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1. Introduction

A central idea behind rationality is the ability to optimize. In a typical setting, this

entails choosing an option that balances the marginal benefits and marginal costs

along all dimensions. Consistency with rationality leaves no room for departure from

these first-order conditions. One could imagine a more nuanced approach, yielding an

approximation of rationality that is gradated by the extent of departure permitted.

Such an approach naturally begs the question, how should departure from first-order

conditions be measured?

In this paper, we propose such an approach in the classic setting of consumer the-

ory, using an axiomatically-based notion of departure from first-order conditions. For

the purposes of this introduction only, we present the key idea under the simplifying

assumption that utility functions are everywhere differentiable. Given an ε ∈ [0, 1], we

say demand data is ε-rationalizable if there is a utility function u, satisfying some reg-

ularity properties1 (ensuring, in particular, that the second-order condition applies),

such that if we observe the bundle x being chosen at a price vector p, then

(1) 1− ε ≤ MRSu``′(x)

p`/p`′
≤ 1

1− ε
,

for all ` 6= `′. The classic first-order condition, which requires marginal rates of substi-

tution (MRS) and opportunity costs to match, corresponds to ε-rationalizability for

ε = 0. The larger ε is, the more the MRS may depart from opportunity costs, and the

more permissive ε-Rationality becomes. The particular way (1) measures departure

from the first-order condition may initially seem ad hoc. To the contrary, we show

that for any pair of goods it is essentially the unique method of measuring depar-

tures between objects such as price vectors and utility gradients, given the economic

properties such objects must respect. For instance, notice that (1) is invariant to the

units in which goods are measured and priced. We provide further interpretations of

our measure of departure as a money-pump multiplier and as a measure of parameter

misspecification for additively-separable utility functions.

There may be multiple reasons demand data is inconsistent with perfect optimiza-

tion. There may be measurement errors when collecting price data, such as unknown

promotions, sales, coupons, overhead expenses, or tax implications. Even if prices are

accurately recorded, there may be factors that rationally affect choice, but which are

1Specifically, we will require continuity, strict monotonicity and strict quasi-concavity.
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not included in the dataset. For instance, utility tradeoffs may vary a bit based on

expiration dates or ripeness of produce, which are observed by the consumer but not

the modeler. Bounded rationality may play a role as well. The consumer could have

an imperfect understanding of the prices, or misperceive her utility tradeoffs.2 This

misperception could be unintended or due to active framing by third parties (e.g.,

a persuasive salesperson, packaging, store displays). Our framework accommodates

such data, and encompasses all these interpretations. More generally, the measure is

of interest for quantifying how much choices depart from being rationalizable, inde-

pendently of the source of the departure.

We develop the testable implications of ε-rationalizability, showing it is equiva-

lent to a relaxation of SARP. Namely, there must be an acyclic preference over the

finite set of demanded bundles, satisfying certain restrictions (which are weaker than

Samuelson’s revealed preference) on which demanded bundles are worse than others.

We then develop interesting properties of the measure of choice inconsistency to which

ε-rationalizability naturally lends itself. Namely, the FOC-Departure Index (FDI) of

demand data is defined as the infimum over all ε for which the data is ε-rationalizable.

We provide a simple way to compute the FDI in general, by solving linear program-

ming problems. Better yet, in the case of two-dimensional bundles (the setting of

most experiments), we show the FDI is given by the maximum FDI from each pair of

observations, which is itself computed using an easy, closed-form formula.

The FOC-Departure Index measures the smallest departure from the first-order

conditions with which the data is consistent. By contrast, the classic Critical Cost

Efficiency Index of Afriat (1973) considers global monetary effects, measuring the

percentage of income that can be retained while eliminating revealed preference cycles.

Despite these differences, we show that there is a surprising relationship between the

two measures: the FDI is bounded below by the percent of income lost according

to the CCEI (that is, 1 − CCEI ≤ FDI for all datasets). Phrased differently, small

departures from the first-order conditions imply only small budgetary adjustments are

needed to eliminate revealed preference cycles, but not vice-versa. This would suggest

that our measure is more demanding than that of Afriat, but the story is subtler once

power is considered: one should take into account whether violations of rationality are

2The topic of perception has garnered recent interest in the economic literature; see, among other
works, Gabaix (2014) on perceiving prices optimally, Woodford (2012) and Steiner and Stewart
(2016) on perceiving risky prospects, and Esponda (2016) on an equilibrium framework for agents
who misperceive their environment.
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likely for the budget sets observed. Using Bronars (1987)’s well-known approach,3 for

instance, we show that there exist datasets where the FDI suggests greater rationality

than does the CCEI, as well as datasets where the opposite is true.

In many contexts, one may want to understand ε-rationalizability and the FOC-

Departure Index while restricting to a special class of regular utility functions (e.g.,

also requiring quasi-linearity, additive separability, homotheticity, or exponential dis-

counting). We extend these notions to any subclass U of regular utility functions, de-

veloping important connections with Afriat’s CCEI and classic tests of rationalizability

based on Afriat-like inequalities. First, we show that the inequality 1− CCEI ≤ FDI

that we uncovered continues to hold when restricting the computations of the CCEI

and FDI to any subclass U . This provides a bound on the CCEI which may be of

independent interest, since it is not always obvious how to compute it with respect

to special classes. Second, we provide a single umbrella result that shows, for any

subclass U of regular utility functions, how to test ε-rationalizability and compute

the FDI by repurposing any existing test of rationalizability with respect to U that is

based on Afriat-like inequalities. This is quite convenient for applications.

We illustrate the applicability of our approach using the portfolio-choice dataset

of Choi, Kariv, Müller and Silverman (2014), which consists of 1,182 adults recruited

from the CentERpanel sample. In their experiment, subjects make decisions for 25

randomly-drawn, two-dimensional budget sets, where a bundle (x1, x2) describes the

monetary payment in each of two equally-likely states. We begin by examining this

data using the FDI, rather than the CCEI as in Choi et al. (2014). Though correlated,

the measures are notably different. Not only is FDI > 1 − CCEI for over 75% of

subjects, but the two measures also suggest, in 15% of all subject pairings, opposite

rankings of who is more rational. Nonetheless, an exercise in the style of Bronars

(1987) confirms Choi et al’s observation that there is a significant amount of rationality

to be found. We then take advantage of the FDI’s flexibility to study departures from

subclasses of regular utility functions: besides expected utility, we also examine the

wider class of state independent utility. Indeed, as the two states are equally likely

and have no underlying meaning, the objects of choice are effectively lotteries; and

all preferences over lotteries in this setting would deem (x1, x2) as good as (x2, x1),

as both induce an equal chance of winning $x1 or $x2.
4 In a contemporaneous and

3The idea is to compare the distribution of the index under the true data to the distribution
arising if choices were drawn uniformly from budget frontiers.

4With equally-likely states and monotonicity with respect to money, the symmetry that follows
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independent paper, Echenique, Imai and Saito (2019) define a measure of departure

from risk-averse expected utility that essentially coincides with the restriction of the

FDI to that subclass of preferences. They apply this measure to several previously-

collected experimental datasets, including Choi et al., to examine the prevalence of

expected utility. Our ability to vary the reference class of preferences under the

same measure of departure allows us to add further insight. Perhaps surprisingly,

we find that the empirical departure from expected utility is mostly attributable to

departure from the natural property of state independence, even though expected

utility is theoretically much more demanding. The underlying issue is that while the

dataset is well-suited for testing basic rationality, a richer dataset (e.g., varying the

probability of states) is needed to better disentangle expected utility from the plain

maximization of a preference over lotteries.

A benefit of our approach is that it applies whenever the first-order approach is

meaningful. We take advantage of this flexibility to extend ε-rationalizability and

the FDI to generalized demand data with non-linear pricing. Notice that applying

Afriat’s index requires a context in which ‘shrinking the choice set’ is meaningful.

This is unclear with non-linear budget sets, but poses no issue for ε-rationalizability

and the FDI, which leave choice sets unchanged. The feasible set must be convex for

the extended notion to be interpretable in terms of departure from global optimality.

We show that one can reduce all tests and computations for demand data with non-

linear pricing to tests and computations over a fictitious dataset with linear prices,

given by the marginal prices at observed demands (or a generalization of marginal

prices at non-differentiable points of the pricing schedule). We illustrate the approach

with a simple example of progressive taxation.

