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Abstract

We come close to characterizing the class of social choice correspon-
dences that are implementable in rationalizable strategies. We identify a
new condition, which we call set-monotonicity, and show that it is necessary
and almost sufficient for rationalizable implementation. Set-monotonicity
is much weaker than Maskin monotonicity, which is the key condition for
Nash implementation and which also had been shown to be necessary for
rationalizable implementation of social choice functions. Set-monotonicity
reduces to Maskin monotonicity in the case of functions. We conclude that
the conditions for rationalizable implementation are not only starkly differ-
ent from, but also much weaker than those for Nash implementation, when
we consider social choice correspondences.
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1 Introduction

The design of institutions to be used by rational agents has been an important
research agenda in economic theory. As captured by the notion of Nash equilib-
rium, rationality is encapsulated in two aspects: these are (i) the best responses of
agents to their beliefs, and (ii) that those beliefs are correct, the so-called rational
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expectations assumption. One can drop the latter and retain the former, moving
then into the realm of rationalizability. One would conjecture that the design of
institutions under rationalizable behavior, i.e., without insisting on rational expec-
tations, should leave room for significantly different results than the theory based
on equilibrium.1 Settling this important question is our task in this paper.

The theory of Nash implementation has uncovered the conditions under which
one can design a mechanism (or game form) such that the set of its Nash equi-
librium outcomes coincides with a given social choice correspondence (henceforth,
SCC). Indeed, Maskin (1999) proposes a well-known monotonicity condition, which
we refer to as Maskin monotonicity. Maskin’s (1999) main result shows that Maskin
monotonicity is necessary and almost sufficient for Nash implementation.

Nash implementation is concerned with complete information environments,
in which all agents know the underlying state and this fact is commonly certain
among them. As a foundation of Nash equilibrium, Aumann and Brandenburger
(1995) delineate the set of epistemic conditions under which the agents’ strategic
interaction always leads to a Nash equilibrium. Furthermore, Polak (1999) shows
that when the agents’ payoffs are common knowledge, as complete information
environments prescribe, the Aumann-Brandenburger epistemic conditions imply
common knowledge of rationality.

Bernheim (1984) and Pearce (1984) independently propose rationalizability, a
weaker solution concept than Nash equilibrium, by asking what are the strategic
implications that come solely from common knowledge of rationality. Branden-
burger and Dekel (1987) allow for the agents’ beliefs to be correlated and propose
an even weaker version of rationalizability. Throughout the current paper, our
discussion is entirely based upon Brandenburger and Dekel’s version of rationaliz-
ability. In this case, the set of all rationalizable strategies is fully characterized in
terms of the strategies that survive the iterative deletion of never best responses.

In a paper that was our starting point and motivation, Bergemann, Morris, and
Tercieux (2011) –BMT in the sequel– recently consider the implementation of social
choice functions (henceforth, SCFs) under complete information in rationalizable
strategies. By an SCF we mean a single-valued SCC. They show that Maskin
monotonicity is necessary and almost sufficient for rationalizable implementation.
This essentially would imply that rationalizable implementation is similar to Nash
implementation. However, their result has one important caveat: BMT focus only
on SCFs in their analysis (we note that rationalizability and single-valuedness
amount to uniqueness of Nash equilibrium). In any attempt to extend their result,
one should ponder the following observations: (1) Maskin’s characterization on

1On the one hand, from the existence point of view, since rationalizability is a weaker solution
concept, one would conjecture a more permissive theory. On the other hand, uniqueness would
be harder to establish. Hence, the answer, a priori, is far from clear.
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Nash implementation holds true regardless of whether we consider SCFs or SCCs;
(2) Maskin monotonicity can be quite restrictive in the case of SCFs (see, e.g.,
Mueller and Satterthwaite (1977) and Saijo (1987)); and (3) Many interesting
SCCs are Maskin monotonic, including the Pareto, Core, envy-free, constrained
Walrasian or Lindhal correspondences, while any SCF selected from a Maskin
monotonic SCC no longer inherits the property.

Therefore, what we set out to resolve here is the question of how close ra-
tionalizable implementation really is to Nash implementation. In this endeavor,
dealing with correspondences is the main objective of this paper. We identify a
new condition, which we call set-monotonicity.2 We show that set-monotonicity
is necessary (Theorem 1) and almost sufficient (Theorems 2 and 3) for rationaliz-
able implementation of SCCs.3 Our set-monotonicity requires the lower contour
sets to be nested across states “uniformly” over all outcomes in the range of the
SCC. This setwise definition of monotonicity exhibits a clear contrast with Maskin
monotonicity, which is a “pointwise” condition, in the sense that it requires the
nestedness of the lower contour sets across states at any fixed outcome in the range
of the SCC. Set-monotonicity is logically weaker than Maskin monotonicity, and
it is likely to be much weaker if the SCC contains many values in its range. How-
ever, they become equivalent in the case of SCFs. We also construct an example
in which an SCC is rationalizably implementable by a finite mechanism, while it
violates Maskin monotonicity at almost any outcome in the range of the SCC. In
this sense, the SCC in the example is “very far from” being Nash implementable.
Of course, as expected from our necessity result, we confirm that set-monotonicity
is satisfied for this SCC (Lemma 1).

We conclude that rationalizable implementation is generally quite different from
Nash implementation, and their aledged resemblance in BMT arose as the artifact
of the assumption that only SCFs were being considered. In addition, our ratio-
nalizable implementation results are significantly more permissive than the Nash
implementation counterparts in the sense that set-monotonicity is much weaker
than Maskin monotonicity. In particular, we do not require the existence of Nash
equilibrium in the mechanism, unlike BMT, who need to establish the existence of
an equilibrium leading to the realization of the SCF in their canonical mechanism.

The rest of the paper is organized as follows. In Section 2, we introduce the
general notation for the paper. Section 3 introduces rationalizability as our solu-
tion concept and defines the concept of rationalizable implementation. In Section

2A weaker version of this condition, based on the strict lower contour sets, first surfaced in
Cabrales and Serrano (2011) under the name weak quasimonotonicity; see also its corrigendum,
posted at http://www.econ.brown.edu/faculty/serrano/pdfs/2011GEB73-corrigendum.pdf.

3The term set-monotonicity is already used by Mezzetti and Renou (2012) for a different
property. We apologize for the potential confusion, but believe that set-monotonicity is the
appropriate term for our notion, as explained shortly.
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4, we propose set-monotonicity and show it to be necessary for rationalizable im-
plementation. Section 5 illustrates by an example the conditions for rationalizable
implementation and Nash implementation. In Sections 6 and 7, we delineate the
sufficient conditions for rationalizable implementation. Section 8 concludes.

