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Abstract

Models of choice where agents see others as less sophisticated than
themselves have significantly different, sometimes more accurate, pre-
dictions in games than does Nash equilibrium. When it comes to mech-
anism design, however, they turn out to have surprisingly similar impli-
cations. This paper provides tight necessary and sufficient conditions
for implementation with bounded depth of reasoning, discussing the
role and implications of different behavioral anchors. The central con-
dition slightly strenghthens standard incentive constraints, and we term
it strict-if-responsive Bayesian incentive compatibility (SIRBIC).

JEL Classification: C72, D70, D78, D82.

Keywords: mechanism design; bounded rationality; level k reasoning;
revelation principle; incentive compatibility.

1 Introduction

Models of choice where agents see others as less sophisticated than themselves

have significantly different, sometimes more accurate, predictions in games

than does Nash equilibrium. Evidence has shown that theories of level-k choice

may provide a better description of people’s behavior, especially when they

are inexperienced.1The point this paper makes, however, is that when it comes

1See, for example, Stahl and Wilson (1994, 1995), Nagel (1995), Ho et al. (1998), Costa-
Gomes et al. (2001), Bosch-Domènech et al. (2002), and Arad and Rubinstein (2012).
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to mechanism design, the two approaches turn out to have surprisingly similar

implications.

Mechanism design aims at engineering rules of interaction that guarantee

desired outcomes while recognizing that participants may try to use their pri-

vate information to game the system to their advantage. The design problem

thus hinges upon a theory of how people make choices given the rules that are

being enforced. Oftentimes the concept of Nash equilibrium is used for that

purpose. However, a host of bounded rationality notions have been put to the

task.2

The Nash equilibrium and level-k approaches assume that participants are

rational to the extent that they maximize their preferences given their be-

liefs regarding how others will play. The difference lies in how beliefs are

determined. Level-k theories break down the Nash equilibrium rational ex-

pectations logic by assuming people see others as being less sophisticated than

themselves. Best responses then determine behavior by induction on the indi-

viduals’ depth of reasoning, starting with an “anchor” that fixes the behavior

at level 0. This anchor captures how people would play the game instinctively,

as a gut reaction without resorting to rational deliberation.

The revelation principle (see, e.g., Myerson (1989) and the references therein)

offers an elegant characterization of the social choice functions that are (weakly)

Nash implementable. Indeed, there exists a mechanism with a Bayesian Nash

equilibrium that generates the social choice function if and only if the social

choice function is Bayesian incentive compatible, which means that telling the

truth forms a Bayesian Nash equilibrium of the corresponding direct revela-

tion game. How does level-k implementation compare to this benchmark? To

tackle this question, we need to be more precise regarding what we mean by

level-k behavior. For ease in the exposition, we choose to concentrate on the

2For instance, Eliaz (2002) allows for “faulty” agents, Cabrales and Serrano (2011) allow
agents to learn in the direction of better replies, Saran (2011) studies the revelation prin-
ciple under conditions over individual choice correspondences over Savage acts, Glazer and
Rubinstein (2012) allow the content and framing of the mechanism to play a role, de Clippel
(2014) relaxes preference maximization, and Saran (2016) studies k levels of rationality with
complete information.
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level-k reasoning model, in which each level-k individual best-responds to her

belief that all her opponents are of level-(k − 1).3

In any theory that relies on bounded levels of reasoning, predictions depend

on how one sets the anchor. Whether the mechanism designer can impact the

anchor is debatable. Implementation is most permissive when giving her the

freedom to pick the anchor. Thus, it comes perhaps as a surprise at first that,

even with that power, the mechanism designer can implement only Bayesian

incentive compatible social choice functions under level-k reasoning. This is

our first main result (Theorem 1), which amounts to a level-k revelation prin-

ciple. In fact, the restriction is slightly stronger, as the incentive constrains

must be satisfied with an inequality whenever the social choice function is re-

sponsive. We term this condition strict-if-responsive Bayesian incentive com-

patibility (SIRBIC). Theorem 1 thus asserts that if a social choice function

is implementable up to level-K for K ≥ 2 and for any behavioral anchor at

level 0, it must satisfy SIRBIC. The exact converse holds, as shown in our

next result (Theorem 2). The applicability of this converse would be limited if

the anchors needed to achieve implementability were unreasonable. However,

Theorem 2 is proved with truth-telling as an anchor in direct mechanisms.

It is appropriate to dwell on the importance of using a variety of behavioral

anchors for level-0. In particular, the literature (e.g., Crawford’s (2016) level-k

analysis of the classic bilateral trading problem in Myerson and Satterthwaite

(1983)) has discussed the use of uniform behavioral anchors, in which the gut

reaction to a mechanism is to play an action chosen uniformly randomly from

the available actions. We include a section with general results for uniform

anchors. These findings confirm the theme of our general results. With in-

dependent private values, SIRBIC alone suffices for level-k implementation of

continuous social choice functions under uniform anchors (Theorem 3).4 Be-

yond independent private values, an additional weak necessary condition is

uncovered, which amounts to the social choice reacting to types having differ-

3We observe in the concluding remarks section that our results apply to many other
specifications of bounded levels of reasoning.

4Continuity can be dispensed with, as we discuss later.
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ent interim preferences (Theorem 4). Conversely, this measurability condition

and SIRBIC are also sufficient even if anchors are uniform (Theorem 5).

