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1. Introduction

In the past decade, there has been a surge of interest in modeling bounded ra-
tionality. Standard rationality posits that a decision-maker maximizes a strict
complete and transitive ordering; or equivalently, the alternative the decision-
maker selects from each conceivable choice problem satisfies the classic prop-
erty of Independence of Irrelevant Alternatives (IIA). When IIA is not satisfied,
choices are said to be irrational. However, researchers interested in bounded
rationality argue that irrational choices are not necessarily made in an un-
predictable or unreasonable manner. Irrational choice patterns have long been
observed by researchers in marketing and psychology, who believe consumer de-
cisions arise from simplification heuristics such as elimination by criteria (e.g.,
Tversky 1972) and consideration sets (e.g., Wright and Barbour 1977). These
features have been incorporated into structured models of bounded rational-
ity in economics. Prominent examples include Manzini and Mariotti (2007,
2010), Cherepanov, Feddersen, and Sandroni (2010), and Masatlioglu, Naka-
jima and Ozbay (2011), who suggest plausible decision-making procedures that
can generate many observed choice patterns. As suggested by those authors
and others, understanding the procedures generating irrational choices may
also be useful for finding ways to affect behavior and identifying the limits of
welfare economics.

Theoretical work on bounded rationality has provided conditions that char-
acterize choice procedures when choices from all possible problems are ob-
served, and studies what information about underlying preferences can be
identified from observing an entire choice function. However, in most realistic
situations, the available data will be limited. In empirical settings, the mod-
eler cannot control the choice problems faced by individuals. In experimental
settings, generating a complete data set requires an overwhelming number of
decisions by subjects (there are 26 choice problems when the alternative space
contains 5 elements, 1,013 choice problems when it contains 10 elements, and
32,752 choice problems when it contains 15 elements). Given this, one should
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be able to use a theory to make predictions about behavior. If one does not
understand the implications of a theory on partial data, then one does not
know whether it can be used to forecast behavior for other choice problems
that may arise (and, if so, what are all the predictions that would be consistent
with the observed data).

Understanding the rational choice model in the presence of limited choice
data is a classical question that is now well-understood (e.g., Samuelson 1948,
Houthaker 1950, Richter 1966, Afriat 1967 and Varian 1982). Varian (1982)
summarizes the three main questions that are of interest with limited data.
When are observed choices consistent with the theory? What information
can be identified about preferences? What out-of-sample predictions can be
made? This paper studies these questions within an abstract choice setting
with a finite set of alternatives, focusing on some leading theories in the lit-
erature: Manzini and Mariotti (2010)’s theory of choice by categorization;
Cherepanov, Feddersen, and Sandroni (2010)’s rationalization theory; and
Masatlioglu, Nakajima and Ozbay (2011)’s theory of limited attention.

These and other theories of bounded rationality pose new challenges on
limited data. Because a theory has implications in all conceivable choice prob-
lems, identifying a theory’s testable implications may require thinking about
how the decision-maker would behave in unobserved choice problems. Out-of-
sample considerations have not been an issue in the literature on rational choice
with partial data; whenever the decision-maker’s choices can be explained as
the maximization of a transitive ordering over each observed choice set, then
that ordering can be maximized over unobserved choice problems to construct
predictions consistent with rationality. However, we show that out-of-sample
restrictions become relevant for various theories of bounded rationality. For
instance, in the theory of choice with limited attention, concluding that the
consideration sets in some observed choice problems must exclude particular
alternatives may have contradictory implications on the consideration sets for
unobserved choice problems. This means that one cannot limit the test of
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consistency to simply finding a story that explains the observed data, with-
out thinking about whether that story can be extended to unobserved choice
problems. Previous attempts1 overlook the out-of-sample restrictions implied
by the underlying bounded rationality theories, and hence do not allow for
out-of-sample prediction or proper identification.

A second challenge is that identifying the revealed preference is not straight-
forward. For rational choice theory, a choice from a set is revealed preferred
to all available alternatives. However, for the models above, a choice is only
revealed preferred to “considered” alternatives, which must themselves be de-
duced from the data. Furthermore, a notion of revealed preference that cap-
tures all available information for a bounded rationality theory when the data
is complete, may fail to pick up information in nontrivial ways when there is
only partial data. By contrast, for the theory of rationality, one can gather
all the possible information under limited data by simply taking the transitive
closure of the standard revealed preference relation.

Both of the above challenges are related to a third difficulty. If the theory
involves multiple binary relations, or both binary relations and consideration
sets, then there are exponentially more possible combinations of such primi-
tives that should be checked to determine whether observed choices are con-
sistent with the theory. It is not a priori clear whether tractable conditions
can be found for testing consistency.

We apply our methodology to examine two categories of bounded ratio-
nality theories that do not contain each other, but nest several variations.
The first is Masatlioglu, Nakajima and Ozbay (2011)’s theory of choice with
limited attention, which captures a notion of awareness. It posits that when
alternatives which are not paid attention to are removed, the set of alternatives
that are paid attention to is unchanged. The second is Manzini and Mariotti
(2010)’s theory of choice by categorization and Cherepanov, Feddersen and

1Those attempts include Manzini and Mariotti (2007, Corollary 1), Manzini and Mariotti
(2010) and Tyson (2011).
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Sandroni (2010)’s rationalization theory, which are both characterized by the
axiom “weak-WARP” on complete data sets. These two theories capture the
notion of simplification by criteria; they have the feature that if the decision-
maker considers a particular alternative in some choice problem (e.g., because
it is not dominated by another available alternative under some criterion), then
he also considers that alternative within any subset in which it is contained.

We find conditions (and simple procedures for checking them) which char-
acterize when the theories above are consistent with observed choices, identify
revealed preferences, and check out-of-sample predictions. The tests we pro-
vide parallel different methods for testing standard rationality. Indeed, there
are at least two equivalent ways to test whether the classical revealed prefer-
ence of Samuelson (1948) is acyclic (and hence consistent with rational choice
theory). One method is to use the strong axiom of revealed preference (SARP),
which directly requires acyclicity. Another method is to try to enumerate the
grand set of alternatives as follows: pick an alternative that is undominated
within the grand set X and call it x1, pick an alternative that is undominated
in the set X \ {x1} and call it x2, and so on and so forth. This enumeration
procedure succeeds if and only if there are no cycles. In the case of Masatlioglu,
Nakajima and Ozbay (2011)’s theory of choice with limited attention, where
the decision-maker applies a transitive preference, we provide a test related to
SARP that is based on the correct notion of preference restrictions for that
theory. In the case of Manzini and Mariotti (2010)’s theory of choice by cat-
egorization and Cherepanov, Feddersen and Sandroni (2010)’s rationalization
theory, we provide a method related to the enumeration procedure described
above, which works despite the fact that the decision-maker may be applying a
potentially cyclic preference in those theories. The methods we propose make
these various theories easy to operationalize on partial data sets.

This paper is organized as follows. Section 2 formally defines the notion
of a theory of choice, and presents the leading examples studied in this pa-
per. Definitions of consistency and out-of-sample prediction are formalized

5



in Section 3, and used in Section 4 to illustrate the problem with previous
approaches. Section 5 studies Masatlioglu, Nakajima and Ozbay (2011)’s the-
ory of choice with limited attention. Section 6 studies Manzini and Mariotti
(2010)’s theory of choice by categorization and Cherepanov, Feddersen and
Sandroni (2010)’s rationalization theory.

2. Theories of Choice

Let X be a (finite) set of possible alternatives. A choice problem is a
nonempty subset of X that represents a set of feasible alternatives. The set
of all conceivable choice problems is the set of all nonempty subsets of X,
denoted by P(X). A theory T (e.g. rationality) offers a story that determines
which option will be picked in any conceivable choice problem, as a function of
primitives (e.g. preference). That is, once primitives have been fixed, a theory
predicts a choice function c : P(X) → X, where c(S) is an element of S for
every S ∈ P(X). Here are some prominent examples from the literature.