2 Preliminaries

Let N = {1, . . . , n} denote the finite set of agents and Θ be the finite set of
states. It is assumed that the underlying state θ ∈ Θ is common knowledge among
the agents. Let A denote the set of social alternatives, which are assumed to be
independent of the information state. Let A be a σ-algebra on A and4 denote the
set of probability measures on (A,A). We shall assume thatA contains all singleton
sets. For ease in the presentation, we shall assume that A is finite, and denote by
∆(A) the set of probability distributions over A. Agent i’s state dependent von
Neumann-Morgenstern utility function is denoted ui : ∆(A) × Θ → R.4 We can
now define an environment as E = (A,Θ, {ui}i∈N), which is implicitly understood
to be common knowledge among the agents.

A (stochastic) social choice correspondence F : Θ ⇒ ∆(A) is a mapping from
Θ to a nonempty compact subset of ∆(A). The mapping F is called a social choice
function if it is single-valued. In this case, we denote it by f : Θ→ ∆(A). We use
the acronimes SCC and SCF for both objects, respectively.

A mechanism (or game form) Γ = ((Mi)i∈N , g) describes a nonempty countable
message space Mi for each agent i ∈ N and an outcome function g : M → ∆(A)
where M = M1 × · · · ×Mn.

3 Implementation in Rationalizable Strategies

We adopt correlated rationalizability as a solution concept and investigate the im-
plications of implementation in rationalizable strategies. This is the version of
rationalizability used by Brandenburger and Dekel (1987). We fix a mechanism
Γ = (M, g) and define a message correspondence profile S = (S1, . . . , Sn), where
each Si ∈ 2Mi , and we write S for the collection of message correspondence profiles.
The collection S is a lattice with the natural ordering of set inclusion: S ≤ S

′
if

Si ⊆ S
′
i for all i ∈ N . The largest element is S̄ = (M1, . . . ,Mn). The smallest

element is S = (∅, . . . , ∅).
We define an operator bθ : S → S to iteratively eliminate never best responses

4With finite environments, expected utility takes the form of sums, not integrals. This would
also hold in a separable space, due to its countable dense subset.
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with bθ = (bθ1, . . . , b
θ
n) and bθi is now defined as:

bθi (S) ≡

mi ∈Mi

∣∣∣∣∣∣
∃λi ∈ ∆(M−i) such that
(1)λi(m−i) > 0⇒ mj ∈ Sj ∀j 6= i;
(2)mi ∈ arg maxm′i

∑
m−i

λi(m−i)ui(g(m′i,m−i); θ)


Observe that bθ is increasing by definition: i.e., S ≤ S

′ ⇒ bθ(S) ≤ bθ(S
′
). By

Tarski’s fixed point theorem, there is a largest fixed point of bθ, which we label
SΓ(θ). Thus, (i) bθ(SΓ(θ)) = SΓ(θ) and (ii) bθ(S) = S ⇒ S ≤ SΓ(θ). We can also
construct the fixed point SΓ(θ) by starting with S̄ – the largest element of the
lattice – and iteratively applying the operator bθ. If the message sets are finite, we
have

S
Γ(T )
i (θ) ≡

⋂
k≥1

bθi

([
bθ
]k

(S̄)
)

In this case, the solution coincides with iterated deletion of strictly dominated
strategies. But because the mechanism Γ may be infinite, transfinite induction
may be necessary to reach the fixed point. It is useful to define

S
Γ(θ)
i,k ≡ bθi

([
bθ
]k−1

(S̄)
)
,

using transfinite induction if necessary. Thus S
Γ(θ)
i is the set of messages surviving

(transfinite) iterated deletion of never best responses of agent i.

Next, we provide the definition of weak rationalizable implementation.

Definition 1 (Weak Rationalizable Implementation) An SCC F is weakly
implementable in rationalizable strategies if there exists a mechanism Γ =
(M, g) such that for each θ ∈ Θ, the following two conditions hold: (1) SΓ(θ) 6= ∅;
and (2) for each m ∈M , m ∈ SΓ(θ) ⇒ g(m) ∈ F (θ).

We strengthen the requirement of weak implementation into the following:

Definition 2 (Full Rationalizable Implementation) An SCC F is fully im-
plementable in rationalizable strategies if there exists a mechanism Γ =
(M, g) such that for each θ ∈ Θ,⋃

m∈SΓ(θ)

g(m) = F (θ).

We observe that, when we consider only SCFs, these two concepts of imple-
mentation become equivalent.
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4 Necessary Conditions for Implementation in

Rationalizable Strategies

In complete information environments, Maskin (1999) proposes a monotonicity
condition for Nash implementation where the set of Nash equilibrium outcomes is
required to coincide with the SCC. This condition is often called Maskin mono-
tonicity.

Definition 3 An SCC F satisfies Maskin monotonicity if, for any states θ, θ
′ ∈

Θ and any a ∈ F (θ), whenever

ui(a, θ) ≥ ui(z, θ)⇒ ui(a, θ
′
) ≥ ui(z, θ

′
) ∀i ∈ N, ∀z ∈ ∆(A),

then a ∈ F (θ
′
).

Let D denote a subset of ∆(A) with a generic element d being a lottery over
A. We denote the convex hull of D by

co(D) =

{
{αd}d∈D

∣∣∣∣∣ αd ≥ 0 ∀d ∈ D and
∑
d∈D

αd = 1

}
.

Definition 4 An SCC F satisfies weak set-monotonicity if, for every pair of
states θ, θ

′ ∈ Θ, whenever

ui(a; θ) ≥ ui(z; θ)⇒ ui(a; θ
′
) ≥ ui(z; θ

′
) ∀a ∈ co(F (θ)), ∀i ∈ N, ∀z ∈ ∆(A),

then, F (θ) ⊆ F (θ
′
).

Remark: When we consider SCFs, co(F (θ)) becomes a singleton set. Therefore,
in this case, the condition just defined reduces to Maskin monotonicity.

We slightly strengthen weak set-monotonicity into the following:

Definition 5 An SCC F satisfies set-monotonicity if, for every pair of states
θ, θ

′ ∈ Θ, whenever

ui(a; θ) ≥ ui(z; θ)⇒ ui(a; θ
′
) ≥ ui(z; θ

′
) ∀a ∈ F (θ), ∀i ∈ N, ∀z ∈ ∆(A),

then, F (θ) ⊆ F (θ
′
).

Remark: Note how, under expected utility, both conditions amount to the same
thing, as requiring the nestedness of the lower contour sets over all a ∈ F (θ) or
their convex hull is equivalent. However, it will be convenient to use the weak
version for the proof of the necessity result, and the strong version for the proof of
sufficiency.
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Theorem 1 If an SCC F is (weakly or fully) implementable in rationalizable
strategies, it satisfies weak set-monotonicity.