The take-away message of our work is that incentive compatibility arises as

the robust condition that is key to describe the scope of implementable rules,

even if bounded levels of reasoning are factored into the model. In principle,

one might have thought that relaxing the requirement of Nash equilibrium

would allow the planner to implement a wider set of goals, but, as we show,

if one does not unduely restrict the levels of reasoning allowed in the model,

that turns out to be a false hope.

The paper is organized as follows. Section 2 presents the framework. Sec-

tion 3 defines level-k implementation. Section 4 presents our general necessity

result – the “level-k revelation principle.” Section 5 presents our sufficiency

results for truthful anchors used in direct mechanisms. Section 6 contains our

treatment of uniform anchors, and Section 7 closes with several concluding

remarks.

2 Framework

A social planner/mechanism designer wishes to select an alternative from a

set X. Her decision impacts the satisfaction of individuals in a finite set I.

Unfortunately, she does not know their preferences. In order to capture general

problems of incomplete information, for each individual i, we introduce a set

Ti of types, with the interpretation that each individual knows his own type,

but not the types of others. Beliefs are determined by Bayes’ rule using a

common prior p defined over T =
∏

i∈I Ti. Thus, when individual i’s type

is ti, her belief regarding other individuals’ types is given by the conditional

distribution p(·|ti). An individual i’s preference is of the expected utility form,

using a Bernoulli utility function ui : X × T → R. With a slight abuse

of notation, we will write ui(`, t) to denote the expected utility of a lottery

` ∈ ∆X, where ∆X is the set of probability distributions over X.

The planner’s objective is to implement a social choice function f : T →
∆X. To achieve this goal, she constructs a mechanism, which is a function
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µ : M1×· · ·×MI → ∆X, whereMi is the set of messages available to individual

i. A mechanism is direct if Mi = Ti, for all i. A strategy of individual i is a

function σi : Ti → ∆Mi, where ∆Mi is the set of probability distributions over

Mi. A strategy profile σ and type profile t induce a lottery µ(σ(t)) over X.5

We make several technical observations. Throughout the paper, it is as-

sumed that the sets and functions considered have the right structure to make

sure that expected utility is well-defined. Formally, the set of alternatives,

and the sets of types and messages for each individual are separable metriz-

able spaces endowed with the Borel sigma algebra, product sets are endowed

with the product topology, the Bernoulli utility functions are continuous and

bounded, and social choice functions, mechanisms, and strategies are measur-

able functions.

3 Level-k Implementation

Together with types, beliefs, and utility functions, a mechanism µ defines a

Bayesian game. To discuss implementation, we need to introduce a theory of

how people play Bayesian games. We present our results in this section for

the level-k model. In the concluding section, we comment on how our results

can be extended to other alternative models of choice with bounded depth of

reasoning.

To describe choices, we begin by introducing behavioral anchors, which

describe how a given individual would instinctively play the mechanism, as

a gut reaction without any rational deliberation. Formally, individual i’s be-

havioral anchor αi is a strategy that associates to each type ti a probability

distribution over Mi, i.e., a mapping αi : Ti → ∆Mi, which, therefore, is

mechanism-contingent. Profiles of such anchors will be denoted α = (αi)i∈I .

The set of strategies that are level-1 consistent for an individual is then

the set of her best responses against the other individuals’ behavioral an-

chors, that is, S1
i (µ|α) is the set of strategies σi such that σi(ti) maximizes∫

t−i
ui(µ(mi, α−i(t−i)), t)dp(t−i|ti) over mi ∈Mi. By induction, for each k ≥ 1,

5Formally, for any Borel subset B of X, µ(σ(t))[B] =
∫
m
µ(m)[B]dσ(t).
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the set of strategies that are level-(k + 1) consistent for an individual is the

set of her best responses against a strategy profile that is level-k consistent for

the other individuals, that is, Sk+1
i (µ|α) is the set of strategies σi such that

σi(ti) maximizes
∫
t−i
ui(µ(mi, σ−i(t−i)), t)dp(t−i|ti), for some σ−i ∈ Sk

−i(µ|α).

The index k is called an individual’s depth of reasoning.

It has been argued that, for many subjects in the lab, their depth of rea-

soning is probably rather small. At the same time, this depth varies from

individual to individual, and even within a person, it may vary from mecha-

nism to mechanism. It is currently not well understood how one could identify

or impact individuals’ depth of reasoning. To accommodate this, we introduce

an upper bound K on the individuals’ depths of reasoning. The mechanism

designer thinks that all combinations of levels in {1, . . . , K} are in principle

possible. Our results are robust in the sense of being independent of K, as long

as it is larger or equal to 2. Taking K = 1 would mean that all participants

have a depth of reasoning at most equal to 1, which seems rather implausible.

Importantly, not being able to rule out the presence of as little as two levels of

reasoning guarantees our conclusions, which also remain true in the presence

of individuals with higher depths of reasoning.

The mechanism µ implements up to level-K the social choice function

f given the behavioral anchors α if (i) Ski
i (µ|α) is nonempty, for all i and

1 ≤ ki ≤ K, and (ii) f = µ ◦ σ, for all strategy profiles σ such that, for each

i, σi ∈ Ski
i (µ|α) with 1 ≤ ki ≤ K. Part (ii) is the main restriction, requiring

that the desired outcome prevails at all type profiles and independently of the

strategies individuals follow, as long as they are consistent with the theory of

level-k reasoning for some depth of reasoning no greater than K. Depths of

reasoning are allowed to vary in the population. Part (i) rules out cases where

(ii) is met only because of the absence of strategy profiles consistent with level-

k reasoning: best responses might not exist, for instance, in discontinuous

mechanisms or when the message space is open.