Example 1 (Rational Choice). The decision-maker has a strict complete
and transitive preference ordering P that he uses to pick the P -maximal alter-
native from every choice set. Formally, the primitive P and the choice function
c : P(X)→ X must satisfy:

c(S) = arg max
P

S, for all S ∈ P(X). (1)

Example 2 (Shortlisting by Manzini and Mariotti (2007)). The decision-
maker has two asymmetric (possibly incomplete and/or cyclic) binary relations
R1 and R2. From every choice problem, he first creates a shortlist of alter-
natives that are undominated according to R1, and then picks the R2-maximal
alternative out of that shortlist. Formally, the primitives R1, R2 and the choice
function c : P(X)→ X must satisfy:

c(S) = arg max
R2

(arg max
R1

S), for all S ∈ P(X). (2)
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Example 3 (Choice by Categorization by Manzini and Mariotti (2010)).
The decision-maker follows a two-stage procedure where he first eliminates any
alternatives belonging to an inferior category of options, and then maximizes
an asymmetric (possibly incomplete and/or cyclic) preference relation P over
the remaining alternatives. His “rationale by categorization” � is an asymmet-
ric and incomplete (possibly cyclic) relation on the set of potential categories
C (the set of all subsets of X). Formally, the primitives P,� and the choice
function c : P(X)→ X must satisfy:

c(S) = arg max
P
{x ∈ S| 6 ∃ R,R′ ∈ C : x ∈ R,R′ � R,R∪R′ ⊆ S}, for all S ∈ P(X).

(3)

Example 4 (Rationalization by Cherepanov, Feddersen and Sandroni
(2010)). The decision-maker first uses a set of rationales R1, . . . , RK (asym-
metric and transitive relations) to eliminate those alternatives that are not
optimal according to any of the rationales; he then maximizes an asymmetric
(possibly incomplete and/or cyclic) preference relation P over the remaining
alternatives. Formally, the primitives R1, . . . , RK , P , and the choice function
c : P(X)→ X must satisfy:

c(S) = arg max
P
{x ∈ S|∃i : x = arg max

Ri

S}, for all S ∈ P(X). (4)

Example 5 (Limited Attention by Masatlioglu, Nakajima, and Ozbay
(2011)). For each choice problem S, the decision-maker uses a strict prefer-
ence ordering P to pick the best element in his consideration set Γ(S) ⊆ S.
According to the theory, the consideration set mapping Γ : P(X)→ P(X) has
the property that removing ignored alternatives does not change the considera-
tion set. Formally, the primitives P,Γ and the choice function c : P(X)→ X
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must satisfy:2

Γ(S) ⊆ T ⊆ S ⇒ Γ(T ) = Γ(S), for all S, T ∈ P(X), (5)

c(S) = arg max
P

Γ(S), for all S ∈ P(X). (6)

3. Limited Data and Predictions

A data set D is a set of subsets of X, i.e. D ⊆ P(X). An observed choice
function cobs : D → X associates to each set S in the data the alternative in S
that is selected. For any D ⊆ P(X), we say that a choice function c̃ : D → X

is consistent with a theory T if there exist primitives under which the choice
function c : P(X) → X predicted by the theory coincides with c̃ on D, that
is, c̃(S) = c(S) for every S ∈ D. Notice that a theory predicts choices for
all conceivable choice problems, not just those in the data set. One objective
of this paper is to provide out-of-sample predictions that are consistent with
given theories of bounded rationality, such as those described in Examples
2 to 5. Given an observed choice function cobs : D → X, a theory T , and
S ∈ P(X) \ D, the set of predictions consistent with T given cobs is simply:

PT (S|cobs) =

{
x ∈ S

∣∣∣ c :=
{
cobs on D
x on {S} is consistent with T

}
.

Therefore, given a theory, the question of out-of-sample prediction boils down
to finding conditions on observed choices that are necessary and sufficient for
consistency with that theory.

2Masatlioglu et al. write condition (5) as Γ(S \ {x}) = Γ(S), for all x ∈ S \ Γ(S). Con-
dition (5) is simply an iteration of their condition. Without such iteration, their condition
may easily be vacuous on limited data, which they do not study (e.g., the limited data
only contains jumps of two elements or more). The iterated version (5) captures all the
restrictions consistent with their motivation and original condition.
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4. Inability to Forecast Using Previous Approaches

Other papers have studied bounded rationality on limited data sets from a
different perspective (see Manzini and Mariotti (2007, Corollary 1), Manzini
and Mariotti (2010), and Tyson (2011)). The methodology we propose is to
identify conditions under which an observed choice function is consistent with
a given theory, which imposes restrictions on how choice is determined for
each conceivable problem. By contrast, those papers treat “partial theories”,
which impose restrictions on how choice is determined only for choice prob-
lems in the data set. For instance, in their Definition 4, Manzini and Mariotti
(2010) introduce partial versions of the theory of choice by categorization (cf.
Example 3), requiring condition (3) only for choice problems S in the data
set D instead of all S ∈ P(X). In their Corollary 1, Manzini and Mariotti
(2007) follow an analogous approach to characterize situations where observed
choices are consistent with the rational shortlisting method, requiring condi-
tion (2) to hold only for choice problems S in the limited data set D. Similarly,
Tyson (2011) studies partial theories where choices over a data set D can be
derived from the maximization of a complete and transitive preference relation
applied to a consideration set mapping that is defined over D. Varying the
class of acceptable consideration set mappings generates different partial the-
ories. Tyson defines, for instance, the partial version of the theory for limited
attention, requiring conditions (5) and (6) only for S ∈ D.3

Consider a data set D. A D-theory offers a story that determines which
option will be picked in any choice problem in D, as a function of primitives
(e.g. preference, rationales, consideration set mappings, etc.). That is, once
primitives have been fixed, a D-theory predicts a partial choice function c :

D → X, where c(S) is an element of S for every S ∈ D. Various examples
of D-theories were given in the previous paragraph, corresponding to partial
versions of the (full) theories introduced Examples 2 to 5.

3As Tyson (2011, p. 9) points out, his meta-characterization result for the partial theories
he considers does not apply to choice with limited attention, since consideration set mappings
satisfying (5) do not possess the lattice structure needed for his analysis.
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One could also consider a D-theory of rational choice, requiring condition
(1) only for S ∈ D. But it is immediately clear that the distinction between
the theory and its D-counterpart is irrelevant for rational choice. Indeed, if
maximization of a strict preference ordering on X delivers the observed choices
for problems in D, then that same ordering can be used to define choices else-
where, while still maintaining consistency with the theory of rational choice.

More generally, the distinction between a theory and its D-counterpart
would be irrelevant if the primitives in the D-theory could be used to define
choices outside of D in a way that would still be consistent with the underlying
theory. The problem is, however, that this generally cannot be done in the
presence of bounded rationality. To illustrate this point, consider the following
different cases.

Case 1 (Relating to Manzini and Mariotti (2007)). TakeX = {a, b, c, d, e, f},
the data set D = {ab, ac, bc, abd, ace, bcf}, and the observed choice function
cobs1 : D → X given by:

S ab ac bc abd ace bcf

cobs1(S) a c b b a c

This data is consistent with the D-theory of shortlisting, but inconsistent with
the theory of shortlisting. To see this, we first find some necessary conditions
on R1 and R2. Note that cobs1({a, b}) = a and cobs1({a, b, d}) = b jointly imply
that aR2b and dR1a, with neither aR1b nor bR1a possible. Otherwise, either a
or b could not have been chosen in the other’s presence. Analogously, we infer
from cobs1({a, c}) = c and cobs1({a, c, e}) = a that cR2a and eR1c, with neither
aR1c nor cR1a possible; and we infer from cobs1({b, c}) = b and cobs1({b, c, f}) =

c that bR2c, and fR1b, with neither bR1c nor cR1b possible. To see that the
data is consistent with the D-theory of shortlisting, it suffices to add the
information that xR2y for any x ∈ {a, b, c} and any y ∈ {d, e, f}. Using this
R1 and R2, condition (2) indeed delivers cobs1 for S ∈ D. But recall that a
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necessary condition for rationalizing cobs1 is that aR2bR2cR2a, with R1 silent
on the set {a, b, c}. Hence cobs1 is inconsistent with the theory of shortlisting,
because there are no primitives R1 and R2 that simultaneously predict cobs1
and offer a prediction for {a, b, c}. That is, Pshortlist({a, b, c}|cobs1) = ∅.