Proof : Suppose F is weakly implementable in rationalizable strategies by a
mechanism Γ = (M, g). Fix two states θ, θ

′ ∈ Θ satisfying the following property:

ui(a; θ) ≥ ui(z; θ)⇒ ui(a; θ
′
) ≥ ui(z; θ

′
) ∀a ∈ co(F (θ)), ∀i ∈ N, (∗)

Then, due to the hypothesis that F is implementable by Γ, we fix m∗ ∈ SΓ(θ), and
we have that g(m∗) ∈ F (θ).

Fix i ∈ N . Since m∗i ∈ S
Γ(θ)
i , there exists λ

m∗i ,θ
i ∈ ∆(M−i) satisfying the fol-

lowing two properties: (i) λ
m∗i ,θ
i (m−i) > 0 ⇒ m−i ∈ SΓ(θ)

−i and g(m∗i ,m−i) ∈ F (θ);

and (ii)
∑

m−i
λ
m∗i ,θ
i (m−i)ui(g(m∗i ,m−i); θ) ≥

∑
m−i

λ
m∗i ,θ
i (m−i)ui(g(m

′
i,m−i); θ) for

each m
′
i ∈Mi.

We focus on the best response property of m∗i summarized by inequality (ii).

Fix m
′
i ∈Mi. Due to the construction of λ

m∗i ,θ
i , we have that∑

m−i

λ
m∗i ,θ
i (m−i)ui(g(m∗i ,m−i); θ) ≥

∑
m−i

λ
m∗i ,θ
i (m−i)ui(g(m

′

i,m−i); θ)

ui(a; θ) ≥ ui(z
a; θ),

where the two lotteries a and za are defined as

a =
∑
m−i

λ
m∗i ,θ
i (m−i)g(m∗i ,m−i) and za =

∑
m−i

λ
m∗i ,θ
i (m−i)g(m

′

i,m−i).

Since g(m∗i ,m−i) ∈ F (θ) for each m−i with λ
m∗i ,θ
i (m−i) > 0, we have a ∈

co(F (θ)). Using Property (∗), we also obtain

ui(a; θ
′
) ≥ ui(z

a; θ
′
).

Due to the choice of a and za and the hypothesis that ui(·) is a von Neumann-
Morgenstern expected utility, we obtain the following:∑

m−i

λ
m∗i ,θ
i (m−i)ui(g(m∗i ,m−i); θ

′
) ≥

∑
m−i

λ
m∗i ,θ
i (m−i)ui(g(m

′

i,m−i); θ
′
).

Since this argument does not depend upon the choice of m
′
i, this shows that m∗i

is a best response to λ
m∗i ,θ
i in state θ

′
as well. Therefore, m∗i ∈ S

Γ(θ
′
)

i . Since the

choice of agent i is arbitrary, we can conclude that m∗ ∈ SΓ(θ
′
). Furthermore, since
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the choice of m∗ ∈ SΓ(θ) is also arbitrary, we have SΓ(θ) ⊆ SΓ(θ
′
). Finally, by weak

implementability, this implies that⋃
m∈SΓ(θ)

g(m) ⊆
⋃

m∈SΓ(θ
′
)

g(m) ⊆ F (θ
′
).

Observing that full implementability is stronger than its weak counterpart, the
proof is complete.�

5 An Example

In this section, we show by example that rationalizable implementation can be very
different from Nash implementation. We consider the following example. There
are two agents N = {1, 2}; two states Θ = {α, β}; and a finite number K of pure
outcomes A = {a1, a2 . . . , aK} where K ≥ 4.5 Assume that it is commonly certain
that both agents know the state, i.e., it is a complete information environment.
Agent 1’s utility function is given as follows: for each k = 1, . . . , K,

u1(ak, α) = u1(ak, β) =

{
1 +Kε if k = K

1 + (K − k)ε if k 6= K

where ε ∈ (0, 1). Hence, agent 1 has state-uniform preferences over A and aK is
the best outcome in both states; a1 is the second best outcome in both states; ...;
and aK−1 is the worst outcome in both states for agent 1.

Agent 2’s utility function in state α is defined as follows: for each k = 1, . . . , K,

u2(ak, α) =


1 + (K + 1)ε if k = K

1 +Kε if k = 2
1 + kε otherwise

In state β, agent 2’s utility function is defined as follows: for each k = 1, . . . , K,

u2(ak, β) =


1 + (K + 1)ε if k = K

1 if k = 2
1 + kε otherwise

Note that aK is the best outcome for agent 2 in both states; a2 is her second best
outcome in state α but it is her worst outcome in state β; and aK−1 is her third
best outcome in state α and it is her second best outcome in state β.

We consider the following SCC F : F (α) = {a1, a2, . . . , aK} and F (β) = {aK}.
5This example builds upon the one discussed in the Concluding Remarks section of BMT

(2011).
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Claim 1 For every outcome ak ∈ A such that ak 6= a2 or ak 6= aK,

ui(ak, α) ≥ ui(y, α)⇒ ui(ak, β) ≥ ui(y, β) ∀i = {1, 2}, ∀y ∈ ∆(A).

Proof : Since agent 1 has state-uniform preferences, this claim is trivially true
for agent 1. Thus, in what follows, we focus on agent 2. Take any lottery in the
lower contour set of ak ∈ A \ {a2} in state α. If that lottery did not contain a2

in its support, it is still in the lower contour set of ak in state β as no utilities
have changed, and if it did contain a2 in its support, since the utility of a2 has
decreased, it will also be in the lower contour set at β. This completes the proof.�

Fix ak ∈ A\{a2, aK} arbitrarily. If F were to satisfy Maskin monotonicity, we
must have ak ∈ F (β), which is not the case. Therefore, we confirm the violation of
Maskin monotonicity by the SCC F at every ak ∈ A\{a2, aK}. As is clear from the
construction, we can choose K arbitrarily large. Therefore, the violation of Maskin
monotonicity is severe, measured by the number of alternatives that should remain
in the social choice in state β given the relevant nestedness of agents’ preferences
across the two states. In this sense, this correspondence is “very far” from being
Maskin monotonic.

Nevertheless, we claim that the SCC F is implementable in rationalizable
strategies using a finite mechanism. Consider the following mechanism Γ = (M, g)
where Mi = {m1

i ,m
2
i , . . . ,m

K
i } for each i = 1, 2 and the deterministic outcome

function g(·) is given in the table below:

g(m) Agent 2
m1

2 m2
2 m3

2 m4
2 · · · mK−1

2 mK
2

m1
1 a1 a1 aK−2 aK−3 · · · a2 aK−1

m2
1 a2 a1 a1 aK−2 · · · a3 aK−1

m3
1 a3 a2 a1 a1 · · · a4 aK−1

Agent 1 m4
1 a4 a3 a2 a1 · · · a5 aK−1

...
...

...
...

...
. . .

