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Abstract

I provide conditions under which the trimmed FDQML estimator, advanced by

McCloskey (2010) in the context of fully parametric short-memory models, can be used

to estimate the long-memory stochastic volatility model parameters in the presence

of additive low-frequency contamination in log-squared returns. The types of low-

frequency contamination covered include level shifts as well as deterministic trends. I

establish consistency and asymptotic normality in the presence or absence of such low-

frequency contamination under certain conditions on the growth rate of the trimming

parameter. I also provide theoretical guidance on the choice of trimming parameter

by heuristically obtaining its asymptotic MSE-optimal rate under certain types of low-

frequency contamination. A simulation study examines the finite sample properties of

the robust estimator, showing substantial gains from its use in the presence of level

shifts. The finite sample analysis also explores how different levels of trimming affect

the parameter estimates in the presence and absence of low-frequency contamination

and long-memory.
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1 Introduction

The empirical features of volatility measures, such as slowly decaying correlograms and large

spectral density estimates near the zero frequency, have spurred considerable interest in mod-

eling volatility as a long-memory process over the past twenty years. Of the fully parametric

methods for long-memory modeling, the long-memory stochastic volatility (LMSV) model of

Breidt et al. (1998) and Harvey (1998) has proven quite popular. In large part this is because

the LMSV model can simultaneously account for the empirical presence of noise while allow-

ing for both long and short memory dynamics in log-squared returns, one of the foremost

measures of volatility. The LMSV model has also proven useful for forecasting volatility,

see Deo et al. (2006) for example. Nonetheless, recent work has shown that the appearance

of long-memory in some semiparametric memory parameter estimates may be spuriously

caused, or at least exaggerated, by level shifts or deterministic trends in the mean of the

log-squared returns series. See, e.g., Diebold and Inoue (2001), Granger and Hyung (2004),

Mikosch and Stărică (2004), Perron and Qu (2010) and McCloskey and Perron (2010). As

we will see, the standard fully parametric technique for estimating the parameters of LMSV

models also suffers this upward biased in the memory parameter estimate in the presence

of “additive low-frequency contamination”, including level shifts and deterministic trends.

The potential presence of low-frequency contamination in volatility measures is not merely a

theoretical curiosity. Among others, Granger and Hyung (2004), Mikosch and Stărică (2004),

Perron and Qu (2010) and McCloskey and Perron (2010) have also provided evidence that

this is in fact a very real and salient feature of volatility data. This study aims to fill the

gap in current estimation methodology by providing a robust estimator of the LMSV model

parameters in the presence or absence of low-frequency contamination.

There are two basic methodologies for estimating the memory parameter: fully and semi-

parametric. Breidt et al. (1998) and Harvey (1998) were the first to propose fully parametric

estimates of the LMSV model parameters. Many refinements of standard semiparametric

memory parameter estimates (e.g., the log-periodogram regression estimator of Geweke and

Porter-Hudak, 1983, and the local Whittle estimator of Künsch, 1987) have also been ad-

vanced to reduce the bias that may arise from the short-memory dynamics and noise present

in the log-squared returns of a LMSV process; see Deo and Hurvich (2001), Sun and Phillips

(2003), Andrews and Sun (2004), Hurvich et al. (2005) and Frederiksen and Nielsen (2008),

among others. However, these estimators are not robust to low-frequency contamination.

Focusing on a separate problem, McCloskey and Perron (2010) and Iacone (2010) have also
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proposed semiparametric estimation techniques for estimating the memory parameter of a

process that is subject to low-frequency contamination. However, their estimators are sensi-

tive to the presence of short-memory dynamics and noise, which can be quite substantial in

the data. An estimator that simultaneously accounts for noise, short-memory dynamics and

long-memory dynamics while remaining robust to low-frequency contamination is therefore

desirable.

To the author’s knowledge, the trimmed frequency domain quasi-maximum likelihood

(FDQML) estimator of the LMSV model parameters, studied in this article, is the first to

do just that. However, as is always the case in fully parametric estimation, the price one

must pay for these desirable features is that the LMSV model must be correctly specified.

Nevertheless, a distinct advantage of the fully parametric approach provided here is that it

makes forecasting feasible. The trimmed FDQML methodology also has the appeal of allow-

ing the practitioner to remain agnostic about the form that the low-frequency contamination

may take (e.g., level shifts, smooth trends or fractional trends) or whether contamination

is indeed present at all. For an overview of (trimmed) FDQML estimation, see McCloskey

(2010) and the references therein.

Breidt et al. (1998) and Harvey (1998) originally proposed estimation of the LMSV

model parameters in the frequency domain but did not explore the implications of trimming

and/or low-frequency contamination. McCloskey (2010) advanced the trimmed FDQML

methodology in the context of low-frequency contaminated short-memory models, ruling

out the specification of this article. This article establishes the consistency and asymptotic

normality of the trimmed FDQML estimator in the long-memory context of the LMSV

model in the potential presence of low-frequency contamination and provides theoretical

guidance on the choice of trimming by heuristically obtaining the asymptotic mean-squared

error (MSE)-minimizing rate for the trimming parameter to grow with the sample size. A

Monte Carlo study confirms the potential usefulness of this “optimal” rate for the trimming

parameter and assesses the tradeoffs involved in the use of various trimmings in the presence

and absence of low-frequency contamination.

The remainder of this article is composed as follows. Section 2 details the (potentially)

contaminated LMSV model. Section 3 introduces the robust estimation strategy and dis-

cusses the assumptions imposed for consistency and asymptotic normality of the trimmed

FDQML estimator. Section 4 develops theoretical guidance for choosing the trimming pa-

rameter based on minimizing the asymptotic MSE of the estimator. Section 5 provides a

simulation study of the finite sample properties of the estimator for calibrated data generat-
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ing processes, discussing the choice of trimming parameter in finite samples. All proofs are

contained in the mathematical appendix. In what follows, R and Z denote the sets of real

numbers and integers; I(·) denotes the indicator function; �K� denotes the largest integer

value below any genericK ∈ R; O(·), o(·), Op(·) and op(·) denote the usual (stochastic) orders
of magnitude; “

d−→”, “
p−→” and “

a.s.−→” indicate weak convergence, convergence in proba-

bility and almost sure convergence. For two function of T , A(T ) and B(T ), A(T ) � B(T )

means that A(T )/B(T ) converges to a constant as T → ∞. For a generic vector or matrix

M , M = Op(A(T ))/O(A(T ))/op(A(T ))/o(A(T )) indicates that each element of M has the

corresponding order of magnitude. All convergence concepts are taken to mean as the sample

size grows to infinity.