We do not require implementability for ki = 0. First, we think of all in-

dividuals as being minimally rational in the sense of playing a best response

to some belief. In addition, this exclusion causes little loss of generality: the
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necessary condition for implementability derived in the next section, and the

sufficient condition under truthful anchors derived in Section 5 hold when in-

cluding ki = 0 in the definition as well. Intuitively, the planner accepts level-0

agents as a way to capture individuals’ gut feelings towards the mechanism,

and hence, does not see herself as trying to affect those. The interesting prob-

lem of how to suggest or modify behavioral anchors might be of importance

in a new direction of mechanism design, but it is beyond our scope here.

4 A General Necessary Condition

To understand the limits of level-k implementation, we start by showing how

a slight strengthening of Bayesian incentive compatibility is necessary as soon

as the social choice function is level-k implementable for some arbitrary be-

havioral anchors in any mechanism. This has two related implications. First,

level-k reasoning does not free us from incentive compatibility constraints,

even if the mechanism designer had the ability to choose the anchors in each

mechanism. Second, incentive compatibility is a general necessary condition

that will hold when studying level-k implementation, regardless of the regular-

ity restrictions one is willing to place on behavioral anchors. Of course, such

restrictions may generate supplementary necessary conditions, as we will see

in Subsection 6.2.

Say that a social choice function f is implementable up to level-K for some

anchors if there exists a mechanism µ and some behavioral anchors α for µ

such that µ implements up to level-K the social choice function f given α.

The next result may, at first glance, come as a surprise, as it shows that

only the standard Bayesian incentive compatible social choice functions are

implementable in this permissive sense.

In fact, a slightly stronger property is necessary, with the incentive con-

straints being strict in some cases. There might be circumstances under which

the mechanism designer wishes to implement a social choice function that is

insensitive to some changes of an individual’s type. For instance, two types

might differ only in higher-order beliefs, which may not matter to the mecha-
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nism designer for the problem at hand. For level-k implementation, incentive

constraints need to be strict whenever comparing types for which the social

choice function is responsive. Formally, say that f is insensitive when chang-

ing i’s type from ti to t′i, denoted by ti ∼f
i t
′
i, if f(ti, t−i) = f(t′i, t−i) for all t−i.

Otherwise, we say that f is responsive to ti versus t′i.

Definition 1. The social choice function f is strictly-if-responsive Bayesian

incentive compatible (SIRBIC) whenever (i) it is Bayesian incentive compati-

ble, that is,∫
t−i∈T−i

ui(µ(t), t)dp(t−i|ti) ≥
∫
t−i∈T−i

ui(µ(t′i, t−i), t)dp(t−i|ti), (1)

for all ti, t
′
i, and (ii) the inequality holds strictly when the social choice function

is responsive to ti versus t′i.

Our first result follows:

Theorem 1. Suppose K ≥ 2. If a social choice function is implementable up

to level-K for some anchors, then it satisfies SIRBIC.

Proof. Let µ be a mechanism that implements up to level-K the social choice

function f given some behavioral anchors α = (αi)i∈I . For each i, let σ2
i be an

element of S2
i (µ|α) (which is nonempty by definition of implementation up to

level K since K ≥ 2).

We start by showing that f is Bayesian incentive compatible. Consider

two types ti and t′i in Ti. As σ2
i ∈ S2

i (µ|α), it follows that σ2
i is a best response

for i against some σ1
−i ∈ S1

i (µ|α). We then have:∫
t−i∈T−i

ui(f(t), t)dp(t−i|ti) =

∫
t−i∈T−i

ui(µ(σ2
i (ti), σ

1
−i(t−i)), t)dp(t−i|ti)

≥
∫
t−i∈T−i

ui(µ(σ2
i (t′i), σ

1
−i(t−i)), t)dp(t−i|ti)

=

∫
t−i∈T−i

ui(f(t′i, t−i), t)dp(t−i|ti),
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where the two equalities follow from the fact that µ implements f up to level

K given the anchors α, and the inequality follows from the fact that σ2
i (ti) is

one of ti’s best responses against σ1
−i.

We establish the required strict inequalities with a reasoning by contrapo-

sition. Suppose that the incentive constraint for type ti pretending to be type

t′i is binding. Then, the weak inequality in the previous paragraph must hold

with equality, and the strategy τi belongs to S2
i (µ|α), where τi differs from

σ2
i only in that ti picks σ2

i (t′i).
6 By level-k implementation, it must be that

f(ti, t−i) = µ(τi(ti), σ
1
−i(t−i)) for all t−i. This is equal to µ(σ2

i (t′i), σ
1
−i(t−i)),

by definition of τi, and to f(t′i, t−i), by definition of level-k implementation.

Hence, the social choice function must be insensitive when changing i’s type

from ti to t′i, which concludes the proof.