The use of first-order conditions is central to many parts of economics, and nat-

urally, the second-order condition is assumed for it to be meaningful, that is, ensure

a global optimum. Without assuming quasi-concavity of the utility function, any de-

mand data would be ε-rationalizable (for all ε): while the inequalities in (1) do restrict

utility gradients given prices, one can always draw indifference curves which match

these local restrictions with only finitely many observations. It may come as a sur-

prise, therefore, that demand data is ε-rationalizable if and only if there is a strictly

monotone and continuous utility function u (not required to be quasi-concave!) such

that for each observation (p, x), the bundle x is u-maximal in the budget set associated

from state independence is also tantamount to respecting first-order stochastic dominance.
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to the price vector pc, with

1− ε < pc`/p
c
`′

p`/p`′
<

1

1− ε
,

satisfied for all `, `′. Here p represents the price vector collected by the modeler, while

pc is the price vector used by the consumer.5 These prices need not coincide: the

consumer may use the correct prices while the modeler’s record is faulty; the consumer

may misunderstand the true prices while the modeler’s record is accurate; or some

combination of these scenarios may hold. In all cases, if the presumption is that the

consumer optimizes correctly, then ε-rationalizability admits a natural interpretation

that does not rely on quasi-concavity. This is in the spirit of Afriat (1967)’s result

that quasi-concavity is not testable under the rational choice model.

We conclude the paper by further developing the idea of a Price-Misperception

Index (PMI), including for special classes of utility functions. Though narrower in

interpretation, such an extension of the FDI to broader classes of utility functions

has the benefit of not relying on quasi-concavity. The PMI coincides with the FDI

with respect to classes of regular utility functions. We show that to find the PMI

more generally, we can similarly repurpose standard rationalizability tests (e.g., for

expected utility without requiring risk aversion, or other interesting classes). We

revisit our analysis of Choi et al. (2014) using the PMI, which reinforces our earlier

conclusions even when allowing for more general risk preferences.

The paper is organized as follows. We formalize the framework in Section 2. There,

we consider the axiomatic basis of our notion of departure from first-order conditions;

and provide further rationales in terms of price mismatch, money pumps in the case

of price misperception, and parameter misspecification in the common setting of addi-

tively separable utility. In Section 3, we characterize the testable implications for the

class of regular utility functions. In Section 4, we develop the FDI and its properties.

In Section 5, we further develop these ideas for arbitrary subclasses of regular utility

functions, and illustrate our methodology with an application to experimental data

where bundles correspond to lotteries. We extend beyond linear budget sets in Section

6, and beyond convex preferences (i.e., quasi-concave utility functions) in Section 7.

5Our notion of departure thus applies here to the price vectors (the axiomatic analysis covers any
combination of objects such as gradients or price vectors).
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2. Consumer Data and ε-Rationalizability

We observe a consumer selecting a consumption bundle at various price vectors.

The demand data D comprises a finite collection of pairs (p, x), where p ∈ RL
++ is a

price vector and x ∈ RL
+ is the consumption bundle demanded at p.

As usual, preference orderings will be assumed to be continuous and strictly mono-

tone. We further assume strict convexity (we refer the reader to Footnote 19 on relax-

ing strictness, and Section 7 on relaxing convexity). Such preferences are representable

by a regular utility function, namely one that is continuous, strictly monotone, and

strictly quasi-concave. The rational benchmark posits that the consumer selects bun-

dles through utility maximization over budget sets. Should the utility function be

differentiable at an interior choice, opportunity costs must equal marginal rates of

substitution. Without requiring full differentiability or interior choices, optimality

means each price vector must separate the upper-contour set of the choice from all

other affordable bundles.

Formally, given a utility function u : RL
+ → R, define ∂u(x) to be the set of strictly

positive vectors defining the supporting hyperplanes of the upper-contour set at x:6

∂u(x) = {g ∈ RL
++ | ∀y : u(y) ≥ u(x)⇒ g · y ≥ g · x}.

This set is economically important: it captures the local shape of the consumer’s indif-

ference curves, by characterizing quantity tradeoffs that leave the consumer indifferent.

Elements of ∂u(x) are called quasi-gradients. At any point x where u is differentiable,

∂u(x) contains a unique vector – the usual gradient ∇u(x) = (∂u(x)
∂x1

, . . . , ∂u(x)
∂xL

) – up to

positive rescaling.

Definition 1 (ε-Rationalizability) For ε ∈ [0, 1], the demand data D is ε-rationalizable

if there exists a regular utility function u and, for each (p, x) ∈ D, a vector g ∈ ∂u(x)

such that

(2) 1− ε ≤ g`/g`′

p`/p`′
≤ 1

1− ε
,

for each ` 6= `′. Then u is said to ε-rationalize the demand data.

6At the cost of heavier notation later on, one could allow g to belong to RI
+ \ {0} in the definition

of ∂u(x) (a change that matters only if some component of x is zero, by strict monotonicity). This
makes no difference in any of our results because the added vectors are always as far as it gets,
according to our measure of departure below, to strictly positive price vectors.
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For further intuition, the ratio g`/g`′ is uniquely defined for x � 0 when u is

differentiable, and corresponds to the marginal rate of substitution (MRS) associated

to ` and `′:

MRSu``′(x) =
∂u(x)/∂x`
∂u(x)/∂x`′

.

The numerator in (2) simply captures tradeoffs in taste, while accommodating the

possibility of multiple implicit utility tradeoffs in case of non-differentiability. By

contrast, the price ratio p`/p`′ in the denominator represents an opportunity cost.

Notice then that (2) simply boils down to the FOC that is characteristic of rationality

when ε = 0. There are several reasons to be interested in ε-rationalizability as a

relaxation of rationality, as explained in the following subsections.

2.1 How Far Apart Must Utility Gradients and Price Vectors Be?

Suppose that demand data appears inconsistent with rationality. Can we quantify

how close a miss it was? Rationality holds if and only if price vectors are quasi-

gradients of the utility function (or price vectors and utility gradients are collinear in

case of differentiability). Our suggestion then is simply to measure how far apart utility

gradients or quasi-gradients must be from price vectors, while considering all possible

utility functions. But how does one measure the degree of discrepancy between any

two such vectors in the first place?

Consider the simpler case of two goods first. Some obvious candidates, such as

the angular distance or the Euclidean distance, pose an issue when the vectors are

understood to be prices or marginal utilities/quasi-gradients. Indeed, given their

economic interpretation, such variables are not uniquely defined. For instance, an

increasing transformation of a utility function offers another representation of the

same preference, with rescaled marginal utilities; and similarly, rescaling prices leaves

budget sets unchanged. The Euclidean distance, however, is sensitive to such rescaling.

Moreover, the consumer’s problem is fundamentally unaffected when modifying how

any given good’s quantity is measured (e.g., using ounces or grams, gallons or quarts,

etc.), provided that prices are adjusted accordingly.7 Both angular and Euclidean

distance, however, are sensitive to measurement choice.

7For instance, buying one gallon of milk at $4, is the same as buying 4 quarts at a quarter of the
price ($1 each). Also, the marginal utility from buying an extra η quarts, is a quarter of the marginal
utility from buying an extra η gallons (where η > 0 is small).
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Let � be a weak ordering over vector pairs (x, y) ∈ R2
++: (x, y) � (x′, y′) means

that “x is farther from y than x′ is from y′.” For concreteness, it may help to think of

x, x′ as utility gradients and y, y′ as price vectors. The following axioms capture the

invariance properties discussed above.

Unit Invariance (x, y) � (x′, y′) if and only if (αx, βy) � (α′x′, β′y′), for all positive

scalars α, β, α′, β′.

Measurement Invariance (x, y) � (x′, y′) if and only if ((αx1, x2), (αy1, y2)) �
(α′x′1, x

′
2), (α

′y′1, y
′
2)), for all positive scalars α, α′ (and similarly for good 2).

The first axiom reflects the fact that a price vector or a utility (quasi-)gradient is

effectively determined only up to a positive linear transformation. It permits different

transformations for the different vectors x, x′, y and y′, but requires all dimensions

of any given vector to be scaled by the same factor. The second axiom considers a

different type of transformation, whereby the same dimension is scaled by the same

factor in the pair of vectors compared. It captures invariance to the way in which we

measure a good, and thus also how we state its price.

These two invariance properties go a long way in determining the structure of �.

Indeed, adding only the following three regularity properties uniquely pins it down.

Representability � is complete, transitive and continuous.

Symmetry (x, y) ∼ (y, x)

Monotonicity ((α̂, 1), (1, 1)) � ((α, 1), (1, 1)) for all 1 ≤ α < α̂.

The first axiom ensures existence of a numerical representation. The second means

that x is equally far from y as y is from x. The third simply requires that an increase

in α ≥ 1 brings the vector (α, 1) further from (1, 1).8

Proposition 1 There is a unique ordering �∗ satisfying the five axioms: (x′, y′) �∗

(x, y) if and only if δ(x′, y′) ≥ δ(x, y), where

δ(a, b) = max{a1/a2
b1/b2

,
b1/b2
a1/a2

},

for all vectors a, b in R2
++.

