > 0 and

Γ3(γ1, γ2) = {(β2, β3, σ,G) : β2 ∈ R, β3 ∈ Rk−2, σ ∈ (0,∞), γ1 = β2/σ(Q22)1/2,

1The testing problem described here also applies to testing a linear combination of regression coefficients
after conservative model selection. This involves a reparameterization described in Andrews and Guggen-
berger (2009c).
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γ2 = Q12/(Q11Q22)1/2, λmin(Q) ≥ κ, λmin(EGx
∗
3ix
∗′
3i) ≥ κ,EG‖x∗i ‖2+δ ≤M,

EG‖εix∗i ‖2+δ ≤M,EG(εi|x∗i ) = 0 a.s., EG(ε2
i |x∗i ) = 1 a.s.}

for some κ, δ > 0 and M <∞, where λmin(A) is the smallest eigenvalue of generic matrix A.

From this parameter space, it is clear that Assumption D holds for this example. Moreover,

Andrews and Guggenberger (2009c) show that Assumption S-B.1 holds with r = 1/2 and

Jh(x) = ∆(h1h2(1− h2
2)−1/2, x)∆(h1, c) +

∫ x

−x

(
1−∆

(
h1 + h2t

(1− h2
2)1/2

,
c

(1− h2
2)1/2

))
φ(t)dt,

where ∆(a, b) = Φ(a+b)−Φ(a−b). As defined, H1 = R∞ andH2 = [−1+ω, 1−ω]. Turning to

the new assumptions, the lower bound δ
¯

of Assumption S-BM.1 can be set arbitrarily close

to zero and δ̄ can be set to any quantity in its admissible range [0, α − δ
¯
] since Wh is a

continuous random variable with support over the entire real line for any h ∈ H, which

can be seen by examining Jh(·). This fact similarly implies Assumption S-B.2(ii) holds. An

assumption imposed later will necessitate a restriction on δ̄ that we will discuss in Section

4. Continuity of ch(1− δ) in h follows from the facts that ch(1− δ) = J−1
h (1− δ) and Jh(x)

is continuous in h ∈ H.

The SLLD framework applies to many more complex examples of testing after conser-

vative model selection. For example, results in Leeb (2006) and Leeb and Pötscher (2008)

can be used to verify the assumptions of this paper for a sequential general-to-specific model

selection procedure with multiple potential control variables.

2.1.2 Testing when a Nuisance Parameter may be on a Boundary

We now explore an illustrative example of a testing problem in which a nuisance parameter

may be on the boundary of its parameter space under the null hypothesis and show how it

also falls within the framework of Section 2.1. This problem is considered by Andrews and

Guggenberger (2010b) and can be described as follows. We have a sample of size n of an

i.i.d. bivariate random vector Xi = (Xi1, Xi2)′ with distribution F . Under F , the first two

moments of Xi exist and are given by

EF (Xi) =

 θ

µ

 and VarF (Xi) =

 σ2
1 σ1σ2ρ

σ1σ2ρ σ2
2

 .

Say we are interested in the null hypothesis H0 : θ = θ0 and we know that µ ≥ 0. Now

suppose we use the Gaussian quasi-maximum likelihood estimator of (θ, µ, σ1, σ2, ρ) under
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the restriction µ ≥ 0, denoted by (θ̂n, µ̂n, σ̂n1, σ̂n2, ρ̂n), to construct a lower one-sided t-test of

H0.2 That is, Tn(θ0) = −n1/2(θ̂n − θ0)/σ̂n1, where θ̂n = X̄n1 − (ρ̂nσ̂n1) min(0, X̄n2/σ̂n2) with

X̄nj = n−1
∑n

i=1Xij for j = 1, 2. As in the previous example, results for upper one-sided

and two-sided tests are quite similar.

Results in Andrews and Guggenberger (2010b) provide that this testing problem also

satisfies Assumptions D and S-B.1. Here, γ1 = µ/σ2, γ2 = ρ and γ3 = (σ1, σ2, F ) and

Tn(θ0)
d−→

 −Z1 + γ2 min{0, Z2}, if γ1 = 0

−Z1, if γ1 6= 0,

where Z1 and Z2 are standard normal random variables with Corr(Z1, Z2) = γ2. The corre-

sponding parameter spaces are Γ1 = R+, Γ2 = [−1 + ω, 1− ω] for some ω > 0 and

Γ3(γ1, γ2) = {(σ1, σ2, F ) : σ1, σ2 ∈ (0,∞), Ef‖Xi‖2+δ ≤M, θ = 0, γ1 = µ/σ2, γ2 = ρ}

for some M < ∞ and δ > 0.3 From these definitions, it is immediate that Assumption D

holds. Assumption S-B.1 holds for this example with r = 1/2 and

Wh
d∼ −Zh2,1 + h2 min{0, Zh2,2 + h1}, where (3)

Zh2 =

 Zh2,1

Zh2,2

 d∼ N

 0

0

 ,

 1 h2

h2 1

 .

In order to verify the new assumptions, it is instructive to examine the distribution function

Jh(·), which is given by

Jh(x) = Φ

(
x− h2h1√

1− h2
2

)
Φ(−h1) +

∫ ∞
−x

(
1− Φ

(
−h1 − h2z

(1− h2
2)1/2

))
φ(z)dz (4)

(see Appendix II for its derivation). By definition, H1 = R+,∞ and H2 = [−1+ω, 1−ω]. Now,

looking at the form of Jh, we can see that, as in the previous example, Wh is a continuous

random variable with support over the entire real line for any h ∈ H so that δ
¯

of Assumption

S-BM.1 can again be set arbitrarily close to zero and δ̄ is left unrestricted over its admissible

2The results below also allow for different estimators in this construction. See Andrews and Guggenberger
(2010b) for details.

3For the purposes of this paper, we make a small departure from the exact setup used by Andrews and
Guggenberger (2010b) in our definition of Γ2, which they define as [−1, 1]. That is, we bound the possible
correlation between Xi1 and Xi2 to be less than perfect. We do this in order to employ the size-corrections
described later in this paper. Note that the analogous assumption is imposed in the above post-conservative
model selection example.
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range. We discuss a restriction imposed later on δ̄ in Section 5. For the same reasons given

in the previous example, Assumption S-B.2(ii) holds as well.

More complicated testing problems when a nuisance parameter may be on a boundary

can also be shown to fit the SLLD framework and later assumptions of this paper. For

example, Andrews (1999, 2001) provides results for more complicated boundary examples

that fit this framework.

2.1.3 Other Examples

There are many examples in the econometrics literature of testing problems that fit the

SLLD framework. Apart from those discussed above, these include, but are not limited to,

tests after pretests with fixed CVs (e.g., Guggenberger, 2010), testing when the parameter of

interest may lie on the boundary of its parameter space (e.g., Andrews and Guggenberger,

2010a), tests on model-averaged estimators (e.g., Hansen, 2007), tests on certain types of

shrinkage estimators (e.g., Hansen, 2012), tests in autoregressive models that may contain a

unit root (e.g., AG and Mikusheva, 2007), Vuong tests for nonnested model selection (e.g.,

Shi, 2011), subvector tests allowing for weak identification (e.g., Guggenberger et al., 2012)

and tests on break dates and coefficients in structural change models (e.g., Elliott et al.,

2012 and Elliott and Müller, 2012).

The SLLD assumptions technically preclude certain testing problems with parameter-

discontinuous null limit distributions such as testing in moment inequality models (e.g., An-

drews and Soares, 2010) and certain tests allowing for weak identification (e.g., Staiger

and Stock, 1997). Nevertheless, the SLLD framework of this paper can be modified in a

problem-specific manner to incorporate some of these problems and apply the testing meth-

ods introduced later to them. For example, Assumption D does not allow for testing in

the moment inequality context when the condition of one moment binding depends upon

whether another moment binds. Yet the results of Andrews and Soares (2010), Andrews

and Barwick (2011) and Romano et al. (2012) suggest that tailoring the assumptions to this

context would permit analogous results to those presented later.

2.2 Multiple Localized Limit Distributions Framework

The MLLDs framework generalizes the SLLD framework. The motivation for this gener-

alization comes from an important class of hypothesis testing problems with parameter-

discontinuous null limit distributions that do not satisfy Assumption S-B.1 because under

H0 and a given {γn,h}, the asymptotic behavior of Tn(θ0) is not fully characterized by h.
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In this more general framework, we retain the description of the parameter space given in

Assumption D as well as the description of H following it but weaken Assumption S-B.1 to

the following.

Assumption M-B.1. There is a sequence {kn}, a set K ⊂ H1 and a single fixed r > 0 such

that for all h ∈ H and corresponding sequences {γn,h}, under H0:

(i) if limn→∞ γn,h,1/kn ∈ K, Tn(θ0)
d−→ W

(1)
h ;

(ii) if limn→∞ γn,h,1/kn ∈ L ⊂ Kc, Tn(θ0)
d−→ W

(2)
h ;

(iii) if limn→∞ γn,h,1/kn ∈ Lc ∩Kc, the asymptotic distribution of Tn(θ0) is stochastically

dominated by W
(1)
h or W

(2)
h .

Assumption M-B.1 allows for different h-dependent localized limit distributions that are

relevant to the different possible limiting behaviors of γn,h,1/kn. It collapses to Assumption

S-B.1 when kn = n−r and K = H1 or L = H1. The auxiliary sequence {kn} may depend

upon the elements of {γn,h} though this potential dependence is suppressed in the notation.

Denote the limit distributions corresponding to (i) and (ii) as J
(1)
h and J

(2)
h , which are the

two localized limit distributions that obtain under the corresponding sequences of γn,h,1/kn.

Similarly, c
(1)
h and c

(2)
h denote the corresponding quantile functions. Finally, we denote the

limit random variable under (iii) as W
(3)
h . This is a slight abuse of notation because there

may be MLLDs that obtain under (iii) alone. Distinction between these distributions is not

necessary here because of the imposed stochastic dominance. We will also make use of the

following definition: ζ({γn,h}) ≡ limn→∞ γn,h,1/kn.

The form that {kn}, K and L take are specific to the testing problem at hand. However,

we make a few general remarks in order to provide some intuition. The MLLDs frameowrk

incorporates testing problems after a decision rule that compares some statistic to a sample-

size-dependent quantity, say c̃n, decides the form Tn(θ0) takes. When using such a decision

rule, under the drifting sequence of parameters {γn,h}, the null limit distribution of Tn(θ0)

not only depends on the limit of nrγn,h,1 (and γn,h,2), but it also depends on how fast nrγn,h,1

grows relative to c̃n. The sequence {kn} is thus some (scaled) ratio of c̃n to nr and the sets

K and L describe the limiting behavior of nrγn,h,1 relative to c̃n.

This setting can clearly be further generalized to allow for other sequences like {γn,h,1/kn}
to also determine the limiting behavior of Tn(θ0) under H0. For example, one additional

sequence of this sort could allow for two additional localized limit distributions that are

not necessarily stochastically dominated by any of the others. In this case, both the space

containing the limit of γn,h,1/kn and the limit of this additional sequence could determine the
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null limiting behavior of Tn(θ0) under any given {γn,h}. We conjecture that a more general

case like this obtains for hypothesis tests after more complicated consistent model selection

procedures than those for which asymptotic results under drifting sequences of parameters

are presently available. (The intuition for this is given in Section 2.2.1 below).

In this framework, we will also accommodate certain types of discontinuities in the lo-

calized limit distribution Jh. One form of these discontinuities occurs when h1 is on the

boundary of its parameter space H1, entailing infinite values. In order to accommodate this

type of discontinuity, define the following subset of H: H̄ ≡ int(H1) ×H2. Then the set of

h corresponding to h1 on the boundary of H1 is equal to H̄c.

Assumption M-B.2. Consider some fixed δ ∈ (0, 1).

(i) As a function from H̄ into R, c
(i)
h (1− δ) is continuous for i = 1, 2.

(ii) For i = 1, 2 and any h ∈ H̄, there is some finite εi ≥ 0 for which J
(i)
h (·) is continuous

at c
(i)
h (1− δ) + εi.

Assumption M-B.2 is a continuity assumption that is a relaxed version of a direct adap-

tation of Assumption S-B.2 to the MLLDs framework. For the problems in this class, the

localized quantiles can be infinite for h ∈ H̄c. This is why (i) is only required as a function

from H̄. Similarly, the localized limit distribution functions can be discontinuous at the

their localized quantiles but continuous in a neighborhood near them. Part (ii) provides the

flexibility to allow for this feature. A sufficient condition for Assumption M-B.2 to hold for

i = 1 or 2 is that the W
(i)
h is a continuous random variable with infinite support and a distri-

bution function that is continuous in h. In this case εi = 0. As in the previous framework,

we strengthen part (i) of this assumption to obtain stronger results.

Assumption M-BM.1. For some fixed α ∈ (0, 1) and pairs (δ
¯

(i), δ̄(i)) ∈ [0, α− δ̄(i)]× [0, α−
δ
¯

(i)] for i = 1, 2, as a function of h and δ, c
(i)
h (1− δ) is continuous over H̄ and [δ

¯
(i), α− δ̄(i)].

Analogous remarks to those on Assumption S-BM.1 can be made here with the exception

that continuity in h is no longer required at h ∈ H̄c.

2.2.1 Testing After Consistent Model Selection

Unlike hypothesis testing after conservative model selection, testing after consistent model

selection entails substantially more complicated limiting behavior of a test statistic under the

null hypothesis. The essential difference between conservative and consistent model selection

in the context of our examples is that in consistent model selection, the comparison/critical

13



value used in the model selection criterion grows with the sample size. This is the case

for example, with the popular Bayesian information criterion (BIC) and the Hannan-Quinn

information criterion.

The simple post-consistent model selection testing framework provided by Leeb and

Pötscher (2005) provides an illustrative example of a testing problem that fits the MLLDs

framework. Hence, we shall consider it here. We now consider the regression model

yi = θx1i + β2x2i + εi (5)

for i = 1, . . . , n, where εi
d∼ i.i.d.N(0, σ2) with σ2 > 0, X ≡ (x′1, . . . , x

′
n)′ with xi ≡ (x1i, x2i)

′

is nonstochastic, full-rank and satisfies X ′X/n → Q > 0. For simplicity, assume that σ2 is

known though the unknown σ2 case can be handled similarly. We are interested in testing

H0 : θ = θ0 after deciding whether or not to include x2i in the regression model (5) via a

consistent model selection rule. As in the conservative model selection framework of Section

2.1.1, this decision is based on comparing the t-statistic for β2 with some CV except now

this CV cn grows in the sample size such that cn →∞ but cn/
√
n→ 0. Formally, let

σ2(X ′X/n)−1 =

 σ2
θ,n σθ,β2,n

σθ,β2,n σ2
β2,n


and ρn = σθ,β2,n/(σθ,nσβ2,n). Then the model selection procedure “chooses” to include x2i

in the regression if |
√
nβ̂2/σβ2,n| > cn, where β̂2 is the (unrestricted) OLS estimator of β2

in the regression (5), and “chooses” to restrict β2 = 0 otherwise. For this example, we

will test H0 by examining the non-studentized quantity
√
n(θ̄ − θ0), where θ̄ is equal to the

unrestricted OLS estimator of θ in regression (5) when |
√
nβ̂2/σβ2,n| > cn and the restricted

OLS estimator of θ in (5) with β2 restricted to equal zero when |
√
nβ̂2/σβ2,n| ≤ cn.4 That is

for an upper one-sided test, the post-consistent model selection test statistic for testing H0

is given by

Tn(θ0) =
√
n(θ̃ − θ0)1(|

√
nβ̂2/σβ2,n| ≤ cn) +

√
n(θ̂ − θ0)1(|

√
nβ̂2/σβ2,n| > cn),

where θ̃ and θ̂ are the restricted and unrestricted estimators. Examining−Tn(θ0) and |Tn(θ0)|
and their corresponding localized null limit distributions would allow us to perform the same

analysis for lower one-sided and two-sided tests of H0.

4Following Leeb and Pötscher (2005), we examine the non-studentized quantity rather than the t-statistic
because use of the latter will not satisfy Assumption D and is therefore not amenable to the procedures put
forth in this paper. Note that although the studentized quantity does not display a parameter-discontinuous
null limit distribution, it suffers the same size-distortion problem when standard CVs are used.
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Let the limits of all finite sample quantities be denoted by a∞ subscript, e.g., σ2
θ,∞. Then

for this example, γ1 = β2ρ∞/σβ2,∞, γ2 = (γ2,1, γ2,2) = (σθ,∞, ρ∞)′ and γ3 = (β2, σ
2, σ2

θ,n, σ
2
β2,n

,

ρn)′ and

Tn(θ0)
d−→

 N(0, (1− γ2
2,2)γ2

2,1), if γ1 = 0

N(0, γ2
2,1), if γ1 6= 0.

The parameter spaces in (1) are given by Γ1 = R, Γ2 = [η,M ] × [−1 + ω, 1 − ω] for some

η ∈ (0,M ], ω ∈ (0, 1] and M ∈ (0,∞) and

Γ3(γ1, γ2) = {(β2, σ
2, σ2

θ,n, σ
2
β2,n

, ρn) : β2 ∈ R, σ2 ∈ (0,∞), γ1 = β2ρ∞/σβ2,∞, γ2 = (σθ,∞, ρ∞)′

lim
n→∞

σ2
θ,n = γ2,1, lim

n→∞
σ2
β2,n

= β2γ2,2/γ1, lim
n→∞

ρn = γ2,2}.

Clearly, Γ satisfies Assumption D. Using the results of Proposition A.2 in Leeb and Pötscher

(2005), we can establish that Assumption M-B.1 is satisfied with kn = cnρn/
√
n, r = 1/2,

K = (−1, 1), J
(1)
h (x) = Φ((1− h2

2,2)−1/2(x/h2,1 + h1)), L = [−∞,−1) ∪ (1,∞] and J
(2)
h (x) =

Φ(x/h2,1). See Appendix II for details.

The intuition for why different null limit distributions for Tn(θ0) obtain under {γn,h}
depending on how γn,h,1 = β2,nρn/σβ2,n behaves relative to kn = cnρn/

√
n as the sample size

grows lies in the fact that when |γn,h,1/kn| = |
√
nβ2,n/σβ2,ncn| < 1, Tn(θ0) equals

√
n(θ̃− θ0)

asymptotically. Conversely, when |γn,h,1/kn| = |
√
nβ2,n/σβ2,ncn| > 1, Tn(θ0) equals

√
n(θ̂−θ0)

asymptotically. Under H0 and the drifting sequence {γn,h}, the statistics
√
n(θ̃ − θ0) and

√
n(θ̂− θ0) have different limit distributions, corresponding to J

(1)
h and J

(2)
h , respectively. In

the knife-edge case for which limn→∞ |γn,h,1/kn| = 1, the limit of Tn(θ0) then also depends on

the limiting behavior of cn±
√
nβ2,n/σβ2,n (see Leeb and Pötscher, 2005). However, no matter

the limit of this latter quantity, the limit of Tn(θ0) in this case is always stochastically domi-

nated by the limit that pertains under either limn→∞ |γn,h,1/kn| < 1 or limn→∞ |γn,h,1/kn| > 1

(see Appendix II). Hence, under a given drifting sequence {γn,h}, the limiting behavior of

Tn(θ0) is not fully characterized by h, in violation of Assumption S-B.1.

By definition, H1 = R∞ and H2 = [η,M ]× [−1 + ω, 1− ω]. Turning now to Assumption

M-BM.1, δ
¯

(1) can be set arbitrarily close to, but strictly greater than, zero. Since c
(1)
h (1− δ)

is the (1−δ)th quantile of a normal distribution with mean −h1h2,1 and variance h2
2,1(1−h2

2,2)

and H̄ = R× [η,M ]× [−1 +ω, 1−ω], c
(1)
h (1− δ) is continuous in h over H̄ for any δ ∈ (0, 1).

Continuity in δ over [δ
¯

(1), α − δ̄(1)] also follows for any δ̄(1) ∈ [0, α − δ
¯

(1)]. Similar reasoning

shows that, δ
¯

(2) can be set arbitrarily close to zero and δ̄(2) can be anywhere in its admissible

range for Assumption M-BM.1 to hold (we discuss restrictions imposed on δ̄(i) for i = 1, 2
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by later assumptions in Section 6). For h ∈ H̄ and i = 1, 2, J
(i)
h is the distribution function

of a continuous random variable so that Assumption M-B.2(ii) holds with εi = 0.

As with the other examples studied in this paper, this simple illustrative example is not

the most general of its kind to fall into this framework. Many of the assumptions in the

above example can be relaxed. However, uniform asymptotic distributional results for more

complex consistent model selection procedures are not readily available in the literature.

This may be in part due to the very negative results put forth regarding attempts to con-

duct inference after even the simplest of such procedures (e.g., Leeb and Pötscher, 2005 and

Andrews and Guggenberger, 2009b). As alluded to above, more complicated procedures,

such as a consistent version of the sequential general-to-specific model selection approach

of Leeb (2006) and Leeb and Pötscher (2008) or standard BIC approaches to more com-

plicated models, likely require a straightforward extension of the MLLDs framework and

the corresponding CVs introduced below. The intuition for this essentially follows from the

same intuition as that used for the simple post-consistent model selection example provided

above. As a simplification, suppose now that another regressor enters the potential model

(5) with associated coefficient β3. Using the obvious notation, we may also wish to determine

whether β3 should enter the model prior to testing H0 by comparing |
√
nβ̂3/σβ3| to cn. In

this case Tn(θ0) would take one of four, rather than two, possible values depending on both

the value of |
√
nβ̂3/σβ3| and |

√
nβ̂2/σβ2 | relative to cn (ignoring knife-edge cases).