We use SIRBIC because, with it, we are able to close the gap between

necessary and sufficient conditions, which is of course important in order to

best understand any notion of implementability. Since SIRBIC is stronger

than Bayesian incentive compatibility, Theorem 1 can be viewed as a level-k

revelation principle, and it contrasts with some more permissive results found

in Crawford (2016). Note, though, how in order to generate level-k imple-

mentability beyond the constraints imposed by Bayesian incentive compatibil-

ity, that paper considers examples where only level-2 or only level-1 agents are

present. Theorem 1 shows that if the planner has any doubt about this as-

sumption, in that she cannot rule out that individuals may be of either level-1

or 2 (or possibly others above), then she is bound by the classic Bayesian in-

centive compatibility constraints. Interestingly, the necessary condition, which

is independent of K, is also sufficient: this will follow at once from Theorem 2

in the next section.

6τi is measurable as singletons in Ti are measurable because Ti is separable metrizable,
and hence also Hausdorff.
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5 Truthful Anchors

Since level-k reasoning has significantly different predictions than Nash equi-

librium in many games, one might have thought that level-k implementation

would allow implementing social choice functions that are not weakly Nash

implementable. We already saw in the previous section that this intuition is

not correct. One may wonder now if level-k implementation is not in fact

much more restrictive than weak Nash implementation. This may depend on

the stand one takes regarding behavioral anchors, but the rest of the paper

shows that there are important scenarios where SIRBIC is also sufficient for

level-k implementation.

Experimental evidence offers support to the use of truthful anchors in direct

mechanisms,7 which is consistent with the well-known argument that truth-

telling may be a focal or salient point. Also, even if the mechanism designer

might not be able to nudge people to consider any anchor she would find

convenient, making truth-telling salient enough to serve as the anchor may be

easier. We now show that SIRBIC is sufficient for level-k implementation via

a direct mechanism with truthful anchors. We first state a lemma whose easy

proof is left to the reader.

Lemma 1. Let f be a social choice function. For each i, the relation ∼f
i is

transitive: ti ∼f
i t
′
i and t′i ∼

f
i t
′′
i , then ti ∼f

i t
′′
i . In addition, f(t) = f(t′) for

any type profiles t and t′ such that ti ∼f
i t
′
i for all i ∈ I.

Theorem 2. If f satisfies SIRBIC, then for all K ≥ 1, f is implementable

up to level-K by a direct mechanism with truthful anchors.

Proof. The result can be proved by using f itself as a direct mechanism. Let

αT denote the profile of truthful anchors. We begin with level-1 individuals.

By Bayesian incentive compatibility, reporting ti is a best response for i of

type ti against the truthful anchors for the other individuals. Reporting other

types may be best responses as well, but only if the corresponding incentive

7See, for example, Crawford (2003), Crawford and Iriberri (2007), Cai and Wang (2006),
and Wang et al. (2010).
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constraint is binding. By SIRBIC, σ1
i is a best response for i against the

truthful anchors for the other individuals if and only if σ1
i (ti) ∼f

i ti, for all ti.

This characterizes S1
i (f |αT ). Since this holds for every i, a simple application

of Lemma 1 implies that f = f ◦ σ for every σ ∈ S1(f |αT ).

Consider now a level-2 individual i, who expects others to play σ1
−i ∈

S1
−i(f |αT ). Her expected utility from reporting type t′i when of type ti is∫

t−i∈T−i

ui(f(t′i, σ
1
−i(t−i)), t)dp(t−i|ti).

By Lemma 1, this is equal to∫
t−i∈T−i

ui(f(t′i, t−i), t)dp(t−i|ti),

which is the same as what ti would get by such misreporting if others were

truthful. Thus S2
i (f |αT ) = S1

i (f |αT ). In fact, using induction and the same

argument, for all k ≥ 2, Sk
i (f |αT ) = S1

i (f |αT ). Lemma 1 then implies that,

for all K ≥ 1, f up to level-K implements f with truthful anchors.

We briefly observe that, if anchors are not truthful in a direct mechanism,

SIRBIC and strict level-1 incentive compatibility (i.e., that truth-telling is the

unique best reply to level-0) suffice for implementation up to level-K. Level-1

incentive compatibility also features in Crawford (2016).

6 Uniform and Atomless Anchors

Uniform anchors, in the sense of picking an action uniformly at random, are

often invoked in the literature, either to fit the behavior of experimental sub-

jects in certain games, or more recently, in the context of implementation

(Crawford (2016)). It is thus important to better understand level-k imple-

mentation under uniform anchors. We provide sharp answers for this scenario

as well. Perhaps even more surprising than for the case of truthful anchors,

SIRBIC is also sufficient under uniform anchors for continuous social choice
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functions in the case of independent private values. For more general belief

environments, an additional necessary condition is identified and shown to be

essentially sufficient, along with SIRBIC.

It is important to remark that, beyond the case of uniform anchors, results

in this section also hold under arbitrary atomless anchors whenever there is a

continuum of messages, even if these anchors vary with types.

6.1 Independent Private Values

Given a mechanism µ : M1 × · · · × MI → ∆X, the anchors α are uniform

whenever, for each individual i, anchor αi is the uniform probability distri-

bution over M−i. Such anchors thus do not vary with types. More generally,

assuming that Mi contains a continuum of messages for each i, the anchors α

are atomless if the distribution αi(ti) of messages contains no atom, for each

ti and each i. For such mechanisms, atomless anchors are much more gen-

eral than uniform anchors since they accommodate non-uniform distributions

and the anchor can vary with types. One could imagine, for instance, that in

auctions anchors are biased to some extent towards truth-telling.