The representation in Proposition 1 compares how far apart two vectors are, in

8Naturally, one would also desire the opposite relationship in the case α ∈ (0, 1). Imposing this
property would be redundant, however: the ordering we uncover in Proposition 1 satisfies it.
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comparison to how far apart another two reference vectors are. The choice of the

reference vectors simply parametrizes a bound. To fix ideas, one can measure how far

x is from y, relative to how far (1, 1) is from (1− ε, 1) for ε ∈ [0, 1). In that case:

δ((1− ε, 1), (1, 1)) = max{1− ε, 1

1− ε
} =

1

1− ε
.

Hence ((1− ε, 1), (1, 1)) � (x, y) if and only if

δ(x, y) = max{x1/x2
y1/y2

,
y1/y2
x1/x2

} ≤ 1

1− ε
,

which is equivalent to how Definition 1 of ε-rationalizability measures how far apart

are x and y, where one is a utility quasi-gradient and the other is a price vector:

1− ε ≤ x1/x2
y1/y2

≤ 1

1− ε
.

To extend beyond two goods, one can for instance consider the projections of these

vectors to each pairs of goods, and take the largest distance:

δ(x, y) = max
`,`′

δ((x`, x`′), (y`, y`′)).

Our axiomatic characterization thus suggests ε-rationalizability is a natural way

to quantify the extent to which the consumer deviates from the optimal tradeoffs in

her first-order condition, while remaining agnostic about the source of this deviation.

Note also that the axioms equally apply whether we use the measure to evaluate how

far apart are two price vectors, how far apart are two utility quasi-gradients, or how

far apart is a price vector from a utility quasi-gradient.

2.2 Misperceived Prices

As we have discussed, the prices p on record and the prices pc the consumer takes

into account need not coincide. The consumer may use the correct prices while the

modeler’s record is faulty; the consumer may misunderstand the true prices while the

modeler’s record is accurate; or some combination of these scenarios may hold. As

the next proposition shows, ε-rationalizability is equivalent to the consumer picking

the optimal bundles from what she understands the budget set to be, under the
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requirement that her prices are not too far from the modeler’s, using the same δ-

criterion uncovered axiomatically in the previous subsection.

Proposition 2 D is ε-rationalizable if and only if there exists a strictly monotone

and continuous utility function v : RL
+ → R such that one can associate to all (p, x) ∈

D a price vector pc ∈ RL
++ used by the consumer with

(3a) x ∈ argmax
{pc·y≤pc·x}

v(y), and

(3b) 1− ε < p`/p`′

pc`/p
c
`′
<

1

1− ε
,

for all ` 6= `′.

Necessity is rather straightforward. Indeed, by ε-rationalizability, there exists a

regular utility function u for which ∂u admits a selection that is never too far apart

from price vectors, for observations in D. The result then follows almost immediately

by taking these vectors as the consumer’s price vectors. Note though that, following

(2), we get (3b) only with weak inequalities. We prove in Lemma 3 of the Appendix

that, perhaps surprisingly, requiring weak or strict inequalities in Definition 1 makes

no difference. With this additional observation, the proof of necessity is complete.

Sufficiency would be rather straightforward too if v were required to be regular, but

notice that Proposition 2 does not impose any quasi-concavity on v. This makes

the result quite interesting, but also harder to prove.9 So, while the definition of

ε-rationalizability relies on regular utility functions, the foundation for it in terms of

price mismatch does not.

Under an interpretation of price misperception by the consumer, Proposition 2 cap-

tures a notion of bounded rationality that is related to Gabaix (2014), but somewhat

different in spirit. The consumer picks the optimal bundle in her perceived budget set

in both cases. However, Gabaix proposes a theory of how perceived prices arise as a

function of an exogenous default price vector and the actual price vector, while the

theory arising in Proposition 2 only requires the perceived price vector to be in the

vicinity of the true price vector.

9Afriat (1967)’s result that quasi-concavity has no empirical content with linear budget sets is
of no help, as it does not extend to strict quasi-concavity. Instead, we prove in the Appendix (see
Lemma 2) that any dataset satisfying GARP admits a nearby dataset, varying only prices as little
as desired, that satisfies SARP.
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Beyond the axiomatic foundation in Section 2.1, Equation (3b) admits an addi-

tional interpretation when the mismatch between prices arises from the consumer’s

misperception. The discrepancy between p and pc means the consumer can be subject

to a money pump. What profit can a rational person with $M make conducting the

following trade scheme once? He starts by using his $M money to buy10 any bundle

he wants from the consumer at her perceived prices pc, then trades that bundle in any

way he wants on the market given the true prices p, and finally resells whatever goods

he acquired this way back to the consumer at her perceived prices pc. To be clear, this

scheme is conducted before the consumer decides on her consumption plan; she is not

yet maximizing her preference, only accepting trades that give her a higher perceived

budget for doing so, which is always desirable. For simplicity, our tie-breaking rule is

that the consumer accepts trades which leave her budget unchanged.11 To summarize,

the third party will maximize pc · y over all bundles y such that p · y ≤ p · x, for some

bundle x such that pc · x ≤M .

To solve this optimization problem, notice that the solution will have the bundle

x maximize p · x over the set of bundles x such that pc · x ≤M . Indeed, making p · x
larger increases the set of bundles y such that p · y ≤ p · x. Because the objective

function p ·x is linear in x, an optimal solution to this problem is to spend the $M on

a good ` with the highest price ratio when comparing true prices to perceived prices:

p`/p
c
` ≥ pk/p

c
k for each good k (the computation is analogous to that when maximizing

perfect-substitutes preferences). It remains to find a y that maximizes pc · y under

the constraint p · y ≤ (p`M)/pc`. Similar reasoning reveals that an optimal solution

is to spend the $(p`M)/pc` on a good `′ with the highest price ratio when comparing

perceived prices to true prices: pc`′/p`′ ≥ pck/pk for each good k. The profit in that

case is $(pc`′/p`′)(p`M)/pc`. To summarize, the third party’s maximal profit is:

max
`,`′

p`/p`′

pc`/p
c
`′
M = δ(p, pc)M.

Thus, using δ to measure how far apart the true price vector is from the perceived

one also determines the money pump multiplier for a rational party conducting the

10The consumer’s endowment in goods is assumed to be large enough, or M is assumed to be small
enough that the consumer can provides the good that the third party wants to buy.

11If she accepts only trades that strictly increase her budget, then the rational schemer can get as
close as desired from the optimal profit calculated in the next paragraph, by leaving a little bit of
surplus to the consumer in both trades involved in the money pump scheme.
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simple trading scheme described above. In this view, (3b) amounts to placing an

upper bound ( 1
1−ε) on this money pump multiplier.

2.3 Misperceived Tastes

Suppose instead that the consumer is subject to errors in assessing her utility tradeoffs,

or that the modeler’s data is missing contextual information affecting these tradeoffs.

As will become clear, contrary to Section 2.2, restricting attention to convex prefer-

ences is important for this interpretation of ε-rationalizability.

How do consumers explore their budget sets? A rational consumer might contem-

plate all bundles at once, to find the best one every time she has to make a choice.

Alternatively, to save on contemplation and thinking costs, she may test any given

bundle by checking that there is no preferable alternative in its vicinity, thereby reach-

ing her choice – an affordable bundle that has no better alternative in its vicinity –

by tatonnement. Reaching choices through a series of small adjustments might be a

better description of a consumer’s thought process in some circumstances. It is un-

likely that every time some prices change at the grocery store, a consumer reassesses

the entire set of affordable bundles, carefully introspects about her preference relation

over those bundles, and directly selects the bundle maximizing it globally. With con-

vex preferences, rational choices would in fact arise from thinking locally and in steps,

as above. If the consumer is boundedly rational, on the other hand, she may make

mistakes when assessing local utility tradeoffs by introspection, using utility tradeoffs

that are not quite compatible with her true ones. Alternatively, she may assess her

tradeoffs accurately, but these tradeoffs vary to some extent with factors unobserved

by the modeler (e.g., ripeness of the fruit, expiration dates). Using the notion uncov-

ered in Section 2.1 to bound the distance between perceived and true utility gradients,

or between the actual and modeled utility gradients, again leads to ε-rationalizability.

Looking at how our notion of misperceived tastes operates in specific classes of

utility functions provides another motivation for ε-rationalizability. Consider, for

instance, Cobb-Douglas preferences. If the consumer’s true preference is captured

by the utility function
∏
xα`
` , then a natural way to capture misperceived tastes or

parameter misspecification on the part of the modeler is that the consumer maximizes∏
xβ`` where the vector of exponents β may vary, but cannot be too far apart from α.

This operationalizes, in a different setting, Rubinstein and Salant (2012)’s notion of a

decision maker who uses only preferences that are ‘close’ to her true one. As the next
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proposition shows, ε-rationalizability is equivalent to this approach, not only for the

Cobb-Douglas model,12 but also for any additively separable preference. Formally, say

u is additively separable if u(x) =
∑

` u`(x`) for some strictly concave,13 continuous

and strictly monotone utility functions u` : R+ → R.