2.2.2 Other Examples

The class of super-efficient/hard-thresholding estimators studied by Andrews and Guggen-

berger (2009b) and Pötscher and Leeb (2009), including Hodges’ estimator, also fit the

MLLDs framework. A certain subclass of these estimators in fact requires εi > 0 in Assump-

tion M-B.2(ii) for i = 1 or 2, unlike the problem considered immediately above. Related

problems of testing after pretests using pretest CVs that grow in the sample size fit the

MLLDs framework as well. Though some very recent work has explored the properties of

uniformly valid confidence intervals for some of the problems that fall into this framework

(e.g., Pötscher and Schneider, 2010), to the author’s knowledge, this is the first time such

a framework and corresponding uniformly valid inference procedure has been presented at

this level of generality.
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3 Bonferroni-Based Critical Values

For test statistics with parameter-discontinuous null limit distributions, the asymptotic NRP

of the test, evaluated at a given parameter value permissible under H0 can provide a very

poor approximation to the true NRP and size of the test, even for large samples. In order

to be more precise about this terminology, we introduce the following definitions for a test

of H0 : θ = θ0, working under the framework described in Section 2. Let κn be the (possibly

random or sample-size-dependent) CV being used. The NRP evaluated at γ ∈ Γ is given by

Pθ0,γ(Tn(θ0) > κn), where Pθ0,γ(E) denotes the probability of event E given that (θ0, γ) are

the true parameters describing the data-generating process (DGP). The asymptotic NRP of

a test statistic Tn(θ0) and cv κn evaluated at γ ∈ Γ is given by lim supn→∞ Pθ0,γ(Tn(θ0) > κn).

The exact and asymptotic sizes are defined as

ExSZn(θ0, κn) ≡ sup
γ∈Γ

Pθ0,γ(Tn(θ0) > κn)

AsySz(θ0, κn) ≡ lim sup
n→∞

ExSZn(θ0, κn).

Note that the exact and asymptotic sizes of a test have the concept of uniformity built into

their definitions in that ExSZn(θ0, κn) is the largest NRP uniformly over the parameter space

Γ and AsySz(θ0, κn) is its limit. In order to have a test with approximately controlled exact

size, and therefore controlled NRP at any γ ∈ Γ, we must control AsySz(θ0, κn).

Under the frameworks of this paper, the primary theoretical step in controlling the asymp-

totic size of a test is to control the asymptotic NRP under all drifting sequences of parameters

{γn,h}. That is, if we can find a (sequence of) CV(s) {κ̃n} such that lim supn→∞ Pθ0,γn,h(Tn(θ0)

> κ̃n) ≤ α for all {γn,h} described in Section 2, we can construct a hypothesis test whose

asymptotic size is bounded by α (see Andrews and Guggenberger, 2010b, Andrews et al.,

2011 or the subsequencing arguments used in Appendix I for details). Since ch(1 − α) (or

c
(i)
h (1− α), i = 1, 2) is the (1− α)th CV of the limit distribution of Tn(θ0) under H0 and the

drifting sequence of parameters {γn,h}, we would ideally like to use a CV that is equal to

ch(1−α) whenever {γn,h} characterizes the true DGP in order to maximize the power of the

resulting test while controlling its asymptotic size. Unfortunately, h cannot be consistently

estimated under all drifting sequence DGPs. This has led to the construction of the so-called

LF CV suph∈H ch(1 − α) and variants thereof (e.g., AG). Guarding against the worst-case

drifting sequence DGP, this CV is often quite large, substantially reducing the power of the

resulting test.

Though h cannot be consistently estimated under {γn,h}, in typical applications one can
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find an estimator of h that converges in distribution to a random variable centered around the

true value under H0 and this drifting sequence DGP. This allows one to form asymptotically

valid confidence sets for h and subsequently restrict attention to data-dependent regions

inside of H relevant to the testing problem at hand, rather than guarding against the worst-

case scenario, leading to smaller CVs and resulting tests with higher power. However, the

additional uncertainty associated with the estimation of h must be taken into account for

one to control the asymptotic NRP under all drifting sequences. This is where Bonferroni

bounds become useful.

We now introduce two sets of three types of robust CVs based upon Bonferroni ap-

proaches. Each set corresponds to CVs to be used within either the SLLD or MLLDs

framework. Within each set, the CVs are presented in increasing order of computational

complexity. As the types of CV grow from least to most computationally complex, appro-

priately constructed tests using them tend to gain in power.

3.1 S-Bonf Robust Critical Values

We begin by examining Bonferroni-based size-corrected CVs for problems that are char-

acterized by a SLLD, as described in Section 2.1. The first, most conservative but most

computationally simple Bonferroni-based CV is defined as follows:

cSB(α, δ, ĥn) ≡ sup
h∈Iα−δ(ĥn)

ch(1− δ),

where δ ∈ [0, α], ĥn is some random vector taking value in an auxiliary space H̃ and Iα−δ(·)
is a correspondence from H̃ into H. In applications, the space H̃ will typically be equal to

H or a space containing H but this is not necessary for the ensuing assumptions to hold.

The random vector ĥn is an estimator of h under H0 and the DGP characterized by {γn,h}
and Iα−δ(ĥn) serves as a (α− δ)-level confidence set for h. Construction of an estimator of h

is typically apparent from the context of the testing problem, given that h1 = nrγn,h,1 + o(1)

and h2 = γn,h,2 +o(1). The S-Bonf CV generalizes the LF CV: when I0(x) = H for all x ∈ H̃,

cSB(α, α, ĥn) = cLF (α) ≡ suph∈H ch(1−α). The tuning parameter δ can be used to direct the

power of the test towards different regions of the parameter space H.

Procedures using Bonferroni bounds in inference problems involving nuisance parameters

and/or composite hypotheses have appeared in various contexts throughout the econometrics

and statistics literature. Examples include Loh (1985), Stock (1991), Berger and Boos (1994),

Silvapulle (1996), Staiger and Stock (1997), Romano and Wolf (2000), Hansen (2005b),
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Moon and Schorfheide (2009), Chaudhuri and Zivot (2011) and Romano et al. (2012).5

Romano et al. (2012), which applies a specific form of the S-Bonf CV to hypothesis testing

in partially identified moment inequality models, was developed concurrently with this work.

The methods of Loh (1985) and Hansen (2005b) are analogous to letting δ → α as n → ∞
in the confidence set Iα−δ(ĥn), but simply using the maximand ch(1−α) in the construction

of the CV. Though this approach is asymptotically size-correct since it leads to the use of

cLF (α) in the limit, it can have poor finite sample size control since it fails to fully account

for the additional uncertainty involved in estimating h. We now impose further assumptions

to ensure that tests utilizing cSB in the current context exhibit asymptotic size control.

Assumption S-B.3. Consider some fixed β ∈ [0, 1]. Under H0 and when the drifting

sequence of parameters {γn,h} characterizes the true DGP for any fixed h ∈ H, there exists

an estimator ĥn taking values in some space H̃ and a (nonrandom) continuous, compact-

valued correspondence Iβ : H̃ ⇒ H such that ĥn
d−→ h̃, a random vector taking values in H̃

for which P (h ∈ Iβ(h̃)) ≥ 1− β.

Assumption S-B.3 assures that ĥn is a well-behaved estimator of h under H0 and {γn,h}
and imposes basic continuity assumptions on the correspondence Iβ(·) used to construct the

confidence set for h. It allows Iβ(·) to take a variety of forms depending upon the context

of the testing problem. For a given β = α − δ, this flexibility can be used to direct the

power of the test towards different regions of H or to increase the computational tractability

of constructing the S-Bonf-Min CVs (see, e.g., Romano et al., 2012). In a typical testing

problem, under H0 and {γn,h}, ĥn,1 converges weakly to a normally distributed random

variable with mean h1, the true localization parameter, making the construction of Iβ very

straightforward. Similarly, depending upon the testing problem, different choices of ĥn may

lead to tests with different power properties. For example, it may be advantageous to use

ĥn that imposes H0 if this leads to smaller CVs.

Assumption S-B.4. Under H0 and when the drifting sequence of parameters {γn,h} char-

acterizes the true DGP, (Tn(θ0), ĥn)
d−→ (Wh, h̃) for all h ∈ H.

Assumptions S-B.1 and S-B.3 already provide that Tn(θ0)
d−→ Wh and ĥn

d−→ h̃ under H0

and {γn,h} so that Assumption S-B.4 only ensures that this weak convergence occurs jointly.

Assumptions S-B.3 and S-B.4 also allow for much flexibility in the estimation of h. Since

5I thank Hannes Leeb and Benedikt Pötscher for alerting me to some of the early references in the
statistics literature through the note Leeb and Pötscher (2012).
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weak convergence is only required under H0, ĥn may be constructed to be an asymptotically

biased estimator of h under some alternatives. We may now state the first result.

Theorem S-B. Under Assumptions D and S-B.1 through S-B.4 for β = α− δ,

δ ≤ AsySz(θ0, c
S
B(α, δ, ĥn)) ≤ α.

Theorem S-B establishes the asymptotic size control of tests using S-Bonf CVs as well as

providing a lower bound for the asymptotic size. If a consistent estimator of γ2 is available,

we can “plug” it into the CV to reduce its magnitude and increase the power of the test.

Define the plug-in (PI) S-Bonf CV cSB−PI(α, δ, ĥn) as above but with Iα−δ(ĥn)j = {γ̂n,2,j−p}
for j = p + 1, . . . , p + q. This generalizes the PI LF CV (e.g., AG): when I0(x) = H1 ×
{(xp+1, . . . , xp+q)} for all x ∈ H̃, cSB−PI(α, α, ĥn) = cLF−PI(α, ˆγn,2) ≡ suph1∈H1

c(h1,γ̂n,2)(1−α).

Similar comments to those regarding the choice of δ, ĥn and Iα−δ(·) apply to this CV as well.

We impose the following consistency assumption then state the analogous result for tests

using PI S-Bonf CVs.

Assumption PI. γ̂n,2 − γn,2
p−→ 0 for all sequences {γn} with γn ∈ Γ for all n.

Corollary S-B-PI. Under Assumptions D, S-B.1 through S-B.4 and PI for β = α− δ,

δ ≤ AsySz(θ0, c
S
B−PI(α, δ, ĥn) ≤ α.

3.2 S-Bonf-Adj Robust Critical Values

Though they are size-controlled, the S-Bonf CVs may be conservative, even in a uniform

sense. This can be seen from the fact that we can only establish a lower bound of δ ≤ α on

the asymptotic size of tests using these CVs. Instead of relying on Bonferroni bounds, for a

given confidence set level, we can directly adjust the level of the localized quantile function

according to the limit distribution of (Tn(θ0, ĥn)) to improve power as follows:

cSB−A(α, β, ĥn) ≡ sup
h∈Iβ(ĥn)

ch(1− ᾱ),

where β ∈ [0, 1] and ᾱ = infh∈H α(h) with α(h) ∈ [α− β, α] solving

P (Wh ≥ sup
h∈Iβ(h̃)

ch(1− α(h))) = α

or α(h) = α if P (Wh ≥ suph∈Iβ(h̃) ch(1 − α)) < α. Unlike the S-Bonf CV, the level ad-

justment in this S-Bonf-Adj CV compensates for the limiting dependence between Tn(θ0)
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and suph∈Iβ(ĥn) ch(·). The level ᾱ is an implicit function of the tuning parameter β, au-

tomatically adjusting to the user’s choice. Clearly, for any given choice of δ ∈ [0, α],

cSB−A(α, α − δ, ĥn) ≤ cSB(α, δ, ĥn) so that a test using cSB−A(α, α − δ, ĥn) necessarily has

higher power. Note that, like the S-Bonf CVs, the S-Bonf-Adj CVs also generalize the LF

CV: when I0(x) = H for all x ∈ H̃, P (Wh ≥ cLF (α)) = P (Wh ≥ suph∈I0(h̃) ch(1 − α)) ≤ α

for all h ∈ H so that α(h) = α for all h ∈ H and cSB−A(α, α, ĥn) = cLF (α).

To show correct asymptotic size of the S-Bonf-Adj CVs, we impose one additional con-

dition which is essentially a continuity assumption.

Assumption S-BA. (i) P (Wh = cSB−A(α, β, h̃)) = 0 for all h ∈ H.

(ii) P (Wh∗ ≥ cSB−A(α, β, h̃∗)) = α for some h∗ ∈ H.

Assumption S-BA is analogous to Assumption Rob2 of Andrews and Cheng (2012) in

the current general context. Part (ii) is not required for the asymptotic size to be bounded

above by α; it is only used to show that the lower bound is also equal to α. Part (i) holds if

Wh− cSB−A(α, h̃) is a continuous random variable for all h ∈ H, as is typical in applications.

Theorem S-BA. Under Assumptions D, S-B.1, S-B.2(i) evaluated at δ = ᾱ, S-B.3, S-B.4

and S-BA,

AsySz(θ0, c
S
B−A(α, β, ĥn)) = α.

We can also define a PI version of these CVs to further improve power as follows:

cSB−A−PI(α, β, ĥn) ≡ sup
h∈Iβ(ĥn)

ch(1− ā(γ̂n,2)),

where Iβ(ĥn)j = {γ̂n,2,j−p} for j = p + 1, . . . , p + q, β ∈ [0, α] and ā : H2 → [δ
¯
, α − δ̄] ⊂

[α − β, α] is a level-adjustment function. For similar reasons to those given above, a test

using cSB−A−PI(α, α − δ, ĥn) that satisfies the following assumption necessarily has higher

power than one using cSB−PI(α, δ, ĥn) and generalizes cLF−PI(α, γ̂n,2).

To show correct asymptotic size of tests using the PI S-Bonf-Adj CVs, we introduce a

different continuity assumption.

Assumption S-BA-PI. (i) ā : H2 → [δ
¯
, α− δ̄] is a continuous function.

(ii) P (Wh = cSB−A−PI(α, β, h̃)) = 0 for all h ∈ H.

(iii) P (Wh ≥ suph∈Iβ(h̃) ch(1− ā(h2))) ≤ α for all h ∈ H and there is some h∗ ∈ H such

that P (Wh∗ ≥ cSB−A−PI(α, h̃
∗)) = α.
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The second statement of part (iii) is not required for the asymptotic size to be bounded

above by α; it is only used to show that the lower bound is also equal to α. As before,

part (ii) holds if Wh − cB−A−PI(α, h̃) is a continuous random variable, as is typical. Parts

(i) and (iii) will hold if ā(·) is constructed appropriately. In practice, for a single given

testing problem, one does not need to determine the entire function ā(·) since it will only

be evaluated at a single point, γ̂n,2. Supposing ā(γ̂n,2) comes from evaluating a function

satisfying Assumption S-BA-PI provides one with the asymptotic theoretical justification

needed for correct asymptotic size and is consistent with practical implementation. For a

given testing problem, practical determination of ā(·) that is consistent with part (iii) and

yields the highest power proceeds by finding the largest ā ∈ [δ
¯
, α− δ̄] such that

sup
h1∈H1

P (W(h1, ˆγn,2) ≥ sup
h∈Iβ((h̃1,γ̂n,2))

ch(1− ā)) ≤ α. (6)

Corollary S-BA-PI. Under Assumptions D, S-B.1, S-B.3, S-B.4, PI, S-BM.1 and S-BA-

PI,

AsySz(θ0, c
S
B−A−PI(α, β, ĥn)) = α.

The choice of β allows the practitioner the flexibility to direct power toward regions of

the localization parameter space H. One heuristic way to direct power toward a given h

(e.g., identification strength) is to use the PI S-Bonf-Adj CV with the β that minimizes the

distance between ch(1− α) and cSB−A−PI(α, β, h) (assuming E[ĥn] ≈ h). This will yield a S-

Bonf-Adj CV that is “close” to the true localized quantile evaluated at h with high probability

under drifting sequences {γn,h}. More generally, one may choose β to direct power towards

regions of H according to a weighting scheme in analogy to maximizing weighted average

power. For example, let FH be a probability measure with support on H. One could select

β to minimize
∫
|ch(1− α)− cSB−A−PI(α, β, h)|dFH(h).6

3.3 S-Bonf-Min Robust Critical Values

Though β can be chosen to direct power in the construction of the S-Bonf-Adj CVs, different

choices of β trade off power over different regions of the parameter space. (This is also true

of δ in the S-Bonf CV.) Depending upon the choice of β, the S-Bonf-Adj CVs can lack power

over large portions of the parameter space. In order to overcome this obstacle and produce

tests that can simultaneously direct power while maintaining high power over most of the

6Recalling Jensen’s inequality, one may prefer to choose β to minimize |ch(1−α)−E[cSB−A−PI(α, β, h̃)]|
or
∫
|ch(1− α)− E[cSB−A−PI(α, β, h̃)]|dFH(h).
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parameter space, we introduce the following CV that minimizes over a set of S-Bonf and

S-Bonf-Adj CVs:

cSBM(α, ĥn) ≡ cmin−B(α, ĥn) + ∆,

where

cmin−B(α, ĥn) = min

{
cSB−A(α, β1, ĥn), . . . , cSB−A(α, βr, ĥn), inf

δ∈[δ
¯
,α−δ̄]

cSB(α, δ, ĥn)

}
and ∆ = suph∈H ∆(h) with ∆(h) ≥ 0 solving

P (Wh ≥ cmin−B(α, h̃) + ∆(h)) = α

or ∆(h) = 0 if P (Wh ≥ cmin−B(α, h̃)) < α.

Here we refer to the input S-Bonf-Adj CVs cSB−A(α, βi, ĥn) as the “anchors” and the

corresponding values in the parameter space H for which the βi are chosen to direct power

toward as the “anchor points”. Though computation of cSBM is more expensive than that

of cSB−A, the anchors allow one to direct power while the minimum over S-Bonf-Min CVs

component allows the test to achieve relatively high power over the entire parameter space H.

The former is achieved by bringing the value of cmin−B−A(α, ĥn) “close” to that of ch(1−α)

with high probability at the anchor points. The latter is achieved by enabling cmin−B−A(α, h)

to (conservatively) mimic the behavior of ch(1 − α) over the entire parameter space H. A

simple choice of anchor is the LF CV.

The size-correction factor (SCF) ∆ automatically adapts to the user’s choices of confi-

dence set correspondence Iβ(·), localization parameter estimate ĥn and the parameters δ
¯
, δ̄

and β1, . . . , βr since it is constructed so that the test has correct asymptotic size under H0 for

the given choice of these objects. Given the conservativeness already built into the Bonferroni

approach, ∆ will typically be quite small when the number of anchors is small, often being

numerically indistinguishable from zero, so that cSBM(α, ĥn) ≤ cSB(α, βi, ĥn), cSB(α, δ, ĥn) for

δ ∈ [δ
¯
, α− δ̄] and i = 1, . . . , r, resulting in tests with higher power. In fact, in many contexts,

simply setting ∆ = 0 will result in a test without perfect (asymptotic) size control, but very

little size distortion and necessarily higher power. For some testing problems, size-control

can be attained with ∆ set exactly equal to zero. See Corollary SCF in Appendix III for a

sufficient condition for this to occur.

Inherent in the construction of cSBM(α, ĥn) are the parameters δ
¯

and δ̄. It should be em-

phasized that these parameters are not tuning parameters. They serve the role of restricting

the localized quantile function ch(·) and the confidence set Iα−δ to regions of continuity (see
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the discussion following Assumptions S-BM.1 and S-BM.2). Given that the aim of using

S-Bonf-Min CVs is to maximize power, the minimization space [δ
¯
, α − δ̄] should be set as

large as possible in order to obtain the smallest CV. This means that δ
¯

and δ̄ should be

set close to zero while satisfying Assumptions S-BM.1 and S-BM.2. Beyond computational

complexity, there is a tradeoff involved in using too many anchor points (large r): the more

anchor points one uses, the larger the size-correction factor ∆ will be. This will lower power

in portions of the parameter space that are far from the anchor points.

It is worth pointing out here the similarities that the use of S-Bonf-Min CVs shares with

existing methods. In the specific contexts of inference in moment inequality models and

inference robust to identification strength, Andrews and Soares (2010), Andrews and Barwick

(2011) and Andrews and Cheng (2012) also use CVs that are functions of an inconsistent

estimator of the localization parameter. Some of the size-correction techniques in these

papers use a binary decision rule that uses as CV the localized quantile with |h1| = ∞
once |ĥn,1| crosses a sample-size dependent threshold and cLF (α) otherwise. In contrast,

the S-Bonf-Min CVs confine the range of h used to construct the test statistic to Iα−δ(ĥn)

and subsequently search for the smallest of these among admissible δ values (and anchors),

without requiring an ad hoc threshold specification. In some sense this can be thought of

as a “smoothed” version of these authors’ methods. Cheng (2008) and Kabaila (1998) also

employ CV selection methods based on binary decision rules for inference in the specific

contexts of a weakly identified nonlinear regression model and conservative model selection.