The environment satisfies private values if for all i, individual i’s Bernoulli

utility function depends only on i’s type: ui(x, t) = ui(x, ti), for each t and

each i. Types are distributed independently if the prior can be written as the

product of its marginals: p =
∏

i pi, where pi denotes the marginal probability

distribution on Ti. We maintain the following assumption for the rest of the

paper:

Assumption 1. For all individuals i, the marginal distribution pi has full

support.

Fix a social choice function f . An individual i is irrelevant for f if f is

insensitive to any change of types for i, that is, ti ∼f
i t
′
i for each ti, t

′
i ∈ Ti.

Individuals who are not irrelevant are called relevant. Of course, by definition,

the designer can determine whether an individual is relevant or irrelevant.

Consider now the following mechanism µf . Each relevant individual reports

a type along with a real number between 0 and 1. Let i’s report be mi =
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(ti, zi) ∈ Ti × [0, 1] for each i. Then, the designer implements f(t′) where

t′i =


arbitrary t̄i if i is irrelevant

ti if i is relevant and zi = 0

drawn according to pi if i is relevant and zi > 0.

Here is our sufficiency result for independent private values environments:

Theorem 3. Consider an environment with independent private values, and

a social choice function f that is continuous. If f satisfies SIRBIC, then for

all K ≥ 1, µf implements f up to level-K given uniform anchors (or, more

generally, atomless anchors).

Proof. The outcome being implemented does not depend on the types of irrel-

evant individuals. The mechanism designer thus need not consult them and

can use without loss of generality any arbitrary type, for instance t̄i for all

irrelevant i. For notational simplicity, we will assume from now on that all

individuals are relevant.

Let αU denote the uniform anchors (or, more generally, anchors that are

atomless). We argue first that, for each individual i, S1
i (µf |αU) is the set of

reports (τi, 0) such that τi(ti) ∼f
i ti for all ti. Given the uniform anchors, such

an individual i of level 1 assigns zero probability to the event that others send

a zero along with their type report. If individual i picks a positive number

along with some type report, then she expects the lottery∫
t∈T

f(t)dp(t). (2)

If, on the other hand, she sends a zero along with some type report ti, she

expects the lottery ∫
t−i∈T−i

f(ti, t−i)dp−i(t−i). (3)

Suppose now that individual i’s type is t∗i . Her expected utility under lottery

13



(3) is

ui

(∫
t−i∈T−i

f(ti, t−i)dp−i(t−i), t
∗
i

)
=

∫
t−i∈T−i

ui(f(ti, t−i), t
∗
i )dp−i(t−i).

By SIRBIC, we have∫
t−i∈T−i

ui(f(t∗i , t−i), t
∗
i )dp−i(t−i) ≥

∫
t−i∈T−i

ui(f(ti, t−i), t
∗
i )dp−i(t−i), (4)

for all ti, with a strict inequality for all ti such that ti 6∼f
i t
∗
i .

Since f is continuous, i is relevant, and pi has full support, there is a

positive pi-measure of ti’s types for which inequality (4) holds strictly. Using

this observation, we keep a strict inequality when integrating (4) over ti:∫
t−i∈T−i

ui(f(t∗i , t−i), t
∗
i )dp−i(t−i) >

∫
t∈T

ui(f(t), t∗i )dp(t),

which is equal to the expected utility of lottery (2). Thus, sending a type along

with a positive number is never a best response against the uniform anchors,

since sending (t∗i , 0) is strictly better.

Among reports that include a zero, truthfully reporting one’s type is a

best response, by (4), and so is any type ti ∼f
i t
∗
i . Reporting types ti 6∼f

i t
∗
i ,

however, is strictly inferior. Thus we have proved, as claimed, that S1
i (µf |αU)

is the set of reports (τi, 0), where τi(ti) ∼f
i ti for all ti.

We now show that Sk
i (µf |αU) = S1

i (µf |αU), for all i and all k ≥ 2. This

will conclude the proof that for all K ≥ 1, µf up to level-K implements f

with uniform anchors, thanks to Lemma 1. Level-2 of individual i believes

that level-1 of any individual j plays according to strategies in S1
i (µf |αU).

As already argued in the proof of Theorem 2, Lemma 1 implies that we can

assume without loss of generality that individual j’s type report is truthful

(because nontruthful reports result in the same outcome by definition of ∼f
i ).

Thus, individual i expects the lottery (2) if she sends a positive number along

with her type report, and lottery (3) if she sends zero along with a type report

ti. These are the same lotteries as for our level-1 reasoning, but for a different
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reason, namely because others are now expected to send a truthful type report

with a zero. The comparison of these two lotteries remains unchanged, and

we get S2
i (µf |αU) = S1

i (µf |αU). The argument extends trivially to any higher

depth of reasoning k > 2.

Sufficiency of SIRBIC is determined only for the case of continuous so-

cial choice functions. We see continuity as a mild requirement that is always

satisfied, for instance, in the case of finite type sets. In the presence of a con-

tinuum of types, many SIRBIC social choice functions can be approximated by

continuous social choice functions that satisfy SIRBIC as well. We have iden-

tified weaker conditions under which SIRBIC remains sufficient,8 but finding

a necessary and sufficient condition for level-k implementation with uniform

anchors remains an open question on the class of all social choice functions.