...
...

mK−1
1 a1 aK−2 aK−3 aK−4 · · · a1 aK−1

mK
1 aK−1 aK−1 aK−1 aK−1 · · · aK−1 aK

Claim 2 The SCC F is fully implementable in rationalizable strategies by the
mechanism Γ.

Proof : In state α, all messages can be best responses. Therefore, no message
can be discarded via the iterative elimination of never best responses. That is,

9



the set of rationalizable message profiles SΓ(α) = M . This implies that the set of
rationalizable outcomes in state α is F (α) = {a1, a2, . . . , aK}.

In state β, message mK
2 strictly dominates all other messages, m1

2, . . . ,m
K−1
2

for agent 2. On the other hand, all messages for agent 1 can be a best response. In
the second round of elimination of never best responses, mK

1 strictly dominates all
other messages m1

1, . . . ,m
K−1
1 for agent 1. Thus, we have SΓ(β) = (mK

1 ,m
K
2 ). This

implies that we have F (β) = aK as the unique rationalizable outcome in state β.
This completes the proof.�

BMT (2011) show in their Proposition 1 that strict Maskin monotonicity is nec-
essary for implementation in rationalizable strategies under complete information.
It follows from the previous example that this crucially relies on the assumption
that only SCFs were considered in BMT’s main result. More specifically, we show
that, while the failure of Maskin monotonicity is severe, implementation in ratio-
nalizable strategies is still possible by a finite mechanism. For completeness, we
provide the following lemma.

Lemma 1 The SCC F satisfies set-monotonicity.

Proof : Since agent 1 has state-uniform preferences, we only focus on agent
2 in the following argument. First, we set θ = α and θ

′
= β in the definition

of set-monotonicity. We know that F (α) = {a1, . . . , aK} and by Claim 1, for
any a ∈ F (α)\{a2, aK} and i ∈ {1, 2}, we have the corresponding monotonic
transformation from α to β. For a2 ∈ F (α), however, we have

u2(a2;α) > u2(a3;α) and u2(a2; β) < u2(a3; β).

Therefore, the condition needed for the monotonic transformation from α to β un-
der set-monotonicity is not satisfied. Hence, in this case, set-monotonicity imposes
no conditions on SCCs.

Second, we set θ = β and θ
′

= α in the definition of set-monotonicity. Since
F (β) = aK and aK is the best outcome for agent 2 in both states, we have that for
any y ∈ ∆(A),

u2(aK ; β) ≥ u2(y; β)⇒ u2(aK ;α) ≥ u2(y;α).

In this case, set-monotonicity implies that aK ∈ F (α), which is indeed the case.
Thus, F satisfies set-monotonicity.�
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6 Sufficient Conditions for Weak Implementation

in Rationalizable Strategies

We turn in this section to our first general sufficiency result. Before that, we
introduce an additional condition.

Definition 6 An SCC F satisfies the strong no-worst-alternative condition
(henceforth, SNWA) if, for each θ ∈ Θ and i ∈ N , there exists zθi ∈ ∆(A) such
that, for each a ∈ F (θ),

ui(a; θ) > ui(z
θ
i ; θ).

Remark: This condition is introduced by Cabrales and Serrano (2011). In words,
SNWA says that the SCC never assign the worst outcome to any agent at any state.
BMT (2011) use its SCF-version and call it the no-worst-alternative condition
(NWA).

Lemma 2 If an SCC F satisfies SNWA, then for each i ∈ N , there exists a
collection of lotteries {zi(θ, θ

′
)}θ,θ′∈Θ such that for all θ, θ

′ ∈ Θ:

ui(a; θ
′
) > ui(zi(θ, θ

′
); θ

′
) ∀a ∈ F (θ

′
)

and whenever θ 6= θ
′
,

ui(zi(θ, θ
′
); θ) > ui(zi(θ

′
, θ
′
); θ).

Proof : This is a straightforward extension of Lemma 2 in BMT (2011) to
SCCs. So, we omit the proof.�

We are now ready to state the main sufficiency result for weak implementation
in rationalizable strategies.

Theorem 2 Suppose that there are at least three agents (n ≥ 3). If an SCC F
satisfies set-monotonicity and SNWA, it is weakly implementable in rationalizable
strategies.

Proof : We construct a mechanism Γ = (M, g) such that each agent i sends
a message mi = (m1

i ,m
2
i ,m

3
i ,m

4
i ,m

5
i ,m

6
i ) where m1

i ∈ Θ,m2
i = {m2

i [θ]}θ∈Θ where
m2
i [θ] ∈ F (θ), m3

i = {(m3
i [θ, 1],m3

i [θ, 2])}θ∈Θ where m3
i [θ, 1] ∈ ∆(A) and m3

i [θ, 2] ∈
F (θ), m4

i ∈ ∆(A),m5
i ∈ N , and m6

i ∈ N. The outcome function g : M → ∆(A) is
defined as follows: for each m ∈M :

Rule 1: If there exists θ
′ ∈ Θ such that m1

i = θ
′

and m6
i = 1 for all i ∈ N , then

g(m) = m2
t [θ
′
] where t = (

∑
j∈N m

5
j) (mod n+ 1).
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Rule 2: If there exist θ
′ ∈ Θ and i ∈ N such that m6

i > 1 and m1
j = θ

′
and m6

j = 1
for all j 6= i, then the following subrules apply:

Rule 2-1: If ui(m
2
t [θ
′
]; θ
′
) ≥ ui(m

3
i [θ
′
, 1]; θ

′
) and m2

t [θ
′
] = m3

i [θ
′
, 2] where t =

(
∑

j∈N m
5
j) (mod n+ 1), then

g(m) =

{
m3
i [θ
′
, 1] with probability m6

i /(m
6
i + 1)

zi(θ
′
, θ
′
) with probability 1/(m6

i + 1)

Rule 2-2: Otherwise,

g(m) =

{
m2
t [θ
′
] with probability m6

i /(m
6
i + 1)

zi(θ
′
, θ
′
) with probability 1/(m6

i + 1)

where t = (
∑

j∈N m
5
j) (mod n+ 1).

Rule 3: In all other cases,

g(m) =



m4
1 with probability

m6
1

n(m6
1+1)

m4
2 with probability

m6
2

n(m6
2+1)

...
...

m4
n with probability m6

n

n(m6
n+1)

z with the remaining probability,

where

z =
1

n

∑
i∈N

zi and zi =
1

|Θ|
∑
θ∈Θ

zθi .

Throughout the proof, we denote the true state by θ. The proof consists of
Steps 1 through 4.

Step 1: mi ∈ SΓ(θ)
i ⇒ m6

i = 1.