Proposition 3 For each ` = 1, . . . , L, let u` be a utility function over good `. Then

D is ε-rationalizable with respect to the additively separable utility u(·) =
∑L

`=1 u`(·)
if and only if there is β : D → R++ such that for all (p, x) ∈ D,

(4a) x = argmax
{p·y≤p·x}

L∑
`=1

β`(p, x)u`(y`), and

(4b) 1− ε ≤ β`(p, x)

β`′(p, x)
≤ 1

1− ε
, for all `, `′ ∈ {1, . . . , L}.

The inequalities in (4b) simply state that the vector β of modified coefficients

is not too far from the original unit vector of coefficients associated to u, using the

notion uncovered in Section 2.1. In the Cobb-Douglas example, u`(·) = α` log(·)
for each `. For intertemporal choices, with x` representing the amount of good `

in time-period `, exponential discounting corresponds to the case u`(·) = δ`ũ(·) for

some time-independent utility function ũ (i.e., independent of `). In that context,

Proposition 3 implies all the consumer’s errors can be attributed to misperception of

the discounting function. Similarly, in a setting with risk, where each ` is a state of

the world, all errors could be attributed to misperception of probabilities.

3. Testable Implications

The seminal work of Afriat (1967) shows how the ‘Generalized Axiom of Revealed

Preference’ (GARP) captures the empirical content of rational choice. Formally, de-

mand data is consistent with the maximization of some strongly monotone, continuous

utility function if, and only if, it satisfies GARP. Given the widespread use of regu-

larity (and differentiable, single-valued demand functions), subsequent work extended

12Technically, the proposition applies to Cobb-Douglas only when restricting attention to strictly
positive bundles, as log(x`) ∈ R only if x` > 0.

13Strict concavity may seem much stronger than our usual requirement of strict quasi-concavity.
However, they are almost the same in this additive setting: in a classic result which builds on
Arrow’s earlier observation, Debreu and Koopmans (1982) show that quasi-concavity of a continuous,
additively separable utility function implies that all but one u`’s must be concave, and the last must
have features of concavity too.
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Afriat’s approach in that direction. Under regularity, consistency is equivalent to the

classic ‘Strong Axiom of Revealed Preference’ (SARP).14

We now show how to build on these approaches to capture the empirical content

of ε-rationalizability. To do this, we apply the methodology of de Clippel and Rozen

(2018). The first step is to assume the consumer follows the theory, and identify

necessary restrictions that the demand data reveals about her preference. While the

consumer’s preference is defined over the entire space of goods RL
+, it turns out that

the only relevant restrictions apply to her preferences over the subset of bundles X =

{x ∈ RL
+ | (p, x) ∈ D for some p ∈ RL

++} that have been observed chosen.

Suppose the DM’s preference over bundles is represented by the regular utility

function u. For any observation (p, x) ∈ D, ε-Rationalizability requires that there is

a vector g ∈ ∂u(x) such that:

(5)
p`
p`′

(1− ε) ≤ g`
g`′
≤ p`
p`′

(
1

1− ε

)
, ∀ ` 6= `′,

The linear inequalities in (5) thus define a convex cone Cε(p, x) ⊆ RL
++ which must

contain a quasi-gradient of u at the bundle x. By strict quasi-concavity of u, we know

that u(x) > u(x′) for any bundle x′ such that g · x′ ≤ g · x. Graphically, x is better

than the alternatives below the separating hyperplane through x which is determined

by the vector g. This preference comparison remains true when restricted to those

bundles which have been observed chosen. That is, x is strictly preferred to all bundles

in the set:

(6) Γ(g, x) = {x′ ∈ X \ {x} | g · x′ ≤ g · x}}.

The difficulty, of course, is that the modeler does not know the consumer’s utility

function u, let alone which quasi-gradient applies from each Cε(p, x). Rather, the

modeler wishes to test whether the data is ε-rationalizable in the first place. The

observations above shed light on this. Let us presume that the data is ε-rationalizable

and consider a datapoint (p, x) ∈ D. There must exist g ∈ Cε(p, x) such that x is

strictly preferred to all the elements in Γ(g, x). In the language of de Clippel and Rozen

(2018), this is a lower-contour set restriction on the consumer’s preference � over the

set X of demanded bundles, as some set from the family {Γ(g, x) | g ∈ Cε(p, x)} must

14See Chiappori and Rochet (1987), Matzkin and Richter (1991), and Lee and Wong (2005).
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be contained in the �-lower contour set of x. There is one such lower-contour set

restriction for each (p, x) ∈ D, generating a collection of lower-contour set restrictions

Rε(D) over the consumer’s possible preference over demanded bundles.15 Clearly, a

necessary condition for ε-Rationalizability of the demand dataD requires the collection

of restrictions Rε(D) to be acyclically satisfiable: there must exist a (strict) acyclic

relation on X that simultaneously satisfies them. For instance, the consumer’s true

utility function u : RL
+ → R, restricted to X, defines such an acyclic relation.

We have not yet shown, however, that acyclic satisfiability of Rε(D) implies the

existence of a regular utility function u : RL
+ → R that ε-rationalizes the data. The

following result confirms this.

Proposition 4 D is ε-rationalizable if and only if Rε(D) is acyclically satisfiable.

Acyclic satisfiability of Rε(D) clearly generalizes SARP, for which the lower-

contour set restrictions leave no freedom to choose g: for each observation (p, x) ∈ D,

SARP requires that x must be strictly preferred to Γ(p, x). This corresponds to ε = 0.

While testing SARP is well understood, how does one test acyclic satisfiability

of the more general restrictions Rε(D)? de Clippel and Rozen (2018) shows that in

the presence of lower-contour set restrictions, one checks acyclic satisfiability in the

same way one checks SARP: by iteratively looking for candidate minimal elements of

the unknown preference ordering over X. The key step is this: having determined

thus far that the elements in S ⊂ X can be ranked at the bottom of the ordering, is

there any element in the set X \ S of remaining, unranked alternatives that qualifies

as a candidate-minimal element among those? An option x qualifies if and only

if no other remaining elements fall below the separating hyperplanes going through

x, since none of these elements need to be ranked below it. Formally, x qualifies

if for every price vector p such that (p, x) ∈ D, there exists g ∈ Cε(p, x) such that

Γ(g, x)∩(X \S) = ∅. This step is easy to determine by linear programming.16 Acyclic

satisfiability holds if and only if we can identify a candidate minimal element in each

iteration, thus constructing a complete ordering over the entire set of chosen bundles

15Notice that the arguments here accommodate the possibility that the same bundle x is chosen
at two or more different price vectors: in such a case, there are simply multiple lower-contour set
restrictions associated with the same bundle x.

16Developing this, x qualifies if and only if for each (p, x) ∈ D there is a vector g that satisfies
the weak inequalities in (5) and the strict inequalities g · (x′ − x) > 0 for all x′ ∈ X \ S other than
x. It is not difficult to transform this problem into one with only weak inequalities, for which linear
programming techniques then apply.
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X. Importantly, the success or failure of this procedure is path independent: it does

not depend on which candidate minimal element one picks in a step when multiple

alternatives qualify.

While the formalization above may be notationally heavy, the concept is actually

very simple, and a more colloquial description would be worthwhile. Indeed, g ∈
Cε(p, x) just means that g perturbs the price vector p, making it at most ε away

according to our measure δ from Section 2. Graphically, one can think of g as tilting

the true budget line while still going through the demanded bundle. We begin the test

by seeking a candidate for worst overall element. An option x qualifies if, for every

price vector p for which it is demanded, it is possible to tilt the p-budget line going

through x (with the tilted price at most ε away from the true one) in a way that makes

all other demanded bundles unaffordable. Once we have found a candidate x for worst-

overall element, we can effectively erase it and move on, seeking the next-worst element

x′ using the same budget-tilting procedure to ensure that the remaining demanded

bundles are not affordable. This process continues until there are no demanded bundles

left, in which case the data is ε-rationalizable; or until we find ourselves stuck, in which

case it is not. The idea of the proof is to use the tilted prices g as utility quasi-gradients

of the ε-rationalizing utility function.

Our testing methodology for ε-rationalizability rests on the fact that the possible

quasi-gradients are restricted to a set. The approach is portable to other situations

where this feature arises. It is easily tweaked, for instance, to test ε-rationalizability

with an added restriction of differentiability on the utility function,17 but works beyond

the context of ε-rationalizability as well. Consider a modeler who theorizes that a

consumer’s misperceived price for each good ` is some mixture of a default price pd`
and the true price: pc` = pd` +m`(p`− pd` ), where m` ∈ [0, 1] is the extent to which the

consumer shifts the perceived price of the good from the default price to the actual one.