The social choice function f is used in µf as if in a direct mechanism when

the designer takes type reports into account. SIRBIC essentially guarantees

that truth-telling is the only best response to truth-telling (up to the equiva-

lence relations ∼f
i ). Using f as a direct mechanism (as for Theorem 2) would

not work, though, because level-1 individuals would usually not have the right

expectations (unless they had a uniform prior). The mechanism µf succeeds

by effectively separating individuals’ beliefs when having a depth of reasoning

1 or 2+. A level-1 individual expects that others will submit a positive number,

in which case the mechanism proceeds so as to have this individual face the

same expected outcome under f as if others where truth-telling. A level 2+

individual expects that others will submit a zero, in which case the type report

is taken into account and f is used to compute the outcome. Crucially, individ-

uals never wish to report a positive number, whatever their depth of reasoning

k ≥ 1, because the SIRBIC inequalities are preserved under averages.

In many classic implementation problems, including simple auctions and

bilateral trade problems (also studied by Crawford (2016)), type sets are in-

8Indeed, there are ways to dispense with continuity as well as Assumption 1, by assuming
that all individuals are relevant in a slightly stronger sense: for all i, there exists a t−i such
that all f -equivalent classes at t−i have less than probability one. An f -equivalent class at
t−i is an element of the partition of Ti generated by the equivalence relation ∼ on Ti, where
ti ∼ t′i ⇐⇒ f(ti, t−i) = f(t′i, t−i).
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tervals. In such cases, any SIRBIC social choice function can be level-k im-

plemented given uniform anchors by a direct mechanism. This follows at once

from the last result after observing that there always exists an isomorphism

between Ti and Ti × [0, 1] in such cases. However, it is possible to construct

examples where simply using the social choice function itself as a direct mech-

anism does not work, and examples with finite types sets where one must use

an indirect mechanism to implement the social choice function.

In this section, we take the view that anchors are uniform independently

of the mechanism in use. This makes sense if individuals’ gut reaction to a

game is totally random. This would be the case, for instance, if they fail to

completely grasp an understanding of the link between actions and outcomes.

We find it plausible, though, that different games may trigger different anchors.

Reporting zero when participating in µf may be salient enough that anchors

would display an atom at zero. However, in the spirit of framing effects, it

is also possible that other, perhaps less transparent, descriptions of µf would

make atomless anchors more likely.9 Interestingly, we note that a modified

mechanism in which the role played by the number zero in µf is given to a finite

(or countably infinite) set Zero of numbers (Zero= {0, . . . , n′/n, . . . , 1}, with

integers n′ < n, where one can choose how fine the grid n is arbitrarily) would

give the same result. Perhaps with such a modification, uniform or atomless

anchors may seem more plausible to more individuals. Whether individuals’

behavior is best described using uniform anchors when participating in µf ,

or other related mechanisms, is an interesting empirical question that goes

beyond the scope of this paper.

Further study of how games and their description might impact anchors

is a fascinating topic that is not yet well-understood. Progress on that front

will then have to be incorporated into the theory of level-k implementation.

Notice, though, that Theorem 1 holds in this more general model as well, and

that SIRBIC thus remains necessary.

9That different descriptions of the same mechanism may impact realized outcomes and
implementability is absent when individuals are rational. Glazer and Rubinstein (2014) is
the first paper investigating this new feature for a different notion of bounded rationality.
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6.2 The General Case beyond IPV

In the absence of independent private values, SIRBIC need not be sufficient

anymore for level-k implementation given uniform anchors. The next example

and result show this.

Example 1. Suppose that X = {x, y}, T1 = T2 = {a, b}, p is uniform, and

there is pure common interest, with the following dichotomous Bernoulli utility

functions:

ui(x, t) = 1 and ui(y, t) = 0 for t = (a, a) or (b, b)

ui(y, t) = 1 and ui(x, t) = 0 for t = (a, b) or (b, a)

The Pareto social choice function that picks x if (a, a) or (b, b), and y otherwise,

satisfies SIRBIC. Using it as a direct mechanism does not allow to level-k

implement it given uniform anchors, as a level-1 individual expects the same

lottery (x or y with equal probability) when reporting a or b. One might

conjecture that the Pareto social choice function could be implemented via an

indirect mechanism. This is not the case, though, as we will show after the

next theorem.

The next theorem identifies an additional necessary condition for level-k

implementation given uniform anchors, while the theorem that follows will

identify a large class of problems where it becomes sufficient once combined

with SIRBIC when there are at least three (or just one) relevant individuals.

The case of exactly two relevant individuals is discussed at the end. The

necessary result holds more generally (when anchors are type-independent),

while the sufficiency result extends to more settings (when anchors are atomless

in mechanisms with a continuum of messages).

Individual i’s (interim) preference over state-independent or constant lot-

teries, i.e., over ∆(X), when of type ti is given by:

Ui(`|ti) =

∫
t−i∈T−i

ui(`, t)dp(t−i|ti).

17



Individual i has different preferences over constant lotteries at ti and t′i if there

does not exist α > 0 and β such that Ui(·|ti) = αUi(·|t′i) + β. The following

condition is a stronger version of a condition that first appeared under the

name of measurability in Abreu and Matsushima’s (1992) paper on virtual

implementation in iteratively undominated strategies under incomplete infor-

mation. A-M measurability is defined with respect to a partition of the type

space that results after an iterative process of type separation, as a function

of their interim preferences over increasingly enlarged classes of lotteries. Our

condition corresponds to the first step of that iterative process.