2 The Contaminated LMSV Model

We begin with some preliminary terminology and quantities of interest. For a generic process

{yt}, the discrete Fourier transform and periodogram of {yt} are respectively defined as

follows:

wy(λ) ≡
1√
2πT

T�

t=1

yte
−iλt and Iy(λ) = |wy(λ)|2,

where T is the sample size and λ ∈ [−π, π] denotes the frequency. The estimators examined

here will involve evaluating the observed time series’ periodogram at a subset of the Fourier

frequencies λj ≡ 2πj/T for j = −�T/2� + 1, . . . , �T/2� − 1, �T/2�. The periodogram is

the natural method of moments estimator of the population spectral density function of a

process.

Let us turn to a description of the contaminated LMSV model which extends the standard

LMSV model to allow for abrupt or smoothly varying changes in the mean of the volatility

process, among other forms of low-frequency contamination.

Assumption 1. The data generating process (DGP) follows

rt = σtet, σt = σ exp(ht/2),

where σ > 0 is some constant, et ∼ i.i.d.(0, 1),

ht = ut + vt, (1− L)dA(L)vt = B(L)ηt, ηt ∼ i.i.d.N(0, σ2

η),

{ut}, {et} and {vt} are mutually independent, E[Iu(λj)] = O(T/j2) uniformly for all nonzero

Fourier frequencies λj and A(L) and B(L) are polynomials in the lag operator L of finite
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orders m and q with coefficients {ai}mi=1
and {bj}qj=1

: A(L) = 1 −
�m

i=1
aiL

i and B(L) =

1 +
�q

j=1
bjL

j.

Remark 1. The proof of consistency of the trimmed FDQML estimator relies on the ergod-

icity of {vt}. When {ηt} is Gaussian, the ergodicity of {vt} is implied by the other conditions

of Assumption 1 (see the proof of Theorem 1 in Breidt et al., 1998). One may instead explic-

itly impose ergodicity of {vt} to avoid the Gaussianity assumption on {ηt}. However, in the

case that {ηt} is not Gaussian, the asymptotic variance in Theorem 2 needs to be modified

to include a component arising from the excess kurtosis of ηt. See Remark 3 for details.

The process {rt} is specified as the returns series of some underlying asset, typically mea-

sured as the first difference of the logarithm of the asset price. Apart from the component

ut, this is the original LMSV model proposed by Breidt et al. (1998) and Harvey (1998).

The high-level assumption on Iu(·) is identical to that imposed by McCloskey (2010). This

assumption is more appealing than explicit specification of the process {ut} when the prac-

titioner would like to take an agnostic view on the form of contamination that may or may

not be present, as should be the case in many practical applications. It allows the process

{ut} to take a variety of forms, some of which are provided below.

Random Level Shifts (RLS)

ut =
t�

j=1

δT,j, δT,t = πT,tξt,

where ξt ∼ i.i.d.
�
0, σ2

ξ

�
and πT,t ∼ i.i.d.Bernoulli(p/T, 1) for some p ≥ 0. The components

πT,t and ξt are mutually independent.

Deterministic Level Shifts (DLS)

ut =
B�

i=1

ciI (Ti−1 < t ≤ Ti) ,

where B is a fixed positive integer (the number of breaks plus one), |ci| < ∞ for i = 1, . . . , B,

T0 = 0, TB = T , T0 < T1 < . . . < TB−1 < TB and Ti/T → τi ∈ (0, 1) for i = 1, . . . , B.

Deterministic Trends (DT)

ut = h(t/T ),

where h(·) is a deterministic nonconstant function on [0, 1] that is either Lipschitz continuous

or monotone with h(1) = 0.1

1
This includes all cases for which h(·) is monotonic and bounded since we can simply subtract h(1) from

h(·) and multiply σ by exp(h(1)/2) to have the same DGP.
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Fractional Trends (FT)

ut = O((t+ 1)φ−1/2) with u0 = 0, |ut+1 − ut| = O(|ut|/t),

where φ ∈ (−1/2, 1/2).

Outliers

ut =
M�

i=1

miI(t = Ti),

where M is a fixed positive integer (the number of outliers), |mi| < ∞ for i = 1, . . . ,M and

0 < T1 < . . . < TM−1 < TM ≤ T .

The Bernoulli probability of the RLS process is specified to be sample size-dependent so

that level shifts are rare, with the expected number being constant in the sample size. If this

were not the case, {ut} would be better construed as a random walk. It is important to note

that p can equal zero so that the RLS process nests the no level shift, no trend case. Perron

and Qu (2010) showed that RLS satisfy the periodogram assumption E[Iu(λj)] = O(T/j2)

uniformly for all nonzero λj, while McCloskey and Perron (2010) and Mikosch and Stărică

(2004) showed the same for DLS; Qu (2011) and Künsch (1986) did so for DT and Iacone

(2010) did for FT. A slight generalization of results in Iacone (2010) provides the result for

outliers. Although not listed above, Robinson (1997) showed that a class of nonparametric

mean functions also satisfies the high-level assumption.

In relation to Iacone (2010), here we are imposing the weakest version of his Assumption

2, that with φ = 1/2, in order to accommodate the widest range of contaminating processes.

Although E[Iu(λj)] � T/j2 in the RLS case for which p ≥ 1 and the DLS case for which

ci �= 0 for some i (see the above references), limT→∞(j2/T )E[Iu(λj)] = 0 for some DT cases,

any FT cases or when j/T → 0 for outliers. However, assuming an exact order for some of

these cases would rule out contamination by some of the others. For example, Theorem 1

of Iacone (2010) provides that E[Iu(λj)] = O(T 2�φ/j1+2�φ) uniformly in nonzero λj for all FT

cases with φ ≤ �φ. However, if we were to replace the assumption E[Iu(λj)] = O(T/j2) with

E[Iu(λj)] = O(T 2�φ/j1+2�φ) for some �φ ∈ (−1/2, 1/2), we would be ruling out contamination

by RLS or DLS.