Perhaps the most similar methodologies to those using S-Bonf-Min CVs are those that use

a “transition function” to smooth between the LF CV and the one that obtains under infinite

values of the localization parameter in a manner that depends upon an inconsistent estimate

of the localization parameter. These methods are advocated in specific contexts by Andrews

and Soares (2010) and Andrews and Barwick (2011) (using certain choices of their “ψ”

function) and Andrews and Cheng (2012) (their type 2 robust CV). The transition function

methods of Andrews and Barwick (2011) and Andrews and Cheng (2012) also necessitate the

use of SCFs similar to ∆ in the definition of cSBM . In contrast to these methods, the S-Bonf-

Min CVs do not require an ad hoc choice of transition function. Rather, they adaptively use

the full localized quantile function (rather than two points of it) and the data to “choose”

which points along the localized quantile curves are relevant to the finite-sample testing

problem at hand. This allows cSBM(α, ·) to closely mimic the true (1−α)th localized quantile

function. See Section 4.1 and Figures 1-2 for illustrations. This leads to asymptotic NRPs

that are close to the asymptotic size of the test over wide ranges of h so that the tests are
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nearly similar and consequently attain high power.

To show that tests utilizing cSBM(α, ĥn) have correct (non-conservative) asymptotic size,

we strengthen Assumption S-B.3 as follows.

Assumption S-BM.2. Consider some fixed α ∈ (0, 1) and some pair (δ
¯
, δ̄) ∈ [0, α − δ̄] ×

[0, α− δ
¯

].

(i) Assumption S-B.3 holds for all β ∈ [δ̄, α− δ
¯

].

(ii) Iβ(h) is continuous in β over [δ̄, α− δ
¯

] for all h ∈ H̃.

The quantity δ̄ serves as a lower bound and α − δ
¯

serves as an upper bound on the

points β for which the correspondence Iβ(h) must be continuous. In many applications, the

confidence set Iβ corresponds to a confidence set for a normal random variable. Hence, in

order to satisfy Assumption S-B.3, we would need I0(x) = H. However, this will typically

involve a discontinuity of Iβ(h) at β = 0 so that we must bound β from below by some value

δ̄ greater than zero.

To show correct asymptotic size of tests using the S-Bonf-Min CVs, we introduce a new

continuity assumption similar to S-BA.

Assumption S-BM.3. (i) P (Wh = cSBM(α, h̃)) = 0 for all h ∈ H.

(ii) P (Wh∗ ≥ cSBM(α, h̃∗)) = α for some h∗ ∈ H.

Similar comments to those following Assumption S-BA apply here. We provide an easy-

to-verify sufficient condition for part (ii) to hold in Proposition S-BM of Appendix III.

Theorem S-BM. Under Assumptions D, S-B.1, S-B.2(i) evaluated at the δi = ᾱi that

corresponds to βi, S-B.3 evaluated at βi, S-B.4 and S-BM.1 through S-BM.3 for i = 1, . . . , r,

AsySz(θ0, c
S
BM(α, ĥn)) = α.

Depending upon the values of δ
¯
, δ̄ and βi for i = 1, . . . , r used in the construction of

cSBM(α, ĥn), some of the assumptions imposed in Theorem S-BM may be redundant. For

example, Assumption S-B.2(i) evaluated at δi = ᾱi for i = 1, . . . , r is implied by Assumption

S-BM.1 if ᾱi ∈ [δ
¯
, α− δ̄] for all i = 1, . . . , r. Similarly, Assumption S-B.3 evaluated at βi for

i = 1, . . . , r is implied by Assumption S-BM.2 if βi ∈ [δ̄, α− δ
¯
] for all i = 1, . . . , r.

As with all of the CVs examined in this paper, if a consistent estimator of γ2 is available,

we may further improve power by using a PI version of the S-Bonf-Min CV:

cSBM−PI(α, ĥn) ≡ cmin−B−PI(α, ĥn) + η(γ̂n,2),
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where

cmin−B−PI(α, ĥn) = min

{
cB−A−PI(α, β1, ĥn), . . . , cB−A−PI(α, βr, ĥn), inf

δ∈[δ
¯
m,α−δ̄m]

cSB−PI(α, δ, ĥn)

}
and η : H2 → R. Note that, for each i = 1, . . . , r in the construction of anchors cB−A−PI(α, βi, ĥn),

a different level-adjustment function āi : H2 → [δ
¯i
, α− δ̄i] ⊂ [α− βi, α] may be used. Apart

from using a PI estimator in the minimum-of-Bonferroni approach, the magnitude of the CV

is further reduced and the power of the test is further increased by the use of a SCF that

depends upon the PI estimator. This SCF function, satisfying the following assumption, is

often numerically indistinguishable from zero in applications, making its practical relevance

minimal as simply using cmin−B−PI(α, ĥn) often leads to minimal size-distortion. This again

results from the conservativeness inherent in the Bonferroni approach. Similarly to the anal-

ogous SCF function used by Andrews and Barwick (2011), in order to maximize power one

should select the smallest SCF function that satisfies the following assumption.

Assumption S-BM-PI. (i) η : H2 → R is a continuous function.

(ii) P (Wh = cmin−B−PI(α, h̃) + η(h2)) = 0 for all h ∈ H.

(iii) P (Wh ≥ cmin−B−PI(α, h̃) + η(h2)) ≤ α for all h ∈ H and there is some h∗ ∈ H such

that P (Wh∗ ≥ cSBM−PI(α, h̃
∗)) = α.

Part (i) is analogous to Assumption η1 and parts (ii) and (iii) are analogous to Assump-

tion η3 of Andrews and Barwick (2011). As with the other PI CVs introduced in this paper,

the SCF function η and level-adjustment functions āi only need to be computed at the single

value of h2 = γ̂n,2 in practice. Similar comments to those following Assumption S-BA-PI

apply.

We may now present the result establishing the correct asymptotic size of tests utilizing

this PI CV.

Corollary S-BM-PI. Under Assumptions D, PI, S-B.1, S-B.3 evaluated at βi, S-B.4, PI,

S-BA-PI(i) and (iii) evaluated at βi and corresponding āi(·), S-BM.1 and S-BM.2 evaluated

at pairs (δ
¯
m, δ̄m) and (δ

¯ i, δ̄i) and S-BM-PI for i = 1, . . . , r,

AsySz(θ0, c
S
BM−PI(α, ĥn)) = α.

Depending upon the values of (δ
¯
m, δ̄m), (δ

¯i
, δ̄i) and βi for i = 1, . . . , r used in the con-

struction of cBM−A−PI(α, ĥn), (part of) Assumption S-B.3 evaluated at βi for i = 1, . . . , r

may be redundant. For example, it is implied by Assumption S-BM.2 evaluated at pairs
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(δ
¯
m, δ̄m) and (δ

¯i
, δ̄i) for i = 1, . . . , r if βi ∈

⋃r
j=1[δ

¯j
, δ̄j] ∪ [δ

¯
m, δ̄m] for i = 1, . . . , r. It is also

worth noting that the full force of Assumption S-BA-PI(iii) is not necessary for the result

of Corollary S-BM-A-PI to hold. The assumption is imposed as a guide for the anchoring

procedure to direct power appropriately. As was the case for the SCF ∆ above, the addi-

tion of η(γ̂n,2) is not always necessary to obtain correct asymptotic size. Corollary SCF in

Appendix III provides a precise condition under which it may be dispensed with.

3.4 M-Bonf Robust Critical Values

The S-Bonf robust CVs that apply to problems with a SLLD can be adapted to handle

those with MLLDs. In order to do this we need a method to choose which localized limit

distribution J
(1)
h or J

(2)
h to construct the CVs from. For this, we utilize an estimator of

ζ({γn,h}) that tells us with increasing precision which region of H1 that ζ({γn,h}) lies within.

Construction of this estimator can be deduced from the form of γn,h,1/kn. In applications,

ζ̂ is typically equal to n−rĥn,1 scaled by k−1
n since γn,h,1 ≈ n−rh1 and ζ({γn,h}) ≈ γn,h,1/kn.

The M-Bonf CV for the MLLDs framework is thus defined as follows:

cMB (α, δ, ĥn) ≡


c

(1)
B (α, δ, ĥn), if ζ̂ ∈ K̄

c
(2)
B (α, δ, ĥn), if ζ̂ ∈ L̄

max{c(1)
B (α, δ, ĥn), c

(2)
B (α, δ, ĥn)}, if ζ̂ ∈ K̄c ∩ L̄c,

where

c
(i)
B (α, δ, ĥn) ≡ sup

h∈Iα−δ(ĥn)

c
(i)
h (1− δ) + εi

for i = 1, 2, K̄ ⊂ int(K) is closed and L̄ ⊂ int(L) is closed. Asymptotic power is highest

for sets K̄ and L̄ that are very “close” to K and L. This makes the region using the most

conservative CV in the construction, K̄c∩L̄c, relatively small. Similarly, εi for i = 1, 2 should

be chosen to be the smallest feasible value that satisfies Assumption M-B.2(ii) in order to

maximize power

Unlike existing approaches, adapting the Bonferroni approach to the MLLDs framework

allows one to size correct the CVs that pertain to the typical type of testing problem that

falls into this framework without killing the power of the test. This type of problem entails

(at least) one of the localized distribution quantiles being equal to∞ for some h ∈ H so that

approaches putting positive weight on LF CVs (such as those of AG, Andrews and Soares,

2010, Andrews and Cheng, 2012 and Andrews and Barwick, 2011) will lead to infinite CVs

and zero power over much or all of the parameter space.
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We now impose additional assumptions under which tests utilizing M-Bonf CVs have

correct asymptotic size. Some of these are obvious counterparts to those imposed for S-Bonf

CVs.

Assumption M-B.3. Consider some fixed β ∈ [0, 1]. Under H0 and when the drifting

sequence of parameters {γn,h} characterizes the true DGP for any fixed h ∈ H, there exists

an estimator ĥn taking values in some space H̃ and a (nonrandom) continuous, compact-

valued correspondence Iβ : H̃ ⇒ H such that ĥn
d−→ h̃, a random vector taking values in H̃

for which P (h ∈ Iβ(h̃)) ≥ 1− β and Iβ(ĥn), Iβ(h̃) ⊂ H̄ wp 1.

The condition that Iβ(ĥn), Iβ(h̃) ⊂ H̄ wp 1 if h ∈ H̄ is not restrictive and can be ensured

by the proper construction of the confidence set for h. In the typical application, it states

that if the entries of h are finite, the confidence set for h does not include infinite values.

Similar remarks to those following Assumption S-B.3 apply here as well.

Assumption M-B.4. Under H0 and when the drifting sequence of parameters {γn,h} char-

acterizes the true DGP for any h ∈ H,

(i) if ζ({γn,h}) ∈ K, (Tn(θ0), ĥn)
d−→ (W

(1)
h , h̃)

(ii) if ζ({γn,h}) ∈ L, (Tn(θ0), ĥn)
d−→ (W

(2)
h , h̃).

Joint convergence does not need to be established for ζ({γn,h}) ∈ Lc ∩ Kc. Similar

remarks to those following Assumption S-B.4 apply here as well.

Assumption M-B.5. ζ̂
p−→ ζ({γn,h}) under H0 and the drifting sequence of parameters

{γn,h}.

Under Assumption M-B.5, the estimator ζ̂ yields the decision rule that “chooses” which

Bonferroni CV is applicable under any given sequence {γn,h} as the sample size increases.

Recall that ζ̂ is typically equal to k−1
n n−rĥn,1. Furthermore, ĥn,1 is typically asymptotically

centered about h1 under H0 so that for finite h1, ĥn,1 = h1 + Op(1) = nrγn,h,1 + Op(1) and

since typically knn
r →∞,

ζ̂ = k−1
n n−r(nrγn,h,1 +Op(1)) = k−1

n γn,h,1 + op(1) = ζ({γn,h}) + op(1).

This why ζ({γn,h}) consistently estimable even though h1 is not.

As in the SLLD case, we can use a consistent estimator of γ2 to increase the power of tests

using M-Bonf robust CVs. Define the PI M-Bonf CV cMB−PI(α, δ, ĥn) the same as cMB (α, δ, ĥn)
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but with Iα−δ(ĥn)j = {γ̂n,2,j−p} for j = p+1, . . . , p+q. For i = 1, 2, also define c
(i)
B−PI(α, δ, ĥn)

identically to c
(i)
B (α, δ, ĥn) but with Iα−δ(ĥn)j = {γ̂n,2,j−p} for j = p+ 1, . . . , p+ q.

To conserve space, we relegate and additional high-level assumption used to provide an

upper bound on the NRP under drifting sequences of parameters for which h ∈ H̄c and

assumptions used to establish a lower bound on the size of a test using M-Bonf and PI

M-Bonf CVs to Appendix III. We furthermore refer the reader to Lemmas M-B and M-B-PI

in Appendix I for the formal statements and proofs that

AsySz(θ0, c
M
B (α, δ, ĥn)),AsySz(θ0, c

M
B−PI(α, δ, ĥn)) ≤ α

under appropriate conditions, as well as a brief discussion of a sufficient condition.

The size-corrected CVs cMB (α, δ, ĥn) and cMB−PI(α, δ, ĥn) simultaneously accommodate

problems of non-uniformity in the point-wise asymptotics of the distribution of the test

statistic (Assumption D), localized null limit distributions that depend on the localization

parameter discontinuously (Assumption M-B.1), localized null limit distributions that are

discontinuous (Assumption M-B.2(ii)) and localized null limit distributions that “escape” to

±∞ (Assumption M-B.6 in Appendix III).

3.5 M-Bonf-Adj Robust Critical Values

Like their S-Bonf counterparts, the M-Bonf CVs may lead to conservative testing in a uniform

sense and can be level-adjusted to improve power. Specifically, define the M-Bonf-Adj CV,

cMB−A(α, β, ĥn), identically to the M-Bonf CV but replace “c
(i)
B (α, δ, ĥn)” in the definition with

“c
(i)
B−A(α, δ, ĥn)” for i = 1, 2, where β ∈ [0, 1],

c
(i)
B−A(α, β, ĥn) = sup

h∈Iβ(ĥn)

c
(i)
h (1− ᾱ(i))

and ᾱ(i) = infh∈H̄ α
(i)(h) with α(i)(h) ∈ [0, α] solving

P (W
(i)
h ≥ sup

h∈Iβ(h̃)

c
(i)
h (1− α(i)(h))) = α

or α(h) = α if P (W
(i)
h ≥ suph∈Iβ(h̃) c

(i)
h (1− α)) < α for i = 1, 2.

Analogous to the S-Bonf-Adj CV case, we can use a PI version of the M-Bonf-Adj CV

to improve power when a consistent estimator of γ2 is available. Define the PI M-Bonf-Adj

CV, cMB−A−PI(α, β, ĥn), identically to the PI M-Bonf CV but replace “c
(i)
B−PI(α, δ, ĥn)” with

“c
(i)
B−A−PI(α, δ, ĥn)” for i = 1, 2, where β ∈ [0, 1], Iβ(ĥn)j = {γ̂n,2,j−p} for j = p+ 1, . . . , p+ q,

c
(i)
B−A−PI(α, β, ĥn) = sup

h∈Iβ(ĥn)

c
(i)
h (1− ā(i)(γ̂n,2))
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and ā(i) : H2 → [δ
¯

(i), α− δ̄(i)] for i = 1, 2.

Also in analogy with the S-Bonf-Adj CV, computation of cMB−A(α, α−δ, ĥn) (cMB−A−PI(α, α−
δ, ĥn)) is costlier than that of cMB (α, δ, ĥn) (cMB−PI(α, δ, ĥn)) but results in tests with higher

power. As is the case for (PI) S-Bonf-Adj CVs, the choice of β in the construction of the

(PI) M-Bonf-Adj CVs provides the practitioner with the ability to direct the power of the

resulting tests toward different regions of H. Straightforward generalization allows for dif-

ferent β’s to be chosen to correspond to the different localized limit distributions used in

the construction of the CVs, further enhancing this flexibility. The formal statements of the

conditions under which

AsySz(θ0, c
M
B−A(α, β, ĥn)),AsySz(θ0, c

M
B−A−PI(α, β, ĥn)) = α

may be found in Corollaries M-BA and M-BA-PI located in Appendix III. Additional as-

sumptions imposed in these corollaries may also be found there.

3.6 M-Bonf-Min Robust Critical Values

As is the case for S-Bonf and S-Bonf-Adj CVs in the SLLD framework, the M-Bonf and

M-Bonf-Adj CVs can be appropriately minimized to maintain high power over most of the

parameter space while retaining correct asymptotic size and directing power. For this, con-

sider the Bonf-Min CVs adapted to the MLLDs framework:

cMBM(α, ĥn) ≡


c

(1)
min−B(α, ĥn) + ∆1, if ζ̂ ∈ K̄

c
(2)
min−B(α, ĥn) + ∆2, if ζ̂ ∈ L̄

max{c(1)
min−B(α, ĥn) + ∆1, c

(2)
min−B(α, ĥn) + ∆2}, if ζ̂ ∈ K̄c ∩ L̄c,

where for i = 1, 2,

c
(i)
min−B(α, ĥn) = min

{
c

(i)
B−A(α, β1, ĥn), . . . , c

(i)
B−A(α, βr, ĥn), inf

δ∈[δ
¯
(i),α−δ̄(i)]

c
(i)
B (α, δ, ĥn)

}
,

and ∆i = suph∈H̄ ∆i(h) with ∆i(h) ≥ 0 solving P (W
(i)
h ≥ c

(i)
min−B(α, h̃) + ∆i(h)) = α or

∆i(h) = 0 if P (W
(i)
h ≥ c

(i)
min−B(α, h̃) + ∆i(h)) < α for h ∈ H̄. Aside from a couple of

generalizing adjustments, cMBM(α, ĥn) is essentially a version of cSBM(α, ĥn) that is selected

by ζ̂. Hence, very similar comments to those made about cSBM(α, ĥn) and the objects used

in its construction apply for cMBM(α, ĥn) (see Section 3.3). We also impose some analogous

assumptions to those used in the SLLD framework.

30



Assumption M-BM.2. Consider some fixed α ∈ (0, 1) and some pairs (δ
¯

(i), δ̄(i)) ∈ [0, α−
δ̄(i)]× [0, α− δ

¯
(i)] for i = 1, 2.

(i) Assumption M-B.3 holds for all β ∈ [δ̄(1), α− δ
¯

(1)] ∪ [δ̄(2), α− δ
¯

(2)].

(ii) Iβ(h) is continuous in β over [δ̄(1), α− δ
¯

(1)] ∪ [δ̄(2), α− δ
¯

(2)] for all h ∈ H̃.

Analogous comments to those following Assumption S-BM.2 apply here.

Assumption M-BM.3. (i) P (W
(i)
h = c

(i)
min−B(α, h̃) + ∆i) = 0 for all h ∈ H̄ and i = 1, 2.

(ii) Either (a) there is some h∗(1) ∈ H and {γn,h∗(1)} ⊂ Γ with ζ({γn,h∗(1)}) ∈ int(K̄) such

that lim infn→∞ Pθ0,γn,h∗(1) (Tn(θ0) > c
(1)
min−B(α, ĥn) + ∆1) = α or (b) there is some h∗(2) ∈

H and {γn,h∗(2)} ⊂ Γ with ζ({γn,h∗(2)}) ∈ int(L̄) such that lim infn→∞ Pθ0,γn,h∗(2) (Tn(θ0) >

c
(2)
min−B(α, ĥn) + ∆2) = α.

Similar comments to those following Assumption S-BM.3 apply here as well. Part (ii) is

not required for the asymptotic size to be bounded above by α; it is only used to show that

the lower bound is also equal to α. Proposition M-BM in Appendix III contains a sufficient

condition for part (ii) to hold.

Assumption M-BM.4. Consider some fixed α ∈ (0, 1) and some pairs (δ
¯

(i), δ̄(i)) ∈ [0, α−
δ̄(i)]× [0, α− δ

¯
(i)] for i = 1, 2. Consider any h ∈ H̄c.

(i) For any finite n and i = 1, 2, Pθ0,γn,h(|c(i)
min−B(α, ĥn) + ∆i| <∞) = 1.

(ii) If ζ({γn,h}) ∈ K, then lim supn→∞ Pθ0,γn,h(Tn(θ0) > c
(1)
min−B(α, ĥn) + ∆1) ≤ α. If

ζ({γn,h}) ∈ L, then lim supn→∞ Pθ0,γn,h(Tn(θ0) > c
(2)
min−B(α, ĥn) + ∆2) ≤ α.

(iii) If ζ({γn,h}) ∈ Lc ∩Kc, there are some {γ̃(1)
n,h}, {γ̃

(2)
n,h} ⊂ Γ such that ζ({γ̃(1)

n,h}) ∈ K
and ζ({γ̃(2)

n,h}) ∈ L and

plimn→∞
c

(i)
min−B(α, ĥn(γ̃

(i)
n,h))

c
(i)
min−B(α, ĥn(γ

(i)
n,h))

≤ 1

wp 1 for i = 1, 2, where ĥn(γn,h) (ĥn(γ̃
(i)
n,h)) denotes the estimator of Assumption B.3 when

H0 and the drifting sequence of parameters {γn,h} ({γ̃(i)
n,h}) characterize the true DGP.

Assumption M-BM.4 consists of high-level conditions that are not difficult to verify in

the typical application. It is used to ensure an upper bound on the NRP under drifting

sequences of parameters for which h ∈ H̄c, that is, cases for which entries of h1 are infinite.

By properly constructing the confidence set Iα−δ(·), part (i) can be shown to hold since

in applications ĥn has finite entries in finite samples and the localized quantiles are finite

for h ∈ H̄. Part (ii) must be verified directly. In the applications we have encountered,
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this is not difficult since the M-Bonf-Min CVs have closed-form solutions. In applications,

the sequences {γ̃(i)
n,h} in part (iii) can be obtained by simply scaling {γn,h} appropriately

for i = 1, 2. The probability limit condition is typically not difficult to verify because the

CVs have closed form solutions and/or they are invariant to differences in drifting sequences

with the same localization parameter (leading to a ratio of exactly one in the limit). See

the verification of the similar assumption, Assumption M-BM-PI.2 for the consistent model

selection example in Appendix II for illustrative details.