Definition 2. The social choice function f is first-step A-M measurable (FSAMM)

whenever ti 6∼f
i t
′
i implies that individual i has different interim preferences

over constant lotteries at ti, t
′
i.

An additional necessity result is provided for these more general settings:

Theorem 4. If a social choice function f is implementable up to level K

given uniform anchors (or, more generally, type-independent anchors), then f

is FSAMM.

Proof. Let µ be a mechanism that implements f up to level K given uniform

anchors αU . For each individual i, let σ1
i be some level-1 consistent strategy,

that is, σ1
i ∈ S1

i (µ|αU). For each type ti, let `i(ti) be the lottery over X that

a level-1 individual i expects to occur when playing σ1
i . Formally,

`i(ti) =

∫
m−i∈M−i

µ(σ1
i (ti),m−i)dα

U
−i(m−i).

Suppose that individual i’s interim preference over constant lotteries is the

same when of type ti as when of t′i. Lottery `i(t
′
i) is the best lottery she can get

by reporting a message in the mechanism when of type t′i. Hence it is also the

best lottery she can get by reporting a message in the mechanism when of type

ti. The strategy τi that coincides with σ1
i except that τi(ti) = τi(t

′
i) = σ1

i (t′i)

then also belongs to S1
i (µ|αU). By definition of implementability, f(ti, t−i) =

µ(τi(ti), σ
1
−i(t−i)) and f(t′i, t−i) = µ(τi(t

′
i), σ

1
−i(t−i)) for all t−i. But since τi

picks the same message for ti and t′i, we have ti ∼f
i t
′
i. Hence, f is FSAMM.

18



Returning to Example 1, note how both types of each agent have identical

interim preferences over constant lotteries. Thus, FSAMM would require that

the social choice function be constant over all states, and clearly, the Pareto

function is not. Therefore, this function is not level-k implementable given

uniform or type-independent anchors.

Under independent private values, FSAMM is implied by SIRBIC. To see

this, suppose that individual i’s interim preference over constant lotteries is

the same when of type ti as when of t′i. By contradiction, suppose that ti 6∼f
i t
′
i.

By SIRBIC,∫
t−i∈T−i

ui(f(ti, t−i), ti)dp−i(t−i) >

∫
t−i∈T−i

ui(f(t′i, t−i), ti)dp−i(t−i),

and ∫
t−i∈T−i

ui(f(t′i, t−i), t
′
i)dp−i(t−i) >

∫
t−i∈T−i

ui(f(ti, t−i), t
′
i)dp−i(t−i).

Define lotteries `i(ti) =
∫
t−i
f(ti, t−i)dp−i(t−i) and `i(t

′
i) =

∫
t−i
f(t′i, t−i)dp−i(t−i).

The two inequalities imply that ui(`i(ti), ti) > ui(`i(t
′
i), ti) and ui(`i(t

′
i), t

′
i) >

ui(`i(ti), t
′
i), contradicting that these two types have the same preferences over

constant lotteries.

Consider a social choice function f for an environment where type sets are

finite. For each relevant individual i, define the function `i : Ti → ∆X such

that individual i of type ti weakly prefers `i(ti) over `i(t
′
i) for each t′i, and

strictly prefers `i(ti) over `i(t
′′
i ), for each t′′i such that f(ti, t−i) 6= f(t′′i , t−i) for

some t−i. Such a function always exists under FSAMM if the environment

satisfies a weak condition of no-total-indifference, i.e., for all types ti and

individuals i, the interim preferences Ui(·|ti) are such that ti is never completely

indifferent over all alternatives in X (the reader is referred to Abreu and

Matsushima (1992, Lemma 1) or Serrano and Vohra (2005, Lemma 1) for the

technical details of similar results).

Consider now the following mechanism νf . As in µf , each relevant indi-

vidual reports a type along with a real number between 0 and 1. Letting I∗
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denote the set of relevant individuals, and assuming that there are r ≥ 3 of

them, the outcome under νf is then determined as follows:

• If all relevant individuals submit a strictly positive number along with

their type report, then the mechanism designer randomizes uniformly

among relevant individuals, and picks the personalized lottery `j(tj) for

the selected individual j for the type tj picked at random following pj.

In other words, the outcome is the lottery

1

r

∑
j∈I∗

∑
tj∈Tj

`j(tj)dpj(tj). (5)

• If all but one relevant individuals - say i - submit a strictly positive

number along with their type report, then the mechanism designer picks

the same lottery as above, with the only exception that i personalized

lottery is the one associated to his type report instead of being chosen

at random. In other words, the outcome is the lottery

1

r

`i(ti) +
∑

j∈I∗\{i}

∑
tj∈Tj

`j(tj)dpj(tj)

 , (6)

where ti is i’s type report.

• In all other cases, νf coincides with µf .

This is our next sufficiency result:

Theorem 5. Suppose that type sets are finite, the environment satisfies no-

total-indifference, and that there are at least three relevant individuals. If the

social choice function f satisfies SIRBIC and FSAMM, then for all K ≥ 1,

νf implements f up to level-K given uniform anchors (or, more generally,

atomless anchors).