It is also worth discussing a couple of the processes that the assumption on E[Iu(·)] rules
out. Assumption 1 does not allow {ut} to be a long-memory process since, for a long-memory

parameter d < 1, the expectation of the periodogram of a long-memory process evaluated

at nonzero frequency λj is of order O(T 2d/j2d) when j/T → 0 (see Theorem 1 of Velasco,

1999). Hence, such expectations do not converge to zero when evaluated at nonzero Fourier
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frequencies for which
√
T/j → 0, as required by Assumption 1. Similarly, in the unit root

case, for which d = 1, E[Iu(λj)] = O(T 2/j2) for all nonzero λj (see Theorem 1 of Hurvich

and Ray, 1995). On the other hand, most short-memory processes, such as white noise or

ARMA processes, have bounded but strictly positive periodograms at all frequencies and

similarly violate Assumption 1 as candidates for {ut}.

3 The Trimmed FDQML Estimator

Under Assumption 1, we have the following decomposition of the log-squared returns process:

xt ≡ log(r2t ) = log σ2 + E[log(e2t )] + ut + vt +
�
log(e2t )− E[log(e2t )]

�
≡ µ+ ut + vt + εt,

where µ ≡ log σ2 + E[log(e2t )] and εt ≡ (log(e2t )− E[log(e2t )]). Assuming stationarity, let

f(λ; θ) denote the spectral density function of {vt + εt} evaluated at frequency λ ∈ [−π, π],

where θ denotes a finite-dimensional parameter vector. Then,

f(λ; θ) =
σ2

η|B(e−iλ)|2

2π|1− e−iλ|2d|A(e−iλ)|2 +
σ2

ε

2π
, (1)

where

θ ≡ (d, σ2

η, σ
2

ε , a1, . . . , am, b1, . . . , bq)

is the parameter vector of interest with σ2

ε ≡ Var(εt). The following assumption imposes

specific conditions on the parameters that ensure the existence of the spectral density func-

tion. It also employs conditions that guarantee the identification of θ in the (second-order)

spectral domain.

Assumption 2. The parameter vector θ is an element of a compact parameter space Θ and

for θA, θB ∈ Θ, f(·; θA) = f(·; θB) implies θA = θB. The parameter space Θ is contained in a

space such that σ2

ε ∈ (0,∞), A(x)B(x) �= 0 for |x| ≤ 1 and A(·) and B(·) have no common

roots. The true parameter vector, θ0 lies in Θ with d0 ∈ [0, 1/2).

Assumption 2 is quite standard for estimation in the spectral domain. It rules out

unidentifiable cases that would occur if d = 0 and A(z), B(z) = 1 or σ2

η = 0, for example. It

also ensures that the spectral density function is positive everywhere. When et is Gaussian,

it is known that (σ0

ε)
2 = π2/2 and this may be imposed in the estimation if one is willing to

make this additional assumption.
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We will perform estimation of the LMSV model parameters via the periodogram of the

log-squared returns process {xt}. More specifically, the trimmed FDQML objective function

is defined as

LT,l(θ) ≡ T
−1

�

j∈Fl

�
log f(λj; θ) +

Ix(λj)

f(λj; θ)

�
,

where Fl ≡ (−T/2, T/2] ∩ Z \ [−l+ 1, l− 1], and the trimmed FDQML estimator is defined

as θ̂T ≡ argminθ∈Θ LT,l(θ) for a parameter space Θ satisfying Assumption 2. The objective

function selects model parameters to fit a candidate spectral density function to the observed

periodogram. Let �vt ≡ vt+εt. Then the periodogram of {xt} has the following decomposition:

Ix(λ) = I�v(λ) + Iu(λ) + w�v(λ)wu(−λ) + w�v(−λ)wu(λ). (2)

The standard FDQML objective function sets l = 1 but here we wish to asymptotically

rid the objective function’s dependence on the contaminating process {ut} by using a large

enough trimming so that the influence of Iu(λj), w�v(λ)wu(−λ) and w�v(−λ)wu(λ) in (2) are

asymptotically negligible. The next assumption makes this necessary trimming precise.

Assumption 3.

log T

l
+

l log T

T
→ 0 as T → ∞.

The imposed trimming is quite weak and is basically the same as that imposed for

consistency by McCloskey (2010). This is not surprising in light of the fact that we are dealing

with the same objective function but with a process {�vt} that asymptotically dominates the

periodogram Ix(·) for at least as many Fourier frequencies as the processes he considered

(and more if d0 > 0).

Remark 2. Though he addresses semiparametric estimation, Iacone (2010) uses a similar

objective function to the trimmed FDQML objective function to estimate the memory param-

eter. In fact the trimmed local Whittle objective function he uses approximates the trimmed

FDQML objective function in a frequency band local to zero. Hence, it is interesting to com-

pare the trimming he requires to establish consistency in the semiparametric context with

that imposed by Assumption 3. The comparison cannot be made directly since the bandwidth

parameter in Iacone (2010) must grow slower than the sample size. Nevertheless, as the

the bandwidth m approaches its admissible boundary of T in the semiparametric context,

the trimming Iacone (2010) requires when allowing for the broadest range of low-frequency

contamination (i.e., φ = 1/2 in his Assumption 3) approximately approaches that which is

required by Assumption 3 above. That is, for any d0 ∈ [0, 1/2), as m approaches T , the

permissible range for the growth rate of the trimming is the rate T α for any α ∈ (0, 1).
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With these assumptions in hand, we may establish consistency.

Theorem 1. Under Assumptions 1-3, θ̂
p−→ θ0.

Asymptotic normality requires a stronger trimming condition in order to asymptotically

rid the influence of the low-frequency contamination on the scaled bias and variance of the

estimator.

Assumption 3*.

T 1/2 log T

l
+

l5 log2 T

T 4
→ 0 as T → ∞.

The first condition of Assumption 3*, which enforces a lower bound on the growth rate

of the trimming, is also imposed in the short-memory context of McCloskey (2010). As was

the case for the trimming required for consistency, this is again unsurprising. The second

condition, which is not imposed by McCloskey (2010), bounds the trimming’s growth rate

from above. This upper bound is used in the long-memory context of the present paper to

ensure that the low-frequency ordinates containing relevant information on the long-memory

behavior the of the contaminated process are not entirely trimmed away.

Remark 3. Unlike the trimming assumption used for consistency (Assumption 3), it does

not make sense to compare Assumption 3* to the trimming required by Iacone (2010) for

asymptotic normality of his semiparametric estimator of d0. For asymptotic normality, Ia-

cone (2010) would require the bandwidth to grow slower than T 4d0/(1+4d0) = o(T 1/3) in the

context of the LMSV model. Hence, we cannot examine the trimming his results would require

for m approaching T .

