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1 Introduction

The empirical features of volatility measures, such as slowly decaying correlograms and large
spectral density estimates near the zero frequency, have spurred considerable interest in mod-
eling volatility as a long-memory process over the past twenty years. Of the fully parametric
methods for long-memory modeling, the long-memory stochastic volatility (LMSV) model of
Breidt et al. (1998) and Harvey (1998) has proven quite popular. In large part this is because
the LMSV model can simultaneously account for the empirical presence of noise while allow-
ing for both long and short memory dynamics in log-squared returns, one of the foremost
measures of volatility. The LMSV model has also proven useful for forecasting volatility,
see Deo et al. (2006) for example. Nonetheless, recent work has shown that the appearance
of long-memory in some semiparametric memory parameter estimates may be spuriously
caused, or at least exaggerated, by level shifts or deterministic trends in the mean of the
log-squared returns series. See, e.g., Diebold and Inoue (2001), Granger and Hyung (2004),
Mikosch and Starica (2004), Perron and Qu (2010) and McCloskey and Perron (2010). As
we will see, the standard fully parametric technique for estimating the parameters of LMSV
models also suffers this upward biased in the memory parameter estimate in the presence
of “additive low-frequency contamination”, including level shifts and deterministic trends.
The potential presence of low-frequency contamination in volatility measures is not merely a
theoretical curiosity. Among others, Granger and Hyung (2004), Mikosch and Starica (2004),
Perron and Qu (2010) and McCloskey and Perron (2010) have also provided evidence that
this is in fact a very real and salient feature of volatility data. This study aims to fill the
gap in current estimation methodology by providing a robust estimator of the LMSV model
parameters in the presence or absence of low-frequency contamination.

There are two basic methodologies for estimating the memory parameter: fully and semi-
parametric. Breidt et al. (1998) and Harvey (1998) were the first to propose fully parametric
estimates of the LMSV model parameters. Many refinements of standard semiparametric
memory parameter estimates (e.g., the log-periodogram regression estimator of Geweke and
Porter-Hudak, 1983, and the local Whittle estimator of Kiinsch, 1987) have also been ad-
vanced to reduce the bias that may arise from the short-memory dynamics and noise present
in the log-squared returns of a LMSV process; see Deo and Hurvich (2001), Sun and Phillips
(2003), Andrews and Sun (2004), Hurvich et al. (2005) and Frederiksen and Nielsen (2008),
among others. However, these estimators are not robust to low-frequency contamination.

Focusing on a separate problem, McCloskey and Perron (2010) and Iacone (2010) have also



proposed semiparametric estimation techniques for estimating the memory parameter of a
process that is subject to low-frequency contamination. However, their estimators are sensi-
tive to the presence of short-memory dynamics and noise, which can be quite substantial in
the data. An estimator that simultaneously accounts for noise, short-memory dynamics and
long-memory dynamics while remaining robust to low-frequency contamination is therefore
desirable.

To the author’s knowledge, the trimmed frequency domain quasi-maximum likelihood
(FDQML) estimator of the LMSV model parameters, studied in this article, is the first to
do just that. However, as is always the case in fully parametric estimation, the price one
must pay for these desirable features is that the LMSV model must be correctly specified.
Nevertheless, a distinct advantage of the fully parametric approach provided here is that it
makes forecasting feasible. The trimmed FDQML methodology also has the appeal of allow-
ing the practitioner to remain agnostic about the form that the low-frequency contamination
may take (e.g., level shifts, smooth trends or fractional trends) or whether contamination
is indeed present at all. For an overview of (trimmed) FDQML estimation, see McCloskey
(2010) and the references therein.

Breidt et al. (1998) and Harvey (1998) originally proposed estimation of the LMSV
model parameters in the frequency domain but did not explore the implications of trimming
and/or low-frequency contamination. McCloskey (2010) advanced the trimmed FDQML
methodology in the context of low-frequency contaminated short-memory models, ruling
out the specification of this article. This article establishes the consistency and asymptotic
normality of the trimmed FDQML estimator in the long-memory context of the LMSV
model in the potential presence of low-frequency contamination and provides theoretical
guidance on the choice of trimming by heuristically obtaining the asymptotic mean-squared
error (MSE)-minimizing rate for the trimming parameter to grow with the sample size. A
Monte Carlo study confirms the potential usefulness of this “optimal” rate for the trimming
parameter and assesses the tradeoffs involved in the use of various trimmings in the presence
and absence of low-frequency contamination.

The remainder of this article is composed as follows. Section 2 details the (potentially)
contaminated LMSV model. Section 3 introduces the robust estimation strategy and dis-
cusses the assumptions imposed for consistency and asymptotic normality of the trimmed
FDQML estimator. Section 4 develops theoretical guidance for choosing the trimming pa-
rameter based on minimizing the asymptotic MSE of the estimator. Section 5 provides a

simulation study of the finite sample properties of the estimator for calibrated data generat-



ing processes, discussing the choice of trimming parameter in finite samples. All proofs are
contained in the mathematical appendix. In what follows, R and Z denote the sets of real
numbers and integers; I(-) denotes the indicator function; |K | denotes the largest integer
value below any generic K € R; O(-), o(+), O,(-) and 0,(-) denote the usual (stochastic) orders
of magnitude; “iﬁ’, « Py and “2%7 indicate weak convergence, convergence in proba-
bility and almost sure convergence. For two function of 7', A(T) and B(T'), A(T) ~ B(T)
means that A(T)/B(T) converges to a constant as T — oo. For a generic vector or matrix
M, M = O,(A(T))/O(A(T))/o,(A(T))/o(A(T)) indicates that each element of M has the
corresponding order of magnitude. All convergence concepts are taken to mean as the sample

size grows to infinity.

2 The Contaminated LMSV Model

We begin with some preliminary terminology and quantities of interest. For a generic process
{y:}, the discrete Fourier transform and periodogram of {y;} are respectively defined as

follows:
1

V27T

where T is the sample size and A\ € [—7, 7| denotes the frequency. The estimators examined

T
w,(N) = =S ge M and 1,0\ = fu, (V)P
t=1

here will involve evaluating the observed time series’ periodogram at a subset of the Fourier
frequencies \; = 2nj/T for j = —|T/2| +1,...,|T/2| — 1,|T/2|. The periodogram is
the natural method of moments estimator of the population spectral density function of a
process.