Case 2 (Relating to Masatlioglu, Nakajima and Ozbay (2011)).
Take X = {a, b, c, d, e}, the data set D = {ad, de, abc, acd, bcd, bde}, and the
observed choice function cobs2 : D → X given by:

S ad de abc acd bcd bde

cobs2(S) d e c a b d

This data is consistent with the D-theory of limited attention, but inconsistent
with the theory of limited attention. Consider the complete and transitive P
defined by aPcPdPbPe, and the consideration set mapping on D where for
each S ∈ D, the consideration set Γ(S) is comprised of cobs2(S) and its P -lower
contour set: Γ(S) = {cobs2(S)}∪{x ∈ S|cobs2(S)Px} for all S ∈ D. It is easy to
check that (5) is satisfied for S, T ∈ D, and that cobs2 satisfies (6) for S ∈ D.
However, cobs2 is not consistent with the theory of limited attention. This
can be shown by first observing that aPc and dPb are necessary conditions
on P for predicting cobs2. If Γ is a consideration set mapping, then these
relationships would follow immediately if c ∈ Γ({a, c, d}) and b ∈ Γ({b, d, e}),
because a is chosen from {a, c, d} and d is chosen from {b, d, e}. Indeed, those
inclusions are necessary: if, for example, c 6∈ Γ({a, c, d}), then property (5)
of a consideration set mapping requires Γ({a, d}) = Γ({a, c, d}), requiring the
choice from {a, d} to be a rather than d. Using the fact that aPc and dPb, it
is immediately clear that the theory is unable to make a consistent prediction
for the choice problem {b, c}. The ranking aPc implies a 6∈ Γ({a, b, c}), which
in turn implies that Γ({b, c}) = Γ({a, b, c}) and that the choice from {b, c}
should be c. At the same time, the ranking dPb implies d 6∈ Γ({b, c, d}), which
in turn implies that Γ({b, c}) = Γ({b, c, d}) and that the choice from {b, c}
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should be b, a contradiction. Hence Plim−att({b, c}|cobs2) = ∅.

Case 3 (Relating to Manzini and Mariotti (2010)). TakeX = {a, b, c, d},
the data set D = {ab, ac, ad, bc, bd, cd, abc, abd, acd, bcd}, and the observed
choice function cobs3 : D → X given by:

S ab ac ad bc bd cd abc abd acd bcd

cobs3(S) b c a c d d b a d c

This data is consistent with the D-theory of choice by categorization, but in-
consistent with the theory of choice by categorization. Consider the preference
P defined by xPy if cobs3(xy) = x, the set of categories

C = {{a}, {b}, {c}, {d}, {a, b}, {a, d}, {c, d}, {b, c}},

and the rationale by categorization � defined by {a, b} � {c}, {a, d} � {b},
{c, d} � {a}, and {b, c} � {d}. Using these primitives, it is easy to check that
cobs3 is consistent with the D-theory of choice by categorization. By contrast,
cobs3 is inconsistent with the theory of choice by categorization. Indeed, for
any x ∈ X, the extended choice function c̄obs3 that coincides with c on D
and picks x out of X, is not consistent with the D ∪ {X}-theory of choice
by categorization. One way to see this is to apply Manzini and Mariotti’s
(2010) characterization result (which applies when the data set contains all
pairs and triples, as is the case here): a choice function c̃ : D → X is con-
sistent with the D-theory of choice by categorization if and only if c̃ satisfies
the weak-WARP axiom. That axiom says the following: if S, S ′, S ′′ ∈ D with
x, y ∈ S ⊂ S ′ ⊂ S ′′, then c̃(S) = c̃(S ′′) = x implies that y 6= c̃(S ′). Notice
that for any x ∈ X, setting c̄obs3(X) = x leads to a violation of weak-WARP:
there is y ∈ X \ {x} such that x = c̄obs3({x, y}) where y is chosen from one of
the triples containing x. In particular, Pcateg(X|cobs3) = ∅.
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The previous three cases illustrate that D-counterparts of theories are ill-
suited to make consistent out-of-sample predictions. First, we showed that
an observed choice function could be consistent with the D-counterpart of a
theory, and yet there is a choice problem S outside of D for which PT (S|cobs) =

∅. Second, assume someone insists on using partial versions of a theory T to
make predictions given an observed choice function cobs : D → X which is
consistent with the D-counterpart of T . He then considers x to be a reasonable
prediction for a problem S 6∈ D if the extended choice function (adding the
selection of x from S to observed choices) is consistent with the D ∪ {S}-
counterpart of T . To be concrete, consider a variant of Case 2.

Case 2′ Take X = {a, b, c, d, e}, the data set D = {ad, de, abc, acd, bcd}, and
the observed choice function cobs2′ : D → X given by:

S ad de abc acd bcd

cobs2′(S) d e c a b

That is, this person observes all the choices from cobs2 except from {b, d, e}
(in which case, the data can be shown to be consistent with the theory of
limited attention). Then his set of “reasonable” predictions would include the
choice of d from {b, d, e}, which as we have seen, is actually inconsistent with
the theory of limited attention. In other words, his notion of a “reasonable”
prediction is too generous, because the test of consistency with aD-counterpart
of the theory does not refute the theory as often as it should.

Cases 1-3 above also suggest that the notion of consistency with respect to
restrictions of a theory is incongruous. Given a theory T , a person may think
the choices he observes are consistent with the D-counterpart of the theory,
and yet any forecast he tries to make for another choice problem S leads to an
extended choice function that is inconsistent with the D ∪ {S}-counterpart of
the theory, under the same restricted notion of consistency. Hence, pure logic
should have led him to reject the theory on D in the first place.
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The reason behind the inadequacy of D-theories in Cases 1-3 is that the
respective theories impose joint restrictions on choices and primitives. This
can be seen in conditions (2), (3), and (5). Primitives in the D-counterpart
of a theory need not be valid primitives in the theory itself. For instance, the
R1, R2 primitives used in Case 1 to show that cobs1 is consistent with the D-
counterpart of the shortlisting theory are invalid primitives for the underlying
theory, since they cannot pick a choice out of {a, b, c}. More generally, we
showed in Case 1 that any primitives delivering cobs1 would be invalid for the
underlying theory (similarly for Cases 2 and 3).

5. Limited Attention

The “Strong Axiom of Revealed Preference” (SARP) provides a classical
test for rational choice theory. The idea is to first identify all the information
that can be gleaned from observing a decision-maker pick alternatives out of
some choice problems. Following Samuelson (1948), an option x is revealed
preferred to an alternative y if there exists a choice problem where y is available
but the decision-maker selects x instead. SARP requires the existence of a
transitive preference that satisfies all the resulting restrictions.

One can also define a version of SARP, for an arbitrary set of restrictions.
Suppose Σ is a set of logical statements involving a binary relation P . In the
case of rational choice theory, Σ consists of the statements c(S)Px for every
x ∈ S \ {c(S)} and every S ∈ D. Consider the following generalized version
of SARP.

SARP-Σ. There exists an acyclic binary relation P satisfying the restrictions
in Σ.

Notice that SARP-Σ is a condition involving only a binary relation. Can
such a condition be useful for the theory of Masatlioglu, Nakajima and Ozbay’s
(2011)? The complication is that their theory involves both a preference rela-
tion and a consideration set mapping satisfying condition (5). To answer the
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question above, we explore the revealed preference restrictions their theory
imposes.

In their theory of choice with limited attention, a decision-maker maximizes
his preference only over his consideration set. Observing that x is chosen from
a choice problem S does not imply that x is better than y ∈ S, because the
decision-maker may not have paid attention to y. One can only infer that x
is revealed preferred to alternatives in his consideration set at S, which itself
must be inferred from the choice data. If one wishes to test the theory of
limited attention, then, what is all the information about preferences that can
be recovered from observed choices?

Studying only full data sets (i.e., D = P(X)), Masatlioglu, Nakajima and
Ozbay identify particular choice patterns that reveal information about the un-
derlying preference and consideration sets. Specifically, observing a decision-
maker who picks x in a choice problem S and an option y in the choice problem
S \ {z}, for some z ∈ S \ {x}, is consistent with the theory of choice with lim-
ited attention only if he pays attention to z in S and he prefers x over z.
For a full data set, such choice patterns contain all the information that can
be gleaned (Masatlioglu, Nakajima and Ozbay 2011, Theorem 1). This need
not be the case when data is limited. The following is an obvious illustra-
tion. Suppose that we only have the information that a is picked out of some
choice problem S and b 6= a is picked from S ′ = S \ {x, x′}, where x, x′ ∈ S
and a ∈ S ′. Then the above inference never applies, since S and S ′ differ by
more than one element. Yet, one can clearly infer some information regarding
the preference and consideration sets by iterating Masatlioglu, Nakajima and
Ozbay’s idea. Given that a 6∈ {b, x, x′}, it must be that at least one of x or
x′ is paid attention to when a is chosen from S, implying that a is revealed
preferred to that element.