This is a weaker restriction on perception than Gabaix (2014)’s sparse-max theory,

which determines the vector m = (m1, . . . ,mL) endogenously through a sparsity-based

optimization using a concave utility function.18 To test the generalization where any

17With differentiability, ∂u(x) is a singleton (up to positive rescaling). Hence for each x ∈ X, there
must be g ∈ Cε(x) :=

⋂
(p,x)∈D Cε(p, x) such that x is strictly preferred to Γ(g, x).

18His theory captures a decision maker who, for instance, realizes that spending time understanding
the state of the Amazonian forest or interest rates in some distant country will be costly and yet have
very little effect on her decision. The decision maker knows default values of such variables (e.g.,
long-run averages) and optimally allocates effort in determining what price estimate, somewhere
between the default value and the true value, to use.
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m ∈ [0, 1]L is conceivable, which yields predictions less precise than Gabaix’s, but

robust to a variety of theories of subjective price formation, one replaces Cε(p, x) with

the convex set of possible gradients C(p, pd) = {(pd` + m`[p` − pd` ])L`=1 | m ∈ [0, 1]L},
and proceeds with the analogous lower-contour set restrictions.

4. FOC-Departure Index

Demand data is either consistent with rationality, or not. In the imperfect world of

actual data, it is more useful to have ways to quantify the degree to which data com-

plies with a theory. ε-Rationalizability naturally lends itself to such measurements.

Definition 2 (FOC-Departure Index) The FOC-Departure Index (FDI) is the

infimum over all ε such that the data is ε-rationalizable.19

For instance, the FDI of demand data arising from the maximization of a regu-

lar preference is zero. The FDI provides an alternative measure of goodness-of-fit to

Afriat (1973)’s Critical Cost Efficiency Index (CCEI), which computes the largest per-

centage of the consumer’s budgets that can be retained while eliminating all revealed-

preference cycles (see also Varian (1990)). To formalize Afriat’s index, define for

σ ∈ [0, 1] a strict revealed preference x �A,σ y if (p, x) ∈ D and σp · x > p · y;

and a weak revealed preference x �A,σ y if D contains a sequence of observations

(p1, x1), . . . , (pn, xn) where x1 = x, xn = y, and for each i ∈ {1, . . . , n − 1}, either

xi = xi+1 or σpi ·xi ≥ pi ·xi+1. Then the CCEI is the supremum of σ ∈ [0, 1] such that

x �A,σ y implies not y �A,σ x for all observed choices x, y.20 While both the CCEI and

FDI yield values between zero and one, the directions are reversed: the CCEI measures

rationality, and is 1 when choices are rational, while the FDI measures departure from

rationality, and is 0 when choices are rational. However, one can directly compare the

19Definition 1 remains meaningful when relaxing the notion of regularity in ε-rationalizability to
allow weak quasi-concavity (it suffices for local optima to be global optima). We focused on strict
quasi-concavity, as SARP is a bit easier to describe and work with than GARP. This has no impact
on the value of the FDI: if D is ε-rationalizable when allowing quasi-concavity to be weak, then D is
ε′-rationalizable when requiring quasi-concavity to be strict, for all ε′ > ε.

20Varian (1990) generalizes Afriat’s index to allow the (proportional) budget adjustment to vary
per observation. Houtman and Maks (1985) propose another classic index, the smallest subset of the
data that needs to be dropped to make it rationalizable. Halevy et al. (2018) points out that these
indices can be viewed as being in the same umbrella class, with different restrictions on the possible
budget adjustments, and different ways of aggregating across observations. We refer the reader to
Halevy et al. (2018, Appendix B) for a thorough discussion of some other metrics that don’t fall
under this umbrella, such as Echenique, Lee and Shum (2011), Apesteguia and Ballester (2015), and
Dean and Martin (2016).
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FDI to Afriat’s inefficiency measure 1−CCEI, which is the minimal factor by which

the consumer’s budgets must be shrunk to eliminate revealed-preference cycles.

We start in Section 4.1 by illustrating the FDI in the simpler case of two com-

modities (as in most experiments on the subject). In addition to providing further

intuition, these results will prove useful throughout this section and the next, provid-

ing a simple, closed-form formula for the FDI of demand data with two commodities.21

Section 4.2 shows that Afriat’s inefficiency measure is always smaller or equal to the

FDI (independently of the number of commodities). We show by example that no

systematic relation exists when taking power into account: demand data may appear

closer to rationality under the CCEI than under the FDI, and vice versa. In Section

4.3, we revisit data from Choi et al. (2014) to illustrate how the FDI can easily be

used in practice.

4.1 The Case of Two Commodities

We assume L = 2 throughout this subsection. As a start, consider demand data

D = {(p, x), (p′, x′)} comprising only two observations. The next result provides a

simple formula for computing the FDI of any such D. Notice that with only two

observations, a violation of SARP is a situation in which x, x′ differ and each of these

bundles is affordable when the other is chosen (i.e. p · x′ ≤ p · x and p′ · x ≤ p′ · x′).

Proposition 5 Take D = {(p, x), (p′, x′)}, and assume p′1/p
′
2 ≥ p1/p2 without loss

of generality. Then,

FDI(D) =

min{ p·(x−x′)
p2(x2−x′2)

, p
′·(x′−x)

p′1(x
′
1−x1)

} if D violates SARP;

0 otherwise.

The proof of Proposition 5 reveals what underlies this formula. In particular, in

the event of a SARP violation, the FDI directly relates to how far apart each of the two

price vectors is from the vector o(x, x′) that is orthogonal to the line passing through

x and x′ (see Figure 1). Indeed, the FDI is the minimum between f−1(δ(p, o(x, x′)))

and f−1(δ(p′, o(x, x′))), where f is the function that associates to each ε ∈ (0, 1) the

fraction 1/(1− ε) appearing in the definition of ε-rationalizability.

21While we haven’t found an analogous formula with three commodities or more, it takes only n
applications of the enumeration procedure to identify the index with± 1

2n precision. First, test for 1/2-
rationalizability; then test 1/4-rationalizability if the previous test succeeds, and 3/4-rationalizability
otherwise; and continue this recursively n− 2 more times.
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Figure 1: The construction of o(x, x′) for proving Proposition 5.

The next result shows that, quite remarkably, the FDI of demand data with two

commodities is simply the maximum of the FDI over all pairs of observations. Com-

bined with Proposition 5, we have thus found a formula to compute the FDI for any

number of observations.

Proposition 6 For L = 2, the FDI of any demand data D is the maximum of the

FDI’s (computed in Proposition 5) associated to each pair of observations in D.

Demand data is ε-rationalizable if and only if for every x ∈ X, there is g(p, x) ∈
Cε(p, x) such that the auxiliary demand data D′ = (g(p, x), x)(p,x)∈D is rationalizable

(in the classic sense) by a regular utility function u. That, in turn, is equivalent to

D′ satisfying SARP. One may conjecture then that Proposition 6 follows at once from

Rose (1958).22 That would be the case if we knew that for every (p, x) ∈ D, there

is g(p, x) ∈ Cε(p, x) such that for all (p′, x′), (p′′, x′′) ∈ D the auxiliary demand data

{(g(p′, x′), x′), (g(p′′, x′′), x′′)} satisfies SARP. However, multiple SARP violations may

occur when pairing a given observation (p, x) with different other observations, and

one may have to consider different vectors g(p, x) to achieve ε-rationalizability on

those pairs.23 This makes the proof significantly harder.

22Rose observes that, with only two commodities, satisfying SARP over pairs of observations
guarantees satisfying SARP over sequences of observations of any length.

23For instance, suppose p = (1, 1), p′ = (1, 2), p′′ = (2, 1), x = (10, 10), x′ = (1, 18), and x′′ =
(18, 1). Both {(p, x), (p′, x′)} and {(p, x), (p′′, x′′)} are ε-rationalizable with ε = 1/7. However,
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4.2 Relation to the CCEI

From now on, we return to the general case with no restriction on the number of

commodities. As the CCEI and FDI pertain to very different variables – adjusting

incomes for the CCEI, versus adjusting tradeoffs for the FDI – one might think these

measures are unrelated. However, we show that there is a clear relationship between

the two. In particular, a small departure from first-order conditions (in the sense

of our measure) means only small budgetary adjustments are needed to eliminate

revealed-preference cycles.

Proposition 7 For any demand data D, 1− CCEI(D) ≤ FDI(D).

As will be illustrated in our application to portfolio-choice data in Section 4.3, the

inequality in Proposition 7 can hold strictly for some datasets, and with equality for

others. Moreover, the measures can offer opposing assessments of different datasets:

in some cases, the CCEI might deem one dataset closer to rationality than another,

while the FDI determines the opposite.

Of course, whether consistency with rationality is remarkable depends, at least to

some extent, on the combination of budget sets being tested. For instance, rationality

is impossible to refute when all budget sets are related by inclusion. By contrast, a

SARP violation becomes possible in intersecting budget sets that are not related by

inclusion. In that sense, the specific value of the CCEI or the FDI derived from a

consumer’s actual choice is not that informative without being contrasted against the

distribution of those indices arising under some alternative behavioral hypothesis.