We may now establish the correct size of tests using M-Bonf-Min CVs.

Theorem M-BM. Under Assumptions D and M-B.1, M-B.2(i) evaluated at δ
(1)
i = ᾱ

(1)
i

corresponding to βi and c
(1)
h and δ

(2)
i = ᾱ

(2)
i corresponding to βi and c

(2)
h , either (a) M-B.3

evaluated at βi or (b) c
(j)
B−A(α, βi, h) is invariant to h for j = 1, 2, M-B.4, M-B.5 and M-BM.1

through M-BM.4 for i = 1, . . . , r,

AsySz(θ0, c
M
BM(α, ĥn)) = α.

A similar sufficient condition to the one discussed following Lemma M-B in Appendix I

applies here as well.

We at last consider the PI version of the M-Bonf-Min robust CVs to further increase

power while retaining correct asymptotic size in this context:

cMBM−PI(α, ĥn) ≡


c

(1)
min−B−PI(α, ĥn) + η1(γ̂n,2), if ζ̂ ∈ K̄

c
(2)
min−B−PI(α, ĥn) + η2(γ̂n,2), if ζ̂ ∈ L̄

max{c(1)
min−B−PI(α, ĥn) + η1(γ̂n,2), c

(2)
min−B−PI(α, ĥn) + η2(γ̂n,2)}, if ζ̂ ∈ K̄c ∩ L̄c,

where

c
(i)
min−B−PI(α, ĥn) = min

{
c

(i)
B−A−PI(α, β1, ĥn), . . . , c

(i)
B−A−PI(α, βr, ĥn), inf

δ∈[δ
¯
(i),α−δ̄(i)]

c
(i)
B−PI(α, δ, ĥn)

}
,

and ηi : H2 → R for i = 1, 2. Analogous remarks to those made about cSBM−PI(α, ĥn) apply.

We now adapt some of the previous assumptions to the present framework and establish the

correct asymptotic size of tests using this PI CV.

Assumption M-BM-PI.1. (i) ηi : H2 → R is a continuous function for i = 1, 2.

(ii) P (W
(i)
h = c

(i)
min−B−PI(α, h̃) + ηi(h2)) = 0 for all h ∈ H̄ and i = 1, 2.

(iii) P (W
(i)
h ≥ cmin−B−PI(α, h̃) + ηi(h2)) ≤ α for all h ∈ H̄ and i = 1, 2.
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(iv) Either (a) there is some h∗(1) ∈ H and {γn,h∗(1)} ⊂ Γ with ζ({γn,h∗(1)}) ∈ int(K̄) such

that lim infn→∞ Pθ0,γn,h∗(1) (Tn(θ0) > c
(1)
min−B−PI(α, ĥn) + η1(γ̂n,2)) = α or (b) there is some

h∗(2) ∈ H and {γn,h∗(2)} ⊂ Γ with ζ({γn,h∗(2)}) ∈ int(L̄) such that lim infn→∞ Pθ0,γn,h∗(2) (Tn(θ0) >

c
(2)
min−B−PI(α, ĥn) + η2(γ̂n,2)) = α.

Parts (i)-(iii) are the MLLDs counterparts to Assumption S-BM-PI(i)-(iii) and thus may

be considered analogously. As in the case of Assumption M-BM.3(ii), we can provide a

sufficient condition for part (iv) to hold that may be easier to verify. See Proposition M-

BM-PI in Appendix III for details.

Assumption M-BM-PI.2. Consider some fixed α ∈ (0, 1) and some pairs (δ
¯

(i), δ̄(i)) ∈
[0, α− δ̄(i)]× [0, α− δ

¯
(i)] for i = 1, 2. Consider any h ∈ H̄c.

(i) For any finite n and i = 1, 2, Pθ0,γn,h(|c(i)
min−B−PI(α, ĥn)| <∞) = 1.

(ii) If ζ({γn,h}) ∈ K, then lim supn→∞ Pθ0,γn,h(Tn(θ0) > c
(1)
min−B−PI(α, ĥn)+η1(γ̂n,2)) ≤ α.

If ζ({γn,h}) ∈ L, then lim supn→∞ Pθ0,γn,h(Tn(θ0) > c
(2)
min−B−PI(α, ĥn) + η2(γ̂n,2)) ≤ α.

(iii) If ζ({γn,h}) ∈ Lc ∩Kc, there are some {γ̃(1)
n,h}, {γ̃

(2)
n,h} ⊂ Γ such that ζ({γ̃(1)

n,h}) ∈ K
and ζ({γ̃(2)

n,h}) ∈ L and

plimn→∞
c

(i)
min−B−PI(α, ĥn(γ̃

(i)
n,h))

c
(i)
min−B−PI(α, ĥn(γ

(i)
n,h))

≤ 1

wp 1 for i = 1, 2, where ĥn(γn,h) (ĥn(γ̃
(i)
n,h)) denotes the estimator of Assumption B.3 when

H0 and the drifting sequence of parameters {γn,h} ({γ̃(i)
n,h}) characterize the true DGP.

This assumption is the direct adaption of Assumption M-BM.4 to the PI version of the

M-Bonf-Min CVs. We may now establish the correct asymptotic size of the PI test.

Corollary M-BM-PI. Under Assumptions D, PI, M-B.1, either (a) M-B.3 evaluated at

βi or (b) c
(j)
B−A(α, βi, h) is invariant to h1 for j = 1, 2 and i = 1, . . . , r, M-B.4, M-B.5,

M-BA-PI(i) and (iii) evaluated at βi and corresponding ā
(1)
i (·), ā

(2)
i (·), M-BM.1, M-BM.2,

M-BM-PI.1 and M-BM-PI.2,

AsySz(θ0, c
M
BM−PI(α, ĥn)) = α.

Assumption M-BA-PI is given in Appendix III. A straightforward adaptation of the

sufficiency conditions provided in Corollary SCF (in Appendix III) to the MLLDs context

characterizes a class of problems for which setting ∆i (ηi(γ̂n,2)) to zero for i = 1 and/or 2

yields a test with correct asymptotic size.

33



4 Testing After Conservative Model Selection

We now illustrate a way to construct the objects used in cSBM−PI(α, ĥn) for the hypothesis

testing problem after conservative model selection introduced in Section 2.1.1. We also show

how the remainder of the assumptions imposed in Corollary S-BM-PI are satisfied for this

problem, enabling us to use a PI S-Bonf-Min CV to conduct a test with correct asymptotic

size.

First, define ĥn = (ĥn,1, γ̂n,2), where

ĥn,1 =

√
nβ̃2

σ̂(n−1X∗′2 M[X∗
1 :X∗

3 ]X
∗
2 )−1/2

with β̃2 ≡ (X∗′2 MX∗
3
X∗2 )−1X∗′2 MX∗

3
(Y −X∗1θ0)

(β̃2 is the restricted least squares estimator of β2, imposing H0) and γ̂n,2 can be defined as

in AG as

γ̂n,2 =
−n−1

∑n
i=1 x1ix2i

(n−1
∑n

i=1 x
2
1in
−1
∑n

i=1 x
2
2i)

1/2

with {(x1i, x2i)} being the residuals from the regressions of x∗ji on x∗3i for j = 1, 2.7 Second,

let H̃ = H and define the correspondence Iβ : H̃ ⇒ H as follows:

Iβ(h) =

 (h1, h2), if h1 = ±∞

([h1 +
√

1− h2
2zξ, h1 +

√
1− h2

2z1−β+ξ], h2), if h1 ∈ R,

where ξ = ξ(β) ∈ (0, β) is a continuous function of β, h1 ∈ H1, h2 ∈ H2 and zb denotes the

bth quantile of the standard normal distribution.8 The function ξ(β) can be chosen to direct

power against certain regions of H1 (at the expense of others). The agnostic, and perhaps

intuitive, choice of ξ(β) would be simply ξ(β) = β/2. This is not the only configuration of Iβ

that will satisfy Assumption S-BM.2. For example, if the practitioner has a priori knowledge

on the sign that β2 takes, this can be incorporated into the analysis to improve power (see

the next example).

With these definitions in hand, we may verify the remaining assumptions for some chosen

significance level α ∈ (0, 1). To see the proofs that Assumptions S-BM.2 and S-B.4 are

satisfied for δ̄ that can be set arbitrarily close, but not equal to zero, check Appendix II.

A byproduct of these proofs is that Assumption S-B.3 is also satisfied for any β ∈ (0, 1).

7This is clearly not the only construction of ĥn that satisfies the relevant assumptions.
8In this and the following examples, Iβ(h) is defined at infinite values of h1 for theoretical completeness

only. For the estimator ĥn we consider, it is in fact not possible to have |ĥn,1| =∞ with positive probability
for any finite n.
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Assumption PI follows from the the weak law of large numbers for L1+d-bounded independent

random variables. Now, the fact that under H0 and when the drifting sequence {γn,h} with

|h1| <∞ characterizes the true DGP, T̃n,1(θ0)

ĥn,1
Tn,2

 d−→ N

  −h1h2(1− h2
2)−1/2

h1

h1

 ,

 1 −h2(1− h2
2)1/2 0

−h2(1− h2
2)1/2 1− h2

2 1− h2
2

0 1− h2
2 1

  ,

 T̂n,1(θ0)

ĥn,1
Tn,2

 d−→ N

  0
h1

h1

 ,

 1 0 h2

0 1− h2
2 1− h2

2

h2 1− h2
2 1

  (7)

(see Appendix II) makes it straightforward to calculate functions āi(·) and η(·) satisfying

Assumptions S-BA-PI(i)+(iii) and S-BM-PI via computer simulation.

For example, working with the parameter space with H2 = [−0.99, 0.99] (limiting the

absolute maximum asymptotic correlation between OLS estimators to 0.99) and setting

α = 0.05, δ
¯
m = δ̄m = 0.005, c = 1.96 (standard pretesting), ξ(β) = β/2, r = 1 and β1 = 0,

ā1(·) = α, which clearly satisfies Assumption S-BA-PI(i) for δ̄1 = 0. Furthermore,

P (Wh ≥ sup
h∈I0(h̃)

ch(1− ā1(h2))) = P (Wh ≥ sup
h1∈H1

c(h1,h2)(1− α)) ≤ α

for all h ∈ H and there is some h∗ ∈ H such that P (Wh∗ ≥ suph1∈H1
c(h1,h2)(1− α)) = α, by

the continuity properties ofWh and ch(1−α) discussed in Section 2.1.1, so that Assumption S-

BA-PI(iii) is satisfied for β1 = 0 and ā1(·) = α. Finally, a function η(·) satisfying Assumption

S-BM-PI for this choice of anchor is simply given by η(·) = 0. Clearly η(·) is continuous

over H2 so that Assumption S-BM-PI(i) is satisfied. Examination of the random variables

Wh and h̃ and their distribution functions reveals that Wh−cmin−B−PI(α, h̃) is an absolutely

continuous random variable so that Assumption S-BM-PI(ii) is satisfied. The function η(·)
was constructed so that Assumption B3-PI(iii) holds and h∗ can be set to (7.3,0), for example.

Alternatively, we can use the anchor to direct power toward a point in H. Using the

same values as above, but finding β1 to minimize the distance between c0,0.6(0.95) and

cSB−A−PI(0.05, β, (0, 0.6)) (in order to direct power toward h = (0, 0.6)), we find β1 = 0.89

with corresponding

ā1(x) = 0.035 · 1(0.99 ≥ |x| ≥ 0.91) + (0.49− 0.5|x|)1(0.91 > |x| > 0.9)

+ 0.04 · 1(0.9 ≥ |x| ≥ 0.61) + (0.345− 0.5|x|)1(0.61 > |x| > 0.6)

+ 0.045 · 1(0.6 ≥ |x| ≥ 0.21) + (0.15− 0.5|x|)1(0.21 ≥ |x| ≥ 0.2)
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+ 0.051(0.2 ≥ |x| ≥ 0).

This function was constructed to satisfy Assumption S-BA-PI(i)+(iii) while remaining as

large as possible. Finally, a very small η function satisfying Assumption S-BM-PI for this

choice of anchor is given by

η(x) = (0.61− |x|)1(0.61 > |x| > 0.58) + 0.03 · 1(0.58 ≥ |x| ≥ 0.57)

+ (|x| − 0.54)1(0.57 > |x| > 0.55) + 0.01 · 1(0.55 ≥ |x| ≥ 0.48)

+ (|x| − 0.47)1(0.48 > |x| > 0.47).

Assumption S-BM-PI holds for identical reasons to those given for the case of β1 = 0 above.

Here, h∗ can be set to (2.45,0.6), for example.

Note that, for either choice of anchor, η(·) is either numerically indistinguishable from

zero or supγ2∈Γ2
η(γ2) = 0.03.9 At the same time, cmin−B−PI(α, h) ranges from about 2 to 23.7

so that, even when it is not equal to zero, the SCF is numerically dwarfed by cmin−B−PI(α, h).

In fact, upon artificially setting η(·) = 0 for the β1 = 0.89 choice of anchor, the asymptotic

size of the test is 5.1%, entailing minimal size distortion.

4.1 Critical Value Graphs: An Illustration

As an illustration of how the Bonf-Min CVs operate, we graph cSBM−PI(α, ·) for the two

different anchor choices corresponding to β1 = 0 and β1 = 0.89, discussed above. In the

construction of the graphs, α, δ
¯
m, δ̄m, c, ξ(β), ā1(·) and η(·) were set to the same values

as above. Figure 1 graphs four CV functions for h2 = 0.9 as a function of h1 ∈ H1: the

true localized CV function (ch), the PI LF CV (cLF−PI) , the PI S-Bonf-Min CV function

(cSBM−PI) using the PI LF CV as its anchor (β1 = 0) and the PI S-Bonf-Min CV function

using cSB−A−PI(0.05, 0.89, h) as its anchor. We examine the two different PI S-Bonf-Min

CVs to compare the differences that the choice of anchor makes in the construction of

the CVs. We can see that the PI S-Bonf-Min CV functions differentiate between different

regions of h1. Though both S-Bonf-Min CVs conservatively mimic the underlying localized

quantile function ch(1 − α), the CV using cSB−A−PI(0.05, 0.89, h) as its anchor appears to

more closely track it than does that using cLF−PI(0.05, h2). For all but a small portion of

the parameter space H1, the CV using cSB−A−PI(0.05, 0.89, h) as its anchor also lies below that

9Strictly speaking, for either choice of anchor, η(γ2) > 0 for all γ2 6= 0 in this problem. However, for
practical purposes, for values of η(·) less than 0.005, numerical approximation error dominates any miniscule
size distortion that may arise from setting η(·) exactly equal to zero.
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using cLF−PI(0.05, h2) so that we can expect tests using the former to tend to have higher

power than tests using the latter. Both the S-Bonf-Min CVs lie above the true localized

quantile function in order to account for the asymptotic uncertainty in estimating h1. At

their peaks, the S-Bonf-Min CVs are either slightly larger or no larger than the PI LF CV,

entailing corresponding tests with very minimal power loss over any portion of the parameter

space. When h1 falls outside of the range of roughly [−6, 6], the PI S-Bonf-Min CVs collapse

to approximate the standard normal asymptotic CV while the PI LF CV is constant and

very high for all values of h1. This enables tests using the PI S-Bonf-Min CVs to obtain

substantially higher power when ĥn,1 lies outside of this range. This is also the case for large

portions within [−6, 6]. Taking these facts together, we can expect large power gains and

minimal power loss from using S-Bonf-Min CVs. We can also see from this graph how the S-

Bonf-Min CVs smooth between their anchors and the standard normal CVs. In comparison,

a technique using a binary decision rule (in the spirit of e.g., Andrews and Soares, 2010 and

Andrews and Cheng, 2012) would choose the PI LF CV for ĥn,1 within some range and the

standard normal CV for ĥn,1 outside of this range, rather than adaptively using the data to

transition between them.

We also examine the above CV functions for h2 = 0.6 to ascertain the generality of the

above statements. We again see that the S-Bonf-Min CV using cSB−A−PI(0.05, 0.89, h) as

its anchor is smaller than that using cLF−PI(0.05, h2) over most of H1 and that when h1

lies outside of a given range, the S-Bonf-Min CVs are substantially smaller than their LF

counterparts. We also again see the smoothing described above. The general features of

these two graphs are shared for all values of h2 although the differences between the PI LF

and S-Bonf-Min CVs shrink as h2 approaches zero (compare the vertical axes in Figures 1

and 2).

4.2 Finite Sample Properties

We now analyze how the S-Bonf-Min CVs examined throughout this section behave in a

realistic sample size. To this end, let us consider (an approximation to) the exact size and

power of the two-sided post-conservative model selection t-test using these PI S-Bonf-Min

CVs at a sample size of n = 120. The null hypothesis for the size analysis and the subsequent

power analysis (to follow) is H0 : θ = 0. Let us consider the simplest model for which only

the two regressors x∗1 and x∗2 enter. In the formation of the CVs, we used the exact same

constructions as those used in the above CV graph illustration. In order to keep the scale of

the t-statistic similar across values of γ2, we fixed the variance of the OLS estimators of θ and
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β2 to unity. Additionally, we fixed σ = 1 and used normally distributed data so that x∗1i and

x∗2i are normally distributed with mean zero, variance 1/(1−γ2
2) and covariance −γ2/(1−γ2

2)

and εi is drawn from an independent standard normal distribution. For the size analysis,

we follow AG and, for a fixed value of γ2, report the maximum NRP over the parameter

space of Γ1. We do this by examining the point-wise NRP of the test for a wide range of

values for β2 and take the maximum over β2 for each γ2 under study.10 The size values

correspond to a 5% nominal level and are computed from 10,000 Monte Carlo replications,

reported in Table 1. We examine the exact sizes of tests using cSPI−BM(0.05, ĥn) with anchor

cLF−PI(0.05, γ̂n,2), cSPI−BM(0.05, ĥn) with anchor cSB−A−PI(0.05, 0.89, ĥn) and those using the

latter CV but ignoring the SCF function, that is using cmin−B−PI(0.05, ĥn), in order to

assess the practical importance of the SCF function.11 Table 1 indicates that in this finite-

sample scenario, t-tests using the first type of CV have excellent size properties, with a

maximal NRP of 0.052 over the entire grid of parameter values considered. Tests using

the CV with anchor cSB−A−PI(0.05, 0.89, ĥn) exhibit a 3.6% size distortion. The practical

relevance of this size distortion may be questionable as it occurs at extreme values of the

correlation parameter, γ2 = ±0.99. If we were to restrict the correlation parameter space to,

say H2 = [−0.95, 0.95], we would not see these size distortions. Moreover, they disappear

as the sample size grows: for n = 1200, the maximal NRP for |γ2| = 0.99 is equal to 4.8%.

It is quite interesting to note that ignoring the SCF (or artificially setting η(·) = 0) in this

problem does not introduce any additional size distortion.

Moving on to the property the new CVs are designed to enhance, we examine the power

of the two-sided post-conservative model selection t-testing procedure using cSBM−PI(α, ĥn)

with the two different anchors for various values of β2, θ and γ2 and compare it to the power

corresponding to cLF−PI(α, ĥn). Figures 3-7 are the finite sample (n = 120) power curves

for these three testing procedures at a 5% level. Each graph is plotted against the range -5

to 5 for β2 at various fixed values of γ2 and θ and based on 10,000 Monte Carlo replications

(examining a range of β2 is the finite sample counterpart to examining a range of h1). Due

to the symmetry properties of the localized null limit distribution, results for −γ2 are quite

similar: the corresponding power graphs are a reflection of the graphs for γ2 across β2 = 0.

The power graphs display some interesting features. First, the power of the tests using

cSBM−PI(α, ĥn) with either anchor is very good over most of the parameter space. The

10Specifically, we search over a grid of values for |β2| in the interval [0, 10] using step sizes .0025, .025, and
.25 on the intervals [0, 0.8], [0.8, 3] and [3, 10], respectively. We also examine the value of |β2| = 999, 999

11Note that the SCF function for the CV with anchor cLF−PI(0.05, γ̂n,2) is already equal to zero.
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tests using cSBM−PI(α, ĥn) achieve this, while retaining asymptotic validity, in part by using

standard normal CVs when β2 is “far enough” away from zero, which is determined by

ĥn,1. This is a consequence of the minimum of Bonferroni CVs component of the S-Bonf-

Min CVs. Second, it is evident that the testing procedures using PI S-Bonf-Min CVs have

higher power than that using the PI LF procedure in all cases and often to a very large

extent. For example, Figure 7 shows a power difference of nearly 100% between the testing

procedures over almost the entire parameter space for β2. For the S-Bonf-Min CV using

the cSB−A−PI(0.05, 0.89, ĥn) anchor, although there is a small region of the parameter space

for which cLF−PI(α, ĥn) < cSBM−PI(α, ĥn), this region, and the difference between the CVs

within it, are so small that any power dominance by the use of cLF−PI(α, ĥn) is indiscernible.