More subtly, information can be gleaned from choice problems that are not
related by inclusion. For instance, suppose all we know is that a is picked
out of some choice problem S and b 6= a is picked from some other choice
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problem S ′, where a, b ∈ S ∩ S ′, but neither S nor S ′ is contained in the
other. If the decision-maker does not pay attention to any element in S \ S ′

when choosing from S, then condition (5) implies that a would remain his
choice when choosing from S ∩ S ′. Similarly, if the decision-maker does not
pay attention to any element in S ′ \ S when choosing from S ′, then b would
remain his choice when choosing from S ∩S ′. Since a 6= b, either the decision-
maker is paying attention to some element(s) of S \ S ′ when choosing a from
S (in which case a is revealed preferred to those), or he is paying attention to
some element(s) of S ′ \S when choosing b from S ′ (in which case b is revealed
preferred to those). That is, we can gather information about the decision-
maker every time his choices exhibit a violation of the classical weak axiom of
revealed preference (WARP). Such violations occur when Samuelson’s revealed
preference fails to be asymmetric (e.g., a is revealed preferred to b within S

but b is revealed preferred to a within S ′).
The following definition summarizes the inferences made in the previous

two paragraphs. Given an observed choice function cobs : D → X, define
ΣLA(cobs) to be the set of preference restrictions

“either cobs(S)Py, for some y ∈ S \ S ′, or cobs(S ′)Py′, for some y′ ∈ S ′ \ S,′′

for every S, S ′ ∈ D where cobs(S) 6= cobs(S
′) and cobs(S), cobs(S

′) ∈ S ∩ S ′.
The following theorem shows that ΣLA encompasses all the empirical con-

tent of the theory of choice with limited attention.

Theorem 1. The observed choice function cobs : D → X is consistent with
the theory of choice with limited attention if and only if SARP-ΣLA(cobs) is
satisfied.

This means that checking whether observed choices are consistent with the
theory of limited attention can indeed be reduced to the problem of finding an
acyclic relation satisfying the restrictions of ΣLA. This theorem also answers
the question of out-of-sample prediction.
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Corollary 1. Suppose cobs is consistent with the theory of choice with limited
attention. Then, an option x ∈ S is a valid prediction for a choice problem
S 6∈ D if and only if the extended choice function c̄obs, which agrees with cobs
on D and picks x from S, satisfies SARP-ΣLA(c̄obs).

Moreover, if one presumes the decision-maker uses the preference ordering
P , which satisfies the restrictions listed in ΣLA(cobs), then one can also find the
set of valid predictions under P for a choice problem S not in the data. Given
P , x is a valid prediction for S if and only if for every set T ∈ D for which the
choice from T and the choice of x from S would lead to a WARP violation,
one of the following holds true under P : either xPy, for some y ∈ S \ T , or
cobs(T )Pz, for some z ∈ T \ S.

Using Theorem 1, it is easy to see why the observed choices cobs2 from Case
2 in Section 4 were inconsistent with the theory of limited attention. The
restrictions in ΣLA(cobs2) are:

(i) aPc, from cobs2({a, c, d}) = a and cobs2({a, d}) = d.

(ii) dPb, from cobs2({b, d, e}) = d and cobs2({d, e}) = e.

(iii) Either cPa or bPd, from cobs2({a, b, c}) = c and cobs2({b, c, d}) = b.

(iv) Either cPb or aPd, from cobs2({a, b, c}) = c and cobs2({a, c, d}) = a.

(v) Either bPc or dPe, from cobs2({b, c, d}) = b and cobs2({b, d, e}) = d.

It is easy to see that statements (i)-(iii) are contradictory. However, for cobs2′
in Case 2′ (the hypothetical situation with the same choices on all but the
problem {b, d, e}, which is not observed) restrictions (ii) and (v) are dropped.
Using Theorem 1 again, one can infer that cobs2′ is consistent with the theory
of choice with limited attention, as the relation P defined by aPc, bPd, and
cPb is acyclic and satisfies the restrictions in ΣLA(cobs2′). Using Corollary 1,
only b and e are valid predictions for the problem {b, d, e}. This is easy to see,
since choosing either b or e would not cause any additional WARP violations,
leaving the set of restrictions unchanged.
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Masatlioglu, Nakajima and Ozbay (2011) note that it may be possible to
generate the same choice function (over full data sets) using different combi-
nations of preferences and consideration set mappings. Extending their Def-
inition 3 to observed choice functions defined over limited data sets, we say
that x is revealed preferred to y if xPy for every preference P for which there
is a consideration set mapping Γ : P(X) → P(X) satisfying (5) such that
observed choices are predicted by (P,Γ) using (6). The next result shows how
the more general notion of SARP allows us to identify revealed preferences
between any given pair of alternatives.

Theorem 2. Let cobs : D → X be an observed choice function which satisfies
SARP-ΣLA(cobs) and consider any x, y ∈ X. Let Σ′ be the set of restrictions
obtained by adding the restriction yPx to ΣLA(cobs). Then x is revealed pre-
ferred to y if and only if SARP-Σ′ is not satisfied.

Going back to Case 2′, one can conclude from cobs2′ that under the theory
of limited attention, the decision-maker must prefer a over both c and d, and
must prefer b over d. If one were to simply apply the revealed preference as
defined by Masatlioglu, Nakajima and Ozbay (2011), then it would only be
possible to conclude that the decision-maker prefers a over c. This corresponds
to restriction (i). However, restrictions (iii) and (iv) give more information.
Using (i) and (iii), we conclude that the decision-maker prefers b over d. From
(iv), either c is preferred to b or a is preferred to d. Even in the former case,
by transitivity the decision-maker would conclude that a is preferred to d,
because a is preferred to c and b is preferred to d.

5.1 An algorithm for checking SARP-ΣLA

Theorems 1 and 2 rest on checking whether there is an acyclic relation
satisfying restrictions of the form, “either there exists x ∈ S \ S ′ such that
cobs(S) � x or there exists x′ ∈ S ′ \ S such that cobs(S ′) � x′.” As we have
already seen, for small data sets it may be possible to answer this question by
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hand. More generally, there is a conceptually simple procedure for solving the
problem. Drawing an analogy between our problem, and the classical problem
of scheduling tasks with “and/or” precedence constraints, we can provide an
algorithm for checking SARP-ΣLA.

To motivate the connection between the two problems, let’s first consider
a simpler problem where the restrictions only take the form “there exists x ∈
S \ S ′ such that cobs(S)Px.” Compare this to the problem of scheduling tasks
with “and/or” precedence conditions, as studied by Möhring, Skutella, and
Stork (2004). There is a set of tasks to be performed one at a time. The
problem is to find an ordering of those tasks which satisfies several precedence
conditions of the form “task a must be scheduled before either tasks b or c.”
Translated to our setting, tasks becomes alternatives and the ordering over
tasks becomes a preference ranking, so that the earlier statement on tasks is
read as “alternative a must be preferred to either alternative b or c.” This is the
form of the simpler restriction above. Möhring, Skutella, and Stork give the
following algorithm for solving their problem, described below for our setting:

Algorithm. Let (T, x) represent the restriction that x must be revealed pre-
ferred to some y ∈ T , and let Σ be a set of such restrictions. Recall that a
stack, like a deck of cards, is a “last in, first out” data structure.

1. (Initialize). Start with an empty stack and an empty ranking of alterna-
tives. For each x ∈ X, let π(x) = #{(T, x)|(T, x) ∈ Σ} be the number
of restrictions where x must be preferred. Whenever π(x) = 0 put x on
top of the stack.

2. (Create ranking) So long as the stack is nonempty, we repeat the follow-
ing procedure. Remove the alternative from the top of the stack (call it
y) and put it at the top of the current ranking. For every z ∈ X and
every restriction (T, z) ∈ Σ such that y ∈ T , we remove the restriction
(T, z) from Σ and decrease π(z) by one; if π(z) becomes zero, we add z
to the top of the stack.
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3. (Conclude) Stop when the stack is empty. If the ranking is missing any
alternative in X then there was an unavoidable cycle. Otherwise, take
the transitive closure of the ranking to get a preference relation satisfying
all the restrictions.

Since the restrictions in ΣLA(cobs) take the more complex form “either (S \
S ′, cobs(S)) or (S ′ \ S, cobs(S ′)),” how does one apply the algorithm above?
First, notice that if every pair of sets S, S ′ ∈ D causing a WARP violation is
related by inclusion, then the restrictions in ΣLA(cobs) reduce to the simpler
form in the algorithm, because either S \ S ′ or S ′ \ S is empty. Second, even
when the sets causing a WARP violation are not related by inclusion, it may
be trivial to simplify the form of the restriction. For a restriction in ΣLA(cobs)

to potentially cause a cycle, it must be the case that every candidate “bottom
element” in the restriction happens to be the choice from another set which is
itself involved in another restriction. Suppose S, S ′ cause a WARP violation
and are not related by inclusion, but there exists an element x ∈ S \ S ′ which
is never chosen under cobs, or is chosen in some choice problem(s) but is not
the “top element” in another restriction. Then the complex restriction can
be replaced with ({x}, cobs(S)) without affecting whether SARP-ΣLA(cobs) is
satisfied. Third, if S and S ′ cause a WARP violation and are not related by
inclusion, but the choice from S∩S ′ is observed, then the restriction associated
with S, S ′ is redundant: it is implied from the potential restrictions associated
with the pairs S, S ∩ S ′ and S ′, S ∩ S ′, each of which takes the simpler form.