With this stronger trimming condition in hand, we may now present the asymptotic

normality result.

Theorem 2. Under Assumptions 1, 2 and 3*, with the additions that θ0 is in the interior

of Θ, E[ε4t ] < ∞ and for all θ ∈ Θ, d = θ1 ≥ d
¯

for some d
¯
> 0,

√
T (θ̂ − θ

0)
d−→ N (0,Ω−1(2Ω+ Π)Ω−1),

where

Ω =
1

2π

� π

−π

∂ log f(λ; θ0)

∂θ

∂ log f(λ; θ0)

∂θ�
dλ

and

Π =
E[ε4t ]− 3E[ε2t ]

(2π)4

� π

−π

� π

−π

∂f(λ1; θ0)−1

∂θ

∂f(λ2; θ0)−1

∂θ�
dλ1dλ2.
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Remark 4. In the case that the Gaussianity assumption on {ηt} is replaced by an ergodicity

condition on {vt} (as discussed in Remark 1), the quantity Π in the above asymptotic variance

expression would need to be modified to equal

Π =
(E[η4t ]− 3E[η2t ]) + (E[ε4t ]− 3E[ε2t ])

(2π)4

� π

−π

� π

−π

∂f(λ1; θ0)−1

∂θ

∂f(λ2; θ0)−1

∂θ�
dλ1dλ2,

assuming that E[η4t ] < ∞ (see the proof of Theorem 2 and Hosoya, 1997).

Remark 5. Finite sample evidence indicates that a normal approximation would lead to

poor inference on the model parameters, even in the absence of contamination (see Pérez

and Ruiz, 2001). Moreover, the limiting variance of the trimmed FDQML estimator appears

to be exceedingly difficult to estimate. It stands to reason that these two problems would

be further compounded in the presence of low-frequency contamination. Thus, I suggest

using a bootstrap procedure that is valid for stationary long-range dependent observations for

inference on the model parameters. A careful implementation of the block or sieve bootstrap

for long-memory processes (e.g., Kapetanios and Papailias, 2011 or Poskitt, 2007) would

likely suffice. However, establishing the validity of such a procedure for the DGPs examined

here is beyond the scope of this paper.

Remark 6. We must impose the condition d ≥ d
¯

> 0 for all θ ∈ Θ, and consequently

d0 > d
¯
> 0 by Assumption 2, due to the discontinuous behavior of f(λ; θ) at d = θ1 = 0. More

specifically, the continuity and integrability properties of derivatives such as ∂f(λ; θ)−1/∂θ

and ∂2[f(λ; θ)−1]/∂θ∂θ� crucial to establishing asymptotic normality do not hold when d = 0.

A review of the literature on fully parametric estimation of long-memory models shows that

this type of assumption is crucial to obtaining the asymptotic properties of estimators in

various long-memory contexts. See, e.g., Fox and Taqqu (1986), Dahlhaus (1989) and Hosoya

(1997).

4 Asymptotically Optimal Trimming Rate

As with all methods that require a user-chosen tuning parameter, a theoretically-driven

means for choosing the trimming parameter is desirable in the trimmed FDQML estimation

context. In this section, I provide a heuristic argument for the asymptotic MSE-minimizing

rate for the trimming parameter.

To begin the analysis, assume that Assumptions 1-3 hold, θ0 is in the interior of Θ and
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for all θ ∈ Θ, d = θ1 ≥ d
¯
for some d

¯
> 0. Note that

θ̂ − θ
0 = −

�
∂2LT,l(�θ)
∂θ∂θ�

�−1

∂LT,l(θ0)

∂θ
,

for some �θ such that ��θ − θ0� ≤ �θ̂ − θ0�.2 If l log2 T/T → 0, then

∂2LT,l(�θ)
∂θ∂θ�

p−→ 1

2π

� π

−π

∂ log f(λ; θ0)

∂θ

∂ log f(λ; θ0)

∂θ�
,

an invertible deterministic matrix (see the arguments leading up to (A.15) in the proof

of Theorem 2). Hence, assuming that they exist, the order of magnitude of the bias and

variance of θ̂ are equal to those of ∂LT,l(θ0)/∂θ. Suppose in addition that l5 log2 T/T 4 → 0

and E[ε4t ] < ∞. Using the decomposition (A.16)-(A.19) in the proof of Theorem 2, we can

see

Bias(θ̂) = O

�
1

T 1/2
+

l1/2 log T

T
+

log T

l

�

by results derived in the proof of Theorem 2 and the fact that E[w�v(λj)wu(−λj)] = 0.

Similarly, results in the proof of Theorem 2 establish that the variance of terms (A.16) and

(A.19) are O(1) and O(T 2d0l−1−2d0 log3 T ). Assuming it exists, the variance of term (A.17)

is O(l log2 T/T ) (see Lemma 3) while Lemma A.3 of McCloskey and Perron (2010) provides

that the variance of (A.18) is O(T log2 T/l2), at least when the low-frequency contamination

takes the form of RLS, DLS, DT or FT. Finally, the Cauchy-Schwartz inequality shows that

covariances of pairs of the (A.16)-(A.19) terms are all of lower order than the variance terms

if l1−2d0 log T/T 1−2d0 → 0. Hence, under this additional condition, we have

Var(θ̂) = O

�
1

T
+

l log2 T

T 2
+

log2 T

l2
+

log3 T

T 1−2d0l1+2d0

�

and

MSE(θ̂) = O

�
1

T
+

l1/2 log T

T 3/2
+

log T

T 1/2l
+

l log2 T

T 2
+

log2 T

T l1/2
+

log2 T

l2
+

log3 T

T 1−2d0l1+2d0

�
.

Choosing l to minimize the order of this expression while satisfying the constraint l5 log2 T/T 4 →
0 yields

l
OPT � T

1/2 log T.

2
Strictly speaking, this is a slight abuse of notation since �θ differs on elements of the vector equation as

the Mean Value Theorem only applies to individual elements of partial derivatives.
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This trimming rate satisfies the condition l1−2d0 log T/T 1−2d0 → 0 so that the variance ex-

pression given above holds for all trimming rates within a neighborhood of lOPT.