While different criteria have been proposed over the years to capture power, we

focus here on the approach that is most often applied in experimental papers. This

method, suggested by Bronars (1987) and inspired by Becker (1962), proposes to

use as a reference point the distribution of CCEI’s arising from a random collection

of choices, under the assumption that each bundle on the frontier of a budget set is

equally likely. Most experimental papers argue that the rational choice model captures

observed choices rather well, because the distribution of CCEIs arising from the data

is a significant FOSD shift towards lower values of Afriat’s index.

the p′ budget line cannot be tilted to eliminate the revealed preference of x′ over x, while keeping
δ(p′, g(p′, x′)) below 1/(1−ε). Instead, one must make the p-budget line flatter (e.g. taking g(p, x) =
(5, 6) guarantees SARP while keeping δ(p, g(p, x)) < 1/(1− ε)). Thus, for {(g(p, x), x), (g(p′, x′), x′)}
to satisfy SARP, g(p, x) must put significantly more weight on good 2 than good 1. A similar
argument for {(p, x), (p′′, x′′)} implies that a different g(p, x), one that puts significantly more weight
on good 1 than good 2, must be considered to get {(g(p, x), x), (g(p′′, x′′), x′′)} to satisfy SARP.
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Such an approach can be replicated using the FDI instead. Interestingly, while

we know from Proposition 7 that 1− CCEI ≤ FDI, this does not mean that subjects

will necessarily appear less rational when applying Bronars’ methodology to the FDI.

Indeed, the distribution of FDI’s for the randomly generated demand data used as the

reference point will itself shift towards higher values. Here are simple examples.

Example 1 Consider demand data D = {(p, x), (p′, x′)} with two observations and

a SARP violation, where the price vectors are p = (1, 2) and p′ = (2, 1) and the

demanded bundles are x = (3, 6) and x′ = (6, 3). We first observe that the largest

possible FDI, for any pairs of choices on the boundary of these two budget sets, is

1/2. To see this, let y, y′ be two distinct bundles such that y is on the p-budget line,

y′ is on the p′-budget line, and there is a SARP violation: p · y′ ≤ p · y = p · x and

p′ · y ≤ p′ · y′ = p′ · x′. By Proposition 5, the FDI of such choices is

1− 1

2
max{γ, 1

γ
}, with γ =

y′1 − y1
y2 − y′2

.

Hence the largest FDI is reached with γ = 1, which occurs with probability zero when

drawing uniformly from bundles on the boundary of the two budget sets. Hence, the

probability that the FDI of a randomly drawn demand data is larger or equal to that

of the demand data above, which achieves that maximum FDI, is zero. By contrast,

there is a strictly positive probability that the Afriat inefficiency of a randomly drawn

demand data will be bigger than that of D.

For an example where the comparison is opposite, consider the demand data D′ =
{(p, x), (p′, z)} where p, p′, x are as above, but z amounts to spending the budget under

p′ entirely on good 1, i.e., z = (7.5, 0). Notice that the Afriat inefficiency of demand

data picked on the budget lines associated to p and p′ is smaller or equal to that of D′

if and only if the bundle picked on the p-budget line is strictly to the left of x and the

bundle picked on the p′-budget line is strictly to the right of x′ (defined above). It is

easy to check that any such demand data also has a FDI larger than that of D′, but

also that there is a positive mass of other bundle combinations leading to a larger FDI

than that of D′.24 Thus, this time, the probability that the FDI of a randomly drawn

demand data is larger than that of D′, is larger than the probability that the Afriat

inefficiency of a randomly drawn demand data is larger than that of D′.
24For instance, for all ẑ halfway between x′ and z on the p′-budget line, there is a positive mass of

bundles x̂ to the right of x on the p-budget line for which FDI({(p, x̂), (p′, ẑ)}) > FDI(D′).
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(a) Illustration of Proposition 7. (b) Taking power into account.

Figure 2: Illustration using data from Choi et al. (2014).

4.3 Illustration Using Data

To illustrate, we present our methodology in the simpler setting of recent lab ex-

periments on risky portfolio choices. Given two equally-likely states, subjects face

multiple linear budget sets and decide how to allocate money across states given these

constraints. There are thus two commodities: money in state 1, and money in state

2. This is the setting of Choi et al. (2014), whose demand data we revisit through

the lens of our theoretical results.

We compute the FDI using the simple formula provided by Proposition 6, as L = 2.

Proposition 7 tells us that 1−CCEI ≤ FDI, and the histogram of FDI−(1−CCEI) in

Figure 2(a) reveals the extent by which these two measures actually differ in the data.

For just under one-quarter of subjects, the FDI = 1− CCEI; among those for whom

these differ, the modal difference is around 0.2. As they both measure departure from

rationality, the FDI and 1−CCEI are correlated: the Spearman correlation is 0.8481,

and the null hypothesis that the two are independent is strongly rejected (p-value of

0.0000). One index is not simply a monotone transformation of the other. In fact,

for around 15% of all pairs of subjects in the experiment, the CCEI and the FDI

offer opposite rankings of departure from rationality: that is, Anne is considered more

rational than Bob under one index, but Bob is considered more rational than Anne

under the other.

To take power into account, we perform a Bronars exercise by repeatedly drawing

random choices for each sequence of 25 budget sets tested in Choi et al. (2014), for a

total of 23,640 ‘random consumers’ making 25 choices each. We compute the associ-
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ated measures FDI and 1−CCEI for the Bronars data. The empirical CDFs for both

the true and Bronars data are plotted in Figure 2(b). Consistent with Proposition 7,

for both the true and Bronars data we see the empirical CDFs first-order stochasti-

cally improve when moving from 1−CCEI to the FDI. Thus, following our discussion

of power in Section 4.3, data need not appear less rational under the FDI than the

CCEI. As it turns out, both the FDI and 1−CCEI exhibit a large, first-order stochas-

tic shift down when moving from the true data to the Bronars data. This confirms

the robustness of Choi et al. (2014)’s preliminary finding that there is a significant

amount of rationality in their data.

5. Further Restrictions on Preferences

In many contexts, one is willing to impose further properties on the utility func-

tion beyond regularity. Classic examples in consumer theory include quasi-linearity,

homotheticity and additive separability. Expected utility is a typical assumption for

choice under risk, as are exponential or hyperbolic discounting for time preferences.

Let U be the subclass of regular utility functions under consideration. Demand

data is ε-rationalizable with respect to U if it satisfies Definition 1 with the added

requirement that u belongs to the class U . Given a dataset, one can then define

its FDI with respect to U , denoted FDIU , as the infimum over ε such that the data

is ε-rationalizable with respect to U . Of course, the FDI with respect to U weakly

increases as U becomes smaller.

In Section 5.1, we develop two important connections with Afriat’s CCEI and

tests of classic rationalizability in the spirit of Afriat’s inequalities, that hold for any

subclass of regular utility functions U . In Section 5.2, we apply these ideas to recent

experimental data pertaining to choices from budget sets involving risk.

5.1 Connections with Afriat and Afriat’s Inequalities

As in Halevy et al. (2014), one can define the CCEI with respect to U , denoted

CCEIU , as the largest share of income that can be retained such that there exists

a utility function u ∈ U for which each demanded bundle is strictly preferred to all

bundles in the associated shrunken budget set. Perhaps surprisingly, both the proof

and statement of Proposition 7 extend verbatim when restricting to classes of utility

functions.

Proposition 8 For any U and demand data D, 1− CCEIU(D) ≤ FDIU(D).
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Proposition 8 provides a lower bound for CCEIU , which may be of independent

interest. While easily defined, figuring out how to compute it may be challenging.

By contrast, classic tests of rationalizability extend at once to compute the FDIU .

Indeed, as should be clear from its definition, ε-rationalizability with respect to U is

equivalent to finding price vectors (pc(p, x))(p,x)∈D such that

(7) (1− ε) p`
p`′
≤ pc`(p, x)

pc`′(p, x)
≤ 1

1− ε
p`
p`′
, for all `, `′ = 1, . . . , L and (p, x) ∈ D

and the modified demand data Dc = {(pc(p, x), x)|(p, x) ∈ D} is rationalizable with

respect to U . At the same time, rationalizability with respect to standard classes of

utility functions is often tested by checking whether certain sets of (oftentimes linear or

bilinear) Afriat-like inequalities admit a solution.25 Though they provide less insight

into the theory than SARP-like characterizations (e.g., as developed in Section 3 for

the general class of regular utility functions), such inequality-based tests are equally

useful for testing purposes.