Finally, we say that a pair of sets S, S ′ causing a WARP violation is prob-
lematic if it does not fall into one of the categories above; that is, S, S ′ are not
related by inclusion, S ∩ S ′ is not in the data set, and every element in S \ S ′

and S ′ \ S is the “top element” in some other restriction in ΣLA(cobs). The
number of problematic pairs should be small in most cases. After simplifying
the restrictions according to the first three methods, any remaining complex
restrictions must correspond to problematic pairs of sets. One can simply
apply the algorithm for all possible decisions on whether (S \ S ′, cobs(S)) or
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(S ′ \ S, cobs(S)) should be required for each problematic pair S, S ′.

6. Rationalization and Choice by Categorization

While the theories of rationalization and choice by categorization are the
result of different choice procedures, they happen to be equivalent in terms
of the choice patterns they generate. Indeed, Cherepanov, Feddersen and
Sandroni (2010, Corollary 2) and Manzini and Mariotti (2010, Theorem 1)
each show that a choice function c : P(X) → X can be explained by their
respective theory if and only if it satisfies the weak-WARP axiom described in
Case 3.4 Manzini and Mariotti further show that an observed choice function
defined over a data set D that contains all pairs and triples is consistent with
the D-restriction of the theory of choice by categorization if and only if it
satisfies weak-WARP. As shown in Case 3, however, we cannot conclude from
weak-WARP that the observed choices are consistent with the theory itself.
In this section, we provide conditions characterizing when one can reach such
a conclusion.

As was the case for the theory of choice with limited attention, observing
that x is chosen from a choice problem S does not imply that x is better than
every y ∈ S in the theories of rationalization and choice by categorization. In
the theory of rationalization, the alternative y may not have been maximal for
any rationale; in the theory of choice by categorization, y may have belonged
to an eliminated category. In both theories, the elements which are “paid
attention to” are those surviving a process of elimination (by categorization
or rationalization). In particular, an element surviving elimination in a choice
problem survives elimination in any subset of that choice problem to which it
belongs. This motivates the following revealed ranking, which is an adaptation
of Cherepanov, Feddersen and Sandroni’s (2010, Definition 1) to our setting
with limited data: x � y if y is selected (and so survives elimination) in

4This class also contains Manzini and Mariotti (2007)’s theory of shortlisting, which is
characterized by the weak-WARP axiom and an additional axiom they call Expansion.
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the choice problem S ∈ D and also belongs to a choice problem S ′ ⊂ S

(with S ′ ∈ D) from which x 6= y is selected. At the same time, Manzini
and Mariotti (2010) use the observed choices from pairs to make inferences.
Combining these approaches defines the binary relation P ∗, where xP ∗y if
either cobs({x, y}) = x or x � y.

Because the second-stage preference may be cyclic in the theories of ra-
tionalization and choice by categorization, we cannot apply the SARP-based
approach of the previous section. This section offers a different analogy to ra-
tional choice. Consider the revealed preference of Samuelson, and notice that
the following procedure offers a test for consistency with rational choice theory.
Pick any element that is undominated in X, and call it x1; pick any element
that is undominated in X \ {x1} and call it x2; and iterate this procedure
until only one element remains, to be called xn. If this procedure succeeds in
creating an enumeration of X, then the revealed preference must have been
acyclic and the observed choices are consistent with rationality. Even though
P ∗ is different from the rational revealed preference (and potentially cyclic),
we show that a similar enumeration procedure captures the content of these
theories.

Given observed choices cobs, we define the correspondence F : P(X)→ 2X

as follows. For each S ∈ P(X), let F (S) be the set of elements x ∈ S such
that

(1) If R ∈ D and x ∈ R ⊆ S then cobs(R)P ∗x whenever x 6= cobs(R); and

(2) If T, T ′ ∈ D and {x, cobs(T ), cobs(T
′)} ⊆ S ∩ T ∩ T ′ then P ∗ is acyclic on

{x, cobs(T ), cobs(T
′)}.

Given F , we define a simple procedure for enumerating X.

Enumeration procedure using F . If F (X) is nonempty, pick any element
in F (X) and call it x1. Then, for each k = 2, . . . , |X|, if F (X \{x1, . . . , xk−1})
is nonempty, pick any element in F (X \ {x1, . . . , xk−1}) and call it xk.

The enumeration procedure succeeds if F (X \ {x1, . . . , xk−1}) is nonempty
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for every k = 1, . . . , |X|. If the procedure succeeds, it always returns an enu-
meration x1, . . . , x|X| of X, no matter which element of F (X \ {x1, . . . , xk−1})
is called xk in each step. Because the set F (X \ {x1, . . . , xk−1}) in each step
depends on the previous choices, one might worry that the procedure will hap-
pen to work if the “right” element of F (X \ {x1, . . . , xk−1}) is chosen in every
step, but might fail if the “wrong” element is chosen in some step. For checka-
bility, one would like “success” to be history independent : success occurs (i.e.,
the procedure delivers an enumeration for any choice of xk in each step) if and
only if the enumeration procedure delivers an enumeration for some choice of
xk in each step. In other words, under history independence, it suffices to use
an arbitrary selection of xk ∈ F (X \ {x1, . . . , xk−1}) in each step to reach a
conclusive verdict on the success of the enumeration procedure.

Theorem 3. Suppose P ∗ is complete. Then the observed choice function
cobs : D → X is consistent with the theories of rationalization or choice by
categorization if and only if the enumeration procedure using F succeeds. More-
over, the success of the enumeration procedure using F is history independent.

As in the previous section, the testable implications of the theory are cap-
tured in conditions pertaining to a single relation. Notice that P ∗ is complete
as soon as D includes all pairs, as assumed in Manzini and Mariotti (2010)
or in the classic characterization of rational choice via the property of IIA.
Clearly, P ∗ may be complete even when not all pairwise choices are observed,
provided that those missing pairs can be compared via �.

Our analysis is also helpful when observed choices lead only to an incom-
plete P ∗. One can simply consider all possible choices over those pairs which
are relevant for completing P ∗, and employ the enumeration procedure on
each such completion to test consistency with the data. The data is consistent
with the theories of choice by categorization or rationalization if and only if
there exists a completion of P ∗ where the enumeration procedure succeeds.
However, success is already guaranteed if the incomplete P ∗ is acyclic. In
that case, P ∗ admits a transitive completion and the enumeration procedure
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trivially succeeds (there exist elements satisfying conditions (1) and (2) in the
definition of F (S) for every S when the preference has no cycles). Acyclicity
of P ∗ thus provides a sufficient condition for being consistent with the theories
of rationalization or choice by categorization, independently of whether P ∗ is
complete. If an incomplete P ∗ is found to be cyclic, however, success of the
enumeration procedure without trying to complete P ∗, as described above,
is not sufficient to ensure that the observed choices are consistent with these
theories.5 Success of the enumeration procedure does remain a necessary con-
dition for observed choices to be consistent with these two theories when P ∗

is incomplete. It is easy to check that if an observed choice function violates
weak-WARP, then it will also fail the enumeration procedure. Indeed, if x and
y are involved in a weak-WARP violation, then condition (2) in the definition
of F ({x, y}) fails for both x and y. Therefore, success of the enumeration
procedure is a stronger testable implication of these two theories on all data
sets.

The enumeration procedure also permits constructing the set of possible
out-of-sample predictions for any given choice problem S 6∈ D.

Corollary 2. Suppose cobs is consistent with the theories of categorization
and rationalization and consider S 6∈ D. The set of valid predictions for S is
contained in F (S). If P ∗ is complete, then an alternative x ∈ F (S) is a valid
forecast if and only the enumeration procedure succeeds for the correspondence
F̄ associated to the extended choice function that agrees with cobs on D and
selects x from S.

As was the case for choice with limited attention, it may be possible to
generate the same choice function using different combinations of primitives
(preference and rationales for Cherepanov, Feddersen and Sandroni (2010) or
categories for Manzini and Mariotti (2010)). We say that x is revealed preferred
to y if xPy for every (possibly intransitive) preference P for which there is a

5For an example, see Remark 1 in the appendix.
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set of rationales such that observed choices are predicted using (4), under the
theory of rationalization. This is equivalent to requiring that xPy for every
(possibly intransitive) preference P for which there is a rationale by catego-
rization such that observed choices are predicted using (3), under the theory
of categorization. The preference P ∗ used to define F corresponds to one pref-
erence that can be used to derive observed choices when they are consistent
with the theories of rationalization and choice by categories, but having xP ∗y
does not imply that x is revealed preferred to y. Having x � y, on the other
hand, does imply that x is revealed preferred to y. With full data sets, as in
Cherepanov, Feddersen and Sandroni (2010), � coincides with the revealed
preference. This is no longer the case with partial data. For instance, consider
a variant of Case 3.