Proof of Step 1: Let mi = (m1
i ,m

2
i ,m

3
i ,m

4
i ,m

5
i ,m

6
i ) ∈ S

Γ(θ)
i . Suppose by way

of contradiction that m6
i > 1. Then, for any profile of messages m−i that agent

i’s opponents may play, (mi,m−i) will trigger either Rule 2 or Rule 3. We can
partition the message profiles of all agents but i as follows:

M2
−i ≡

{
m−i ∈M−i

∣∣ ∃θ′ ∈ Θ s.t. m1
j = θ

′
,m2

j [θ
′
] ∈ F (θ

′
), and m6

j = 1 ∀j 6= i
}

denotes the set of messages of all agents but i in which Rule 2 is triggered, and

M3
−i ≡M−i\M2

−i

12



denotes the set of messages of all agents but i in which Rule 3 is triggered.
Suppose first that agent i has a belief λi ∈ ∆(M−i) under which Rule 3 is

triggered with positive probability, so that
∑

m−i∈M3
−i
λi(m−i) > 0. If ui(m

4
i ; θ) >

ui(z
θ
i ; θ), we define m̂i as the same as mi except that m̂6

i is chosen to be larger than
m6
i . In doing so, agent i decreases the probability that z is chosen in Rule 3. So,

conditional on Rule 3, we have∑
m−i∈M3

−i

λi(m−i)ui(g(m̂i,m−i); θ) >
∑

m−i∈M3
−i

λi(m−i)ui(g(mi,m−i); θ).

If ui(m
4
i ; θ) ≤ ui(z

θ
i ; θ), we define m̂i as the same as mi except that m̂4

i ∈ F (θ) and
m̂6
i is chosen to be larger than m6

i . Similarly, conditional on Rule 3, we obtain the
same inequality.

Now suppose that agent i believes that Rule 2 will be triggered with positive
probability, so that

∑
m−i∈M2

−i
λi(m−i) > 0. We again consider a deviation from

mi to m̂i and observe that the choice of m̂4
i does not affect the outcome of the

mechanism conditional on Rule 2.
First, assume that m1

j = θ
′ 6= θ for each j 6= i. Suppose ui(m

3
i [θ
′
, 1]; θ) ≥

ui(zi(θ, θ
′
); θ). In this case, agent i could change mi to m̂i by having m̂6

i larger than
m6
i and keeping mi unchanged otherwise. Since ui(m

3
i [θ
′
, 1]; θ) ≥ ui(zi(θ, θ

′
); θ) >

ui(zi(θ
′
, θ
′
); θ), we have that conditional on Rule 2,∑

m−i∈M2
−i

λi(m−i)ui(g(m̂i,m−i); θ) >
∑

m−i∈M2
−i

λi(m−i)ui(g(mi,m−i); θ).

Otherwise, suppose that ui(m
3
i [θ
′
, 1]; θ) < ui(zi(θ, θ

′
); θ). In this case, agent i

could change mi to m̂i by having m̂3
i [θ
′
, 1] = zi(θ, θ

′
), m̂6

i > m6
i > 1, and keeping

mi unchanged otherwise. Since ui(zi(θ, θ
′
); θ) > ui(zi(θ

′
, θ
′
); θ), we have that,

conditional on Rule 2,∑
m−i∈M2

−i

λi(m−i)ui(g(m̂i,m−i); θ) >
∑

m−i∈M2
−i

λi(m−i)ui(g(mi,m−i); θ).

Second, assume that m1
j = θ for each j 6= i. We choose t∗ 6= i and m∗−i ∈

supp(λi(·)) such that for each j 6= i and m−i ∈ supp(λi(·)),

ui(m
∗2
t∗ [θ]; θ) ≥ ui(m

2
j [θ]; θ).

Then, in this case, agent i could change mi to m̂i by having m̂3
i [θ, 1] = m∗2t∗ [θ]

and m̂6
i > m6

i > 1, keeping mi unchanged otherwise. Since ui(m
∗2
t∗ [θ]; θ) >

ui(zi(θ, θ); θ), we have that, conditional on Rule 2,∑
m−i∈M2

−i

λi(m−i)ui(g(m̂i,m−i); θ) >
∑

m−i∈M2
−i

λi(m−i)ui(g(mi,m−i); θ).
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It follows that, in all cases, these choices of m̂i strictly improve the expected payoff
of agent i if either Rule 2 or Rule 3 is triggered. This implies that mi is never a
best response to any belief λi, which contradicts our hypothesis that mi ∈ SΓ(θ)

i .�

Step 2: For any θ ∈ Θ, there exists m ∈ SΓ(θ) such that g(m) ∈ F (θ).

Proof of Step 2: Fix θ ∈ Θ. For each i ∈ N , we define

ai(θ) ∈ arg max
a∈F (θ)

ui(a; θ).

Define λi ∈ ∆(M−i) as follows: for any m−i ∈M−i, if λi(m−i) > 0,

m1
j = θ;

m2
j = {m2

j [θ̃]}θ̃∈Θ where m2
j [θ̃] = aj(θ̃);

m5
j = 1; and

m6
j = 1,

for all j 6= i. Define mi = (θ,m2
i ,m

3
i ,m

4
i , i, 1) such that m2

i = {m2
i [θ̃]}θ̃∈Θ where

m2
i [θ̃] = ai(θ̃). With this belief λi, agent i is convinced that Rule 1 is triggered

with probability 1, so that i becomes the winner of the modulo game. Thus, mi

is a best response to λi so that mi survives the first round of iterative deletion of
never best responses. We next claim that the support of λi is rationalizable. Fix
j 6= i. Let mj ∈Mj be defined such that

m1
j = θ;

m2
j = {m2

j [θ̃]}θ̃∈Θ where m2
j [θ̃] = aj(θ̃);

m5
j = j; and

m6
j = 1

Define λj ∈ ∆(M−j) as follows: for any m−j ∈M−j, if λj(m−j) > 0,

m1
k = θ;

m2
k = {m2

k[θ̃]}θ̃∈Θ where m2
k[θ̃] = ak(θ̃);

m5
k = 1; and

m6
k = 1,

for all k 6= j. Recall that we define mj = (θ,m2
j ,m

3
j ,m

4
j , j, 1). With this belief λj,

agent j is convinced that Rule 1 is triggered with probability 1, so that j becomes
the winner of the modulo game. Thus, mj is a best response to λj and each such

14



mj survives the first round of iterative deletion of never best responses. We can
repeat this argument iteratively so that mi survives the iterative deletion of never
best responses. Thus, a message profile m where each mi is as constructed above
generates the outcome ai(θ), which is in F (θ). This completes the proof.�

Step 3: mi ∈ SΓ(θ)
i ⇒ λi(m−i) = 0 for any profile (mi,m−i) under Rules 2 or 3,

where λi ∈ ∆(M−i) represents the belief held by i to which mi is a best response.