It is interesting to note the relationship between lOPT and the MSE-minimizing rate for

the bandwidth of semiparametric estimators of the memory parameter in the absence of low-

frequency contamination. For standard semiparametric estimators (e.g., log-periodogram

and local Whittle), the optimal bandwidth rate is equal to the boundary that determines

whether asymptotic normality can be achieved, namely T 4/5 (see, e.g., Hurvich et al., 1998

and Henry and Robinson, 1996). Quite similarly, in the fully parametric context of this paper,

the optimal trimming rate is equal to the boundary at which asymptotic normality can be

achieved (see Assumption 3*). In the standard semiparametric estimation context (with no

low-frequency contamination), a higher bandwidth allows higher frequency components of

the time series to contaminate the estimate. Conversely, in the context of this paper, a lower

trimming allows lower frequency components to contaminate the estimate.

Remark 7. Though we can obtain the optimal asymptotic order of the trimming parameter,

we cannot obtain the proportionality constant in the expression of lOPT without imposing

more explicit assumptions on the form of the contaminating process. For example, if we

knew that {ut} was indeed described by the RLS model, the proportionality constant would

depend on the parameters p and σ2

ξ of this model. We could then “plug in” estimates of these

parameters to estimate lOPT. However, such a methodology would seemingly defeat one of the

main draws of the trimmed FDQML methodology: allowing the practitioner to be agnostic

regarding the particular form the contaminating component may take.

Remark 8. In cases for which E[Iu(λj)] = o(T/j2), the true asymptotically optimal trim-

ming grows slower than the order given by lOPT. If one wished to obtain the exact optimal

rate for l in one of these cases, e.g., FT models, the arguments used to find lOPT would carry

through with appropriate modification. Contaminating processes for which E[Iu(λj)] � T/j2

include both RLS and DLS processes. See the references in Section 2 for details.

Remark 9. As can be seen from the above expressions, there is no clear bias-variance tradeoff

in the choice of trimming parameter. Although increasing the trimming decreases the bias due

to the shift or trend component, it simultaneously increases the bias that comes from ignoring

lower frequencies that contain information on the latent long-memory process. Similarly,

an increased trimming has opposing effects on the variance: ignoring more lower frequency

ordinates decreases estimation variability arising from the low-frequency contamination while
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it increases variability arising from discarding “observations” on the contaminated long-

memory process.

5 Finite Sample Performance of the Robust Estimator

With the consistency and asymptotic normality of the trimmed FDQML estimator of the

LMSV model parameters established, let us now investigate how well the estimator performs

in data-calibrated, finite sample scenarios. For this finite sample experiment, I examined four

DGPs whose parameters were calibrated from two different high-frequency returns series.3

The first two sets of parameter values come from McCloskey’s (2010) trimmed FDQML

estimation of the standard autoregressive stochastic volatility (ARSV) model for desea-

sonalized high-frequency Japanese Yen to US dollar exchange rate returns.4 McCloskey’s

(2010) estimation methodology restricts d = 0 but is robust to the presence of low-frequency

contamination. On the other hand, Deo et al. (2006) estimated the parameters of an au-

toregressive LMSV model for deseasonalized high-frequency S&P 500 stock market returns

(mentioned on p. 50). They used the standard FDQML estimator which is not robust to

low-frequency contamination but allows for long-memory. By examining specifications based

upon these two data calibrations, we can hope to obtain an idea of how well the trimmed

FDQML estimator works in practically relevant contexts in which low-frequency contami-

nation and/or long-memory may be present. Since the standard ARSV model is nested in

the autoregressive LMSV specification, we are free to estimate all of the model parameters

of the latter, including d. In order to make fair comparisons, the parameter search space Θ

was set to be equal across DGPs and estimators while satisfying Assumption 2. Specifically,

I set Θ = D × Ση × Σε × A = [−0.1, 0.7] × [0.1, 100] × [0.1, 100] × [0.1, 0.99]. Finally, I

found the bias and root mean-squared error (RMSE) of the standard FDQML estimator

and seven different trimmed FDQML estimators in order to assess how trimming affects the

estimation, which trimming works best for which type of DGP and to see if the order of lOPT

can provide some practical guidance for trimming choice in finite samples. All values were

calculated from 1000 Monte Carlo draws for sample sizes of T = 4000, 8000 and 16000.

In terms of the DGP of Assumption 1, McCloskey (2010) estimated the parameter vector

θ for the model with d = 0, q = 0 and m = 1, the standard ARSV model. The parameter

3
These calibrations are not exact because Gaussianity of et is imposed in the simulations in order to make

bias and root MSE calculations for estimates of σ2
ε feasible. Recall that when et is Gaussian, (σ0

ε)
2
= π2/2.

Nevertheless, the sets of calibrated values for θ used here entail estimates of σ2
ε very close to π2/2.

4
Specifically, I use his estimates for “AB” deseasonalized data with trimming l = �T 0.51�, see Table 12 in

McCloskey (2010).
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estimates he obtained correspond to a0 = 0.78 (the autoregressive parameter) and (σ0

η)
2 =

0.33 with d0 restricted to equal zero ((σ0

ε)
2 is set equal to π2/2 here, see footnote 2). Since

his estimation technique is robust to low-frequency contamination, the ut component of

Assumption 1 is free to take a variety of forms. For the purposes of this Monte Carlo exercise,

I specified {ut} as a RLS process since the literature indicates level shifts are particularly

relevant in this volatility context. In terms of the parameters described on p. 4, I set the

variance of the level shifts σ2

ξ equal to the variance of vt and the average number of level

shifts per sample p equal to 10.

The bias and RMSE values for the average of 10 RLS case are reported in Table 1 with

the numbers under “trimming” corresponding to the trimming exponent α where l = �T α�.
Notice that only the trimmings with α = 0.51 and 0.6 satisfy Assumption 3*, required for

asymptotic normality, while all but that with α = 0 saitisfy Assumption 3, required for

consistency. The first feature to note from this table is that the standard (untrimmed)

FDQML estimators of the persistence parameters (d and a) are largely biased. The esti-

mates of d are upward biased, in agreement with similar findings for semiparametric memory

parameter estimates in the presence of level shifts (see the references in the introduction).