Case 3′ Take X = {a, b, c, d}, D = {ab, ac, ad, bc, bd, cd, abc, abd, acd, bcd},
and the observed choice function cobs3′ : D → X given by:

S ab ac ad bc bd cd abc abd bcd

cobs3′(S) b c a c d d b a c

The only difference between cobs3 and cobs3′ is that the choice out of {a, c, d}
is not observed. While cobs3 was inconsistent with the theories of choice by
rationalization and choice by categorization, cobs3′ is consistent with those
theories. In fact, it is not difficult to check that an extended choice function
would violate weak-WARP if, in addition to his observed choices, the decision-
maker were to pick any one of b, c or d from the choice problem X; but that it
would be consistent with weak-WARP if he were to pick a from both X and
{a, c, d}. Hence, any set of primitives that generates cobs3′ must pick a out of
X. Given that c is selected from {a, c}, we must conclude under these theories
that c is revealed preferred to a. It is easy to check, on the other hand, that
a and c are not comparable according to �.

In Corollary 2, we observed that the set of valid predictions for a choice
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problem S 6∈ D under the theories of rationalization or choice by categorization
must be a subset of F (S). Case 3′ also illustrates that this inclusion may be
strict. Indeed, it is easy to check that d ∈ F ({a, c, d} in that case, and yet
extending cobs3′ by picking d out of {a, c, d} is inconsistent with both theories
(see our analysis of Case 3 in Section 4).

The next theorem shows how to use the enumeration procedure to fully
identify revealed preferences between any given pair of alternatives x and y.
With a complete P ∗, it must be that xP ∗y or yP ∗x. Of course, if there is a
revealed preference between x and y, then it must be consistent with P ∗. For
instance, if xP ∗y, then it is impossible to have y revealed preferred to x. We
characterize the conditions under which one can conclude that x is revealed
preferred to y when xP ∗y. To state the conditions parsimoniously, define the
set mapping Gxy : P(X)→ 2X derived from F as follows: Gxy(S) = F (S)\{y}
for all S containing both x and y, and Gxy(S) = F (S) for all other S.

Theorem 4. Suppose cobs is consistent with the theories of rationalization and
choice by categorization, that P ∗ is complete and that xP ∗y. Then x is revealed
preferred to y if and only if either x � y or the enumeration procedure using
Gxy does not succeed. Moreover, the success of the enumeration procedure
using Gxy is history independent.

In Case 3′, for instance, it is easy to see that Gca(X) would be empty be-
cause a is the only alternative in F (X), and therefore that the enumeration
procedure using Gca cannot succeed. Even though c � a does not hold, The-
orem 4 allows us to conclude that c is revealed preferred to a, as was argued
earlier. Moreover, Theorem 4 allows us to conclude that there is no revealed
preference relationship between b and d. To see this, observe that while dP ∗b,
the relationship d � b does not hold and the enumeration procedure using Gbd

does succeed: one can check that the enumeration x1 = a, x2 = c, x3 = d, and
x4 = b would work.
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Appendix

A1. Proofs for Section 5

Proof of Theorem 1. (Necessity) Suppose that cobs : D → P(X) can be ex-
plained by the theory of choice with limited attention. That is, there is a com-
plete and transitive relation P on X and an attention filter Γ satisfying Condi-
tion (5) such that cobs(S) is the P -maximal element in Γ(S) for each S ∈ P(X).
We show SARP-ΣLA(cobs) is satisfied. Suppose that for some T, T ′ ∈ D, we
have cobs(T ), cobs(T

′) ∈ T ∩ T ′ and cobs(T ) 6= cobs(T
′). If, in contradiction to

satisfying the restrictions in ΣLA(cobs), we have that yPcobs(T ) for all y ∈ T \T ′

and y′Pcobs(T ′) for all y′ ∈ T ′ \ T , then Γ(T ) ⊆ T ∩ T ′ and Γ(T ′) ⊆ T ∩ T ′.
Using Condition (5), Γ(T ) ⊆ T ∩ T ′ implies that Γ(T ∩ T ′) = Γ(T ) while
Γ(T ′) ⊆ T ∩ T ′ implies Γ(T ∩ T ′) = Γ(T ′). But this would lead to a contra-
diction, since cobs(T ) 6= cobs(T

′) implies that Γ(T ) 6= Γ(T ′).
(Sufficiency) Following SARP-ΣLA(cobs), let P be an acyclic relation satis-

fying the restrictions in ΣLA(cobs). We may assume without loss of generality
that P is also complete and transitive, as any acyclic relation admits a tran-
sitive completion. Define a consideration set mapping Γ : P(X) → P(X) as
follows. For any S ∈ D, define Γ(S) = {cobs(S)}∪{x ∈ S|cobs(S)Px}. For any
S 6∈ D, define

Γ(S) =

{
Γ(T ) if S ⊆ T, T ∈ D, and Γ(T ) ⊆ S

S otherwise.

Clearly Γ(S) 6= ∅ for any S ∈ P(X) and the P -maximal element in Γ(S)

is cobs(S) for any S ∈ D. To conclude the proof, we must show that Γ is
well-defined and that it is an attention filter.

Suppose by contradiction that Γ is not well-defined for some S. This means
that for some S 6∈ D, there exist T, T ′ ∈ D such that S ⊆ T ∩ T ′ with
Γ(T ) ∪ Γ(T ′) ⊆ S, but Γ(T ) 6= Γ(T ′). This implies that cobs(T ) 6= cobs(T

′).
Consider any y ∈ T \ T ′. Then, since S ⊆ T ′, y ∈ T \ S. Moreover, since
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Γ(T ) ⊆ S, we know y ∈ T \Γ(T ). By definition of Γ(T ) for T ∈ D, this means
yPcobs(T ). Similarly, if y ∈ T ′ \ T , we conclude yPcobs(T ′). This contradicts
the fact that P satisfies the restrictions in ΣLA(cobs).

To see that Γ is an attention filter, i.e. satisfies Condition (5), consider
S ∈ P(X) and x ∈ S \ Γ(S). We check that Γ(S \ {x}) = Γ(S) in each of the
four possible cases.

1. S \ {x}, S ∈ D. Since S ∈ D, and x 6∈ Γ(S), we know xPcobs(S).
Suppose that Γ(S \{x}) 6= Γ(S). Then cobs(S) 6= cobs(S \{x}). Applying
the fact that P satisfies the restrictions of ΣLA(cobs) to the pair of choice
problems S and S \ {x}, we conclude that cobs(S)Px, a contradiction.

2. S \ {x} ∈ D, S 6∈ D. Since S \ {x} ∈ D, we know Γ(S \ {x}) =

cobs(S \ {x})∪ {y ∈ S|cobs(S \ {x})Py}. Since S \ Γ(S) 6= ∅, there exists
T ∈ D with S ⊆ T and Γ(T ) ⊆ S. Because T ∈ D, zPcobs(T ) for all
z ∈ T \S. Since Γ(S) = Γ(T ), we know x ∈ T \Γ(T ). Hence xPcobs(T ).
If Γ(S \ {x}) 6= Γ(S) = Γ(T ), then cobs(S \ {x}) 6= cobs(T ) contradicting
the restriction of ΣLA(cobs) for the pair of sets T and S \ {x}.

3. S \{x} 6∈ D, S ∈ D. Since S ∈ D, Γ(S) = cobs(S)∪{y ∈ S|cobs(S)Py}. If
x ∈ S \Γ(S) then Γ(S) ⊆ S \{x}, so by construction Γ(S \{x}) = Γ(S).

4. S \ {x}, S 6∈ D. Since S \ Γ(S) 6= ∅, there exists T ∈ D with S ⊆ T

and Γ(T ) ⊆ S. Since x ∈ S \ Γ(S), then Γ(T ) = Γ(S) ⊆ S \ {x} and so
Γ(S \ {x}) = Γ(T ) by construction, and = Γ(T ), by transitivity.