Proof of Step 3: Suppose mi ∈ SΓ(θ)
i . By Step 1, mi has the form of mi =

(θ
′
,m2

i ,m
3
i ,m

4
i ,m

5
i , 1) for some θ

′ ∈ Θ, where the θ
′

announced by different agents
might be different. Given the message mi, we define the set of messages of the
remaining agents which trigger Rule 1, 2, or 3. Let M1

−i be the set of m−i ∈ M−i
such that (mi,m−i) triggers Rule 1 and M2,i

−i be the set of m−i ∈ M−i such that
(mi,m−i) triggers Rule 2 with agent i as the deviating player.

We consider a given belief λi of agent i. If
∑

m−i∈M1
−i
λi(m−i) = 0, then Rule 2

or 3 will be triggered with probability one. Although Rule 2 can now be triggered
with a “deviating agent” being different from i, it is easily checked that a similar
argument to that in Step 1 applies so that the message mi cannot be a best reply
to λi. So, suppose that

0 <
∑

m−i∈M1
−i

λi(m−i) < 1.

For each θ̃ ∈ Θ, define

m̂3
i (θ̃) =

{
(m2

j∗ [θ
′
],m3

i [θ
′
, 2]) if θ̃ = θ

′

m3
i [θ̃] otherwise,

where j∗ = arg maxj∈N ui(m
2
j [θ
′
]; θ). Define m̂4

i = arg maxy∈∆(A) ui(y; θ). We set

m̂6
i to be an integer sufficiently large. Define m̂i = (θ

′
,m2

i , m̂
3
i , m̂

4
i ,m

5
i , m̂

6
i ) as i’s

alternative message in which we keep m1
i = θ

′
,m2

i and m5
i unchanged. Then, as

m̂6
i tends to infinity, agent i’s expected utility from choosing m̂i is approximately

at least as high as∑
m−i∈M1

−i∪M
2,i
−i

λi(m−i)ui(g(mi,m−i); θ) +
∑

m−i /∈M1
−i∪M

2,i
−i

λi(m−i)ui(m̂
4
i ; θ),

which is strictly larger than i’s expected payoff from choosing mi. Hence, by
choosing m̂6

i large enough, m̂i is a better response to λi (in words, the loss in Rule
2 can always be offset by a bigger gain in Rule 3). This is a contradiction.

So, if mi = (θ
′
,m2

i ,m
3
i ,m

4
i ,m

5
i , 1) ∈ S

Γ(θ)
i , it follows that agent i must be

convinced that each j 6= i is choosing a message of the form (θ
′
,m2

j ,m
3
j ,m

4
j ,m

5
j , 1)

and hence
∑

m−i∈M1
−i
λi(m−i) = 1.�
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Step 3 implies that one can partition the set of rationalizable message profiles
into separate components, θ, θ

′
, θ
′′
, . . .. For instance, in the θ

′
component, this is

the choice of state that each agent makes in the first item of their messages, which
also determines the event to which each of them assigns probability 1. That is, in
that component, each agent i believes that all the others are using strategies of the
form (θ

′
, ·, ·, ·, ·, 1) with probability 1.

We introduce an additional piece of notation. For any θ, θ
′ ∈ Θ and i ∈ N ,

define
S

Γ(θ)
i [θ

′
] =

{
mi ∈ SΓ(θ)

i

∣∣ m1
i = θ

′
and m6

i = 1
}
.

Let SΓ(θ)[θ
′
] = ×i∈NSΓ(θ)

i [θ
′
]

Step 4: m ∈ SΓ(θ) ⇒ g(m) ∈ F (θ).

Proof of Step 4: By Step 3, we know that if mi ∈ SΓ(θ)
i , there exists θ

′ ∈ Θ
such that agent i both is using and is convinced that every agent j is using a
message of the form mj = (θ

′
,m2

j ,m
3
j ,m

4
j ,m

5
j , 1). If θ

′
= θ, by Rule 1 and the

construction of the mechanism, g(m) ∈ F (θ). So, in what follows, we assume that
θ
′ 6= θ. Suppose by way of contradiction that there exists m∗ ∈ SΓ(θ)[θ

′
] such

that g(m∗) /∈ F (θ). By strong set-monotonicity, we know that there exist i ∈ N ,
a∗ ∈ F (θ

′
), and z∗ ∈ ∆(A) such that ui(a

∗; θ
′
) ≥ ui(z

∗; θ
′
); and ui(a

∗; θ) < ui(z
∗; θ).

Let a∗ = g(m∗).

By our hypothesis, there exists m∗i = (θ
′
,m∗2i ,m

∗3
i ,m

∗4
i ,m

∗5
i , 1) ∈ SΓ(θ)

i . Since

m∗i ∈ S
Γ(θ)
i [θ

′
], there exists λi ∈ ∆(M−i) such that (i) λi(m−i) > 0 ⇒ mj =

(θ
′
,m2

j ,m
3
j ,m

4
j ,m

5
j , 1) for any j 6= i and (ii)

∑
m−i

λi(m−i)ui(g(m∗i ,m−i); θ) ≥∑
m−i

λi(m−i)ui(g(m̃i,m−i); θ) for all m̃i ∈Mi. Define

m̂−i(m
∗
i ) ∈ arg max

(m∗i ,m−i)∈SΓ(θ)[θ
′
]
ui(g(m∗i ,m−i); θ).

Note that we have g(m∗i , m̂−i(m
∗
i )) ∈ arg maxa∈F (θ

′
) ui(a; θ), i.e., g(m∗i , m̂−i(m

∗
i ))

induces one of i’s best outcomes under Rule 1 in which all agents unanimously
announce θ

′
in state θ. Without loss of generality, assume that the winner of

the modulo game that gives this great outcome to agent i is actually not agent i
himself.

Then, we define λ̃i ∈ ∆(M−i) as follows: λ̃i(m−i) = 0 if and only if m−i 6=
m̂−i(m

∗
i ). By construction of λ̃i, we have that m∗i must be a best response to

the redefined belief λ̃i. Since m∗i is a best response to λ̃i and m∗i triggers Rule
1 with probability one under λ̃i, agent i should not in particular have an incen-
tive to induce Rule 2. This implies that we must have ui(g(m∗i , m̂−i(m

∗
i )); θ) ≥

ui(g(m
′
i, m̂−i(m

∗
i )); θ) for any m

′
i.
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We can organize the argument in two cases:

Case 1. Assume g(m∗i , m̂−i(m
∗
i )) = a∗. Then, we define m̂3

i as follows: for any
θ̃ ∈ Θ,

m̂3
i [θ̃, 1] =

{
z∗ if θ̃ = θ

′

m∗3i [θ̃, 1] otherwise,

and

m̂3
i [θ̃, 2] =

{
a∗ if θ̃ = θ

′

m∗3i [θ̃, 2] otherwise.