Interestingly, in the untrimmed context, the estimates of a exhibit large negative biases. It

appears that low-frequency contamination induces the standard estimator to confuse some

of the short-memory persistence of the time series with long-memory persistence. To the

best of my knowledge, this is the first time such a feature has been uncovered. In line with

the asymptotic results, we can see that for all sample sizes, trimming removes substantial

portions of the bias in the persistence parameter estimates. This bias reduction is nonuni-

form across trimmings. Of the trimmings studied, the trimming exponents of 0.4 and 0.45

seem to provide the largest bias reductions for the persistence parameters. The extent of

these bias reductions is manifest in major RMSE reductions over the standard estimator,

oftentimes exceeding 50%. Nevertheless, very large trimming is detrimental because it in-

duces bias by ignoring too many periodogram ordinates for which the LMSV process {�vt}
dominates the level shift contamination {ut}. In this long-memory context, there appears

to be a very similar bias tradeoff to that explored rather extensively by McCloskey (2010)

in the short-memory context. The presence of level shifts does not seem to induce much

bias in the estimators of the variance parameters of the model (σ2

η and σ2

ε). Moreover, the

variance parameter estimates perform quite similarly across trimmings, excluding perhaps

the very highest. In terms of RMSE, the trimming exponent of 0.45 appears to work best

all-around for this DGP. This is broadly in line with the rate that would be recommended by
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lOPT if the analysis of Section 4 extended to the boundary case where d0 = 0. Furthermore,

it appears that the finite sample RMSE-minimizing rate approaches lOPT from below as the

sample size grows.

Directing our attention now to cases for which low-frequency contamination is absent and

the standard FDQML estimator has been shown to be consistent and asymptotically normal,

Table 2 details the performance of the various FDQML estimators for the same calibrated

DGP as in Table 1 but with no level shifts. A perhaps surprising feature of this table is

that the standard estimator does not always dominate the trimmed one in terms of bias

and RMSE even though trimming is unnecessary in this context. For example, a trimming

exponent of 0.3 or 0.35 performs best in terms of bias for d̂ when the sample size is 16000.

However, the differences in performance across trimmings are rather minor in comparison

to the case with level shifts as long as the trimming is not excessive. We can see that when

evaluated at a trimming exponent that works well in the presence of level shifts and that is

roughly in line with the theoretically-driven choice lOPT, say 0.45, the difference in RMSE

between the trimmed and untrimmed estimators in the uncontaminated case is quite small

in comparison to this difference in the presence of low-frequency contamination (i.e., Table

1). In fact, the difference in RMSE between these two estimators appears to shrink in the

sample size in the absence of low-frequency contamination while it appears to grow in its

presence. Of course, in the absence of contamination, lOPT is no longer the asymptotic MSE-

minimizing trimming rate. As noted by McCloskey (2010) in the short-memory context, too

high of a trimming induces bias by discarding valuable information on the contaminated

long-memory process.

Next we examine a DGP that entails both long-memory and low-frequency contamina-

tion. Deo et al. (2006) estimated the parameter vector θ for the model with q = 0 and

m = 1, the autoregressive LMSV model. The parameter estimates they obtained correspond

to d0 = 0.37, a0 = 0.35 and (σ0

η)
2 = 0.27. Since the estimation methodology used by these

authors is not robust to low-frequency contamination, these parameter estimates may be

biased. Nevertheless, by adding low-frequency contamination to these calibrated values, we

can obtain a good idea of how it may affect parameter estimates when {�vt} is actually a

long-memory process. In this vein, I added the same RLS process to the LMSV process as

in Table 1, adjusting the variance of the level shifts σ2

ξ to be equal to the variance of vt in

this context. The results are provided in Table 3. As in Table 1, the parameter estimates

exhibit large biases although, at least for the persistence parameters, these biases are not

as large as in the d0 = 0 case since d0 = 0.37 is approaching the upper bound of admissible
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values 0.5. This is in fact a manifestation of a more general feature: low-frequency contami-

nation induces more bias and higher MSE in standard estimators for lower values of d0. The

direction of the biases in Table 3 is also in line with those in Table 1. We can again see

that trimming removes most, and in some cases all, of the bias induced by the level shifts

with the trimming exponent of 0.3 seeming to provide the largest bias reductions. As in

Table 1, we again see major reductions in the RMSE of the persistence parameters over the

standard FDQML estimator when the trimming used is not too high. For this DGP the

trimming exponent of 0.3 appears to work best all-around. This rate is substantially smaller

than that given by lOPT, which may be partially due to the fact that we are ignoring the

proportionality factor in lOPT. Nevertheless, as in Table 1, we can see that the finite sample

RMSE-minimizing trimming rate increases towards lOPT as the sample size grows.5

Turning to the final DGP under scrutiny in this Monte Carlo exercise, we remove the

low-frequency contamination from the long-memory process to study the calibrated pure

LMSV model of Deo et al. (2006). The results for this DGP, provided in Table 4, are

broadly in line with those of Table 2: a high trimming induces bias and RMSE-growth but

the differences in performance across trimmings are not as large as the differences when the

process is contaminated by level shifts (as in Table 3) as long as the trimming is not too

high. Here, using a trimming exponent based on the theoretically guided choice lOPT can

substantially reduce the performance of the estimator.

In summary, this simulation experiment shows that substantial gains can be made from

using the trimmed FDQML estimator to estimate the parameters of the LMSV model when

the presence of low-frequency contamination is a potential concern. This is indeed the case

for returns volatility series, the very series LMSVmodels are designed to model. We have seen

that using lOPT as a rough guide for trimming choice can lead to much improved performance

of the FDQML estimator in the presence of low-frequency contamination. However, simply

using the rate given by lOPT in the absence of contamination has the potential to reduce the

performance of the estimator. A pre-test with power against low-frequency contamination,

such as that of Qu (2011), would thus provide some useful direction for trimming choice.

5
Strictly speaking, the parameter space Θ used in this simulation study does not satisfy the extra as-

sumption d
¯
> 0 imposed in Theorem 2. However, the simulation results for this DGP do not perceptibly

change when we change Θ to bound θ1 below by some number arbitrarily close to zero.
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6 Mathematical Appendix

The proofs of the main results are followed by auxiliary lemmas. For the sake of brevity, we
will say “uniformly in θ” to mean uniformly in θ over Θ. Similarly, “uniformly in λ” should
be taken to mean uniformly in λ over [−π, π] and “uniformly in j” should be taken to mean
uniformly in j over F1.
Proof of Theorem 1: Begin by noting f(λ; θ)−1 ≤ 2π/�σ2

ε < ∞ for all λ ∈ [−π, π] and
θ ∈ Θ, where �σ2

ε = minθ∈Θ θ3, which exists by the compactness of Θ imposed in Assumption
2. Hence given Assumption 1,
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θ∈Θ