Combining these ideas, the next proposition explains how those classic tests can be

repurposed for our intents. To state the result, note that any test of rationalizability

with respect to U which is in the spirit of Afriat’s inequalities can be described by a

mapping SU , which associates to each demand data D a set of inequalities SU(D) that

has a solution if and only if D is rationalizable with respect to U .

Proposition 9 For any U and test of rationalizability SU , the demand data D is

ε-rationalizable with respect to U if and only if there exists a solution to the system

of inequalities listed in (7) and in SU(Dc), with an extra variable pc(p, x) ∈ RL
++ for

each (p, x) ∈ D.

This umbrella result is very convenient for computational purposes, as it applies

to any subclass of regular preferences for which there is an existing result in the spirit

of Afriat’s inequalities. One simply checks a more permissive system of inequalities

than required for the test of standard rationalizability with respect to U : the true

price vector in each observation (p, x) is replaced with a misperceived price vector

pc(p, x), which must be close to p in the sense of our measure δ from Section 2 (itself

a linear inequality). Of course, Proposition 9 also holds when U comprises the entire

25See Diewert (2012) among others, for an overview of classic tests of rationalizability with respect
to homothetic or additively separability utility functions, and Brown and Calsamiglia (2007) for
quasi-linear utility functions.
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class of regular utility functions, in which case ε-rationalizability can be checked by

the above tweak of the original Afriat (1967) inequalities. Conceptually, such a test

is of a different nature than the one we develop in Proposition 4 of Section 3. Afriat

(1967)’s characterization is multifaceted, offering several equivalent formulations. One

formulation he offers is based on inequalities, which are somewhat difficult to interpret;

another formulation he offers relates to revealed preference and is more insightful

about the theory (Varian, 1982). Proposition 4, which is couched in terms of acyclic

satisfiability of revealed preference restrictions, is in the latter vein.

5.2 Illustration with Portfolio Choice Data

In a contemporaneous and independent paper, Echenique et al. (2019) define

and study what we would call ε-rationalizability for a risk-averse expected utility

maximizer, except for the use of a different scale to measure departures from expected

utility (the parameter e they use is equal to ε/(1−ε)).26 In addition to their theoretical

characterizations, they perform the important exercise of applying the new measure to

a wide array of previously collected experimental data, which so far had been analyzed

using the rational benchmark and/or a parametric approach. Our development of ε-

rationalizability and the FDI for any class of regular utility functions allows us to add

further layers of insight to some of the fundamental questions they study.

Echenique et al. empirically examine the relation between Afriat’s CCEI and

the new measure of goodness-of-fit for expected utility. Let EU r denote the class of

continuous, strictly monotone and strictly risk averse expected utility functions. Of

course, as they point out, one expects subjects with a small FDIEUr to have a large

CCEI, as being close to expected utility maximization implies a fortiori being almost

rational. The relationship is more precise and general than this. As we showed, the

FDI is larger or equal to 1−CCEI (see Section 4), and FDIEUr ≥ FDI since expected

utility preferences are rational. Hence FDIEUr ≥ 1− CCEI.27

By changing both the reference class of preferences and the way departures are

measured, FDIEUr is conceptually two steps away from the CCEI. Using the FDI

instead of the CCEI (which makes a difference, see Figure 2(a)) has the advantage of

placing the spotlight on the dimension of interest: assessing how much more stringent

expected utility is from rationality.

26They require only weak risk aversion; this has no effect on the FDI (see Footnote 19).
27Translating this inequality for their parametrization gives CCEI ≥ e/(1 + e).
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In fact, it is also important to assess how much more stringent expected utility is

from the plain maximization of a utility function over lotteries. Notice that states have

no meaning to subjects beyond the monetary amounts received. Though not required

by rationality itself, subjects should view bundles simply as lotteries, which means

their preferences should be state independent. Let SI denote the class of regular

preferences that are state independent.28

To improve our understanding of FDIEUr , we can decompose it as follows:29

FDIEUr = FDI + [FDISI − FDI] + [FDIEUr − FDISI ].

Thus the degree of misspecification FDIEUr −FDI in using an expected utility prefer-

ence is decomposed into the degree of misspecification from using a state independent

preference, a very mild requirement that is common to all preferences recognizing that

the bundles are lotteries, and the further misspecification from using the much more

demanding expected utility form.

In the Appendix (see Proposition 11), we establish that for two equally likely states,

demand data D is ε-rationalizable by a regular preference that is state independent

if, and only if, the mirror-extended dataset

(8) D = D ∪ {((p2, p1), (x2, x1)) | (p, x) ∈ D}

is ε-rationalizable by a regular preference.30 Thanks to this observation, we can easily

compute FDISI by applying Proposition 6: it is the largest FDI (without requiring

state independence) over all pairs of observations from the mirror-extended dataset.

28With equally likely states, state independence is equivalent to symmetry, or being indifferent
between (x1, x2) and (x2, x1). With equally likely states and monotone preferences, state indepen-
dence is also equivalent to first-order stochastic monotonicity, or preferring a lottery that is first-order
stochastically superior to an alternative. If states were not equally likely, then symmetry would be
unappealing, and first-order stochastic monotonicity would further restrict state independence by
imposing an extra restriction on the preference over lotteries. The idea of approximately rationaliz-
ing the data with utility functions satisfying such properties was studied by Choi et al. (2014) using
the CCEI. Echenique et al. (2019) show that there is a positive relationship between the frequency
with which such properties are violated and their version of FDIEUr .

29See Halevy et al. (2018) for similar decompositions with the CCEI for parametric classes.
30Necessity is obvious. Sufficiency is trickier. Suppose a regular u ε-rationalizes D. There is

no reason to believe that u is state independent. One can easily modify u to symmetrize it (e.g.,
û(x) = u(x) if x2 ≤ x1, and = u(x2, x1) if x2 ≥ x1), but the resulting preference is typically not
convex anymore. Convexity would be preserved if any g ∈ ∂u(x) with x2 < x1 is such that g1 < g2;
that is, ensuring that below the diagonal, indifference curves are flatter than lines of slope −1. A
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(a) For the true data. (b) For the Bronars data.

Figure 3: Empirical CDF’s of the FDI with respect to the class of regular utility
functions and the subclasses of state-independent utility SI and risk-averse expected
utility EU r.

Figure 3(a) depicts the empirical CDF’s of the FDI, FDISI , and FDIEUr for the

data, where FDIEUr is computed using Proposition 9, by repurposing the classic test

of Green and Srivavastra (1986) for risk-averse expected utility. It may come as a

surprise that adding the mild requirement of state independence has a big impact,

while the much more substantial restriction of adding expected utility on top of state

independence has a much smaller impact. In fact, for roughly 65% of subjects in

the actual experiment, we have that FDIEUr ≈ FDISI > FDI. Consider the EU-

misspecification ratio

FDIEUr − FDISI
FDIEUr − FDI

across subjects, which is the proportion of misspecification of imposing expected utility

instead of any regular preference over bundles, that is attributable to the misspecifi-

cation for imposing expected utility instead of any regular preference over lotteries.

Figure 4 suggests the empirical CDF of the misspecification ratio for the true data is

not much better than that for the randomly-generated, Bronars data.31

This feature reflects the experiment’s limited power to detect the relative validity

of expected utility beyond plain preference maximization over lotteries. To gain some

intuition, suppose a subject were to randomly choose a bundle on the frontier of a

key step of the proof is then to show the existence of such a utility function that ε-rationalizes D.
31For comparability, we use the same, realized Bronars dataset throughout.
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Figure 4: Empirical CDFs of the EU-misspecification ratio.

budget set p1x1 + p2x2 = 1, with p1 > p2. The probability that she appears rational

(FDI = 0) is 1: there is too little information to refute rationality. However, FDISI is

strictly positive with probability p2/(p1 + p2) (as any choice below the diagonal would

violate it), and FDISI = FDIEUr with probability 1. This is because rationalization

by an expected utility preference comes for free once the price vector has been twisted

enough to get rationalization by a state-independent preference.

Of course, the experiment tests subjects in many more budget sets, which makes

the comparison more complex. Figure 3(b) depicts the same objects as in Figure

3(a), this time for the randomly-generated Bronars dataset. Though specific num-

bers change, of course, a similar general pattern arises: relatively speaking, imposing

state independence is a larger leap from rationality, than expected utility is from state

independence. This confirms our intuition that subjects would have to answer more

complex questions (e.g., varying the probabilities of states) if we wish to gain a deeper

understanding of the adequacy of expected utility beyond more general preferences

over lotteries. This reinforces a related point made by Polisson, Quah and Renou

(2019), who noticed (using the CCEI and a different dataset) that power to test ex-

pected utility conditional on rationalizability by a first-order stochastically monotone

utility function can be very low.
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6. Beyond Linear Budget Sets

In an empirical study of nonlinear pricing in electricity markets, Ito (2014) points

out that while optimization requires understanding marginal prices, “nonlinear pric-

ing and taxation complicate economic decisions by creating multiple marginal prices

for the same good.” Indeed, the empirical literature on non-linear pricing, with ap-

plications to labor and taxation (see the survey of Saez, Slemrod and Giertz (2012))

and utilities markets (see Ito (2014) and references therein) provides evidence that

consumers respond to nonlinear pricing in a manner inconsistent with classic theo-

ries. These studies illustrate the importance of relaxing the assumption of perfect

collinearity between marginal prices and the utility gradient.32

The analysis developed so far lends itself very well to such an endeavor. Generalized

demand data D comprises a finite collection of pairs (P, x), where P = (P1, . . . , PL) is

a collection of strictly increasing and differentiable price functions P`, and x ∈ RL
++ is

the consumption bundle demanded for the budget set

B(P, x) = {y ∈ RL
+|
∑
`

P`(y`) ≤
∑
`

P`(x`)}.