Proof. Again without loss of generality and for notational simplicity, we as-

sume in the proof that all individuals are relevant. Let αU denote the uniform
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anchors (or, more generally, anchors that are atomless). We argue first that,

for each individual i, S1
i (νf |αU) is the set of reports (τi, 0) such that τi(ti) ∼f

i ti

for all ti. Given the uniform anchors, such an individual i of level 1 assigns

zero probability to the event that others send a zero along with their type

report. Recall that FSAMM and no-total-indifference yields the existence of

the menu of lotteries `i : Ti → ∆X. If individual i picks a positive number

along with some type report, then she expects the lottery (5). If, on the other

hand, she sends a zero along with some type report ti, she expects the lottery

(6). Suppose now that individual i’s type is t∗i . By linearity of i’s interim

preference Ui(·|t∗i ) when of type t∗i , her expected utility under lottery (6) is

equal to

1

r

Ui(`i(ti)|t∗i ) +
∑

j∈I∗\{i}

Ui(
∑
tj∈Tj

`j(tj)dpj(tj)|t∗i )

 ,

while her expected utility under lottery (5) is equal to

1

r

Ui(
∑
ti∈Ti

`i(ti)dp(ti)|t∗i ) +
∑

j∈I∗\{i}

Ui(
∑
tj∈Tj

`j(tj)dpj(tj)|t∗i )

 .

One of the best lotteries for type t∗i that can be obtained when reporting

a zero – getting a lottery as in (6) – is thus obtained by picking ti = t∗i since

Ui(`i(t
∗
i )|t∗i ) ≥ Ui(`i(ti)|t∗i ) for all ti, by definition of `i. Remember also that

this inequality is strict for all ti such that f(ti, t−i) 6= f(t∗i , t−i) for some t−i.

The same argument as in the proof of Theorem 3 can be used to assert that

the inequality still holds strictly when integrating with respect to ti on both

sides:

Ui(`i(t
∗
i )|t∗i ) > Ui(

∑
t′i∈Ti

`i(t
′
i)dpi(t

′
i)|t∗i ).

Hence, reporting a strictly positive number is not a best response for i of

type t∗i against uniform anchors, since reporting (t∗i , 0) gives a strictly higher

expected payoff, and a report (ti, 0) is a best response if and only if ti ∼f
i t
∗
i .

The rest of the proof is the same as the proof of Theorem 3 because of

SIRBIC and the fact (which follows from the step just proved) that νf coincides
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with µf in the case relevant for computing Sk
i (νf |αU) for k ≥ 2.

The proof of this result and that of Theorem 3 offer some similarities as

well as some differences. First, the lotteries `i : Ti → ∆X that can be found

thanks to FSAMM and no-total-indifference are used to ensure that reporting

the true type along with the number zero is the only best reply to uniform

beliefs (up to f -equivalent types). Once this is established, the social choice

function f is used, as in µf , as if in a direct mechanism when the designer

takes type reports into account. In that part of the argument, SIRBIC again

guarantees that truth-telling is the only best response to truth-telling (up to

the equivalence relations ∼f
i ).

The same mechanism also works for the case of only one relevant individual.

If this were the case, at the beginning of the proof, she would have to make the

comparison of lotteries (5) and (6), arriving at the same conclusion. The case

of exactly two relevant individuals is a bit more tricky. The difficulty arises

when exactly one of the relevant individuals reports the number zero and the

other a positive number. The mechanism νf is not well defined in this case, as

it would use f as well as the `i to determine the outcome. While we have not

worked out the details, we conjecture that a more involved mechanism that

would randomize between f and the `i’s, much along the lines of the literature

on virtual implementation, should do the job for this case.

7 Concluding Remarks

1. We presented our results under the assumption that individuals see others’

depths of reasoning as exactly one level below theirs. While this is one of

the standard specifications, one can certainly envision more general scenar-

ios. All our results can easily be adapted to a wide class of theories where

individuals see others as less sophisticated as themselves. This would include,

for instance, all the theories described through the language of cognitive hier-

archies (Strzalecki’s (2014)), which subsumes earlier models by Stahl (1993),

Stahl and Wilson (1994, 1995), and Camerer et al. (2004) among others.
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2. Implementation in our sense is quite flexible, as the model can accom-

modate a wide variety of reasonings (and thus behaviors) as discussed earlier.

While related to rationalizable full implementation, also with an iterative con-

struction, our definition is less demanding, as individuals’ depth of reasoning

is bounded and behavior at cognitive state of depth 0 is fixed. Bergemann

et al. (2011) studies rationalizable implementation of social choice functions,

and Kunimoto and Serrano (2016) consider correspondences. The conclusions

of these two papers, in terms of the permissiveness of the results, are quite

different, which should bring a word of caution towards our results, since we

have restricted attention to single-valued rules.

3. Finally, assuming that behavior is governed by bounded levels of rea-

soning leads in this paper to restoring a restrictive result. That is, even in

such contexts, one cannot ignore the constraints imposed by Bayesian incen-

tive compatibility. This is in marked contrast with the permissive implications

that allowing such unsophisticated behavior has in the problem of continuous

implementation, as shown in de Clippel et al. (2015). That is, if one in-

sists on implementation being performed by means of continuous mechanisms,

stronger versions of Maskin monotonicity, which can be very restrictive, have

been found to be required on top of the incentive constraints if one insists on

equilibrium logic (Oury and Tercieux (2012)). And yet, as shown in de Clippel

et al. (2015), continuous implementation with bounded levels of reasoning re-

lies only on the incentive constraints. It is therefore remarkable that incentive

compatibility raises its stature, to describe the limits of decentralization, with

or without continuity, once one abandons the notion of rational expectations.
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