Let us turn to a description of the contaminated LMSV model which extends the standard
LMSV model to allow for abrupt or smoothly varying changes in the mean of the volatility

process, among other forms of low-frequency contamination.

Assumption 1. The data generating process (DGP) follows
re = owey, oy = oexp(h/2),
where o > 0 is some constant, e, ~ 1.1.d.(0, 1),
he =us+v,, (1 —L)'"A(L)v, = B(L)ny, m ~i.i.d.N(0,07),

{w:}, {et} and {v;} are mutually independent, E[1,(\;)] = O(T/j?) uniformly for all nonzero
Fourier frequencies \; and A(L) and B(L) are polynomials in the lag operator L of finite
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orders m and q with coefficients {a;}{*, and {b;}}_,: A(L) =1 —=3_" ;L' and B(L) =
L+ 30, 0,17

Remark 1. The proof of consistency of the trimmed FDQML estimator relies on the ergod-
icity of {vy}. When {n,} is Gaussian, the ergodicity of {v;} is implied by the other conditions
of Assumption 1 (see the proof of Theorem 1 in Breidt et al., 1998). One may instead explic-
itly impose ergodicity of {v;} to avoid the Gaussianity assumption on {n;}. However, in the
case that {n,} is not Gaussian, the asymptotic variance in Theorem 2 needs to be modified

to include a component arising from the excess kurtosis of n,. See Remark 3 for details.

The process {r;} is specified as the returns series of some underlying asset, typically mea-
sured as the first difference of the logarithm of the asset price. Apart from the component
ug, this is the original LMSV model proposed by Breidt et al. (1998) and Harvey (1998).
The high-level assumption on I,(-) is identical to that imposed by McCloskey (2010). This
assumption is more appealing than explicit specification of the process {u;} when the prac-
titioner would like to take an agnostic view on the form of contamination that may or may
not be present, as should be the case in many practical applications. It allows the process
{u;} to take a variety of forms, some of which are provided below.

Random Level Shifts (RLS)

t
Uy = E 5T,j; 5T,t = WT,tft,
Jj=1

where & ~ i.i.d. (0, ag) and 77 ~ i.i.d.Bernoulli(p/T, 1) for some p > 0. The components
mry and § are mutually independent.
Deterministic Level Shifts (DLS)

B
w=y cl(Ti <t<T),

i=1
where B is a fixed positive integer (the number of breaks plus one), |¢;| < oo fori=1,..., B,
Ty=0,Ts=T,To<Ti<...<Ty <Tgand T;/T — 7, € (0,1) fori=1,...,B.
Deterministic Trends (DT)
ue = h(t/T),

where h(+) is a deterministic nonconstant function on [0, 1] that is either Lipschitz continuous

or monotone with i(1) = 0.1

IThis includes all cases for which A(-) is monotonic and bounded since we can simply subtract k(1) from
h(-) and multiply o by exp(h(1)/2) to have the same DGP.
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Fractional Trends (FT)
u = O((t+1)°"Y?) with ug =0, Jugsy — w| = O(Juy| /1),

where ¢ € (—1/2,1/2).

Outliers
M
Uy = Zmi]l(t =T,
i=1
where M is a fixed positive integer (the number of outliers), |m;| < oo for i =1,..., M and

O<Ti<...<Ty_1<Ty <T.

The Bernoulli probability of the RLS process is specified to be sample size-dependent so
that level shifts are rare, with the expected number being constant in the sample size. If this
were not the case, {u;} would be better construed as a random walk. It is important to note
that p can equal zero so that the RLS process nests the no level shift, no trend case. Perron
and Qu (2010) showed that RLS satisfy the periodogram assumption F[I,(\;)] = O(T/j?)
uniformly for all nonzero \;, while McCloskey and Perron (2010) and Mikosch and Starica
(2004) showed the same for DLS; Qu (2011) and Kiinsch (1986) did so for DT and Iacone
(2010) did for FT. A slight generalization of results in lacone (2010) provides the result for
outliers. Although not listed above, Robinson (1997) showed that a class of nonparametric
mean functions also satisfies the high-level assumption.

In relation to Iacone (2010), here we are imposing the weakest version of his Assumption
2, that with ¢ = 1/2, in order to accommodate the widest range of contaminating processes.
Although E[I,(\;)] ~ T/j* in the RLS case for which p > 1 and the DLS case for which
¢; # 0 for some i (see the above references), limy_,o.(j2/T) E[1,(\;)] = 0 for some DT cases,
any FT cases or when j/T — 0 for outliers. However, assuming an exact order for some of
these cases would rule out contamination by some of the others. For example, Theorem 1
of Tacone (2010) provides that E[I,()\;)] = O(T?% /2% uniformly in nonzero A; for all FT
cases with ¢ < ¢. However, if we were to replace the assumption E[L.()\))] = O(T/j*) with
E[L,(\;)] = O(T% /'2%) for some ¢ € (—1/2,1/2), we would be ruling out contamination
by RLS or DLS.

It is also worth discussing a couple of the processes that the assumption on E[I,(+)] rules
out. Assumption 1 does not allow {u;} to be a long-memory process since, for a long-memory
parameter d < 1, the expectation of the periodogram of a long-memory process evaluated
at nonzero frequency \; is of order O(7%¢/j%) when j/T — 0 (see Theorem 1 of Velasco,

1999). Hence, such expectations do not converge to zero when evaluated at nonzero Fourier



frequencies for which v/T'/j — 0, as required by Assumption 1. Similarly, in the unit root
case, for which d = 1, E[I,(\;)] = O(T?/4?) for all nonzero A; (see Theorem 1 of Hurvich
and Ray, 1995). On the other hand, most short-memory processes, such as white noise or
ARMA processes, have bounded but strictly positive periodograms at all frequencies and

similarly violate Assumption 1 as candidates for {u}.