Proof of Theorem 2. This is a corollary of the proof of Theorem 1. To see
this, suppose that yPx for some complete and transitive P which satisfies the
restrictions in ΣLA(cobs). The proof of sufficiency constructs a consideration
set mapping Γ satisfying condition (5) for which (P,Γ) generate cobs. Hence it
is impossible for x to be revealed preferred to y. On the other hand, suppose
that xPy for each complete and transitive preference P which satisfies the
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restrictions in ΣLA(cobs). If x is not revealed preferred to y, then there must
exist a preference ordering P ′ with yP ′x and a consideration set mapping Γ′

such that (P ′,Γ′) generate cobs. Since P ′ does not satisfy the restrictions in
ΣLA(cobs), there exist T, T ′ ∈ D for which cobs(T ), cobs(T

′) ∈ T ∩ T ′, cobs(T ) 6=
cobs(T

′), yP ′cobs(T ) for all y ∈ T \ T ′ and y′P ′cobs(T
′) for all y′ ∈ T ′ \ T .

This implies Γ′(T ) ⊆ T ∩ T ′ and Γ′(T ′) ⊆ T ∩ T ′. Using Condition (5),
we conclude as before that Γ′(T ) = Γ′(T ′), which contradicts the fact that
cobs(T ) 6= cobs(T

′).

A2. Proofs for Section 6

We begin with two preliminary lemmas.

Lemma 1. Let H : P(X) → 2X be any set mapping satisfy the properties
H(S) ⊆ S for all S ∈ P(X) and H(T ) ∩ S ⊆ H(S) whenever S ⊆ T for
S, T ∈ P(X). Then the success of the enumeration procedure using H is
history independent.

Proof. Trivially, success implies that there is some choice of xk ∈ H(X \
{x1, . . . , xk−1}) in each step k that will work. Conversely, let (xk)

|X|
k=1 be an

enumeration ofX such that xk ∈ H(X\{x1, . . . , xk−1}), for all k. We show that
the enumeration procedure succeeds by establishing (the stronger property)
that H(S) 6= ∅, for all S ∈ P(X). Indeed, consider any S ∈ P(X). Let xi be
the element with minimal index in S according to the enumeration (xk)

|X|
k=1. It

is easy to see that since xi ∈ H(X \{x1, . . . , xi−1}) and S ⊆ X \{x1, . . . , xi−1},
it must be that xi ∈ H(S).

Lemma 2. The success of the enumeration procedure using F is history in-
dependent. Moreover, if enumeration procedure succeeds using F , then P ∗ is
asymmetric and cobs(S) ∈ F (S) whenever S ∈ D.

Proof. It is easy to see that F satisfies the properties that F (S) ⊆ S for all
S ∈ P(X) and F (T ) ∩ S ⊆ F (S) whenever S ⊆ T for S, T ∈ P(X). So
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Lemma 1 implies that the success of the enumeration procedure using F is
history independent.

Now, suppose the procedure using F succeeds and gives us the enumeration
x1, . . . , xn of X, with xk ∈ F (X \ {x1, . . . , xk−1}), for each k ∈ {1, . . . , n− 1}.

We show that P ∗ must be asymmetric. Suppose, by contradiction, that
yP ∗z and zP ∗y. By definition of P ∗, both comparisons cannot emerge from
observing the choice out of {y, z}, and hence there exists choice problems R
and R′ in D such that y, z ∈ R ∩ R′, y = cobs(R), and z = cobs(R

′). Let i and
j be the indices of y and z in the enumeration, i.e. y = xi and z = xk, and
assume without loss of generality that i < j. Consider the set S = {xi, . . . , xn}.
We get a contradiction with xi ∈ F (S), taking T = T ′ = R′ in condition (2).

Finally, suppose that S ∈ D but that cobs(S) 6∈ F (S). Note that cobs(S)

must satisfy condition (1) in the definition of F , by asymmetry of P ∗. If
cobs(S) is not in F (S) then it must violate condition (2). That is, there exist
sets T, T ′ ∈ D such that {cobs(S), cobs(T ), cobs(T

′)} ⊆ S ∩ T ∩ T ′ and P ∗ is
cyclic on {cobs(S), cobs(T ), cobs(T

′)} ⊆ S ∩ T ∩ T ′. Using the enumeration,
{cobs(S), cobs(T ), cobs(T

′)} = {xi, xj, xk} where i < j < k. By the construction,
xi ∈ F (X \ {x1, . . . , xi−1}). Because xi, xj, xk ∈ X \ {x1, . . . , xi−1}, this cycle
would contradict the definition of xi.

Proof of Theorem 3. We proceed with the proof for rationalization theory,
with the proof for choice by categorization following a fortiori (both theo-
ries generate the same choice functions on P(X)). It will be most convenient
to use the equivalent, psychological filter formulation of rationalization theory
given in Cherepanov, Feddersen, and Sandroni (2010); see their preliminary re-
sult. That is, the decision-maker has a psychological filter Ψ : P(X)→ P(X)

satisfying

S ⊆ T implies Ψ(T ) ∩ S ⊆ Ψ(S), for all S, T ∈ P(X), (7)

and he uses an asymmetric relation P to choose from each set S the P -maximal
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element in Ψ(S). Following Cherepanov, Feddersen and Sandroni’s Proposi-
tion 2, we may also restrict attention without loss of generality to the case
where P is complete and Ψ({x, y}) = {x, y} for every x, y ∈ X;

(Necessity) Let cobs : D → X be a choice function that can be explained
by rationalization theory via (Ψ, P ) (with Ψ({x, y}) = {x, y}, for all x, y ∈
X). Let c : P(X) → X be the choice function defined on the complete
data set that is derived from (Ψ, P ) (in particular, c coincides with cobs on
D). By definition of the binary relation P ∗ (see Section 6), it must be that
P = P ∗. We have to show that the enumeration procedure using F suc-
ceeds. In fact, we can prove a stronger property, namely that F (S) 6= ∅, for
all S ∈ P(X). More precisely, we can show that c(S) ∈ F (S). If R ∈ D,
c(S) ∈ R ⊆ S, and c(S) 6= cobs(R) = c(R), then cobs(R)P ∗c(S), as de-
sired, since c(S) ∈ Ψ(R). Take Y, Z ∈ D containing {c(S), cobs(Y ), cobs(Z)}.
Notice that Ψ({c(S), cobs(Y ), cobs(Z)}) = {c(S), cobs(Y ), cobs(Z)} because of
(7). Hence P ∗ must be acyclic on {c(S), cobs(Y ), cobs(Z)}, as desired, since
Ψ({c(S), cobs(Y ), cobs(Z)}) must admit a P ∗-maximal element.

(Sufficiency) Suppose that the enumeration procedure using F succeeds.
The proof proceeds by constructing an attention filter Ψ : P(X) → P(X)

such that (Ψ, P ∗) deliver well-defined choices in all conceivable choice problems
under rationalization theory, with these choices matching observed data.

Applying the enumeration procedure, we find a sequence x1, . . . , xn of X,
with xk ∈ F (X \ {x1, . . . , xk−1}), for each k ∈ {1, . . . , n − 1}. By Lemma 2,
cobs(S) ∈ F (S) if S ∈ D. So we may restrict attention to an enumeration
with the added property that xk = cobs(X \ {x1, . . . , xk−1}) for all k such that
X \ {x1, . . . , xk−1} ∈ D.

For any S ∈ P(X), define Ψ(S) ={
{xk | k = min{i s.t. xi ∈ S}} ∪ {cobs(T ) | S ⊆ T, T ∈ D, cobs(T ) ∈ S} if |S| > 2,

S if |S| = 2.

(8)
Lemma 2 tells us that P ∗ is asymmetric. We now complete the proof by
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showing that (i) Ψ(S) is nonempty for each S, (ii) Ψ satisfies condition (7),
(iii) for every S, Ψ(S) has a P ∗-maximal element, and (iv) that P ∗-maximal
element is equal to cobs(S) whenever S ∈ D.

(i) Suppose |S| > 2, else nonemptiness of Ψ(S) is trivial. Observe that
{xk | k = min{i s.t. xi ∈ S}} is nonempty because the xi’s are an
enumeration of X.

(ii) To show that Ψ satisfies condition (7), take R ( S and consider x ∈
Ψ(S) ∩ R. Suppose |R| > 2, else the condition is trivially satisfied.
If x = xk, where k = min{i s.t. xi ∈ S}, then it will also be true
that k = min{i s.t. xi ∈ R}; hence x ∈ Ψ(R). On the other hand, if
x = cobs(T ) for some T containing S, and x ∈ R, then x ∈ Ψ(R) because
R ( S ⊆ T .