Define m̂i = (θ
′
,m∗2i , m̂

3
i ,m

∗4
i ,m

∗5
i , m̂

6
i ) where we only change the third and sixth

components of m∗i , i.e., m̂3
i and m̂6

i . With this choice of strategy, agent i changes
the outcome with respect to using m∗i only when the outcome under m∗i was a∗.
By choosing m̂6

i sufficiently large, we conclude that m̂i is an even better response
than m∗i to λ̃i. This contradicts the hypothesis that m∗i is a best response to λ̃i.

Case 2. Assume, on the other hand, that g(m∗i , m̂−i(m
∗
i )) 6= a∗. We shall show

that this case is impossible. In this case, relying on the strategy m̂i as defined in
Case 1, note that g(m̂i, m̂−i(m

∗
i )) = g(m∗i , m̂−i(m

∗
i )) with probability m̂6

i /(m̂
6
i +1),

as the only change happened upon a∗ being the outcome.
For each ε > 0 and m−i, we define

λεi (m−i) =

{
1− ε if m−i = m̂−i(m

∗
i )

ε for one m̃−i : m̃1
−i = θ

′
, m̃2
−i = a∗, m̃5

−i = m̂5
−i(m

∗
i ), m̃

6
−i = 1,

where we denote m̃1
j = θ

′
for all j 6= i by m̃1

−i = θ
′

and the same notation applies
to m̃2

−i, m̃
5
−i, and m̃6

−i. Since agent i, by our hypothesis, is not the winner of the
modulo game under (m∗i , m̂−i(m

∗
i )), by construction of m̃−i, we have g(m∗i , m̃−i) =

a∗. Moreover, each m̃j is rationalizable because agent j can believe that agent i
chooses j’s best outcome in the place of m2

i [θ
′
] and i becomes the winner of the

modulo game.
Consider again the strategy m̂i as in Case 1. As m̂6

i tends to infinity, we obtain∑
m−i

λεi (m−i)ui(g(m̂i,m−i); θ)

≈ (1− ε)ui(g(m∗i , m̂−i(m
∗
i )); θ) + εui(z

∗; θ)

> (1− ε)ui(g(m∗i , m̂−i(m
∗
i )); θ) + εui(a

∗; θ) (∵ ui(z
∗; θ) > ui(a

∗; θ))

=
∑
m−i

λεi (m−i)ui(g(m∗i ,m−i); θ),

where the last equality follows from the fact that agent i is not the winner of the
modulo game when the others are using the specified strategy with probability ε.
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Therefore, m̂i is an even better response than m∗i to λεi . We conclude that m∗i
is not a best response to λεi for any ε > 0.

Finally, to show impossibility, we claim that m∗i is a best response to λεi as long
as we choose ε > 0 sufficiently small. Consider an alternative message m

′
i that

induces Rule 2. Fix any such alternative message m
′
i. No matter how large m

′6
i

can be, one can choose ε > 0 small enough so that

1

m
′6
i + 1

[
ui(g(m∗i , m̃−i); θ)− ui(zi(θ

′
, θ
′
); θ)

]
> ε

[
ui(g(m

′

i, m̃−i); θ)− ui(g(m∗i , m̃−i); θ)
]
.

Indeed, this is so because g(m∗i , m̃−i) = a∗ ∈ F (θ
′
), and hence, ui(g(m∗i , m̃−i); θ) >

ui(zi(θ
′
, θ
′
); θ) by SNWA. Moreover, given agent i’s belief λεi , m

∗
i results in the best

outcome with probability 1−ε so that ui(g(m∗i , m̂−i(m
∗
i )); θ) ≥ ui(g(m

′
i, m̂−i(m

∗
i )); θ).

Therefore, once we choose ε > 0 small enough, m∗i is made an even better response
to λεi than m

′
i. Since this argument applies to any such alternative message m

′
i,

agent i has no incentive to trigger Rule 2 himself. This establishes that m∗i is a
best response to λεi .�

Steps 1 through 4 together imply that for each θ ∈ Θ and m ∈M , (i) SΓ(θ) 6= ∅
and (ii) m ∈ SΓ(θ) ⇒ ∃θ′ ∈ Θ such that m1

i = θ
′
; m6

i = 1; and g(m) ∈ F (θ).
Thus, for each θ ∈ Θ and m ∈ M , SΓ(θ) 6= ∅ and m ∈ SΓ(θ) ⇒ g(m) ∈ F (θ). This
completes the proof of the theorem.�

When focusing only on SCFs, we obtain the following result as a corollary of
Theorem 2.

Corollary 1 Suppose that there are at least three agents (n ≥ 3). If an SCF f
satisfies Maskin monotonicity and NWA, it is fully implementable in rationalizable
strategies.

Proof : We know that set-monotonicity and SNWA are reduced to Maskin
monotonicity and NWA (the SCF-version used by BMT (2011)), respectively, as
long as the social choice rule is single-valued. Note also that the difference between
weak and full implementation is inconsequential in the case of SCFs. The rest of
the proof is completed as that of Theorem 2.�

This is a logical strenghthening of Proposition 2 of BMT (2011) because we
completely dispense with the responsiveness of SCFs, which is assumed there. We
say that an SCF f is responsive if, for any θ, θ

′ ∈ Θ, whenever θ 6= θ
′
, f(θ) 6= f(θ

′
).
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7 Sufficient Conditions for Full Implementation

in Rationalizable Strategies

Next, we state the general sufficiency result for full implementation in rationalizable
strategies.

Theorem 3 Suppose that there are at least three agents (n ≥ 3). If an SCC F
satisfies set-monotonicity and SNWA, it is fully implementable in rationalizable
strategies.

Proof : Our proof is based upon the canonical mechanism proposed in the
proof of Theorem 2. Recall that Steps 1 through 4 of Theorem 2 together imply
that for each θ ∈ Θ and m ∈M , SΓ(θ) 6= ∅ and m ∈ SΓ(θ) ⇒ g(m) ∈ F (θ). Hence,
it only remains to establish the following property of the mechanism:

Step 5: For any θ ∈ Θ and a ∈ F (θ), there exists m∗ ∈ SΓ(θ) such that g(m∗) = a.

Proof of Step 5: Fix θ ∈ Θ as the true state, and fix a ∈ F (θ). Define
m∗1 = (θ,m∗21 ,m

∗3
1 ,m

∗4
1 , 1, 1), where m∗21 [θ] = a. For each j ∈ {2, . . . , n}, define

m∗j = (θ,m∗2j ,m
∗3
j ,m

∗4
j , 1, 1), where m∗2j [θ] = aj−1(θ), which denotes one of the

maximizers of uj−1(·; θ) within all the outcomes in F (θ). Then, the constructed
message profile m∗ induces Rule 1 and agent 1 becomes the winner of the modulo
game. We thus have g(m∗) = a by construction. What remains to show is that
m∗ ∈ SΓ(θ).