3 The Trimmed FDQML Estimator
Under Assumption 1, we have the following decomposition of the log-squared returns process:
z; = log(r}) = logo® + Ellog(e})] 4+ u: + v + (log(e7) — Ellog(e})]) = p 4 ue + ve + &4,

where 1 = logo? + Ellog(e?)] and &; = (log(e?) — Ellog(e?)]). Assuming stationarity, let
f(A;0) denote the spectral density function of {v; + &, } evaluated at frequency A € [—7, 7],

where 6 denotes a finite-dimensional parameter vector. Then,

ABENE o
A 6) = T . —= 1
f(x:6) 2|1 — e7 24| A(e=) |2 + 27’ (1)
where
HE(d,ag,ag,al,...,am,bl,...,bq)

is the parameter vector of interest with o2 = Var(e;). The following assumption imposes
specific conditions on the parameters that ensure the existence of the spectral density func-
tion. It also employs conditions that guarantee the identification of € in the (second-order)

spectral domain.

Assumption 2. The parameter vector 6 is an element of a compact parameter space © and
for 64,08 € ©, f(-;04) = f(-;07) implies 64 = 8. The parameter space © is contained in a
space such that o2 € (0,00), A(z)B(z) # 0 for |x| <1 and A(-) and B(-) have no common
roots. The true parameter vector, 0° lies in © with d° € [0,1/2).

Assumption 2 is quite standard for estimation in the spectral domain. It rules out
unidentifiable cases that would occur if d = 0 and A(z), B(z) = 1 or o7 = 0, for example. It
also ensures that the spectral density function is positive everywhere. When e, is Gaussian,
it is known that (¢2)? = 72/2 and this may be imposed in the estimation if one is willing to

make this additional assumption.



We will perform estimation of the LMSV model parameters via the periodogram of the
log-squared returns process {x;}. More specifically, the trimmed FDQML objective function
is defined as

—1 I$(>\]>
Lyy(0) =T Slog f(Aji6) + -t o
= f(A:0)
l
where F; = (=T17/2,T/2]NZ\ [-1+ 1,1 — 1], and the trimmed FDQML estimator is defined
as O = argming.g L7;(#) for a parameter space © satisfying Assumption 2. The objective
function selects model parameters to fit a candidate spectral density function to the observed

periodogram. Let v; = v;+¢,. Then the periodogram of {z;} has the following decomposition:
I,(\) = I;(A) + LX) + ws(AN)wa (=) + wz(—=A)wy, (N). (2)

The standard FDQML objective function sets [ = 1 but here we wish to asymptotically
rid the objective function’s dependence on the contaminating process {u;} by using a large
enough trimming so that the influence of I,()\;), ws(A)w,(—X) and wy(—A)w, () in (2) are
asymptotically negligible. The next assumption makes this necessary trimming precise.
Assumption 3.

—0as1 — 0.

logT llogT
T
The imposed trimming is quite weak and is basically the same as that imposed for

consistency by McCloskey (2010). This is not surprising in light of the fact that we are dealing
with the same objective function but with a process {v;} that asymptotically dominates the
periodogram I,(-) for at least as many Fourier frequencies as the processes he considered
(and more if d° > 0).

Remark 2. Though he addresses semiparametric estimation, Iacone (2010) uses a similar
objective function to the trimmed FDQML objective function to estimate the memory param-
eter. In fact the trimmed local Whittle objective function he uses approximates the trimmed
FDQML objective function in a frequency band local to zero. Hence, it is interesting to com-
pare the trimming he requires to establish consistency in the semiparametric context with
that imposed by Assumption 3. The comparison cannot be made directly since the bandwidth
parameter in lacone (2010) must grow slower than the sample size. Nevertheless, as the
the bandwidth m approaches its admissible boundary of T in the semiparametric context,
the trimming lacone (2010) requires when allowing for the broadest range of low-frequency
contamination (i.e., ¢ = 1/2 in his Assumption 3) approzimately approaches that which is
required by Assumption 3 above. That is, for any d° € [0,1/2), as m approaches T, the

permissible range for the growth rate of the trimming is the rate T for any o € (0, 1).
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With these assumptions in hand, we may establish consistency.
Theorem 1. Under Assumptions 1-3, 6 - 6°.

Asymptotic normality requires a stronger trimming condition in order to asymptotically
rid the influence of the low-frequency contamination on the scaled bias and variance of the
estimator.

Assumption 3*.
T 2logT  1°log®>T
[ T4

The first condition of Assumption 3*, which enforces a lower bound on the growth rate

—0asT — .

of the trimming, is also imposed in the short-memory context of McCloskey (2010). As was
the case for the trimming required for consistency, this is again unsurprising. The second
condition, which is not imposed by McCloskey (2010), bounds the trimming’s growth rate
from above. This upper bound is used in the long-memory context of the present paper to
ensure that the low-frequency ordinates containing relevant information on the long-memory

behavior the of the contaminated process are not entirely trimmed away.

Remark 3. Unlike the trimming assumption used for consistency (Assumption 3), it does
not make sense to compare Assumption 3* to the trimming required by lacone (2010) for
asymptotic normality of his semiparametric estimator of d°. For asymptotic normality, Ia-
cone (2010) would require the bandwidth to grow slower than T@/(+44) — o(T1/3) in the
context of the LMSV model. Hence, we cannot examine the trimming his results would require

for m approaching T

With this stronger trimming condition in hand, we may now present the asymptotic

normality result.

Theorem 2. Under Assumptions 1, 2 and 3*, with the additions that 6° is in the interior
of ©, Ele}] < oo and for all € ©, d =0, > d for some d > 0,

VT(6 —6°) -2 N(0,Q71 (20 + Q™)

where 1 ™ 91 f(/\ 90)81 f()\ 90)
_ 0og ; og :
Yo /_7r o0 sp A
and
- Pled = 3FlE] [ OF 0 Of i)t
= (27-()4 N 80 80/ 1 2.