Third, the tests using S-Bonf-Min CVs tend to maintain power at or above the maximum

power of the tests using PI LF CVs over most of the parameter space of β2. Fourth, the

ranges in β2 of low power are very small for tests using S-Bonf-Min CVs, in contrast to those

using cLF−PI(α, ĥn). Fifth, the “envelope” where the power of the three tests coincide tends

to be a very small portion of β2’s parameter space. Sixth, the differences in power values over

β2 for a particular test is increasing in γ2, as should be expected. This brings us to a related

feature: the differences in power between the testing procedures is larger for larger values

of γ2. Finally, we can see that the S-Bonf-Min CV test using anchor cSB−A−PI(0.05, 0.89, h)

has the best power performance. As displayed in Figures 1 and 2, this CV is not always

the smallest. However, the differences between the two S-Bonf-Min CVs at points for which

that using the cLF−PI(0.05, ĥn) anchor is smaller, are so small that they have no perceptible

effect on power.

5 Hypothesis Testing when a Nuisance Parameter may be on a Boundary

In this section we show how to construct a PI S-Bonf-Min CV for the testing problem

introduced in Section 2.1.2, testing when a nuisance parameter may be on the boundary of

its parameter space. Our construction of the confidence set Iβ is somewhat different in the

context of this problem than the previous. It is instructive to notice this difference as it

exemplifies the general feature that the confidence set Iβ should be tailored to the testing

problem at hand and provides some guidance on how to construct this object in different

testing scenarios.

First, ĥn ≡ (n1/2X̄n,2/σ̂n,2, γ̂n,2), where γ̂n,2 = ρ̂n. Second, let H̃ = R∞ × [−1 + ω, 1− ω]
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(note the difference with H in this context) and define Iβ : H̃ ⇒ H as follows:

Iβ(h) = Iβ(h1, h2) =

 (h1, h2), if h1 =∞

([max{0, h1 + zξ},max{0, h1 + z1−β+ξ}], h2), if h1 <∞,

using the same notation as in the previous example. As mentioned in the previous example,

ξ can be chosen to direct power against particular regions of the alternative hypothesis. Also,

in the context of this example, it makes sense to judiciously choose ξ. For example, Andrews

and Guggenberger (2010b) illustrate that when examining lower one-sided tests, the limit

of the test statistic Wh is stochastically decreasing (increasing) in h1 for h2 < 0 (h2 ≥ 0).

When Wh is stochastically decreasing (increasing), large (small) values of ξ may increase the

power of the test as the search in h over the CVs of the test statistic will be limited to a set

corresponding to smaller values.

Assumption PI follows immediately from the consistency of ρ̂n. Assumption S-B.4 follows

from the definition of Tn(θ0), the continuous mapping theorem and the facts that ρ̂n is

consistent and  n1/2X̄n,1/σ̂n,1

n1/2X̄n,2/σ̂n,2

 d−→

 0

h1

+ Zh2

by the central limit theorem. Fixing a significance level α ∈ (0, 1), it can be shown that

Assumption S-B.3 is satisfied for any β ∈ (0, 1) and Assumption S-BM.2 is satisfied for δ̄ that

can be set arbitrarily close to zero (see Appendix II). For the sake of brevity, we omit the

details on appropriate āi(·) and η(·) functions that satisfy Assumptions S-BA-PI(i)+(iii) and

S-BM-PI, simply noting that their general features are very similar to those in the previous

example.

6 Testing After Consistent Model Selection

In this section we show how to construct the objects used in cMBM−PI(α, ĥn) as well as showing

how the remainder of the assumptions of Corollary M-BM-PI are satisfied in the hypothesis

testing after consistent model selection example introduced in Section 2.2.1.

First, let ĥn = (
√
nβ̂2ρn/σβ2,n, γ̂n,2), where γ̂n,2 = (σθ,n, ρn). Second, let H̃ = H and,

using the same notation as in previous examples,

Iβ(h) = Iβ(h1, h2, h3) =

 (h1, h2,1, h2,2), if h1 = ±∞

([h1 + |ρn|zξ, h1 + |ρn|z1−β+ξ], h2,1, h2,2), if h1 ∈ R,
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where h1 ∈ H1 and h2 = (h2,1, h2,2) ∈ H2. The remarks made in Section 4 concerning the

choice of ξ and configuration of Iβ also apply here. For the additional estimator not present

in the SLLD framework, let ζ̂ =
√
nβ̂2/σβ2,ncn.

Fix some α ∈ (0, 1). To see that Assumption M-BM.2 is satisfied, note that

ĥn,1
d∼
√
nγ1 +N(0, ρ2

n) (8)

so we have,

h̃ =

 (h1, h2), if h1 = ±∞

(h1 + Zρ, h2), if h1 ∈ R,

where Zρ
d∼ N(0, ρ2

∞). To satisfy this assumption, δ̄(1) and δ̄(2) need only be set greater

than zero. The proof that Assumption M-BM.2 is satisfied for δ̄(i) ∈ (0, 1) is essentially the

same as the proof of Assumption S-BM.2 for the post-conservative model selection example

except for the additional condition of Iβ(ĥn), Iβ(h̃) ⊂ H̄ wp 1 if h ∈ H̄. The same is true for

showing that Assumption M-B.3 holds when evaluated at any β ∈ (0, 1). It is clear that this

additional condition is satisfied from the definition of Iβ(·) and the expressions for ĥn and h̃

above. To see how Assumption M-B.4 is satisfied, check Appendix II. Regarding Assumption

M-B.5, under H0 and {γn,h}, since cn →∞,

ζ̂ =

√
nβ2,n

σβ2,ncn
+

1

cn
Z

p−→ ζ,

where Z
d∼ N(0, 1). For Assumption PI, simply note that γ̂n,2 = (σθ,n, ρn) = γn,2 and the

remainder of the assumption holds by construction. Now, the fact that under H0 and when

the drifting sequence {γn,h} with |h1| <∞ characterizes the true DGP, √n(θ̃ − θ0)

ĥn,1

 d−→ N

  −h1h2,1

h1

 ,

 h2
2,1(1− h2

2,2) 0

0 h2
2,2

  ,

 √n(θ̂ − θ0)

ĥn,1

 d−→ N

  0

h1

 ,

 h2
2,1 h2,1h

2
2,2

h2,1h
2
2,2 h2

2,2

  (9)

(see Appendix II), makes it straightforward to calculate functions ā
(1)
i (·), ā(2)

i (·) and ηi(·)
satisfying Assumption M-BA-PI(i)+(iii) and M-BM-PI.1(i)-(iii).

For example, upon setting δ
¯

(i), δ̄(i) > 0 for i = 1, 2, r = 1 and β1 = 0, ā
(1)
1 = ā

(2)
1 = α

satisfy Assumption M-BA-PI(i)+(iii) in analogy with this choice of anchor in the post-
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conservative model selection example. Furthermore,

c
(i)
B−A(α, 0, h) = c

(i)
LF−PI(α, h2) ≡ sup

h1∈H1

c
(i)
(h1,h2)(1− α)

is invariant to h1 for i = 1, 2, satisfying condition (b) of Corollary M-BM-PI. For this choice

of anchor, we can simply set ηi(·) = 0 for i = 1, 2 without the need to calculate via simulation

because the MLLDs analog of the sufficient condition in Corollary SCF (in Appendix III)

holds. To see this and how Assumptions M-BM-PI.1 and M-BM-PI.2 are satisfied in this

example, check Appendix II.

6.1 Finite Sample Properties

As in the case for two-sided post-conservative model selection testing, we examine the finite

sample behavior of the upper one-sided post-consistent model selection test but now based

upon the PI M-Bonf-Min CVs using c
(i)
LF−PI(α, ĥn) as the anchor in each localized limit

distribution corresponding to i = 1, 2. We use the exact same DGP as that used in the post-

conservative example to conduct the analysis. Of course since the regressors are stochastic,

this violates the assumptions of Leeb and Pötscher (2005). Nevertheless, as we shall see, size

is well controlled for this DGP, consistent with the claim that Leeb and Pötscher’s (2005)

analysis can be extended to cases of stochastic regressors. With the same DGP, the only

differences with the post-conservative example are (i) instead of the studentized t-statistic,

we use the non-studentized version while providing a PI estimator for the variance of θ̂ and

(ii) we examine a model selection CV that is growing in the sample size, namely, the BIC

choice of cn =
√

log n. We also use the same choices for ξ(β) as in the finite sample analysis

of the post-conservative example as well as δ
¯

(i) and δ̄(i) values corresponding to the values of

δ
¯

and δ̄ in that example. For the size analysis, we approximate the exact size using the same

procedure. Table 2 reports the maximum over β2 finite sample null rejection frequencies at

a 5% nominal level. The table shows that the new test again has excellent size properties

with a maximal NRP of 5.2% over the entire grid of parameters considered. In this example,

construction of the PI M-Bonf-Min CV involves very little computation since ηi(·) = 0 and

cMBM−PI(α, ĥn) is a closed-form a function of ĥn and standard normal CVs.

Moving on to the power properties of the test, we computed power functions for the 5%

test corresponding to four representative values of γ2,2, the correlation between the θ̂ and

β̂2: 0.9, 0.6, 0.3 and 0. The power functions are graphed against β2 in Figures 8-11 and

are based on 10,000 Monte Carlo replications. Each graph shows power curves as θ moves
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away from the null value of zero for three different values: θ = 0.1, 0.2 and 0.3. As in the

post-conservative example, the results for −γ2,2 are quite similar.

The power curves in this one-sided post-consistent model selection test are similar to those

in the two-sided post-conservative model selection test with one important difference: they

do not seem to exhibit as complex power behavior near β2 = 0. As in the post-conservative

example, power is very good over most of the parameter space. Power losses occur only

over very small portions of the parameter space and, even at their lowest points, they are

well above the nominal size of the text except when θ is very close to the null value of

zero. The power losses occur at points surrounding β2 = 0 since it is the area of the

parameter space where c
(1)
min−B−PI(α, ĥn) is more likely to be selected by ζ̂. In this particular

problem, c
(1)
min−B−PI(α, ĥn) is a more conservative CV than c

(2)
min−B−PI(α, ĥn), as the former

is constructed by taking a maximum over an interval centered about ĥn,1 while the latter is

strictly a PI CV that does not depend upon ĥn,1 (see Appendix II for details).

7 Conclusion

This study provides new methods of size-correction for tests when the null limit distribution

of a test statistic is discontinuous in a parameter. The CVs utilized by these size-corrections

entail power gains in a variety of circumstances over existing size-correction methods. They

also enable one to conduct tests with correct asymptotic size in a general class of testing

problems for which uniformly valid methods were previously unavailable.
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8 Appendix I: Proofs of Main Results

This appendix is composed of the proofs of the main results, followed by auxiliary lemmas
used in these proofs, some of which are of independent interest.

Proof of Theorem S-B: By the Theorem of the Maximum, Assumptions S-B.2 and S-B.3,

cSB(α, δ, ·) is continuous over H̃. Now, take any h ∈ H and suppose the drifting sequence
of parameters {γn,h} characterizes the true DGP. Then, Assumptions S-B.2 through S-B.4
imply

lim sup
n→∞

Pθ0,γn,h(Tn(θ0) > cSB(α, δ, ĥn)) ≤ P (Wh ≥ cSB(α, δ, h̃))

= P (Wh ≥ cSB(α, δ, h̃) ≥ ch(1− δ))
+ P (Wh ≥ ch(1− δ) > cSB(α, δ, h̃))

+ P (ch(1− δ) > Wh ≥ cSB(α, δ, h̃))

≤ P (Wh ≥ ch(1− δ)) + P (ch(1− δ) > cSB(α, δ, h̃)) ≤ α
(A.1)

since ch(1− δ) is the (1− δ)th quantile of Wh and P (h /∈ Iα−δ(h̃)) ≤ α− δ. Hence, we have a
uniform upper bound on the asymptotic NRP under all {γn,h} sequences. To establish full
uniformity over Γ, let {γ̃n} be a sequence in Γ such that

AsySz(θ0, c
S
B(α, δ, ĥn)) ≡ lim sup

n→∞
sup
γ∈Γ

Pθ0,γ(Tn(θ0) > cSB(α, δ, ĥn))

= lim sup
n→∞

Pθ0,γ̃n(Tn(θ0) > cSB(α, δ, ĥn)).

Such a sequence always exists. Let {γ̃kn} be a subsequence of {γ̃n} such that

lim sup
n→∞

Pθ0,γ̃n(Tn(θ0) > cSB(α, δ, ĥn)) = lim
n→∞

Pθ0,γ̃kn (Tkn(θ0) > cSB(α, δ, ĥkn)).

Such a subsequence always exists. Since H is compact, there exists a subsequence of {γ̃kn},
call it {γ̃(kn)j}, for which

lim
kn→∞

((kn)j)
rγ̃(kn)j ,1 ∈ H1 and lim

(kn)j→∞
γ̃(kn)j ,2 ∈ H2.

That is, {γ(kn)j} = {γ(kn)j ,h} for some h ∈ H. Hence,

AsySz(θ0, c
S
B(α, δ, ĥn)) = lim

n→∞
Pθ0,γ̃(kn)j

,h(T(kn)j(θ0) > cSB(α, δ, ĥ(kn)j)) ≤ α,

where the inequality follows from (A.1). Finally,

δ = AsySz(θ0, sup
h∈H

ch(1− δ)) ≤ AsySz(θ0, c
S
B(α, δ, ĥn)),

A.1



where the equality is the direct result of Theorem 2 in AG (Assumptions D, S-B.1 and S-B.2
imply Assumptions A, B, L and M(a) of their paper hold with “α” replaced by “δ”) and the
inequality follows from the fact that

cSB(α, δ, ĥn) ≡ sup
h∈Iβ(ĥn)

ch(1− δ) ≤ sup
h∈H

ch(1− δ)

for all γ ∈ Γ and n. �

Proof of Corollary S-B-PI: The upper bound follows from identical arguments to those
made in the proof of Theorem S-B. For the lower bound, simply note that for each h2 ∈
H2, there is some h∗1 ∈ H1 such that suph1∈H1

c(h1,h2)(1 − δ) = c(h∗1,h2)(1 − δ) by virtue
of the extreme value theorem and Assumption S-B.2(i). Hence, for some h∗ ∈ H with
suph1∈H1

c(h1,h∗2)(1− δ) = ch∗(1− δ),

AsySz(θ0, c
S
B−PI(α, δ, ĥn)) ≥ AsySz(θ0, cLF−PI(δ, γ̂n,2))

≥ lim inf
n→∞

Pθ0,γn,h∗ (Tn(θ0) > sup
h1∈H1

c(h1,γ̂n,2)(1− δ)) ≥ P (Wh∗ > ch∗(1− δ)) = δ,

where the third inequality follows from Assumptions S-B.1, PI and the continuity of suph1∈H1

c(h1,·)(1−δ), the latter of which is implied by Assumption S-B.2(i). The equality follows from
Assumption S-B.2(ii). The sequence {γn,h∗} ⊂ Γ exists by, cf., Lemma 7 of Andrews and
Guggenberger (2010b). �

Proof of Theorem S-BA: By the same arguments as those used in the proof of Theorem
S-B, for any h ∈ H,

lim sup
n→∞

Pθ0,γn,h(Tn(θ0) > cSB−A(α, β, ĥn)) ≤ P (Wh ≥ sup
h∈Iβ(h̃)

ch(1− ᾱ)).

Thus, the same subsequencing argument as that used in the proof of Theorem S-B provides
that there is some h ∈ H such that

AsySz(θ0, c
S
B−A(α, β, ĥn)) ≤ P (Wh ≥ sup

h∈Iβ(h̃)

ch(1− ᾱ)) ≤ α,

where the latter inequality holds by S-BA(i) and the definition of ᾱ. On the other hand,

AsySz(θ0, c
S
B−A(α, β, ĥn)) ≥ lim sup

n→∞
Pθ0,γn,h∗ (Tn(θ0) > cSB−A(α, β, ĥn))

≥ P (Wh∗ ≥ cSB−A(α, β, h̃∗) = α. �

Proof of Corollary S-BA-PI: By the Theorem of the Maximum, Assumptions S-BM.1, S-
BA-PI(i) and S-B.3 imply that cSB−A−PI(α, β, ·) is continuous. Hence, by the same arguments
as those used in the proof of Theorem S-B, for any h ∈ H,

lim sup
n→∞

Pθ0,γn,h(Tn(θ0) > cSB−A−PI(α, β, ĥn)) ≤ P (Wh ≥ sup
h∈Iβ(h̃)

ch(1− ā(h2))).
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The same subsequencing argument provides that there is some h ∈ H such that

AsySz(θ0, c
S
B−A−PI(α, β, ĥn)) ≤ P (Wh ≥ sup

h∈Iβ(h̃)

(1− ā(h2))) ≤ α

by Assumptions PI and S-BA-PI(ii)-(iii). On the other hand,

AsySz(θ0, c
S
B−A−PI(α, β, ĥn)) ≥ lim sup

n→∞
Pθ0,γ∗n,h(Tn(θ0 > cSB−A−PI(α, β, ĥn)))

≥ P (Wh∗ ≥ cSB−A−PI(α, β, h̃
∗)) = α. �

Proof of Theorem S-BM: Lemma BM provides that cmin−B(α, ·) is continuous over H̃ by
Assumptions S-B.2(i) evaluated at δi = ᾱi, S-B.3 evaluated at βi, S-BM.1 and S-BM.2 for
i = 1, . . . , r. Hence, using Assumptions S-B.1 and S-B.4, for any h ∈ H,

lim sup
n→∞

Pθ0,γn,h(Tn(θ0) > cSBM(α, ĥn)) ≤ P (Wh ≥ cmin−B(α, h̃) + ∆).

Thus, the same subsequencing argument as that used in the proof of Theorem S-B provides
that there is some h ∈ H such that

AsySz(θ0, c
S
BM(α, ĥn)) ≤ P (Wh ≥ cmin−B(α, h̃) + ∆) ≤ α,

where the latter inequality holds by Assumption S-BM.3(i) and the definition of ∆. On the
other hand, from Assumption S-BM.3(ii),

AsySz(θ0, c
S
BM(α, ĥn)) ≥ lim sup

n→∞
Pθ0,γn,h∗ (Tn(θ0) > cSBM(α, ĥn)) ≥ P (Wh∗ ≥ cSBM(α, h̃∗)) = α.

�

Proof of Corollary S-BM-PI: Lemma BM provides that cmin−B−PI(α, ·) is continuous

over H̃ by Assumptions S-B.3 evaluated at βi and S-BM.1 and S-BM.2 at pairs (δ
¯
m, δ̄m) and

(δ
¯i
, δ̄i) for i = 1, . . . , r. Hence, using Assumptions S-B.1, S-B.4, PI and S-BM-PI(i),

lim sup
n→∞

Pθ0,γn,h(Tn(θ0) > cSBM−PI(α, ĥn)) ≤ P (Wh ≥ cmin−B−PI(α, h̃) + η(h2))

for any h ∈ H. Thus, the same subsequencing argument used in the proof of Theorem S-B
provides that there is some h ∈ H such that

AsySz(θ0, c
S
BM−PI(α, ĥn)) ≤ P (Wh ≥ cmin−B−PI(α, h̃) + η(h2)) ≤ α,

which follows from Assumption S-BM-PI(ii)-(iii). On the other hand, using Assumption
S-BM-PI(iii), the same argument used in the proof of Theorem S-BM provides

AsySz(θ0, c
S
BM−PI(α, ĥn)) ≥ α. �
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Proof of Theorem M-BM: Many parts of the proof are quite similar to the corresponding
parts in the proof of Lemma M-B, so details are omitted. We now study lim supn→∞ Pθ0,γn,h(Tn(θ0)

> cMBM(α, ĥn)) for the same three cases corresponding to Assumption M-B.1.
Case 1: ζ({γn,h}) ∈ K. Using very similar arguments to those used in the proof of Lemma

M-B, we can show that for any h ∈ H,

lim sup
n→∞

Pθ0,γn,h(Tn(θ0) > cMBM(α, ĥn)) ≤ lim sup
n→∞

Pθ0,γn,h(Tn(θ0) ≥ c
(1)
min−B(α, ĥn) + ∆1), (A.2)

here using Assumptions M-B.2(i) evaluated at δ
(1)
i = ᾱ

(1)
i corresponding to βi and c

(1)
h and

δ
(2)
i = ᾱ

(2)
i corresponding to βi and c

(2)
h , M-B.3 evaluated at βi, M-BM.1, M-BM.2(i) and

M-BM.4(i) for i = 1, . . . , r to establish the finiteness of c
(2)
min−B(α, ĥn) + ∆2 for any finite

n and h ∈ H. Now, for h ∈ H̄c, Assumption M-BM.4(ii) immediately provides that (A.2)

is bounded above by α. For h ∈ H̄, Assumptions M-B.2(i) evaluated at δ
(1)
i = ᾱ

(1)
i cor-

responding to βi and c
(1)
h and δ

(2)
i = ᾱ

(2)
i corresponding to βi and c

(2)
h , M-B.3 evaluated at

βi, for i = 1, . . . , r, M-BM.1 and M-BM.2, in conjunction with Lemma BM, imply that

c
(1)
min−B(α, ·) + ∆1 is continuous so that by Assumption M-B.4(i), (A.2) is bounded above by

P (W
(1)
h ≥ c

(1)
min−B(α, h̃) + ∆1) ≤ α,

where the inequality results from Assumption M-BM.3(i) and the definition of ∆1.

Case 2: ζ({γn,h}) ∈ L. The proof that lim supn→∞ Pθ0,γn,h(Tn(θ0) > cMBM(α, ĥn)) ≤ α for
all h ∈ H that fall into this category is again symmetric to the proof for Case 1.