By construction of the mechanism, Rule 3 cannot be triggered by any unilateral
deviation from Rule 1. So, the specification of m∗4i does not affect our argument.
Moreover, also by construction of the mechanism, no agent has an incentive to
induce Rule 2 with a unilateral deviation from a truthful profile under Rule 1. So,
effectively, the specification of m∗3i does not affect our argument either.

We first show that m∗1 can be made a best response to some belief. Define
λ∗1 ∈ ∆(M−1) as follows: for any m−1 ∈M−1, if λ∗1(m−1) > 0,

m1
j = θ;

m2
j [θ] = aj−1(θ);

m5
j =

{
2 if j = 2
1 otherwise

m6
j = 1.

for all j ∈ {2, . . . , n}. Given this belief λ∗1 and m∗1, agent 2 becomes the winner of
the modulo game so that the outcome a1(θ), which is the best one for agent 1, is
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generated. Therefore, m∗1 is a best response to λ∗1 so that it survives the first round
of deletion of never best responses.

We next show that the support of λ∗1 is rationalizable. Assume j 6= 1. Define

m̄j =

{
(θ, m̄2

2, m̄
3
2, m̄

4
2, 2, 1) if j = 2

(θ, m̄2
j , m̄

3
j , m̄

4
j , 1, 1) otherwise

where m̄2
j [θ] = aj−1(θ). Define λ̄2 ∈ ∆(M−2) as follows: for any m−2 ∈ M−2, if

λ̄2(m−2) > 0,

m1
k = θ;

m2
k[θ] = ak−1(θ);

m5
k =

{
2 if k = 1
1 otherwise

m6
k = 1.

for all k 6= 2. Then, given this belief λ̄2 and m̄2, agent 3 becomes the winner of
the modulo game so that the outcome a2(θ), which is the best one for agent 2, is
realized. Therefore, m̄2 is a best response to λ̄2 so that it survives the first round
of deletion of never best responses. Assume j ∈ N\{1, 2}. Define λ̄j ∈ ∆(M−j) as
follows: for any m−j ∈M−j, if λ̄j(m−j) > 0,

m1
k = θ;

m2
k[θ] =

{
an(θ) if k = 1
ak−1(θ) otherwise;

m5
k =

{
j + 1 if k = 1

1 otherwise;

m6
k = 1,

for all k 6= 2. Assume j < n. Then, given the belief λ̄j and m̄j, agent j + 1
becomes the winner of the modulo game so that the outcome aj(θ), which is the
best one for agent j, is realized. Assume, on the other hand, that j = n. Then,
given the belief λ̄j and m̄j, agent 1 becomes the winner of the modulo game so
that the outcome an(θ), which is the best one for agent n, is realized. Therefore,
m̄j is a best response to λ̄j so that it survives the first round of deletion of never
best responses. We can repeat this argument iteratively so that m∗1 survives the

iterative deletion of never best responses. Hence, m∗1 ∈ S
Γ(θ)
i .

Third, we shall show that, for each j 6= 1, m∗j can be made a best response
to some belief. For each j ∈ {2, . . . , n}, define λ∗j ∈ ∆(M−j) as follows: for any
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m−j ∈M−j, if λ∗j(m−j) > 0,

m1
k = θ;

m2
k[θ] =

{
an(θ) if k = 1
ak−1(θ) otherwise;

m5
k =

{
j + 1 if k = 1

1 otherwise;

m6
k = 1,

for all k 6= j. Given this belief λ∗j and m∗j , agent j + 1 becomes the winner of
the modulo game so that the outcome aj(θ), which is the best one for agent j, is
realized. Therefore, for each j 6= 1, m∗j is a best response to λ∗j so that it survives
the first round of deletion of never best responses.

Fourth, we will show that the support of λ∗j is rationalizable. Consider m̄1 =
(θ, m̄2

1, m̄
3
1, m̄

4
1, j + 1, 1), where m̄2

1[θ] = an(θ). Define λ̄1 ∈ ∆(M−1) as follows: for
any m−1 ∈M−1, if λ̄1(m−1) > 0,

m1
k = θ;

m2
k[θ] = ak−1(θ);

m5
k =

{
n+ 2− j if k = 2

1 otherwise;

m6
k = 1,

for all k 6= 1. Given this belief λ̄1 and m̄1, agent 2 becomes the winner of the
modulo game so that the outcome a1(θ), which is the best one for agent 1, is
realized. Therefore, m̄1 is a best response to λ̄1 so that it survives the first round
of deletion of never best responses.

Consider agent k ∈ N\{1, j}. We first assume k < n. Define m̄k = (θ, m̄2
k, m̄

3
k, m̄

4
k, 1, 1),

where m̄2
k[θ] = ak−1(θ). Define λ̄k ∈ ∆(M−k) as follows: for any m−k ∈ M−k, if

λ̄k(m−k) > 0,

m1
i = θ;

m2
i [θ] = ai−1(θ);

m6
i = 1,

for all i 6= k and
∑

i 6=km
5
i = n + k − 1. Given this belief λ̄k and m̄k, agent k + 1

becomes the winner of the modulo game so that the outcome ak(θ), which is the
best one for agent k, is realized. Therefore, m̄k is a best response to λ̄k so that it
survives the first round of deletion of never best responses.
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Assume n 6= j. We define m̄n = (θ, m̄2
n, m̄

3
n, m̄

4
n, 1, 1) and λ̄n ∈ ∆(M−n) as

follows: for any m−n ∈M−n, if λ̄n(m−n) > 0,

m1
i = θ;

m2
i =

{
an(θ) if i = 1
ai−1(θ) otherwise;

m5
i = 1;

m6
i = 1,

for all i 6= n. Given this belief λ̄n and m̄n, agent 1 becomes the winner of the
modulo game so that the outcome an(θ), which is the best for agent n, is realized.
Therefore, m̄n is a best response to λ̄n so that it survives the first round of deletion
of never best responses.

We conclude that the support of λ∗j is rationalizable. So, we can repeat this
argument iteratively so that for each j 6= 1, m∗j survives the iterative deletion of

never best responses. Therefore, m∗j ∈ S
Γ(θ)
j for each j 6= 1. Since m∗1 ∈ S

Γ(θ)
1 , we

obtain m∗ ∈ SΓ(θ). This completes the proof of Step 5.�

Combining Step 5 and Steps 1 through 4 in the proof of the previous theorem,
the proof is complete.�

8 Concluding Remarks

By relying on a setwise condition requiring the nestedness of lower contour sets, a
condition that we term set-monotonicity, we have shown that rationalizable imple-
mentation of correspondences leads to a significantly more permissive theory than
its counterpart using Nash equilibrium. The two-agent general sufficiency argu-
ment is likely handled by adding the usual requirement of nonempty intersections
of lower contour sets; we chose instead to focus on a simple finite mechanism for
a useful example. Finally, the extension to incomplete information environments
should be our natural next step.
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