Remark 4. In the case that the Gaussianity assumption on {n;} is replaced by an ergodicity
condition on {v;} (as discussed in Remark 1), the quantity I1 in the above asymptotic variance

expression would need to be modified to equal

(Eln/] = 3E) + (Elef] = 3E[E]) [T [T of(A\;0°) 1 0f (N3 60°)"
(2m)4 /_ _ /_ _ a0 g hdre

I =

assuming that E[n}] < oo (see the proof of Theorem 2 and Hosoya, 1997).

Remark 5. Finite sample evidence indicates that a normal approrimation would lead to
poor inference on the model parameters, even in the absence of contamination (see Pérez
and Ruiz, 2001). Moreover, the limiting variance of the trimmed FDQML estimator appears
to be exceedingly difficult to estimate. It stands to reason that these two problems would
be further compounded in the presence of low-frequency contamination. Thus, I suggest
using a bootstrap procedure that is valid for stationary long-range dependent observations for
inference on the model parameters. A careful implementation of the block or sieve bootstrap
for long-memory processes (e.g., Kapetanios and Papailias, 2011 or Poskitt, 2007) would
likely suffice. However, establishing the validity of such a procedure for the DGPs examined
here is beyond the scope of this paper.

Remark 6. We must impose the condition d > d > 0 for all 8 € O, and consequently
d® > d > 0 by Assumption 2, due to the discontinuous behavior of f(\;0) atd = 0, = 0. More
specifically, the continuity and integrability properties of derivatives such as Of(X\;0)~1/00
and &?[f(X;0)71]/0000" crucial to establishing asymptotic normality do not hold when d = 0.
A review of the literature on fully parametric estimation of long-memory models shows that
this type of assumption is crucial to obtaining the asymptotic properties of estimators in
various long-memory contexts. See, e.g., Fox and Taqqu (1986), Dahlhaus (1989) and Hosoya
(1997).

4 Asymptotically Optimal Trimming Rate

As with all methods that require a user-chosen tuning parameter, a theoretically-driven
means for choosing the trimming parameter is desirable in the trimmed FDQML estimation
context. In this section, I provide a heuristic argument for the asymptotic MSE-minimizing
rate for the trimming parameter.

To begin the analysis, assume that Assumptions 1-3 hold, 6° is in the interior of © and



for all @ € ©, d = 6; > d for some d > 0. Note that

~ 7-—1
i [PLa@)] oLre)
| o000 90

for some @ such that [|§ — 6°|| < || — 6°||.2 If I1log? T/T — 0, then

OLri(B) 1 [ Dlog f(Xi6°) Dlog F(X:6°)
0006’ 2 ). 00 oo’ ’

an invertible deterministic matrix (see the arguments leading up to (A.15) in the proof
of Theorem 2). Hence, assuming that they exist, the order of magnitude of the bias and
variance of 6 are equal to those of dLz,(6°)/86. Suppose in addition that 17 log? T/T* — 0
and E[e}] < co. Using the decomposition (A.16)-(A.19) in the proof of Theorem 2, we can
i) = 0y 4 LT 8T

by results derived in the proof of Theorem 2 and the fact that Efwgs(\;)w,(—A;)] = 0.
Similarly, results in the proof of Theorem 2 establish that the variance of terms (A.16) and
(A.19) are O(1) and O(T?*[71-24° 1og® T'). Assuming it exists, the variance of term (A.17)
is O(1og® T/T) (see Lemma 3) while Lemma A.3 of McCloskey and Perron (2010) provides
that the variance of (A.18) is O(T log® T'/I?), at least when the low-frequency contamination
takes the form of RLS, DLS, DT or FT. Finally, the Cauchy-Schwartz inequality shows that
covariances of pairs of the (A.16)-(A.19) terms are all of lower order than the variance terms
if 1'=24 log T/T"~2® — 0. Hence, under this additional condition, we have

see

. 1 llog®>T log®>T log® T
Var(e)—o(—+ o8 8 o8 )

T T2 l2 T1—2d011+2d0
and
~ 1 M2logT logT llog?*T log®T log?T log® T
MSE(@):O(—+ o8 08 ] 08 o8 Ogo )
T T3/2 T1/2] T2 TI/2 [2 T1-2d0 [14-2d

Choosing ! to minimize the order of this expression while satisfying the constraint I° log® T/T* —
0 yields
[OPT ~ T2 0g T,

2Strictly speaking, this is a slight abuse of notation since ¢ differs on elements of the vector equation as
the Mean Value Theorem only applies to individual elements of partial derivatives.
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This trimming rate satisfies the condition ['~2# log T/T'~2%" — 0 so that the variance ex-

pression given above holds for all trimming rates within a neighborhood of [°FT.

It is interesting to note the relationship between (©FT

and the MSE-minimizing rate for
the bandwidth of semiparametric estimators of the memory parameter in the absence of low-
frequency contamination. For standard semiparametric estimators (e.g., log-periodogram
and local Whittle), the optimal bandwidth rate is equal to the boundary that determines
whether asymptotic normality can be achieved, namely 7%° (see, e.g., Hurvich et al., 1998
and Henry and Robinson, 1996). Quite similarly, in the fully parametric context of this paper,
the optimal trimming rate is equal to the boundary at which asymptotic normality can be
achieved (see Assumption 3*). In the standard semiparametric estimation context (with no
low-frequency contamination), a higher bandwidth allows higher frequency components of
the time series to contaminate the estimate. Conversely, in the context of this paper, a lower

trimming allows lower frequency components to contaminate the estimate.

Remark 7. Though we can obtain the optimal asymptotic order of the trimming parameter,
we cannot obtain the proportionality constant in the expression of [OFT without imposing
more explicit assumptions on the form of the contaminating process. For example, if we
knew that {u;} was indeed described by the RLS model, the proportionality constant would
depend on the parameters p and ag of this model. We could then “plug in” estimates of these
parameters to estimate [°CT. However, such a methodology would seemingly defeat one of the
main draws of the trimmed FDQML methodology: allowing the practitioner to be agnostic

regarding the particular form the contaminating component may take.