Case 3: ζ({γn,h}) ∈ Kc∩Lc. Assumptions M-B.2(i) evaluated at δ
(1)
i = ᾱ

(1)
i corresponding

to βi and c
(1)
h and δ

(2)
i = ᾱ

(2)
i corresponding to βi and c

(2)
h , M-B.3 evaluated at βi, for

i = 1, . . . , r, M-BM.1, M-BM.2(i) and M-BM.4(i) and similar arguments to those in the
proof of Lemma M-B provide that for any h ∈ H,

lim sup
n→∞

Pθ0,γn,h(Tn(θ0) > cMBM(α, ĥn))

≤ lim sup
n→∞

Pθ0,γn,h(Tn(θ0) ≥ max{c(1)
min−B(α, ĥn) + ∆1, c

(2)
min−B(α, ĥn) + ∆2}), (A.3)

in this case. Assumptions M-B.1(iii) and M-BM.4(ii)-(iii) and a similar change of measure
to that used in the proof of Theorem B-M provide that (A.3) is bounded above by α for

h ∈ H̄c. For h ∈ H̄, if W
(3)
h is stochastically dominated by W

(1)
h , (A.3) is bounded above by

lim sup
n→∞

Pθ0,γn,h(W
(1)
h ≥ c

(1)
min−B(α, ĥn) + ∆1) ≤ P (W

(1)
h ≥ c

(1)
min−B(α, h̃) + ∆1) ≤ α,

where we have again use the continuity of c
(1)
min−B(α, ·) + ∆1 and the final inequality was

established above. If W
(3)
h is stochastically dominated by W

(2)
h , the argument is symmetric.

We can now establish that AsySz(θ0, c
M
BM(α, ĥn)) ≤ α using the same type of subsequenc-

ing argument as that used in the proofs of all the main results.
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Finally, if (a) of Assumption M-BM.3(ii) holds, similar arguments to those used to es-
tablish (A.4) yield

AsySz(θ0, c
M
BM(α, ĥn)) ≥ lim sup

n→∞
Pθ0,γn,h∗(1) (Tn(θ0) > cMBM(α, ĥn))

≥ lim inf
n→∞

Pθ0,γn,h∗(1) (Tn(θ0) > c
(1)
min−B(α, ĥn) + ∆1) = α.

If (b) of Assumption M-BM.3(ii) holds, the argument is symmetric. �

Proof of Corollary M-BM-PI: The proof is very similar to the proof of Theorem M-
BM so most details are omitted. Assumptions M-B.3 evaluated at βi for i = 1, . . . , r, M-
BM.1, M-BM.2(i), M-BM-PI.1(i) and M-BM-PI.2(i) can be used to establish the finiteness

of c
(i)
min−B−PI(α, ĥn) + ηi(γ̂n,2) for i = 1, 2. In this case, Assumption M-BM-PI.1(iii) is used

directly to establish the upper bound on limiting null rejection probabilities when h ∈ H̄.
For the lower bound, Assumption M-BM-PI.1(iv) plays the role of M-BM.3(ii) in Theorem
M-BM. �

The following is an auxiliary Lemma used in many of the proofs.

Lemma BM. Let H, D, H̃ and B be metric spaces, f : H ×D → R be a function that is

continuous in both of its arguments and G : H̃×B⇒ H be a compact-valued correspondence
that is continuous in both of its arguments. If the set {(d, b) ∈ D × B : d + b = a} is
nonempty and compact, then

inf
{(d,b)∈D×B:d+b=a}

sup
x∈G(y,b)

f(x, d)

is continuous in y ∈ H̃.

Proof : The maximum theorem provides that supx∈G(y,b) f(x, d) is continuous in (y, b, d) ∈
H̃×B×D. A second application of the maximum theorem yields the lemma’s claim since,
as a correspondence from H into D×B, {(d, b) ∈ D×B : d+ b = a} is compact-valued and
trivially continuous. �

The following lemma establishes the correct asymptotic size of tests using M-Bonf CVs.
Assumptions M-B.6 and M-B-LB can be found in Appendix III.

Lemma M-B. Under Assumptions D and M-B.1 through M-B.6 for β = α− δ,

AsySz(θ0, c
M
B (α, δ, ĥn)) ≤ α.

If Assumption M-B-LB also holds,

P (W
(i)

h∗(i)
> c

(i)

h∗(i)
(1− δ) + εi) ≤ AsySz(θ0, c

M
B (α, δ, ĥn)),

where i = 1 if (a) holds and i = 2 if (b) holds.
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Proof : Take any h ∈ H. We break down the proof that lim supn→∞ Pθ0,γn,h(Tn(θ0) >

cMB (α, δ, ĥn)) ≤ α for any h ∈ H into the three cases corresponding to Assumption M-B.1.
Case 1: ζ({γn,h}) ∈ K. Assumptions M-B.2(i), M-B.3 and M-B.6(i) provide that for any

h ∈ H and finite n,

Pθ0,γn,h(| sup
h∈Iα−δ(ĥn)

c
(2)
h (1− δ)| <∞) = 1.

Hence, for any h ∈ H and ε > 0,

Pθ0,γn,h(|1(ζ̂ ∈ L̄)c
(2)
B (α, δ, ĥn)| ≥ ε) ≤ Pθ0,γn,h(ζ̂ ∈ L̄)→ 0

by Assumption M-B.5 and the fact that L̄ ⊂ int(Kc). Hence, using the fact that L̄c =
K̄ ∪ (K̄c ∩ L̄c),

lim sup
n→∞

Pθ0,γn,h(Tn(θ0) > cMB (α, δ, ĥn)) = lim sup
n→∞

Pθ0,γn,h(Tn(θ0) > 1(ζ̂ ∈ K̄)c
(1)
B (α, δ, ĥn)

+ 1(ζ̂ ∈ L̄)c
(2)
B (α, δ, ĥn) + 1(ζ̂ ∈ K̄c ∩ L̄c) max{c(1)

B (α, δ, ĥn), c
(2)
B (α, δ, ĥn)})

≤ lim sup
n→∞

Pθ0,γn,h(Tn(θ0) > 1(ζ̂ ∈ L̄c)c(1)
B (α, δ, ĥn) + 1(ζ̂ ∈ L̄)c

(2)
B (α, δ, ĥn))

= lim sup
n→∞

Pθ0,γn,h(Tn(θ0) ≥ c
(1)
B (α, δ, ĥn)), (A.4)

where the final equality follows from Assumption M-B.5 and the fact that 1(x ∈ L̄c) is
continuous at any x ∈ K. If h ∈ H̄c, Assumption M-B.6(ii) immediately implies that (A.4)
is bounded above by α. Suppose then that h ∈ H̄. Given Assumptions M-B.2(i) and M-

B.3, the Maximum Theorem implies that c
(1)
B (α, δ, ·) is continuous when Iβ(·) ⊂ H̄. Hence,

Assumptions M-B.1(i), M-B.3 and M-B.4(i) imply that (A.4) is bounded above by

P (W
(1)
h ≥ c

(1)
B (α, δ, h̃)) ≤ P (W

(1)
h ≥ c

(1)
h (1− δ) + ε1) + P (h /∈ Iα−δ(h̃)) ≤ α, (A.5)

where the first inequality is the result of the same type of Bonferroni arguments made in the
proof of Theorem S-B and the second inequality follows from Assumptions M-B.2(ii) and
M-B.3.

Case 2: ζ({γn,h}) ∈ K. The proof that lim supn→∞ Pθ0,γn,h(Tn(θ0) > cMB (α, δ, ĥn)) ≤ α for
all h ∈ H in this case is symmetric to the proof for Case 1.

Case 3: ζ({γn,h}) ∈ Kc ∩ Lc. Assumptions M-B.2(i), M-B.3 and M-B.6(i) provide that
for i = 1, 2, any h ∈ H and finite n,

Pθ0,γn,h(| sup
h∈Iα−δ(ĥn)

c
(i)
h (1− δ)| <∞) = 1

so that for any ε > 0, we have

Pθ0,γn,h(|1(ζ̂ ∈ K̄)c
(1)
B (α, δ, ĥn)| ≥ ε), Pθ0,γn,h(|1(ζ̂ ∈ L̄)c

(2)
B (α, δ, ĥn)| ≥ ε)→ 0

by Assumption M-B.5. Hence, similar expressions to those leading to (A.4) yield

lim sup
n→∞

Pθ0,γn,h(Tn(θ0) > cMB (α, δ, ĥn))

A.6



≤ lim sup
n→∞

Pθ0,γn,h(Tn(θ0) ≥ max{c(1)
B (α, δ, ĥn), c

(2)
B (α, δ, ĥn)}). (A.6)

Suppose h ∈ H̄c. If W
(3)
h is stochastically dominated by W

(1)
h , (A.6) is bounded above by

lim sup
n→∞

Pθ0,γn,h(Tn(θ0) > c
(1)
B (α, δ, ĥn)) ≤ lim sup

n→∞
P
θ0,γ̃

(1)
n,h

(Tn(θ0) > c
(1)
B (α, δ, ĥn)) ≤ α,

for some {γ̃(1)
n,h} ⊂ Γ with ζ({γ̃(1)

n,h}) ∈ K satisfying Assumption M-B.6(iii), where the first
inequality follows from Assumption M-B.6(iii) and the second from Assumption M-B.6(ii). If

W
(3)
h is stochastically dominated by W

(2)
h , the argument is symmetric. Now suppose h ∈ H̄.

If W
(3)
h is stochastically dominated by W

(1)
h , (A.6) is bounded above by

lim sup
n→∞

Pθ0,γn,h(W
(1)
h ≥ c

(1)
B (α, δ, ĥn)) ≤ P (W

(1)
h ≥ c

(1)
B (α, δ, h̃)) ≤ α,

where the first inequality results from the continuity of c
(1)
B (α, δ, ·) when Iβ ⊂ H̄ and Assump-

tion B.3 and the second inequality has been established in (A.5). If W
(3)
h is stochastically

dominated by W
(2)
h , the argument is symmetric.

Now, since we have established that lim supn→∞ Pθ0,γn,h(Tn(θ0) > cMB (α, δ, ĥn)) ≤ α for

any h ∈ H, AsySz(θ0, c
M
B (α, δ, ĥn)) ≤ α follows from the same type of subsequencing argu-

ment as that used in the proof of Theorem S-B.
Finally, if (a) of Assumption M-B-LB holds,

AsySz(θ0, c
M
B (α, δ, ĥn)) ≥ lim sup

n→∞
Pθ0,γn,h∗(1) (Tn(θ0) > cMB (α, δ, ĥn))

≥ lim inf
n→∞

Pθ0,γn,h∗(1) (Tn(θ0) > c
(1)
B (α, δ, ĥn))

≥ lim inf
n→∞

Pθ0,γn,h∗(1) (Tn(θ0) > sup
h∈H

c
(1)
h (1− δ) + ε1)

≥ P (W
(1)

h∗(1)
> c

(1)

h∗(1)
(1− δ) + ε1),

where the second inequality follows from very similar arguments to those used to establish
(A.4) and the final inequality follows from Assumption M-B.1(i). If (b) of Assumption
M-B-LB holds, the argument is symmetric. �

Clearly, if εi = 0 and J
(i)

h∗(i)
(·) is continuous at ch∗(i)(1− δ), then the lower bound is equal

to δ. We now remark on an important, easy to verify, sufficient condition that implies some

of the imposed assumptions hold: as a function from H in R, c
(i)
h (1 − δ) is continuous for

i = 1 or 2. Clearly this a strengthening of Assumption M-B.2(i). In conjunction with the
other assumptions of Lemma M-B, it also implies that one of the h∗’s in Assumption M-B-LB
exists (but it does not imply the existence of corresponding γ sequences) and M-B.6(i)-(ii)
holds. To see why Assumptions M-B.6(ii) holds in this case, notice that application of the

Maximum Theorem provides that c
(i)
B (α, δ, ·) is continuous and Bonferroni arguments yield

P (W
(i)
h ≥ c

(i)
B (α, δ, h̃)) ≤ α. See the arguments surrounding (A.5) in the proof of Lemma M-

B for details. Finally, if this condition holds, the statements made in Assumption M-B.6(iii)
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with regard to {γ̃(j)
n,h} may be dropped since then the same arguments made in Case 3 of the

proof for h ∈ H̄ may be generalized to all h ∈ H.
The following lemma establishes the correct asymptotic size of tests using PI M-Bonf

CVs. Assumption M-B-PI-LB can be found in Appendix III.

Lemma M-B-PI. Under Assumptions D, PI and M-B.1 through M-B.6 for β = α− δ,

AsySz(θ0, c
M
B−PI(α, δ, ĥn)) ≤ α.

If Assumption M-B-PI-LB also holds,

P (W
(i)

(h
∗(i)
1 ,h∗2)

> c
(i)

(h
∗(i)
1 ,h∗2)

(1− δ) + εi) ≤ AsySz(θ0, c
M
B−PI(α, δ, ĥn)),

where i = 1 if (a) holds and i = 2 if (b) holds.

Proof : The upper bound follows from identical arguments to those made in Lemma M-B.
For the lower bound, if (a) of Assumption M-B-PI-LB holds,

AsySz(θ0, c
M
B−PI(α, δ, ĥn)) ≥ lim sup

n→∞
Pθ0,γ

n,(h
∗(1)
1 ,h∗2)

(Tn(θ0) > cMB−PI(α, δ, ĥn))

≥ lim inf
n→∞

Pθ0,γ
n,(h

∗(1)
1 ,h∗2)

(Tn(θ0) > c
(1)
B1−PI(α, δ, ĥn))

≥ lim inf
n→∞

Pθ0,γ
n,(h

∗(1)
1 ,h∗2)

(Tn(θ0) > sup
h1∈H1

c
(1)
(h1,γ̂n,2)(1− δ) + ε1)

≥ P (W
(1)

(h
∗(1)
1 ,h∗2)

> c
(1)

(h
∗(1)
1 ,h∗2)

(1− δ) + ε1),

where the second inequality follows from very similar arguments to those used to establish
(A.4) and the final inequality follows from Assumptions M-B.1(i), PI and M-B-PI-LB. If (b)
of Assumption M-B-PI-LB holds, the argument is symmetric. �

9 Appendix II: Derivation of Results for Examples

9.1 Testing After Conservative Model Selection

The following is a verification that Assumption S-BM.2 is satisfied in the context of this
example for δ̄ that can be set arbitrarily close to zero. Assume that H0 holds and the
drifting sequence of parameters {γn,h} characterizes the true DGP.

(i) First, the weak law of large numbers for L1+d-bounded independent random variables

provides that γ̂n,2
p−→ h2. Results used to show (S11.10) in Andrews and Guggenberger

(2009c) provide that for |h1| <∞, ĥn,1
d−→ h1+

√
1− h2

2Z, where Z
d∼ N(0, 1). Furthermore,

when |h1| =∞, ĥn,1
p−→ h1 since ĥn,1 = n1/2β̃2/(σQ

22 + op(1)) and

n1/2β̃2 = σ(Q22)1/2n1/2γn,h,1 + σn1/2(X ′2X2)−1X ′2ε = σ(Q22)1/2n1/2γn,h,1 +Op(1).

Hence,

h̃ =

 (h1, h2), if h1 = ±∞

(h1 +
√

1− h2
2Z, h2), if h1 ∈ R.
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Second, take any β ∈ (0, 1). Using the definition of Iβ, if h1 = ±∞, then

Pθ0,γn,h(h ∈ Iβ(h̃)) = P (h = h) = 1.

If h1 ∈ R,

Pθ0,γn,h(h ∈ Iβ(h̃))

= P ((h1, h2) ∈ ([h1 +
√

1− h2
2Z +

√
1− h2

2zξ, h1 +
√

1− h2
2Z +

√
1− h2

2z1−β+ξ], h2))

= P (Z ∈ [zξ, z1−β+ξ]) = 1− β.

Third, as defined, Iβ is clearly compact-valued for any β ∈ (0, 1). Finally, to show continuity

of Iβ over H̃, first note that for β > 0, Iβ(h) = ([h1 +
√

1− h2
2zξ, h1 +

√
1− h2

2z1−β+ξ], h2).

Now, take any h ∈ H̃ = R∞ × [−1 + ω, 1 − ω] and let {hk} be a sequence in H̃ such that
hk → h. For each k, take any bk ∈ Iβ(hk) such that bk → b. Then, bk = (ak ~ (h1,k +√

1− h2
2,kzξ) + (1 − ak) ~ (h1,k +

√
1− h2

2,kz1−β+ξ), h2,k), for some ak ∈ [0, 1], where ~ is a

binary operator defined for any pair (a, b) ∈ [0, 1]× R∞ as follows:

a~ b =

 ab, if a 6= 0

0, if a = 0.

Now note that for (a, b, c) ∈ [0, 1]× R∞ × [−1 + ω, 1− ω],

f(a, b, c) ≡ a~ (b+
√

1− c2zξ) + (1− a)~ (b+
√

1− c2z1−β+ξ)

=


a(b+

√
1− c2zξ) + (1− a)(b+

√
1− c2z1−β+ξ), if a ∈ (0, 1)

b+
√

1− c2z1−β+ξ, if a = 0

b+
√

1− c2zξ, if a = 1

is continuous in all three arguments. Then, since both bk and hk converge and [0, 1] is com-

pact, ak → a ∈ [0, 1]. Hence, b = (a~(h1+
√

1− h2
2zξ)+(1−a)~(h1+

√
1− h2

2z1−β+ξ), h2) ∈
Iβ(h) so that Iβ is upper hemicontinuous. Now, take any h ∈ H̃ and let {hm} be a sequence

in H̃ such that hm → h. For each b ∈ Iβ(h), b = (a~ (h1 +
√

1− h2
2z1+ξ) + (1− a)~ (h1 +√

1− h2
2z1−β+ξ), h2) for some a ∈ [0, 1]. Then, for bm = (a~ (h1,m+

√
1− h2

2,mzξ)+(1−a)~

(h1,m +
√

1− h2
2,mz1−β+ξ), h2,m) ∈ Iβ(hm), bm → b so that Iβ is also lower hemicontinuous

and therefore continuous for any β ∈ (0, 1).
(ii) First note that h2 is trivially continuous in β. Similarly for β > 0, when |h1| = ∞,

[h1 +
√

1− h2
2zξ, h1 +

√
1− h2

2z1−β+ξ] = [h1, h1] is trivially continuous in β. Very similar

arguments to those used in (i) above show that [h1+
√

1− h2
2z1, h1+

√
1− h2

2z2] is continuous
in (z1, z2) ∈ {(z̄1, z̄2) ∈ R2 : z̄1 ≤ z̄2} when |h1| <∞. Since zξ = zξ(β) and z1−β+ξ = z1−β+ξ(β)

are continuous in β ∈ (0, 1), we have the continuity of Iβ(h) in β over (0, 1) for all h ∈ H̃. �
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To see that Assumption S-B.4 is satisfied, assume that H0 holds and the drifting sequence
of parameters {γn,h} characterizes the true DGP. Assume |h1| < ∞. Using Lemma S3 of
Andrews and Guggenberger (2009c),

ĥn,1 =
n1/2β2/σn + (n−1X ′2X2)−1n−1/2X ′2ε

(σ̂/σn)(n−1X ′2MX1X2)−1/2
= h1 + (Q22

n )−1/2(Qn,22)−1e′2n
−1/2X⊥′ε+ op(1)

where X⊥ = [x⊥1 , . . . , x
⊥
n ]′ and the second equality follows analogously to (S11.18) in An-

drews and Guggenberger (2009c). Combining this with expressions (S11.18) and (S11.25) of
Andrews and Guggenberger (2009c),

T̃n,1(θ0)

ĥn,1

Tn,2

 =


−h1h2(1− h2)−1/2 +Q

−1/2
n,11 n

−1/2e′1X
⊥′ε

h1 + (Q22
n )−1/2Q−1

n,22e
′
2n
−1/2X⊥′ε

h1 + (Q22
n )1/2(e2 −Qn,12Q

−1
n,11e1)′n−1/2X⊥′ε

+ op(1)
d−→


Z̃h,1

h̃1

Zh,2

 ,

by the Lindberg Central Limit Theorem and the Cramér-Wold device, where the limiting

random vector is a multivariate normal. Similarly, (T̂n,1(θ0), ĥn,1, Tn,2)′
d−→ (Ẑh,1, h̃1, Zh,2)′,

a multivariate normal random vector. If |h1| = ∞, ĥn,1
p−→ h1 so that we again obtain

joint convergence of the above random three-vectors. Now, take any (t1, t2)′ ∈ R2 and fixed
x ∈ R,

Pθ0,γn,h(t1Tn(θ0) + t2ĥn,1 ≤ x) = Pθ0,γn,h(t1|T̃n,1(θ0)|+ t2ĥn,1 ≤ x, |Tn,2| ≤ c)

+ Pθ0,γn,h(t1|T̂n,1(θ0)|+ t2ĥn,1 ≤ x, |Tn,2| > c)

→ P (t1|Z̃h,1|+ t2h̃1 ≤ x, |Zh,2| ≤ c)

+ P (t1|Ẑh,1|+ t2h̃1 ≤ x, |Zh,2| > c)

= P (t1Wh + t2h̃1 ≤ x),

since Wh
d∼ |Z̃h,1|I(|Zh,2| ≤ c) + |Ẑh,1|I(|Zh,2| > c) by (S11.10) of Andrews and Guggenberger

(2009c). Hence, the Cramér-Wold device yields the joint convergence of Tn(θ0) and ĥn,1.