T
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(A.1)
by Assumption 3. Also,
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using Lemma 1. Thus, by (A.1), (A.2) and the decomposition (2),

LT,l(θ) = T
−1
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j∈Fl

�
log (f(λj; θ)) +
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�
+ op(1) (A.3)

uniformly in θ. Now note that by Lemma 1 and Assumption 3,
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where �d = maxθ∈Θ θ1. Hence, (A.3) and (A.4) provide that

LT,l(θ) = T
−1

�

j∈F1

�
log (f(λj; θ)) +

I�v(λj)

f(λj; θ)

�
+ op(1)

uniformly in θ. Then, the proof of Theorem 1 in Breidt et al. (1998), with the above result,
shows that

LT,l(θ)
p−→ 1
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� π

−π
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�
dλ (A.5)
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uniformly in θ. The remainder of the proof then follows since the right hand side of (A.5) is
uniquely minimized at θ = θ0 and Θ is compact (see the proof of Theorem 1 in Breidt et al.,
1998 for details). �

Proof of Theorem 2: Using the Mean Value Theorem, we have
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T
∂LT,l(θ0)

∂θ
(A.6)

for some �θ such that ||�θ− θ0|| ≤ ||θ̂− θ0|| since θ0 is in the interior of Θ. (Strictly speaking,
this is a slight abuse of notation. See footnote 2.) Using the decomposition (2),
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for all θ ∈ Θ. Starting with (A.7), note that ∂2[f(λ; θ)−1]/∂θ∂θ� is uniformly continuous over
[−π, π]×Θ. To see this, note for example that

∂2[f(λ; θ)−1]
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(In this and the following expositions, I focus on derivatives with respect to d since they
diverge the fastest/converge the slowest as λ → 0.) Also, {�vt} is ergodic so that straightfor-
ward modification of the proof of Lemma 1 of Hannan (1973) (also see the proof of Theorem
1 in Breidt et al., 1998) provides that
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uniformly in θ. Moreover, f(λ; θ)∂2[f(λ; θ)−1]/∂θ∂θ� is integrable in λ with a continuous
integral uniformly in θ. This can be seen from inspection of quantities such as (A.13)
multiplied by f(λ; θ). Hence,
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since �θ p−→ θ0 by Theorem 1. Moving now to (A.8), note that f(λ; θ)∂2[f(λ; θ)−1]/∂θ∂θ� is
also uniformly continuous over [−π, π]×Θ, which follows similarly. Using this result, Lemma
1 and the fact that ∂2[f(λ; θ)−1]/∂θ∂θ� is uniformly bounded over [−π, π]×Θ, (A.8) and can
be given the following order uniformly in θ:
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Using the same boundedness properties of ∂2[f(λj; θ)−1]/∂θ∂θ� as above and the order of
E[Iu(λj)], we can establish that (A.9) is Op(T−1
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uniformly in θ. Next, (∂ log f(λj; θ)/∂θ)(∂ log f(λj; θ)/∂θ�) is integrable in λ with a contin-
uous integral uniformly in θ. To see this, note that, e.g.,
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uniformly in θ. Putting all of these results together and applying Theorem 1, we obtain
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A similar decomposition to that used for ∂2LT,l(θ)/∂θ∂θ� yields
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By Theorem 1.2 of Hosoya (1997), (A.16) is asymptotically normally distributed with mean
zero and covariance matrix whose (j, k)th element is equal to
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By Lemma 3, (A.17) is Op(l1/2 log T/T 1/2) = op(1). Similar arguments to those used to
find the order of (A.9) yield that (A.18) is Op(T 1/2 log T/l) = op(1) by Assumption 3* since
∂[f(λ; θ0)−1]/∂θ is uniformly bounded, as can be seen from quantities like
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For (A.19), using the same uniform boundedness property, note that
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Assumption 1 and the Cauchy-Schwartz inequality provide that E[Iu(λj)] = O(T/j2) uni-
formly in j and E[wu(−λj)wu(λk)] = O(T/jk) uniformly in j < k while Lemma 2 of this
paper and Theorem 2 of Robinson (1995) provide that
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�
+O

�
1

T

T�

j=l

T�

k=j+1

T 2d0 log k

j1+d0kd0

T

jk

�
= O

�
T 2d0 log3 T

l1+2d0

�
= op(1).

Combining these results with (A.6) and (A.15), we obtain the statement of the theorem. �

Lemma 1. Under Assumptions 1 and 2,

E[I�v(λj)] = O(λ−2d0

j ) and E|w�v(λj)wu(−λj)| = O(T−1/2
λ
−(1+d0)
j )

uniformly for all nonzero Fourier frequencies λj.

Proof : For the first result, note that I�v(λj) has an analogous decomposition to (2) in terms
of v and ε quantities. Denote the first term on the right hand side of (1) by f1(λ; θ). Then,
by well-known results, uniformly for all nonzero λj and θ0 ∈ Θ,

E[Iv(λj)] = O(f1(λj; θ
0)) = O(λ−2d0

j )

(see Robinson, 1995 and Hurvich and Beltrao, 1993 for example). Also, E[Iε(λj)] = O(1)
uniformly for all λj. So, by the Cauchy-Schwartz inequality, we obtain the first result:

E|wv(λj)wε(−λj)| ≤ (E|Iv(λj)|)1/2(E|Iε(λj)|)1/2 = O(λ−d0

j ) = O(λ−2d0

j ).

The second result follows from the Cauchy-Schwartz inequality and the first result:

E|w�v(λj)wu(−λj)| ≤ (E|I�v(λj)|)1/2 (E|Iu(λj)|)1/2 = O(λ−d0

j )O(T−1/2
λ
−1

j ). �

Lemma 2. Under Assumptions 1 and 2, for any sequence of positive integers, j = j(T ) and
k = k(T ) such that j > k and limT→∞ j/T ∈ (0,∞),

E[w�v(λj)w�v(−λk)] = O

�
log j

kλd0
j λd0

k

�
.

A.5



Proof : Using the expansion on p. 1063 of Robinson (1995),

E[w�v(λj)w�v(−λk)] =

� π

(λj+λk)/2

{f(λ; θ0)− f(λj; θ
0)}Ejk(λ)dλ (A.21)

+

�
(λj+λk)/2

λk/2

{f(λ; θ0)− f(λk; θ
0)}Ejk(λ)dλ (A.22)

− {f(λj; θ
0)− f(λk; θ

0)}
�

(λj+λk)/2

λk/2

Ejk(λ)dλ (A.23)

+

� λk/2

−π

{f(λ; θ0)− f(λj; θ
0)}Ejk(λ)dλ, (A.24)

where Ejk(λ) = (2πT )−1D(λj −λ)D(λ−λk) with D(λ) ≡
�T

t=1
eitλ being Dirichlet’s kernel.