Remark 8. In cases for which E[I,(\;)] = o(T/j?), the true asymptotically optimal trim-
ming grows slower than the order given by [OFT. If one wished to obtain the exact optimal

rate for 1 in one of these cases, e.g., FT models, the arqguments used to find (°FT

would carry
through with appropriate modification. Contaminating processes for which E[I,(\;)] ~ T/ j*

include both RLS and DLS processes. See the references in Section 2 for details.

Remark 9. As can be seen from the above expressions, there is no clear bias-variance tradeoff
in the choice of trimming parameter. Although increasing the trimming decreases the bias due
to the shift or trend component, it simultaneously increases the bias that comes from ignoring
lower frequencies that contain information on the latent long-memory process. Similarly,
an increased trimming has opposing effects on the variance: ignoring more lower frequency

ordinates decreases estimation variability arising from the low-frequency contamination while
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it increases variability arising from discarding “observations” on the contaminated long-

memory process.

5 Finite Sample Performance of the Robust Estimator

With the consistency and asymptotic normality of the trimmed FDQML estimator of the
LMSV model parameters established, let us now investigate how well the estimator performs
in data-calibrated, finite sample scenarios. For this finite sample experiment, I examined four
DGPs whose parameters were calibrated from two different high-frequency returns series.?
The first two sets of parameter values come from McCloskey’s (2010) trimmed FDQML
estimation of the standard autoregressive stochastic volatility (ARSV) model for desea-
sonalized high-frequency Japanese Yen to US dollar exchange rate returns.* McCloskey’s
(2010) estimation methodology restricts d = 0 but is robust to the presence of low-frequency
contamination. On the other hand, Deo et al. (2006) estimated the parameters of an au-
toregressive LMSV model for deseasonalized high-frequency S&P 500 stock market returns
(mentioned on p. 50). They used the standard FDQML estimator which is not robust to
low-frequency contamination but allows for long-memory. By examining specifications based
upon these two data calibrations, we can hope to obtain an idea of how well the trimmed
FDQML estimator works in practically relevant contexts in which low-frequency contami-
nation and/or long-memory may be present. Since the standard ARSV model is nested in
the autoregressive LMSV specification, we are free to estimate all of the model parameters
of the latter, including d. In order to make fair comparisons, the parameter search space ©
was set to be equal across DGPs and estimators while satisfying Assumption 2. Specifically,
I[set © =D x %, x3 xA=[-0.1,0.7] x [0.1,100] x [0.1,100] x [0.1,0.99]. Finally, I
found the bias and root mean-squared error (RMSE) of the standard FDQML estimator
and seven different trimmed FDQML estimators in order to assess how trimming affects the
estimation, which trimming works best for which type of DGP and to see if the order of [OFT
can provide some practical guidance for trimming choice in finite samples. All values were
calculated from 1000 Monte Carlo draws for sample sizes of 7" = 4000, 8000 and 16000.

In terms of the DGP of Assumption 1, McCloskey (2010) estimated the parameter vector
0 for the model with d = 0, ¢ = 0 and m = 1, the standard ARSV model. The parameter

3These calibrations are not exact because Gaussianity of e; is imposed in the simulations in order to make
bias and root MSE calculations for estimates of o2 feasible. Recall that when e; is Gaussian, (¢2)? = 72 /2.
Nevertheless, the sets of calibrated values for § used here entail estimates of o2 very close to m2/2.

4Specifically, I use his estimates for “AB” deseasonalized data with trimming | = |T°°!], see Table 12 in

McCloskey (2010).
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estimates he obtained correspond to a® = 0.78 (the autoregressive parameter) and (o))* =

0

9)2 is set equal to 72/2 here, see footnote 2). Since

0.33 with d° restricted to equal zero ((o
his estimation technique is robust to low-frequency contamination, the u; component of
Assumption 1 is free to take a variety of forms. For the purposes of this Monte Carlo exercise,
I specified {u;} as a RLS process since the literature indicates level shifts are particularly
relevant in this volatility context. In terms of the parameters described on p. 4, I set the
variance of the level shifts O'g equal to the variance of v; and the average number of level
shifts per sample p equal to 10.

The bias and RMSE values for the average of 10 RLS case are reported in Table 1 with
the numbers under “trimming” corresponding to the trimming exponent o where [ = [T¢].
Notice that only the trimmings with o = 0.51 and 0.6 satisfy Assumption 3*, required for
asymptotic normality, while all but that with a = 0 saitisfy Assumption 3, required for
consistency. The first feature to note from this table is that the standard (untrimmed)
FDQML estimators of the persistence parameters (d and a) are largely biased. The esti-
mates of d are upward biased, in agreement with similar findings for semiparametric memory
parameter estimates in the presence of level shifts (see the references in the introduction).
Interestingly, in the untrimmed context, the estimates of a exhibit large negative biases. It
appears that low-frequency contamination induces the standard estimator to confuse some
of the short-memory persistence of the time series with long-memory persistence. To the
best of my knowledge, this is the first time such a feature has been uncovered. In line with
the asymptotic results, we can see that for all sample sizes, trimming removes substantial
portions of the bias in the persistence parameter estimates. This bias reduction is nonuni-
form across trimmings. Of the trimmings studied, the trimming exponents of 0.4 and 0.45
seem to provide the largest bias reductions for the persistence parameters. The extent of
these bias reductions is manifest in major RMSE reductions over the standard estimator,
oftentimes exceeding 50%. Nevertheless, very large trimming is detrimental because it in-
duces bias by ignoring too many periodogram ordinates for which the LMSV process {v;}
dominates the level shift contamination {u;}. In this long-memory context, there appears
to be a very similar bias tradeoff to that explored rather extensively by McCloskey (2010)
in the short-memory context. The presence of level shifts does not seem to induce much
bias in the estimators of the variance parameters of the model (0,27 and o2). Moreover, the
variance parameter estimates perform quite similarly across trimmings, excluding perhaps
the very highest. In terms of RMSE, the trimming exponent of 0.45 appears to work best
all-around for this DGP. This is broadly in line with the rate that would be recommended by
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[OPT if the analysis of Section 4 extended to the boundary case where d° = 0. Furthermore,

it appears that the finite sample RMSE-minimizing rate approaches [°FT from below as the
sample size grows.