Finally, since γ̂n,2
p−→ h2, we have the joint convergence of Tn(θ0) and ĥn = (ĥn,1, γ̂n,2). �

Here we show that (7) holds. Assume H0 holds and the drifting sequence of parameters
{γn,h} characterizes the true DGP with |h1| <∞. We have already shown the joint conver-
gence of the two random vectors to multivariate normal random vectors above. The asymp-
totic covariance matrix is all that remains to be shown. Andrews and Guggenberger (2009c)

show Var(Z̃h,1) = Var(Ẑh,1) = Var(Zh,2) = 1, Cov(Z̃h,1, Zh,2) = 0 and Cov(Ẑh,1, Zh,2) = h2.
Using the representation above, we obtain the following results in a similar fashion:

Cov(Z̃h,1, h̃1) = lim
n→∞

EGn(Q22
n )−1/2Q−1

n,22e
′
2n
−1X⊥′X⊥e1Q

−1/2
n,11

= lim
n→∞

(Q22
n )−1/2Q−1

n,22e
′
2Qne1Q

−1/2
n,11 = lim

n→∞
(Q22

n )−1/2Q−1
n,22Qn,21Q

−1/2
n,11
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= lim
n→∞

−γn,h,2(1− γ2
n,h,2)1/2 = −h2(1− h2

2)1/2,

Cov(Zh,2, h̃1) = lim
n→∞

EGn(Q22
n )−1/2Q−1

n,22e
′
2n
−1X⊥′X⊥(e2 −Qn,12Q

−1
n,11e1)(Q22

n )1/2

= lim
n→∞

(Q22
n )−1/2Q−1

n,22e
′
2Qn(e2 −Qn,12Q

−1
n,11e1)(Q22

n )1/2

= lim
n→∞

(Q22
n )−1/2Q−1

n,22(Qn,22 −Q2
n,12Q

−1
n,11)(Q22

n )1/2

= lim
n→∞

1− γ2
n,h,2 = 1− h2

2,

Cov(Ẑh,1, h̃1) = lim
n→∞

EGn(Q22
n )−1/2Q−1

n,22e
′
2n
−1X⊥′X⊥(e1 −Qn,12Q

−1
n,22e2)(Q11

n )1/2

= lim
n→∞

(Q22
n )−1/2Q−1

n,22e
′
2Qn(e1 −Qn,12Q

−1
n,22e2)(Q11

n )1/2

= lim
n→∞

(Q22
n )−1/2Q−1

n,22(Qn,12 −Qn,12Q
−1
n,22Qn,22)(Q11

n )1/2 = 0. �

9.2 Testing when a Nuisance Parameter may be on a Boundary

To verify that the distribution function of Wh is given by (4), note that by (3),

Wh
d∼

 −Zh2,1, if Zh2,2 ≥ −h1

−Zh2,1 + h2(Zh2,2 + h1), if Zh2,2 < −h1

so that

P (Wh ≤ x) = P (−Zh2,1 ≤ x, Zh2,2 ≥ −h1) (A.7)

+ P (−Zh2,1 + h2(Zh2,2 + h1) ≤ x, Zh2,2 < −h1). (A.8)

Since Zh2,1
d∼ h2Zh2,2 +

√
1− h2

2Z̃, where Z̃
d∼ N(0, 1) and E[Zh2,2Z̃] = 0, we have that (A.8)

is equal to

P

(
−
√

1− h2
2Z̃ + h2h1 ≤ x, Zh2,2 < −h1

)
= Φ

(
x− h2h1√

1− h2
2

)
Φ(−h1).

For similar reasons, Zh2,2 conditional on Zh2,1 = z1 is distributed N(h2z1, 1 − h2
2) so that,

letting f(z2|z1) denote the conditional density, (A.7) is equal to∫ ∞
−x

∫ ∞
−h1

f(z2|z1)φ(z1)dz2dz1 =

∫ ∞
−x

(
1−

∫ −h1
−∞

(1− h2
2)−1/2φ

(
z2 − h2z1

(1− h2)1/2

)
dz2

)
φ(z1)dz1

=

∫ ∞
−x

(
1−

∫ −h1(1−h22)−1/2

−∞
φ

(
z̄2 −

h2z1

(1− h2
2)1/2

)
dz̄2

)
φ(z1)dz1

=

∫ ∞
−x

(
1− Φ

(
−h1 − h2z

(1− h2
2)1/2

))
φ(z)dz,

yielding the desired result. �
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Here we verify Assumption S-BM.2 and the claim that δ̄ can be set arbitrarily close to
zero in this example. Assume that H0 holds and the drifting sequence of parameters {γn,h}
characterizes the true DGP.

(i) First, γ̂n,2 = ρ̂n
p−→ h2 and the central limit theorem provides that for h1 < ∞,

n1/2X̄n,2/σ̂n,2
d−→ h1 + Zh2,2, where Zh2,2

d∼ N(0, 1). When h1 = ∞, n1/2X̄n,2/σ̂n,2
p−→ h1

since σ̂n,2
p−→ σ2, n1/2γn,h,1 →∞ and

n1/2X̄n,2 =
1√
n

n∑
i=1

[σ2γn,h,1 + ei2] =
σ2

n

n∑
i=1

n1/2γn,h,1 +Op(1)

where ei2 is iid with finite variance σ2
2. Hence,

h̃ =

 (h1, h2) if h1 =∞

(h1 + Zh2,2, h2) if h1 ∈ R+.

Second, take any β ∈ (0, 1). As in the previous example, Pθ0,γn,h(h ∈ Iβ(h̃)) = 1 when
h1 =∞. If h1 ∈ R+,

P (h ∈ Iβ(h̃)) = P (h1 ∈ [max{0, h1 + Zh2,2 + zξ},max{0, h1 + Zh2,2 + z1−β+ξ}])
≥ P (h1 ∈ [max{0, h1 + Zh2,2 + zξ}, h1 + Zh2,2 + z1−β+ξ])

= P (h1 ∈ [h1 + Zh2,2 + zξ, h1 + Zh2,2 + z1−β+ξ])

= P (Zh2,2 ∈ [zξ, z1−β+ξ]) = 1− β

since P (h1 < 0) = 0. Third, as defined, Iβ(h) is clearly compact-valued. Finally, to show

continuity of Iβ(h) over H̃, note that for any β ∈ (0, 1), Iβ(h) = ([max{0, h1+zξ},max{0, h1+

z1−β+ξ}], h2). Now, take any h ∈ H̃ = R∞ and let {hk} be a sequence in H̃ such that hk → h.
For each k, take any bk ∈ Iβ(hk) such that bk → b. Then we have four cases: (i) if h1,k =∞,
bk = hk = (h1,k + zξ, h2,k) = (h1,k + z1−β+ξ, h2,k); (ii) if h1,k + z1−β+ξ ≤ 0, bk = (0, h2,k); (iii)
if h1,k + zξ ≤ 0 and h1,k + z1−β+ξ > 0, bk = ((1− ak)(h1,k + z1−β+ξ), h2,k) for some ak ∈ [0, 1];
(iv) if (h1,k + zξ) ∈ (0,∞), then bk = (ak(h1,k + zξ) + (1 − ak)(h1,k + z1−β+ξ), h2,k) for some
ak ∈ [0, 1]. In other terms, bk = (ak } (h1,k + zξ) + (1− ak)} (h1,k + z1−β+ξ), h2,k) for some

ak ∈ [0, 1], where } is a binary operator defined for any pair (a, b) ∈ [0, 1]× H̃1 as follows:

a} b =


ab, if b ∈ R+

0, if b < 0 or both b =∞ and a = 0

b, if b =∞ and a > 0.

Now note that for (a, b) ∈ [0, 1]× H̃1,

f(a, b) ≡ a} (b+ zξ) + (1− a)} (b+ z1−β+ξ)
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=



a(b+ zξ) + (1− a)(b+ z1−β+ξ), if (b+ zξ) ∈ R+

(1− a)(b+ z1−β+ξ), if (b+ z1−β+ξ) ∈ R+ and (b+ zξ) < 0

0, if (b+ z1−β+ξ) < 0

b+ z1−β+ξ, if (b+ zξ) =∞

is clearly continuous in a. It is also continuous in b since limb→−zξ f(a, b) = (1−a)(z1−β+ξ−zξ),
limb→−z1−β+ξ f(a, b) = 0 and limb→∞ f(a, b) = b+ z1−β+ξ. Then, the same arguments used for
the previous example provide that Iβ is upper hemicontinuous. Similar reasoning yields
lower hemicontinuity so that Iβ is continuous for all β ∈ (0, 1).

Very similar arguments to those used in the previous example establish the continuity of

Iβ(h) in β over (0, 1) for all h ∈ H̃. �

9.3 Testing After Consistent Model Selection

To prove that Assumption M-B.1 holds for this example with the quantities as described
in Section 2.2.1, note the following. As defined, part (i) of Assumption M-B.1 is implied
by 1.(i) of Proposition A.2 of Leeb and Pötscher (2005) when we treat the domain of Φ(·)
as R∞. Part (ii) of Assumption M-B.1 follows similarly from 2.(i) of Proposition A.2 in
Leeb and Pötscher (2005). To show that part (iii) of Assumption M-B.1 holds, we must
examine the cases for which γn,h,1/kn =

√
nβ2,n/σβ2,ncn → ±1. First, if

√
nβ2,n/σβ2,ncn → 1

and cn −
√
nβ2,n/σβ2,n → ∞ or

√
nβ2,n/σβ2,ncn → −1 and cn +

√
nβ2,n/σβ2,n → ∞, then,

by 1.(ii)-(iii) of Proposition A.2 in Leeb and Pötscher (2005), the null limit distribution

of Tn(θ0) is given by J
(1)
h . Second, if

√
nβ2,n/σβ2,ncn → 1 and cn −

√
nβ2,n/σβ2,n → −∞ or√

nβ2,n/σβ2,ncn → −1 and cn−
√
nβ2,n/σβ2,n → −∞, then, by 2.(ii)-(iii) of Proposition A.2 in

Leeb and Pötscher (2005), the null limit distribution of Tn(θ0) is given by J
(2)
h . Third, suppose√

nβ2,n/σβ2,ncn → 1 and cn −
√
nβ2,n/σβ2,n → r for some r ∈ R. If h1 ≡ limn→∞

√
nγn,h,1 =

limn→∞
√
nβ2,nρn/σβ2,n =∞, the null limit distribution of Tn(θ0), evaluated at x is given by

Φ(r) +

∫ x

−∞

1

h2,1

φ

(
u

h2,1

)
Φ

(
−r + h2,2h

−1
2,1u

(1− h2
2,2)1/2

)
du

(see 3. of Proposition A.2 in Leeb and Pötscher, 2005). This distribution function is increas-

ing in r and its limit as r → −∞ is equal to J
(2)
h (x) so that the null limit distribution of

Tn(θ0) is stochastically dominated by J
(2)
h . If h1 = −∞, the null limit distribution of Tn(θ0),

evaluated at x is given by∫ x

−∞

1

h2,1

φ

(
u

h2,1

)
Φ

(
−r + h2,2h

−1
2,1u

(1− h2
2,2)1/2

)
du

(again see 3. of Proposition A.2 in Leeb and Pötscher, 2005), while J
(1)
h (x) = 0 for all x ∈ R,

i.e., it is the distribution function of a pointmass at ∞, and hence stochastically dominates.
If h1 ∈ R, h2,2 ≡ limn→∞ ρn = 0 since cn → ∞ so that

√
nβ2,n/σβ2,n → ∞. Hence, by 3. of
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Proposition A.2 in Leeb and Pötscher (2005), the null limit distribution of Tn(θ0), evaluated
at x is given by Φ(r)Φ(x/h2,1 + h1) + Φ(−r)Φ(x/h2,1), which is stochastically dominated by

J
(1)
h (x) if h1 ≤ 0 and by J

(2)
h (x) if h1 > 0. The proof of the fourth and final case for which√

nβ2,n/σβ2,ncn → −1 and cn +
√
nβ2,n/σβ2,n → s for some s ∈ R is quite similar to the

previous case and is hence omitted. �

To see that Assumption M-B.4 is satisfied, begin by noting that under H0 and {γn,h},
√
n(θ̃ − θ0) =

√
n(X ′1X1)−1X ′1X2β2,n +

√
n(X ′1X1)−1X ′1ε√

n(θ̂ − θ0) =
√
n(X ′1MX2X1)−1X ′1MX2ε

ĥn,1 =
√
nρnβ2,n/σβ2,n +

√
n(ρn/σβ2,n)(X ′2MX1X2)−1X ′2MX1ε,

where Xi is the ith column of X for i = 1, 2 and ε = (ε1, . . . , εn)′, so that √n(θ̃ − θ0)

ĥn,1

 d∼ N

 −σθ,n√nγn,h,1√
nγn,h,1

 ,

 σ2
θ,n(1− ρ2

n) 0

0 ρ2
n

 d−→

 W
(1)
h

h̃1

 ,

 √n(θ̂ − θ0)

ĥn,1

 d∼ N

 0
√
nγn,h,1

 ,

 σ2
θ,n σθ,β2,nρn/σβ2,n

σθ,β2,nρn/σβ2,n ρ2
n

 d−→

 W
(2)
h

h̃1

 .

Then, for any fixed (t1, t2)′ ∈ R2 and x ∈ R and {γn,h} such that ζ({γn,h}) /∈ {−1, 1},

Pθ0,γn,h(t1Tn(θ0) + t2ĥn,1 ≤ x) = Pθ0,γn,h(t1
√
n(θ̃ − θ0) + t2ĥn,1 ≤ x, |ζ̂| ≤ 1)

+ Pθ0,γn,h(t1
√
n(θ̂ − θ0) + t2ĥn,1 ≤ x, |ζ̂| > 1)

−→

 P (t1W
(1)
h + t2h̃1 ≤ x), if |ζ({γn,h})| < 1

P (t1W
(2)
h + t2h̃1 ≤ x), if |ζ({γn,h})| > 1.

Hence, the Cramér-Wold device, along with the facts that γn,h,2,1 = σθ,n → σθ,∞ = h2,1 and
γn,h,2,2 = ρn → ρ∞ = h2,2, yields the desired result. �

To see that (9) holds, simply note that the limiting random vectors in (9) are the limits

of (
√
n(θ̃ − θ0), ĥn,1)′ and (

√
n(θ̂ − θ0), ĥn,1)′ above. �

Assumption M-BM-PI.1(i) is trivially satisfied since ηi(·) = 0 for i = 1, 2. Examining the

distribution functions of h̃ and W
(i)
h for i = 1, 2 (see Sections 6 and 2.2.1, respectively), we

can see that for h ∈ H̄:

sup
h∈Iα−δ(h̃)

c
(1)
h (1− δ) = −h̃1h2,1 − h2,1|h2,2|zξ(α−δ) + h2,1(1− h2

2,2)1/2z1−δ,

c
(1)
B−A−PI(α, 0, h̃) = c

(1)
LF−PI(α, h2) = sup

h1∈H1

{−h1h2,1 + h2,1(1− h2
2,2)1/2z1−α} =∞,
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c
(1)
min−B−PI(α, h̃) = −h̃1h2,1 + inf

δ∈[δ
¯
(1),α−δ̄(1)]

{−h2,1|h2,2|zξ(α−δ) + h2,1(1− h2
2,2)1/2z1−δ}, W

(1)
h

h̃1

 d∼

  −h1h2,1

h1

 ,

 h2
2,1(1− h2

2,2) 0

0 h2
2,2

 
so that

W
(1)
h − c

(1)
min−B−PI(α, h̃)

d∼ N(0, h2
2,1) + inf

δ∈[δ
¯
(1),α−δ̄(1)]

{−h2,1|h2,2|zξ(α−δ) + h2,1(1− h2
2,2)1/2z1−δ},

which is an absolutely continuous random variable. Similarly, for h ∈ H̄,

W
(2)
h −c

(2)
min−B−PI(α, h̃)

d∼ N(0, h2
2,1)+min{h2,1z1−α, inf

δ∈[δ
¯
(2),α−δ̄(2)]

h2,1z1−δ}
d∼ N(0, h2

2,1)+h2,1z1−α

so that Assumption M-BM-PI.1(ii) is satisfied. We can see from the above expressions that
for h ∈ H̄,

δ̃(1) ≡ argminδ∈[δ
¯
(1),α−δ̄(1)] c

(1)
B−PI(α, δ, h̃)

= argminδ∈[δ
¯
(1),α−δ̄(1)]{−h2,1|h2,2|zξ(α−δ) + h2,1(1− h2

2,2)1/2z1−δ},

which is nonrandom. Similarly, for h ∈ H̄,

δ̃(2) ≡ argminδ∈[δ
¯
(2),α−δ̄(2)] c

(2)
B−PI(α, δ, h̃) = argminδ∈[δ

¯
(2),α−δ̄(2)] h2,1z1−δ = h2,1z1−α+δ̄(2) ,

which is nonrandom, so that the MLLDs analog of Corollary SCF holds. This implies that
Assumption M-BM-PI.1(iii) is satisfied with ηi(·) = 0 for i = 1, 2. This latter result also
guarantees that part (b) of Assumption M-BM-PI.1(iv) is satisfied since

lim inf
n→∞

Pθ0,γn,h(Tn(θ0) > c
(2)
min−B−PI(α, ĥn)) = P (W

(2)
h > h2,1z1−α) = α

for all h ∈ H̄ with ζ({γn,h}) ∈ L by Assumption M-B.4 and the continuity given by
Lemma BM. To find the sequence {γn,h∗(2)}, take any sequence {γn} with limn→∞

√
nγn,1 ∈

int(L̄) ∩ H̄1 = (−∞,−1) ∪ (1,∞) and γn,2,2 = ρn = 1/cn (γn,2,1 need only converge to
some h2,1 ∈ [η,M ]) so that limn→∞ γn,1/kn = limn→∞

√
nγn,1 ∈ int(L̄). For this sequence,

h∗(2) = (limn→∞
√
nγn,1, h2,1, 0). �

Moving on to Assumption M-BM-PI.2, note that |c(1)
min−B−PI(α, ĥn)| ≤ | suph∈Iα−δ(ĥn) c

(1)
h (1−

δ)| for any δ ∈ [δ
¯

(1), α − δ̄(1)]. Suppose Pθ0,γn,h(| suph∈Iα−δ(ĥn) c
(1)
h (1− δ)| =∞) > 0 for some

such δ and h ∈ H̄c. This means

Pθ0,γn,h

(
| sup
h1∈[ĥn,1+γ̂n,2,2zξ,ĥn,1+γ̂n,2,2z1−α+δ+ξ]

{−h1γ̂n,2,1 + z1−δγ̂n,2,1(1− γ̂2
n,2,2)1/2}| =∞

)
> 0
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and consequently

Pθ0,γn,h(−∞ or ∞ ∈ [ĥn,1 + γ̂n,2,2zξ, ĥn,1 + γ̂n,2,2z1−β+ξ]) > 0.

But this is at odds with the fact that ĥn
d∼
√
nγn,h,1 + N(0, γ̂2

n,2,2) under Pθ0,γn,h and the
definition of Γ for this problem, and we arrive at a contradiction. Also, we clearly have

Pθ0,γn,h(|c(2)
min−B−PI(α, ĥn)| = ∞) = 0 since c

(2)
min−B−PI(α, ĥn) = γ̂n,2,1z1−α. Hence, Assump-

tion M-BM-PI.2(i) is satisfied. Now, consider any h ∈ H̄c and {γn,h} with ζ({γn,h}) ∈ K.
Using the facts that, under γn,h,

c
(1)
B−A−PI(α, 0, ĥn) = c

(1)
LF−PI(α, ĥn)) = sup

h1∈H1

{−h1γ̂n,2,1 + γ̂n,2,1(1− γ̂n,2,2)1/2} =∞,

sup
h∈Iα−δ(ĥn)

c
(1)
h (1− δ) = −

√
nγn,h,1 −

√
n
γ̂n,2,1γ̂n,2,2X

′
2MX1ε

σβ2,nX
′
2MX1X2

− γ̂n,2,1γ̂n,2,2zξ + γ̂n,2,1(1− γ̂2
n,2,2)1/2z1−δ

for any δ ∈ [δ
¯

(1), α− δ̄(1)], we have

c
(1)
min−B−PI(α, ĥn) = −

√
nγn,h,1 −

√
n
γ̂n,2,1γ̂n,2,2X

′
2MX1ε

σβ2,nX
′
2MX1X2

+ inf
δ∈[δ

¯
(1),α−δ̄(1)]

{−γ̂n,2,1γ̂n,2,2zξ + γ̂n,2,1(1− γ̂2
n,2,2)1/2z1−δ}.