By the Mean Value Theorem and the fact that

|D(λ)| ≤ 2|λ|−1 for 0 < |λ| < π (A.25)

(see, pp. 49-51 of Zygmund, 1977), (A.21) is bounded by

�
max

(λj+λk)/2≤λ≤2λj

|f �(λ; θ0)|
�
(πT )−1

� π

(λj+λk)/2

|D(λ− λk)|dλ = O

�
log j

T

�
= O

�
log j

kλd0
j λd0

k

�
,

with f �(λ; θ0) ≡ ∂f(λ; θ0)/∂λ, where the first equality follows from the facts that |f �(λ; θ0)| <
∞ for all 0 < λ ≤ π and � Cλj

−Cλj

|D(λ)|dλ = O(log j) (A.26)

for C < ∞ (see p. 67 of Zygmund, 1977). By nearly identical arguments, (A.22) is bounded
by

�
max

λk/2≤λ≤(λj+λk)/2
|f �(λ; θ0)|

�
(πT )−1

�
(λj+λk)/2

λk/2

|D(λj−λ)|dλ = O

�
log j

Tλ
1+2d0
k

�
= O

�
log j

kλd0
j λd0

k

�
,

where the first equality follows from the fact that |f �(λ; θ0)| = O(λ−1−2d0) as λ → 0+. For
k ≥ j/2, (A.23) is bounded by

(λj − λk){ max
λk≤λ≤λj

|f �(λ; θ0)|}
�

(λj+λk)/2

λk/2

|Ejk(λ)|dλ

= O

�
(λj − λk)λ

−1−2d0

k T
−1 max

λk/2≤λ≤(λj+λk)/2
|λj − λ|−1

�
(λj+λk)/2

λk/2

|D(λ− λk)|dλ
�

= O

�
log j

Tλ
1+2d0
k

�
= O

�
log j

kλd0
j λd0

k

�
,
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where the first equality uses (A.25) and the second uses (A.26). Similarly, if k < j/2, (A.23)
is bounded by

�
|f(λj; θ

0)|+ |f(λk; θ
0)|

��
(λj+λk)/2

λk/2

|Ejk(λ)|dλ

= O

�
λ
−2d0

k T
−1 max

λk/2≤λ≤(λj+λk)/2
|λj − λ|−1

�
(λj+λk)/2

λk/2

|D(λ− λk)|dλ
�

= O

�
λ
−2d0

k T
−1
λ
−1

j log j
�
= O

�
log j

kλd0
j λd0

k

�

since f(λ; θ0) = O(λ−2d0) as λ → 0+. Finally, (A.24) is bounded by

� λk/2

−π

{|f(λ; θ0)|+ |f(λj; θ
0)|}|Ejk(λ)|dλ

= O

�
T

−1 max
−π≤λ≤λk/2

|λj − λ|−1 max
−π≤λ≤λk/2

|λ− λk|−1

� λk/2

−π

{|f(λ; θ0)|+ |f(λj; θ
0)|}dλ

�

= O

�
T

−1
λ
−1

j λ
−1

k (1 + λ
−2d0

j )
�
= O

�
log j

kλd0
j λd0

k

�
. �

Lemma 3. Under Assumptions 1 and 2, if d0 ≥ d
¯
> 0, E[ε4t ] < ∞ and

1

l
+

l5 log2 T

T 4
→ 0,

then

E

�����

l�

j=1

{I�v(λj)− f(λj; θ
0)}∂[f(λj; θ0)−1]

∂θ

����� = O(l1/2 log T ).

Proof: To reduce notational clutter, let

g(λ; θ0) = λ
−2d0 (σ

0

η)
2|B(1)|2

2π|A(1)|2

�
1 + λ

2d0 (σ
0

ε)
2|A(1)|2

(σ0
η)

2|B(1)|2

�

and Ij = I�v(λj), gj = g(λj; θ0) and fj = f(λj; θ0) for j = 1, . . . , l. Then, we have

E

�����

l�

j=1

{I�v(λj)− f(λj)}
∂[f(λj; θ0)−1]

∂θ

����� = E

�����

l�

j=1

�
Ij

fj
− 1

�
∂ log f(λj; θ0)

∂θ

�����

≤ E

�����

l�

j=1

�
Ij

gj
− 1

�
∂ log f(λj; θ0)

∂θ

����� (A.27)
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+ E

�����

l�

j=1

�
Ij

fj
− Ij

gj

�
∂ log f(λj; θ0)

∂θ

����� . (A.28)

By Proposition A.1 of Hurvich et al. (2005), (A.27) is bounded by Cl1/2 log T for some finite
constant C since for i = 1, . . . ,m+ q + 3,

1

l log T

����
∂ log f(λj; θ0)

∂θi
− ∂ log f(λj+1; θ0)

∂θi

���� ≤ K1

1

l log T

for j = 1, . . . , l − 1 and
1

l log T

����
∂ log f(λj; θ0)

∂θi

���� ≤ K2

1

l

for some generic finite constants K1 and K2. This can be seen by examining quantities such
as (A.14). To bound (A.28), note that as λ → 0+,

f(λ; θ0) � λ
−2d0

�
(σ0

η)
2|B(1)|2

2π|A(1)|2 +O(λ2) + λ
2d0 (σ

0

ε)
2

2π

�
= g(λ; θ0)(1 +O(λ2)).

Hence, for i = 1, . . . ,m+ q + 3, (A.28) is bounded by

E

�
l�

j=1

����
Ij

fj
− Ij

gj

����

����
∂ log f(λj; θ0)

∂θi

����

�
≤ K3 log TE

�
l�

j=1

����
Ij

gj

�
gj

fj
− 1

�����

�

≤ K4 log TE

�
l�

j=1

����
gj

fj
− 1

����

�

= O

�
log T

l�

j=1

λ
2

j

�
= O

�
l3 log T

T 2

�
= O(l1/2 log T ),

for some generic finite constants K3 and K4, where the second inequality uses the fact that
E[Ij/gj] = O(1) (see Theorem 2 of Robinson, 1995 for example).
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