(iii) Suppose, by contradiction, that Ψ(S) has no maximal element. If |Ψ(S)| =
2 this is impossible by asymmetry (see (i)), so suppose |Ψ(S)| > 2, and
therefore that |S| > 2. This implies that there is a P ∗-cycle within Ψ(S).
By completeness of P ∗, there is, in particular, a P ∗-cycle within Ψ(S)

consisting of just three elements: xP ∗yP ∗zP ∗x, where x, y, z ∈ Ψ(S).
Since for each S, the set {xk | k = min{i s.t. xi ∈ S}} consists of ex-
actly one element, any other element of Ψ(S) must be an observed choice.
Without loss of generality let y, z ∈ {cobs(T ) | S ⊆ T, T ∈ D, cobs(T ) ∈
S} and x = xk, where k = min{i s.t. xi ∈ S}. If x = xk is the ele-
ment of minimal index in S, then clearly y, z 6∈ {x1, . . . , xk−1}. Since
there exist T ′, T ′′ ∈ D containing S (hence containing {xk, y, z}) such
that y = cobs(T

′) and z = cobs(T
′′), then xk 6∈ F (X \ {x1, . . . , xk−1}),

contradicting the way xk was constructed. Hence Ψ(S) must have a
P ∗-maximal element.

(iv) Suppose that S ∈ D. Suppose |S| > 2, else the result follows trivially
by asymmetry of P ∗ (see (i)). To see that cobs(S) is the P ∗-maximal
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element in Ψ(S), first note that cobs(S) ∈ Ψ(S) trivially. Suppose by
contradiction that for some T ∈ D containing S such that cobs(T ) ∈ S,
we have that cobs(T ) ∈ Ψ(S) and cobs(T )P ∗cobs(S). By definition of P ∗,
this would contradict its asymmetry. Now suppose by contradiction that
xkP

∗cobs(S), where k = min{i s.t. xi ∈ S}. Since xk is the element of
minimal index in S, we know that S ⊆ X \ {x1, . . . , xk−1}. Observe
that S 6= X \ {x1, . . . , xk−1} if xk 6= cobs(S), due to the construction of
xk. But then xk ∈ S ( X \ {x1, . . . , xk−1} and xkP ∗cobs(S) contradicts
xk ∈ F (X \ {x1, . . . , xk−1}) (due to condition (1) of F ).

Proof of Corollary 2. If x 6∈ F (S), then either (1) there exists R ∈ D such that
x ∈ R ⊆ S and xP ∗cobs(R), or (2) there exist T, T ′ ∈ D such that P ∗ is cyclic
on {x, cobs(T ), cobs(T

′)} ⊆ S ∩ T ∩ T ′. Suppose, contrary to what we want to
prove, that we can find an extension c : P(X)→ X of cobs that satisfies weak-
WARP and such that c(S) = x. Consider case (1) first. If c({x, cobs(R)}) = x,
then we get a violation of weak-WARP, with {x, cobs(R)} ⊆ R ⊆ S, given that
x is picked out of the smallest and largest sets while cobs(R) is picked out of R.
If c({x, cobs(R)}) = cobs(R), then there must exists T, T ′ ∈ D such that T ⊆ T ′,
cobs(T ) = x, and cobs(T ′) = cobs(R) ∈ T , given that xP ∗cobs(R). We get a vio-
lation of weak-WARP again. Consider now case (2). To fix ideas, assume that
xP ∗cobs(T

′)P ∗cobs(T )P ∗x. If, c({x, cobs(T ), cobs(T
′)}) = cobs(T

′), then we must
have c({x, cobs(T ′)}) = cobs(T

′), in order to avoid a violation of weak-WARP,
given that c(S) = x. Given that xP ∗cobs(T ′), it must be that x � cobs(T

′), and
there exists R,R′ ∈ D such that c(R′) = cobs(T

′) ∈ R and cobs(R) = x. Yet
this leads to another violation of weak-WARP. A similar contradiction follows
if c picks cobs(T ) or x out of {x, cobs(T ), cobs(T

′)}. It must thus be that the set
of valid predictions for S fall within F (S). The second part of the statement
of Corollary 2, regarding how to apply the enumeration procedure to deter-
mine whether an option is a valid prediction when P ∗ is complete, immediately
follows from Theorem 3 and the definition of predictions in Section 3.
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Proof of Theorem 4. We begin by assuming x � y does not hold. Then, by
xP ∗y, it must be that {x, y} ∈ D and cobs({x, y}) = x. Because cobs is con-
sistent with the theories of rationalization and choice by categorization, there
is a filter Ψ such that the choice function derived from (Ψ, P ∗) coincides with
cobs on D. Hence x is revealed preferred to y if and only if it is impossible
to find a filter Ψ′ and a preference P ′ such that the resulting choice function
coincides with cobs on D and yP ′x. We show it is possible to find (Ψ′, P ′) with
such properties if and only if the enumeration procedure using Gxy succeeds.

For one direction, assume that it is possible to find such (Ψ′, P ′). Let
c′ : P(X)→ X be the resulting choice function, and consider the enumeration
with x1 = c′(X) and iteratively, xk = c′(X \{x1, . . . , xk−1}), for k = 2, . . . , |X|.
We just need to prove that xk ∈ Gxy({xk, . . . , x|X|}), for each k. Let F ′ be
the mapping satisfying conditions (1) and (2) for c′. Because there are fewer
restrictions coming from cobs than from c′, we know F ′(S) ⊆ F (S) for each
S ∈ P(X). By Lemma 2, xk = c′({xk, . . . , x|X|}) ∈ F ′({xk, . . . , x|X|}). Hence
xk ∈ F ({xk, . . . , x|X|}), for each k. Suppose that x, y ∈ {xk, . . . , x|X|}. We
must show that xk 6= y. If xk = c′({xk, . . . , x|X|}) = y, then in c′ we have both
that c′({x, y}) = x and that c′({xk, . . . , x|X|}) = y where x ∈ {xk, . . . , x|X|}.
But then in c′, x � y implying, by Cherepanov, Feddersen and Sandroni
(2010, Proposition 4) that it is impossible to have yP ′x in a rationalization of
c′. Therefore, xk ∈ Gxy({xk, . . . , x|X|}). Note that Gxy satisfies the conditions
of Lemma 1. Hence the enumeration procedure using Gxy succeeds.

For the other direction, assume that the enumeration procedure using Gxy

succeeds and gives an enumeration x1, . . . , x|X| of X. By the definition of Gxy,
x must appear earlier in the enumeration than y. Recall that Gxy is a selection
of F . By the proof of Theorem 3, we use the enumeration to construct a filter
Ψ′′ according to equation (8) such that (Ψ′′, P ∗) generate a choice function
c′′ : P(X) → X that coincides with cobs on D. Since {x, y} ∈ D, we know
that for any S ∈ D for which x, y ∈ S, cobs(S) 6= y (otherwise we would have
that x � y). By (8), the choice from any S ∈ P(X) which contains {x, y}
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cannot be y. This is because y is not the choice of any superset in the data,
and cannot be the element of minimal index (x has a lower index). Hence c′′ is
a complete choice function where y is never chosen in the presence of x. But
then by Cherepanov, Feddersen and Sandroni (2010, Proposition 4), there is
no revealed preference relationship between x and y, and in particular, one
can rationalize cobs with yP ′x and some filter Ψ′.

Finally, suppose x is revealed preferred to y. Either x � y (in which case
we are done) or not x � y. In the latter case, we just showed the enumeration
procedure using Gxy does not succeed. Conversely, if x � y then x is revealed
preferred to y by Cherepanov, Feddersen, and Sandroni (2010, Proposition 4).
If x � y does not hold and the enumeration procedure using Gxy does not
succeed, then we have just shown that x is revealed preferred to y.

Remark 1. When P ∗ is incomplete and cyclic, success of the enumeration
procedure does not ensure consistency. Take X = {a, b, c, d, w, x, y, z}, D =

{ab, ad, bc, cd, abdw, abdx, bcdy, bcdz}, and cobs4 : D → X given by

S ab ad bc cd abdw abdx bcdy bcdz

cobs4(S) b a c d a d b c.

In this case, P ∗ coincides with �, and aP ∗dP ∗cP ∗bP ∗a. The enumeration
procedure succeeds using this incomplete P ∗ (especially given that P ∗ has no
cycle involving only two or three alternatives). Yet cobs4 is inconsistent with
the theories of rationalization or choice by categorization. To check this, con-
sider the problem {b, d} 6∈ D. If consistency holds, then it must also hold when
extending cobs4 by picking one of b or d out of {b, d}. Suppose b is picked, and
let P ′ be the relation derived from P ∗ by adding bP ′d. The enumeration pro-
cedure fails for P ′ given the extended choice function, a contradiction. Indeed,
condition (2) in the definition of F ({a, b, d}) fails for a, b, and d, because P ′ is
cyclic on these three elements, and two of them are chosen in observed choice
problems that contain {a, b, d}. A similar contradiction holds when trying to
extend cobs4 by picking d out of {b, d} (with P ′ now being cyclic on {b, c, d}).
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