Directing our attention now to cases for which low-frequency contamination is absent and
the standard FDQML estimator has been shown to be consistent and asymptotically normal,
Table 2 details the performance of the various FDQML estimators for the same calibrated
DGP as in Table 1 but with no level shifts. A perhaps surprising feature of this table is
that the standard estimator does not always dominate the trimmed one in terms of bias
and RMSE even though trimming is unnecessary in this context. For example, a trimming
exponent of 0.3 or 0.35 performs best in terms of bias for d when the sample size is 16000.
However, the differences in performance across trimmings are rather minor in comparison
to the case with level shifts as long as the trimming is not excessive. We can see that when
evaluated at a trimming exponent that works well in the presence of level shifts and that is
roughly in line with the theoretically-driven choice [°FT, say 0.45, the difference in RMSE
between the trimmed and untrimmed estimators in the uncontaminated case is quite small
in comparison to this difference in the presence of low-frequency contamination (i.e., Table
1). In fact, the difference in RMSE between these two estimators appears to shrink in the
sample size in the absence of low-frequency contamination while it appears to grow in its
presence. Of course, in the absence of contamination, [(°FT is no longer the asymptotic MSE-
minimizing trimming rate. As noted by McCloskey (2010) in the short-memory context, too
high of a trimming induces bias by discarding valuable information on the contaminated
long-memory process.

Next we examine a DGP that entails both long-memory and low-frequency contamina-
tion. Deo et al. (2006) estimated the parameter vector # for the model with ¢ = 0 and
m = 1, the autoregressive LMSV model. The parameter estimates they obtained correspond
to d” = 0.37, a” = 0.35 and (0))* = 0.27. Since the estimation methodology used by these
authors is not robust to low-frequency contamination, these parameter estimates may be
biased. Nevertheless, by adding low-frequency contamination to these calibrated values, we
can obtain a good idea of how it may affect parameter estimates when {v;} is actually a
long-memory process. In this vein, I added the same RLS process to the LMSV process as
in Table 1, adjusting the variance of the level shifts ag to be equal to the variance of v; in
this context. The results are provided in Table 3. As in Table 1, the parameter estimates
exhibit large biases although, at least for the persistence parameters, these biases are not

as large as in the d = 0 case since d° = 0.37 is approaching the upper bound of admissible
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values 0.5. This is in fact a manifestation of a more general feature: low-frequency contami-
nation induces more bias and higher MSE in standard estimators for lower values of d°. The
direction of the biases in Table 3 is also in line with those in Table 1. We can again see
that trimming removes most, and in some cases all, of the bias induced by the level shifts
with the trimming exponent of 0.3 seeming to provide the largest bias reductions. As in
Table 1, we again see major reductions in the RMSE of the persistence parameters over the
standard FDQML estimator when the trimming used is not too high. For this DGP the
trimming exponent of 0.3 appears to work best all-around. This rate is substantially smaller
than that given by [°PT, which may be partially due to the fact that we are ignoring the
proportionality factor in [°FT. Nevertheless, as in Table 1, we can see that the finite sample
RMSE-minimizing trimming rate increases towards [OFT as the sample size grows.’
Turning to the final DGP under scrutiny in this Monte Carlo exercise, we remove the
low-frequency contamination from the long-memory process to study the calibrated pure
LMSV model of Deo et al. (2006). The results for this DGP, provided in Table 4, are
broadly in line with those of Table 2: a high trimming induces bias and RMSE-growth but
the differences in performance across trimmings are not as large as the differences when the
process is contaminated by level shifts (as in Table 3) as long as the trimming is not too

[OPT can

high. Here, using a trimming exponent based on the theoretically guided choice
substantially reduce the performance of the estimator.

In summary, this simulation experiment shows that substantial gains can be made from
using the trimmed FDQML estimator to estimate the parameters of the LMSV model when
the presence of low-frequency contamination is a potential concern. This is indeed the case
for returns volatility series, the very series LMSV models are designed to model. We have seen
that using (°FT as a rough guide for trimming choice can lead to much improved performance
of the FDQML estimator in the presence of low-frequency contamination. However, simply

[OPT in the absence of contamination has the potential to reduce the

using the rate given by
performance of the estimator. A pre-test with power against low-frequency contamination,

such as that of Qu (2011), would thus provide some useful direction for trimming choice.

5Strictly speaking, the parameter space © used in this simulation study does not satisfy the extra as-
sumption d > 0 imposed in Theorem 2. However, the simulation results for this DGP do not perceptibly
change when we change © to bound 6; below by some number arbitrarily close to zero.
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6 Mathematical Appendix

The proofs of the main results are followed by auxiliary lemmas. For the sake of brevity, we
will say “uniformly in #” to mean uniformly in 6 over ©. Similarly, “uniformly in \” should
be taken to mean uniformly in A over [—7, 7] and “uniformly in j” should be taken to mean
uniformly in 7 over Fj.

Proof of Theorem 1: Begin by noting f();0)™' < 27/6% < oo for all A € [—7, 7] and
0 € ©, where 62 = mingeg 3, which exists by the compactness of © imposed in Assumption
2. Hence given Assumption 1,

_ I,()\) =T logT
supT~hy L T L( 7'y = =0 (—)20(1)
60 ]62;1 f(A5:0) JEZE ( ]Z_;]Q AN/ g
(A1)

by Assumption 3. Also,

_1 e wi(Aj)wu(=A))
w77 ) =500

, T p1/2+d
ST L Al = 0, (T 3 S
j=l

JEF; JjEF;

T
0_ 1 0_
— (Td 2y ]> = 0,(T" ) = 0,(1),  (A2)

J=l

using Lemma 1. Thus, by (A.1), (A.2) and the decomposition (2),

Ly,(6 -1 EZE {log (Aj;0)) %} + 0,(1) (A.3)

uniformly in #. Now note that by Lemma 1 and Assumption 3,

15 {tow ) + o b =70 S e (i) + ;(;Ag)}\

sup
bc6 jeR jER
l l
= sup |27~ Z{log [0 0) + ) } =0T logA; ™) + 0, (T3] A2
0eO f(Aj; 8) j=1 ’ " j=1 ’