We also have

Tn(θ0) =

(
−
√
nγn,h,1 +

√
n
X ′1ε

X ′1X1

)
1(ζ({γn,h}) + op(1) ≤ 1)

+
√
n
X ′1MX2ε

X ′1MX2X1

1(ζ({γn,h}) + op(1) > 1)

= −
√
nγn,h,1 +

√
n
X ′1ε

X ′1X1

+ op(1)

so that

lim sup
n→∞

Pθ0,γn,h(Tn(θ0) > c
(1)
min−B−PI(α, ĥn))

= lim sup
n→∞

Pθ0,γn,h(
√
n
X ′1ε

X ′1X1

+
√
n
γ̂n,2,1γ̂n,2,2X

′
2MX1ε

σβ2,nX
′
2MX1X2

≥

inf
δ∈[δ

¯
(1),α−δ̄(1)]

{−γ̂n,2,1γ̂n,2,2zξ + γ̂n,2,1(1− γ̂2
n,2,2)1/2z1−δ})

= P (h2,1(1− h2
2,2)1/2Z1 + h2,1h2,2Z2 ≥ inf

δ∈[δ
¯
(1),α−δ̄(1)]

{−h2,1h2,2zξ(α−δ) + h2,1(1− h2
2,2)1/2z1−δ})

= P (h2,1(1− h2
2,2)1/2Z1 + h2,1h2,2Z2 ≥ −h2,1h2,2zξ(α−δ̃) + h2,1(1− h2

2,2)1/2z1−δ̃)

≤ P (h2,1(1− h2
2,2)1/2Z1 ≥ h2,1(1− h2

2,2)1/2z1−δ̃) + P (h2,1h2,2Z2 ≥ h2,1h2,2z1−ξ(α−δ̃))
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= δ̃ + ξ(α− δ̃) < δ̃ + α− δ̃ = α,

where Z1, Z2
d∼ N(0, 1) and δ̃ = argminδ∈[δ

¯
(1),α−δ̄(1)]{−h2,1h2,2zξ(α−δ) + h2,1(1 − h2

2,2)1/2z1−δ}.
Now consider any h ∈ H̄c and {γn,h} with ζ({γn,h}) ∈ L. Then,

Pθ0,γn,h(Tn(θ0) > c
(2)
min−B−PI(α, ĥn)) = Pθ0,γn,h(Tn(θ0) > γ̂n,2,1z1−α)→ P (W

(2)
h > h2,1z1−α) = α.

Hence, Assumption M-BM-PI.2(ii) is satisfied. Finally, suppose ζ({γn,h}) ∈ Lc ∩ Kc for

some h ∈ H̄c. Let γ̃
(1)
n,h,1 = χ(1)γn,h,1 and γ̃

(1)
n,h,2 = γn,h,2 for all n with χ(1) ∈ (0, 1) so that

limn→∞
√
nγ̃

(1)
n,h,1 = χ(1) limn→∞

√
nγn,h,1 = h1 = ±∞ and, recalling that Lc ∩Kc = {−1, 1},

lim
n→∞

√
nγ̃

(1)
n,h,1/kn = χ(1) lim

n→∞

√
nγn,h,1/kn ∈ {−χ(1), χ(1)} ⊂ (−1, 1) = K.

Under {γn,h}, by results derived above, c
(1)
min−B−PI(α, ĥn) = −

√
nγn,h,1γn,h,2,1 +Op(1) so that

plimn→∞
c

(1)
min−B−PI(α, ĥn(γ̃

(1)
n,h))

c
(1)
min−B−PI(α, ĥn(γn,h))

= plimn→∞
−
√
nχ(1)γn,h,1γn,h,2 +Op(1)

−
√
nγn,h,1γn,h,2 +Op(1)

= χ(1) ≤ 1.

Now let γ̃
(2)
n,h,1 = χ(2)γn,h,1 and γ̃

(1)
n,h,2 = γn,h,2 for all n with χ(2) ∈ (1,∞) so that limn→∞

√
nγ̃

(2)
n,h,1

= χ(2) limn→∞
√
nγn,h,1 = h1 and

lim
n→∞

√
nγ̃

(2)
n,h,1/kn = χ(2) lim

n→∞

√
nγn,h,1/kn ∈ {−χ(2), χ(2)} ⊂ [−∞,−1) ∪ (1,∞] = L.

Under {γn,h}, c(2)
min−B−PI(α, ĥn) = γ̂n,2,1z1−α so that

plimn→∞
c

(2)
min−B−PI(α, ĥn(γ̃

(2)
n,h))

c
(2)
min−B−PI(α, ĥn(γn,h))

= plimn→∞ 1 = 1.

Hence, Assumption M-BM-PI.2(iii) holds. �

10 Appendix III: Auxiliary Assumptions and Results

In this appendix, we provide some auxiliary results mentioned in the main text as well as
some auxiliary assumptions enforced in the lemmas of Appendix I.

Corollary SCF. Suppose Assumptions D, S-B.1, S-B.2(i) evaluated at the δi = ᾱi that
corresponds to βi, S-B.3 evaluated at βi, S-B.4, S-BM.1 and S-BM.2 hold for i = 1, . . . , r. If
there are some h∗ ∈ H and ĩ ∈ {1, . . . , r} such that P (Wh∗ ≥ suph∈Iβ

ĩ
(h̃∗) ch(1− ᾱĩ)) = α and,

for every h ∈ H, either (a) P (cSBM(α, h̃) = cSB(α, δ̃, h̃)) = 1 for some nonrandom δ̃ ∈ [δ
¯
, α−δ̄]

or (b) P (cSBM(α, h̃) = cB−A(α, βî, h̃)) = 1 for some nonrandom î ∈ {1, . . . , r}, then

AsySz(θ0, c
S
BM(α, ĥn)) = α
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when ∆ = 0.
Suppose instead that Assumptions D, PI, S-B.1, S-B.3 evaluated at βi, S-B.4, PI, S-

BA-PI(i) and (iii) evaluated at βi and corresponding āi(·), S-BM.1 and S-BM.2 evaluated

at pairs (δ
¯
m, δ̄m) and (δ

¯ i, δ̄i) hold for i = 1, . . . , r. If there are some h∗ ∈ H and ĩ ∈
{1, . . . , r} such that P (Wh∗ ≥ suph∈Iβ

ĩ
(h̃∗) ch(1 − āĩ(h∗2))) = α and, for every h ∈ H either

(a) P (cSBM−PI(α, h̃) = cSB−PI(α, δ̃, h̃)) = 1 for some nonrandom δ̃ ∈ [δ
¯
m, α − δ̄m] or (b)

P (cSBM−PI(α, h̃) = cB−A−PI(α, βî, h̃)) = 1 for some nonrandom î ∈ {1, . . . , r}, then

AsySz(θ0, c
S
BM−PI(α, ĥn)) = α

when η(·) = 0.

Proof : We provide the proof for the non-PI case as that for the PI case is quite similar. By
the same arguments as those used in the proof of Theorem S-BM, for any h ∈ H,

lim sup
n→∞

Pθ0,γn,h(Tn(θ0) > cSmin−B(α, ĥn)) ≤ P (Wh ≥ cmin−B(α, h̃)).

If (a) holds,

P (Wh ≥ cmin−B(α, h̃)) = P (Wh ≥ cSB(α, δ̃, h̃)) ≤ α,

where the inequality follows from (A.1). If (b) holds,

P (Wh ≥ cmin−B(α, h̃)) = P (Wh ≥ cB−A(α, βî, h̃)) ≤ α.

We then obtain AsySz(θ0, c
S
BM(α, ĥn)) ≤ α by identical arguments to those used in the proof

of Theorem S-B. Finally, since cSBM(α, ĥn) ≤ cB−A(α, βĩ, ĥn) for all γ ∈ Γ and n,

α = P (Wh∗ ≥ sup
h∈Iβ

ĩ
(h̃∗)

ch(1− ᾱĩ)) ≤ AsySz(θ0, cB−A(α, βĩ, ĥn)) ≤ AsySz(θ0, c
S
BM(α, ĥn)),

similarly to the proof of Theorem S-BA. �

The enforcement of Assumption S-B.2 for δ = α in the above corrolary is only used to
establish the lower bound of α on the asymptotic size. The new condition that ensures size

control in the absence of a SCF holds, for example, in the non-PI context when δ̃ is invariant

to h̃ and in the PI context when δ̃ is invariant to h̃1.
The following proposition provides a sufficient condition for part (ii) of Assumption S-

BM.3 to hold.

Proposition S-BM. (i) For ∆ > 0, Assumption S-BM.3(ii) holds if the distribution func-

tion of W̃h ≡ Wh− cmin−B(α, h̃), J̃h(·) say, is continuous over h ∈ H and strictly increasing

at ∆(h) for all h ∈ Ĥ ≡ {h ∈ H : J̃h(0) ≤ 1− α}.
(ii) For ∆ = 0, Assumption S-BM.3(ii) holds if there are some h∗ ∈ H and ĩ ∈ {1, . . . , r}

such that P (Wh∗ ≥ suph∈Iβ
ĩ
(h̃∗) ch(1− ᾱĩ)) = α.
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Proof : (i) Note that for h ∈ Ĥ, ∆(h) = J̃−1
h (1 − α) is continuous over h ∈ Ĥ ⊂ H (by

the continuity of J̃h in h) and that Ĥ is compact (being the preimage of a closed set of a
continuous function). Hence, the extreme value theorem provides that ∆ = suph∈Ĥ ∆(h) =

∆(h∗) for some h∗ ∈ Ĥ so that P (Wh∗ ≥ cSBM(α, h̃∗)) = P (Wh∗ ≥ cmin−B(α, h̃∗)+∆(h∗)) = α

since h∗ ∈ Ĥ.
(ii) P (Wh∗ ≥ cSBM(α, h̃∗)) ≤ α by construction and P (Wh∗ ≥ cSBM(α, h̃∗)) ≥ P (Wh∗ ≥

suph∈Iβ
ĩ
(h̃∗) ch(1− ᾱĩ)) = α. �

The following two assumptions are used in Lemma M-B in Appendix I.

Assumption M-B.6. Consider some fixed (α, δ) ∈ (0, 1)× [0, α] and any h ∈ H̄c.
(i) For any finite n and i = 1, 2,

Pθ0,γn,h(| sup
h∈Iα−δ(ĥn)

c
(i)
h (1− δ)| <∞) = 1.

(ii) If ζ({γn,h}) ∈ K, then lim supn→∞ Pθ0,γn,h(Tn(θ0) > c
(1)
B (α, δ, ĥn)) ≤ α. If ζ({γn,h}) ∈

L, then lim supn→∞ Pθ0,γn,h(Tn(θ0) > c
(2)
B (α, δ, ĥn)) ≤ α.

(iii) If ζ({γn,h}) ∈ Lc ∩Kc, there are some {γ̃(1)
n,h}, {γ̃

(2)
n,h} ⊂ Γ such that ζ({γ̃(1)

n,h,1}) ∈ K
and ζ({γ̃(2)

n,h,1}) ∈ L and

plimn→∞

sup
h∈Iα−δ(ĥn(γ̃

(i)
n,h))

c
(i)
h (1− δ)

suph∈Iα−δ(ĥn(γn,h)) c
(i)
h (1− δ)

≤ 1

wp 1 for i = 1, 2, where ĥn(γn,h) (ĥn(γ̃
(i)
n,h)) denotes the estimator of Assumption B.3 when

H0 and the drifting sequence of parameters {γn,h} ({γ̃(i)
n,h}) characterize the true DGP.

Similar comments to those following Assumption M-BM.4 apply to the above assumption.
The following assumption is used only to establish a lower bound on the size of a test using
M-Bonf CVs. It is not required to show size control.

Assumption M-B-LB. Either (a) suph∈H c
(1)
h (1− δ) = c

(1)

h∗(1)
(1− δ) for some h∗(1) ∈ H and

there is some {γn,h∗(1)} ⊂ Γ with ζ({γn,h∗(1)}) ∈ int(K̄) or (b) suph∈H c
(2)
h (1−δ) = c

(2)

h∗(2)
(1−δ)

for some h∗(2) ∈ H and there is some {γn,h∗(2)} ⊂ Γ with ζ({γn,h∗(2)}) ∈ int(L̄).

Like Assumption M-B.2, this assumption is also essentially a continuity condition. An
appeal to the continuity in h of one of the localized quantiles and the extreme value theorem
can be used to verify it so long as the corresponding condition on the normalized drifting
sequence is shown to hold.

We replace Assumption M-B-LB by the following to establish the lower bound on the
asymptotic size of the corresponding test using PI M-Bonf CVs.
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Assumption M-B-PI-LB. Consider some fixed δ ∈ (0, 1). For some h∗2 ∈ H2, either (a)

suph1∈H1
c

(1)
(h1,h∗2)(1− δ) = c

(1)

(h
∗(1)
1 ,h∗2)

(1− δ) for some h
∗(1)
1 ∈ H1, suph1∈H1

c
(1)
(h1,·)(1− δ) is contin-

uous at h∗2 as a function into R∞ and there is some {γ
n,(h

∗(1)
1 ,h∗2)

} ∈ Γ with ζ({γ
n,(h

∗(1)
1 ,h∗2)

}) ∈
int(K̄) or (b) suph1∈H1

c
(2)
(h1,h∗2)(1−δ) = c

(2)

(h
∗(2)
1 ,h∗2)

(1−δ) for some h
∗(2)
1 ∈ H1, suph1∈H1

c
(2)
(h1,·)(1−

δ) is continuous at h∗2 as a function into R∞ and there is some {γ
n,(h

∗(2)
1 ,h∗2)

} ∈ Γ with

ζ({γ
n,(h

∗(2)
1 ,h∗2)

}) ∈ int(L̄).

Similar comments with regard to continuity to those following Assumption M-B-LB apply
here as well.

We now present formal statements regarding the asymptotic size of tests using (PI) M-
Bonf-Adj CVs as well as additional imposed assumptions. The proofs of the following two
corollaries are very similar to those found in Appendix I and are hence omitted.

Assumption M-BA. (i) P (W
(i)
h = c

(i)
B−A(α, β, h̃)) = 0 for all h ∈ H̄ and i = 1, 2.

(ii) Either (a) P (Wh∗(1) ≥ c
(1)
B−A(α, β, h̃∗(1))) = α for some h∗(1) ∈ H̄ and there is some

{γn,h∗(1)} ⊂ Γ with ζ({γn,h∗(1)}) ∈ int(K̄) or (b) P (Wh∗(2) ≥ c
(2)
B−A(α, β, h̃∗(2))) = α for some

h∗(2) ∈ H̄ and there is some {γn,h∗(2)} ⊂ Γ with ζ({γn,h∗(2)}) ∈ int(L̄).

Similar remarks to those following Assumption S-BA apply here.

Corollary M-BA. Under Assumptions D, M-B.1, M-B.2(i) evaluated at δ = ᾱ(1) for i = 1
and δ = ᾱ(2) for i = 2, M-B.3 through M-B.6, replacing “α − δ” by β and “δ” by ᾱ(1) for

i = 1 and ᾱ(2) for i = 2 in parts (i) and (iii) of Assumption M-B.6 and “c
(i)
B ” by “c

(i)
B−A” for

i = 1, 2 in part (ii) of Assumption M-B.6, and M-BA,

AsySz(θ0, c
M
B−A(α, β, ĥn)) = α.

Assumption M-BA-PI. (i) For i = 1, 2, ā(i) : H2 → [δ
¯

(i), α− δ̄(i)] is a continuous function.

(ii) For i = 1, 2, P (W
(i)
h = c

(i)
B−A−PI(α, β, h̃)) = 0 for all h ∈ H̄.

(iii) For i = 1, 2, P (W
(i)
h ≥ suph∈Iβ(h̃) c

(i)
h (1− ā(i)(h2))) ≤ α for all h ∈ H̄.

(iv) Either (a) P (Wh∗(1) ≥ c
(1)
B−A−PI(α, β, h̃

∗(1))) = α for some h∗(1) ∈ H̄ and there is

some {γn,h∗(1)} ⊂ Γ with ζ({γn,h∗(1)}) ∈ int(K̄) or (b) P (Wh∗(2) ≥ c
(2)
B−A−PI(α, β, h̃

∗(2))) = α

for some h∗(2) ∈ H̄ and there is some {γn,h∗(2)} ⊂ Γ with ζ({γn,h∗(2)}) ∈ int(L̄).

Similar remarks to those following Assumption S-BA-PI apply here.

Corollary M-BA-PI. Under Assumptions D, PI, M-B.1, M-BM.1, M-B.3 through M-B.6,
replacing “α− δ” by β and “δ” by ā(1)(γ̂n,2) for i = 1 and ā(2)(γ̂n,2) for i = 2 in parts (i) and

(iii) of Assumption M-B.6 and “c
(i)
B ” by “c

(i)
B−A−PI” for i = 1, 2 in part (ii) of Assumption

M-B.6, and M-BA-PI,
AsySz(θ0, c

M
B−A−PI(α, β, ĥn)) = α.

We now present the final two sufficient conditions, useful for verifying Assumptions im-
posed in Theorem M-BM and Corollary M-BM-PI.
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Proposition M-BM. Suppose Assumptions D, M-B.1, M-B.2(i) evaluated at δ
(1)
i = ᾱ

(1)
i

corresponding to βi and c
(1)
h and δ

(2)
i = ᾱ

(2)
i corresponding to βi and c

(2)
h , either (a) M-

B.3 evaluated at βi or (b) c
(1)
B−A(α, βi, h) and c

(2)
B−A(α, βi, h) are invariant to h, M-B.4, M-

B.5, M-BM.1, M-BM.2 and M-BM.3(i) hold for i = 1, . . . , r. If either (a) P (W
(1)

h∗(1)
≥

c
(1)
min−B(α, h̃∗(1)) + ∆1) = α for some h∗(1) ∈ H̄ and there is some {γn,h∗(1)} ⊂ Γ with

ζ({γn,h∗(1)}) ∈ int(K̄) or (b) P (W
(2)

h∗(2)
≥ c

(2)
min−B(α, h̃∗(2)) + ∆2) = α for some h∗(2) ∈ H̄

and there is some {γn,h∗(2)} ⊂ Γ with ζ({γn,h∗(2)}) ∈ int(L̄), then Assumption M-BM.3(ii)
holds.

Proof : Suppose (a) holds. Then,

α ≥ lim sup
n→∞

Pθ0,γn,h∗(1) (Tn(θ0) > c
(1)
min−B(α, ĥn) + ∆1)

≥ lim inf
n→∞

Pθ0,γn,h∗(1) (Tn(θ0) > c
(1)
min−B(α, ĥn) + ∆1)

≥ P (W
(1)

h∗(1)
> c

(1)
min−B(α, h̃∗(1)) + ∆1) = α,

where the first inequality is shown in the proof of Theorem M-BM. The proof when (b) holds
is very similar. �

Proposition M-BM-PI. Suppose Assumptions D, PI, M-B.1, either (a) M-B.3 evalu-

ated at βi or (b) c
(1)
B−A(α, βi, h) and c

(2)
B−A(α, βi, h) are invariant to h1 for i = 1, . . . , r,

M-B.4, M-B.5, M-BM.1, M-BM.2 and M-BM-PI.1(i)-(iii) hold. If either (a) P (W
(1)

h∗(1)
≥

c
(1)
min−B−PI(α, h̃

∗(1)) + η1(h
∗(1)
2 )) = α for some h∗(1) ∈ H̄ and there is some {γn,h∗(1)} ⊂ Γ

with ζ({γn,h∗(1)) ∈ int(K̄) or (b) P (W
(2)

h∗(2)
≥ c

(2)
min−B−PI(α, h̃

∗(2)) + η2(h
∗(2)
2 )) = α for some

h∗(2) ∈ H̄ and there is some {γn,h∗(2)} ⊂ Γ with ζ({γn,h∗(2)) ∈ int(L̄), then Assumption
M-BM-PI.1(iv) holds.

Proof : Suppose (a) holds. Then,

α ≥ lim sup
n→∞

Pθ0,γn,h∗(1) (Tn(θ0) > c
(1)
min−B−PI(α, ĥn) + η1(γ̂n,2))

≥ lim inf
n→∞

Pθ0,γn,h∗(1) (Tn(θ0) > c
(1)
min−B−PI(α, ĥn) + η1(γ̂n,2))

≥ P (W
(1)

h∗(1)
> c

(1)
min−B−PI(α, h̃

∗(1)) + η1(h
∗(2)
2 )) = α,

where the first inequality is shown in the proof of Corollary M-BM-PI. The proof when (b)
holds is very similar. �

These sufficient conditions are useful because they are typically the direct byproducts of
the construction of the SCFs ∆i (or SCF functions ηi(·)) so that the only part that needs to
be verified is the existence of the corresponding parameter sequences.
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Table 1: Maximum (Over β2) Null Rejection Probabilities for Different Values of γ2 in the
Post-Conservative Model Selection Example

|γ2| = 0 0.2 0.4 0.6 0.8 0.9 0.95 0.99 Max

β = 0, w/o SCF 0.051 0.052 0.051 0.048 0.046 0.048 0.047 0.048 0.052

β = 0.89, w/o SCF 0.052 0.050 0.051 0.050 0.048 0.048 0.048 0.086 0.086

β = 0.89, w/ SCF 0.052 0.050 0.050 0.050 0.048 0.048 0.048 0.086 0.086

Table 2: Maximum (Over β2) Null Rejection Probabilities for Different Values of γ2,2 in the
Post Consistent Model Selection Example

|γ2,2| = 0 0.2 0.4 0.6 0.8 0.9 0.95 0.99 Max

β = 0, w/o SCF = 0.052 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.052
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Figure 1: Post-Conservative MS Critical Values, h2 = 0.9
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Figure 2: Post-Conservative MS Critical Values, h2 = 0.6
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Figure 3: Post-Conservative MS Power, γ2 = 0.9, θ = 0.2
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Figure 4: Post-Conservative MS Power, γ2 = 0.6, θ = 0.2
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Figure 5: Post-Conservative MS Power, γ2 = 0.3, θ = 0.2
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Figure 6: Post-Conservative MS Power, γ2 = 0, θ = 0.2
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Figure 7: Post-Conservative MS Power, γ2 = 0.9, θ = 0.3
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Figure 8: Post-Consistent MS Power Using PI M-Bonf-Min CVs, γ2,2 = 0.9
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Figure 9: Post-Consistent MS Power Using PI M-Bonf-Min CVs, γ2,2 = 0.6
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Figure 10: Post-Consistent MS Power Using PI M-Bonf-Min CVs, γ2,2 = 0.3
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Figure 11: Post-Consistent MS Power Using PI M-Bonf-Min CVs, γ2,2 = 0