~0, (“(;%T) +0, ((%)1 MO) = 0,(1) (A.4)

where d = maxgpee 61. Hence, (A.3) and (A.4) provide that

Laal6) =7 Y {lou (000 + 75 4,1
JEFL 7

uniformly in #. Then, the proof of Theorem 1 in Breidt et al. (1998), with the above result,
shows that

Ly (0) % /7T {log f(X0) + J;(();\ %)) } d\ (A.5)
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uniformly in 6. The remainder of the proof then follows since the right hand side of (A.5) is
uniquely minimized at § = 6° and © is compact (see the proof of Theorem 1 in Breidt et al.,
1998 for details). W

Proof of Theorem 2: Using the Mean Value Theorem, we have

Ly (0) 0)

1
DL (8"
s | VT (4.6)

ﬁ(é_90> - 90

for some 6 such that ||§ — 6°|| < ||6 — 6°|| since 6° is in the interior of ©. (Strictly speaking,
this is a slight abuse of notation. See footnote 2.) Using the decomposition (2),

&L, (0) PLIN;0) 7 1 = 9f (N3 0) 9lf (N5 0) 7]
aeaef Z{[ TG0 =505 _?Z 80 a6’
J €FL JEF
PIf(N;0)7"]
T];{]N : )\179)}W (A7)
P[f(N;0)7 1]
-7 Z ) = F 05550 (5.8
J——lﬁfo
>\Ja9) ]
T ];l] aeaef (A9)
1 O f(N;0)!
7 LA + (A ()} O (A10)
1 dlog f(A;;0) Olog f(A;;0)
T ];1 a6 a0 (A-11)
1 0log f(\;0) dlog f(\;:0)
_1 j;#o A . (A.12)

for all @ € ©. Starting with (A.7), note that 9*[f(\;0)~']/900¢’ is uniformly continuous over
[—7, 7] x ©. To see this, note for example that
PLf(N0)7Y  8moyof(2sin |A/2))* log (2sin | A/2[)[ Be™™) [P|A(e™)[*
oa (7| B(e)? + 02(2sin [A/2])*¢|A(e)]?)?

(A.13)

(In this and the following expositions, I focus on derivatives with respect to d since they
diverge the fastest/converge the slowest as A — 0.) Also, {v;} is ergodic so that straightfor-
ward modification of the proof of Lemma 1 of Hannan (1973) (also see the proof of Theorem
1 in Breidt et al., 1998) provides that

5 FOH0)7Y as 1T 0 PO
J;I aeaef o | T A

A2



uniformly in . Moreover, f(\;0)0%[f(\;0)71]/0006¢" is integrable in A with a continuous
integral uniformly in 6. This can be seen from inspection of quantities such as (A.13)
multiplied by f(A;6). Hence,

L0 A 0)
T Zf 060" / T aeaef —ooe

]€F1

uniformly in 6 and

1 T PEOEOT
T > {L) - f()\jve)}w —0

JjE€F1

since 2+ ° by Theorem 1. Moving now to (A.8), note that f(\;8)92[f(\:6)~]/000¢" is
also uniformly continuous over [—m, 7] x ©, which follows similarly. Using this result, Lemma
1 and the fact that 9?[f(\;0)~'|/9006¢’ is uniformly bounded over [—7, 7] x ©, (A.8) and can

be given the following order uniformly in 6:

0, (% Zl: {)\;de + 1}) =0, ((%)1_2(10 + %) = 0,(1).

Using the same boundedness properties of D?[f(N\;;0)71]/0606" as above and the order of
E[I,()))], we can establish that (A.9) is O,(T 12]@? T/3?) = 0,(logT/l) = 0,(1) uni-
formly in €. Similarly, with the help of Lemma 1, we obtain that (A.10) is

1 0 0
Op (T Z T_l/Q)\;(1+d )) _ Op(Td —1/2) _ 0p(1)

JeF
uniformly in . Next, (0log f();;0)/06)(0log f(A;;0)/00") is integrable in A with a contin-
uous integral uniformly in #. To see this, note that, e.g.,

dlog f(N0) 2log(2sin [\/2|)|B(e~)|?
ad B 02| B(e=™)]2 4 02(2sin [A/2])2|A(e=*) >

(A.14)

Thus, (A.11) is equal to

1 (™ dlog f(X;0) Olog f(X:6)
2r ). 00 a0’

dX +o(1)
uniformly in 6. Finally, expressions like (A.14) show that

dlog f(N;;0) Olog f(N;;6) 2
i T = O(log™ [);])

uniformly in j and 6 so that (A.12) is

O (% glogQ )\j> = O(llog® T/T) = 0,(1)
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uniformly in 6. Putting all of these results together and applying Theorem 1, we obtain

OPLry(0) 1 /”8logf(A;9°)8logf(A;9°)
9000  2m 00 oo’

dX + op(1). (A.15)

A similar decomposition to that used for 9*Lz;(6)/0000" yields

ﬁaLgle(e _ f]EZE{P e 90)}%3990)_1] (A.16)
- %jzéﬂmw ~ g0y O IT (A7
N %;Iu(Aj)%f)ﬂ (A.18)
" %Kzﬂ{waw)wu(—m (A, ) LT 4 4g)

By Theorem 1.2 of Hosoya (1997), (A.16) is asymptotically normally distributed with mean
zero and covariance matrix whose (7, k:)th element is equal to

" 9log f(A:6°) dlog £(); 6°) —3Est / / w(’ 0L (Aa:6°)7]
Ar /_ ) o+ s oo idde

By Lemma 3, (A.17) is O,(I*/?log T/T1/2) = op(l). Similar arguments to those used to
find the order of (A.9) yield that (A.18) is O,(T*?logT/l) = 0,(1) by Assumption 3* since
I[f(A;0°)71] /00 is uniformly bounded, as can be seen from quantities like

of (o) Aro2(2sin [A/2])* log(2sin |A/2])| B(e~™)[?
od 2B ™) + 02(2sin [A/2])24[A(e=A)[2

For (A.19), using the same uniform boundedness property, note that

(% 3 w3 LS ]) (;T > wa()\j)wu(_)‘j)%”

=7 3 3 s By -2 LT
=0 (T_1 Z Z E[wg()\j)wg(—)\k)]E’[wu(—)\j)wu()\k)]>
=0 (T_l ZE[IE()‘j)]E[Iu()‘j)]> +0 (T_l Z Z E[wﬁ()‘j)wi(_)‘k)]E[wu(_)‘j)wu()‘k)]) -

(A.20)
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Assumption 1 and the Cauchy-Schwartz inequality provide that E[I,();)] = O(T/j?) uni-
formly in j and Ew,(—X;)w,(A)] = O(T/jk) uniformly in j < k while Lemma 2 of this
paper and Theorem 2 of Robinson (1995) provide that

o _plogk T2 log k

uniformly in j < k. Hence, (A.20) is
T 0
1 724" T T2 logk T T2 log® T
O (TZ j?do ,] > ( Z Z 1+d0kd0 _> - O < l1+2d0 = Op(l)'

J=l j=l k=j+1
Combining these results with (A.6) and (A.15), we obtain the statement of the theorem. W
Lemma 1. Under Assumptions 1 and 2,

E[L(0)] = OO and - Elws(\)wu(=A;)] = O(T~2x; )
uniformly for all nonzero Fourier frequencies \;.

Proof: For the first result, note that /3(\;) has an analogous decomposition to (2) in terms
of v and e quantities. Denote the first term on the right hand side of (1) by fi1(A;60). Then,
by well-known results, uniformly for all nonzero \; and 6° € O,

E[L(\)] = O(fi(3;;60°)) = O(\;*)

(see Robinson, 1995 and Hurvich and Beltrao, 1993 for example). Also, E[I.();)] = O(1)
uniformly for all ;. So, by the Cauchy-Schwartz inequality, we obtain the first result:

Elw,(\)w-(=A)| < (BIL)) (B = 005 ") = 00;*").
The second result follows from the Cauchy-Schwartz inequality and the first result:

Elws(\)wa(—=X)] < (B (EILA)DY? = 0

J

)O(r—2x71). |

Lemma 2. Under Assumptions 1 and 2, for any sequence of positive integers, j = j(T) and
k = k(T) such that j > k and limy_, j/T € (0, 00),

B log j
E[wi(/\j)wi(_)‘k)] =0 (k)\?OAZ(J) .
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Proof: Using the expansion on p. 1063 of Robinson (1995),

Blos o)) = [ (76 SO 0L Eu()in (A21)
J ()‘I;+/\k)/2
-/ L) SR B (A2)
(Nj+w)/2
SO - Fw) [T Eavay (a2
s o/
+ [0 - T B (A.24)

where Ej,(\) = 27T) "' D(\; — A\)D(A — Ag) with D(\) = 27, ¢ being Dirichlet’s kernel.
By the Mean Value Theorem and the fact that

ID)| <2\ Hfor 0 < [N < (A.25)
(see, pp. 49-51 of Zygmund, 1977), (A.21) is bounded by

7 log j log j
"(\: 0° T 1/ DX — X)) |d\= O =0 ——
{(r;a/ £ >|} o R CE Y s ol

with f/(X\;6°) = 9f();0°) /0N, where the first equality follows from the facts that | f'(\; 0")| <
oo for all 0 < A < 7 and

o
/_ DOV = O(log ) (A.26)

CA;

for C' < oo (see p. 67 of Zygmund, 1977). By nearly identical arguments, (A.22) is bounded
by

(’\j+>‘k)/2 10 y lOg]
/(X: §° T—1/ DO—Ndr=0 [ =27 | _ o 8L ).
{Ak/QS/\Ig(a)\)j(-l—/\k)/?’f ¢ ”}(W ), PR (TA,&MO AP AP

where the first equality follows from the fact that |f/(X;6°)] = O(A"172%") as A\ — 0+. For
k> j/2, (A.23) is bounded by

(Xj+Xe)/2

(A = Ao){, max |f/(A 0%} | Ejr(A)]dA

AR SASN /2

o (Aj+Ak)/2
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where the first equality uses (A.25) and the second uses (A.26). Similarly, if & < j/2, (A.23)
is bounded by

(Aj+Ak)/2
{1F ;0% + 1 (; 691 } | Eji(A)]dA
/2
) (22
o[ AT max | — )\|‘1/ DO\ = Ag)ldA
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o0« . log j
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since f(X;60°) = O(A2%) as A — 0+. Finally, (A.24) is bounded by
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Lemma 3. Under Assumptions 1 and 2, if d®° > d > 0, E[e}] < oo and

1 Plog’T
7 T — 0,
then
. p0\—1
Z{1~ )= f\; 0%}% = O(1"*10gT).

Proof: To reduce notational clutter, let

) 2d0< 0)2| (>’2 2d0(gg>2|A(1>|2
g = A A {1“ <aO>2|B<1>r2}

n

and I; = I5()\;), g; = g();;0%) and f; = f(\;;60°) for j =1,...,1. Then, we have
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I; ;) Olog f()\;;60°)
SAE R T

By Proposition A.1 of Hurvich et al. (2005), (A.27) is bounded by C1'/?log T for some finite
constant C' since for e =1,...,m+q+ 3,

1 'mogf(kj;é’o) dlog f(Nj11; )'<K 1

+E (A.28)

llogT 0, 0, "1logT
forj=1,...,1—1and
..n0
1 [dlog f(A;; 0% )
llogT 00; l

for some generic finite constants K; and Ks. This can be seen by examining quantities such
as (A.14). To bound (A.28), note that as A — 0+,

F(A;0°) = A2 {% + 0\ + AMO%} = g\ 0" (1 +0(\?)).

Hence, for i =1,...,m + g+ 3, (A.28) is bounded by

l l

> ;—z@—o\]
=

3log T
_O<logTZ)\2>— (l 08 ) O(I"*1og T),

for some generic finite constants K3 and K, where the second inequality uses the fact that
E[1;/gj] = O(1) (see Theorem 2 of Robinson, 1995 for example).
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