Indeed, P`(q) represents the total price to pay for buying a quantity q ≥ 0 of good `.

Naturally, P`(0) = 0 for each `. We presume that B(P, x) is convex (as would be true

if P` is convex for all `), in which case the first-order conditions are not only necessary

but sufficient for an optimum.

Suppose for the moment that P is differentiable at the bundle x. Then, the

marginal price vector at x is given by (P ′1(x1), P
′
2(x2), . . . , P

′
L(xL)), and the marginal

price ratio associated to any two goods `, `′ is the following strictly positive number:

MPRP
`,`′(x) =

P ′`(x`)

P ′`′(x`′)
.

More generally, the frontier of the budget set might be kinked. For instance, pro-

gressive taxation generates a convex budget set with a piecewise-linear frontier. Let

∂P (x) be the set of strictly positive vectors defining the supporting hyperplanes of

32See Forges and Minelli (2009) for a study of rationalizability with generalized budget sets, and
references therein.
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B(P, x) at x:

∂P (x) = {p ∈ RL
++ | ∀y :

∑
`

P`(y`) ≥ P`(x`)⇒ p · y ≥ p · x}.

Differentiability at x means ∂P (x) is just the marginal price vector, up to rescaling.

Classic rationalizability (for a strictly convex preference) just means that the non-

linear budget set B(P, x) and the upper-contour set of x intersect only at the bundle x.

That is, there is some positive vector which defines a hyperplane through x that sepa-

rates the two sets. Just as before, we can relax this condition using ε-rationalizability.

In a fully differentiable world, such a relaxation means finding a regular utility func-

tion u such that 1− ε ≤ MRSu``′(x)/MPRP
``′(x) ≤ 1/(1− ε) for each ` 6= `′ and each

(P, x) ∈ D. More generally, the notion is formalized as follows.

Definition 3 (ε-Rationalizability) For ε ∈ (0, 1), the generalized demand data D is

ε-rationalizable if there exists a regular utility function u such that for all (P, x) ∈ D,

there are vectors g ∈ ∂u(x) and p ∈ ∂P (x) such that the same inequality (2) as before

holds for each ` 6= `′:

1− ε < g`/g`′

p`/p`′
<

1

1− ε
.

Then u is said to ε-rationalize the generalized demand data.

A couple of remarks are in order. First, we retain the name ε-rationalizability; this

cannot create any confusion, since Definition 3 boils down to Definition 1 with linear

prices. Second, recalling Section 2.1, the above inequalities simply ensure that we can

always find a ‘utility gradient’ g ∈ ∂u(x) and a ‘marginal price vector’ p ∈ ∂P (x) that

are not too far from each other: δ(g, p) ≤ 1
1−ε , for all (P, x) ∈ D. Lastly, the FDI

readily extends to generalized demand data, as the infimum over all ε such that the

generalized demand data is ε-rationalizable.

The next result follows at once from Definitions 1 and 2. It is powerful nevertheless,

as it shows that all the results derived in Sections 3 and 4 can be leveraged for ε-

rationalizability of generalized datasets.33 We have thus found an easily computable

33Moreover, as we discussed at the end of Section 3, the testing approach is portable to some
specific theories of misperception. For instance, in the context of nonlinear pricing, one might be
interested in testing the theory of a consumer who maximizes a regular utility function u given a
perceived price vector pc that is a convex combination of average and marginal prices, and restricted

to belong to C(P, x) = {[αP ′`(x`) + (1− α)P`(x`)
x`

]`∈L|α ∈ [0, 1]}.
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notion of goodness-of-fit for consumer data involving nonlinear prices.

Proposition 10 A generalized dataset D is ε-rationalizable if, and only if, there

is a ‘linearized’ dataset D′, given by a set of observations (p, x) with p ∈ ∂P (x) for

all (P, x) ∈ D, which is ε-rationalizable.

Whenever the demanded bundle x lies at a point of differentiability of the budget

set B(P, x), the linearized price p in Proposition 10 above is simply the marginal

price vector (P ′1(x1), P
′
2(x2), . . . , P

′
L(xL)). Thus testing ε-rationalizability when P is

differentiable can be done using our earlier tests. For more general pricing, testing may

require considering more variables than before. So far we had to determine whether

the demand data is consistent with a reference model, for some utility tradeoffs that

are not too far from the known price ratios. Now, at kinks in the pricing schedule,

we have to also guess what the marginal price ratios might be. Testing methods from

Sections 3 and 4 extend though, as acceptable price vectors at x must belong to ∂P (x),

which is a convex cone. We skip the technical details for the general case, and instead

illustrate the idea by means of an intuitive example.

Example 2 Consider demand data over two goods: x1 corresponds to time spent

on leisure (as opposed to work), and x2 corresponds to a composite consumption good.

For simplicity, the price of good 2 is always normalized to 1, in which case the price

of good 1 can be thought of as the real hourly wage. The consumer’s endowment is the

number H of waking hours (for instance, over the course of a year). She decides how

many hours, given H, to work. There is a progressive tax system: R+ is partitioned

in successive intervals I1, I2, . . . , and the marginal tax rate in income bracket Ik is

tk ∈ [0, 1], with t1 ≤ t2 ≤ t3 ≤ . . . . Thus for a total yearly wage W ∈ Ik, she will

pay a total tax equal to tk(W − ak) +
∑k−1

j=1 tj(bj − aj), where Ij = [aj, bj) for each

j. Clearly, this leads to convex budget sets with piecewise-linear frontiers, which will

change as the tax code and hourly wages vary.

Suppose the consumer can allocate 4, 000 hours each year between work and leisure.

She faces a different tax system on two different years, while her wage remains con-

stant, at $25 an hour. In year 1, income up to $25K is taxed at a 20% marginal rate,

while the marginal tax rate for higher incomes is 331
3
%. In year 2, income up to $25K

is not taxed, while higher incomes face a marginal tax rate of 662
3
%. Selected bundles

are x = (3K, 20K) for year 1, and x′ = (1.5K, 37.5K) for year 2. The situation is

depicted in Figure 5.
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Figure 5: Illustration of the taxation example.

Clearly this demand data is not rationalizable, since x is revealed strictly preferred

to x′, and vice versa. What is the FDI? Since the budget frontier is differentiable

at x′, the demand data is ε-rationalizable if, and only if, the modified demand data,

where the budget set on year 2 is expanded to {(y1, y2)|253 y1 + y2 ≤ 50, 000}, is ε-

rationalizable. We can also linearize the budget set on year 1, but here we are free

to pick any price vector that is orthogonal to the budget set at x, that is, any convex

combination of (50/3, 1) and (20, 1) (the normalized extreme vectors of that cone).

Clearly, eliminating the revealed preference of x over x′ by twisting the putative price

as little as possible means that one should use (50/3, 1), with the budget set on year

2 now expanded to {(y1, y2)|503 y1 + y2 ≤ 70, 000}. Applying Proposition 5, the FDI of

our original demand data is 5/17.5 ≈ 28.5%.

As should be clear by now, the FDI provides a simple measure of rationality that

is portable to all settings where the first-order approach applies. By contrast, the

CCEI applies only if it is clear what it means to ‘shrink’ a budget set. That meaning

becomes ambiguous beyond linear budget sets. One option is to pull budget frontiers

proportionally towards zero. While seemingly close in spirit to Afriat’s original idea,

preserving the shape of budget sets may be at odds with the source of non-linearity.

In the example above, shrinking the first budget set by one half (as depicted by the

orange budget set) would implicitly mean that the consumer faces a marginal tax rate
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of 20% only on the first $10K, which is not the case. Alternatively, one could shrink

the available hours H which, in this case, amounts to shifting the budget frontier to

the left instead of towards 0. While both methods are equivalent should prices be

linear, which is the ‘right’ one to pick otherwise is unclear.

7. Beyond Convex Preferences

Quasi-concavity played a central role in our analysis. Definition 1 becomes triv-

ially satisfied without it, and the associated FDI becomes uninformative (systemati-

cally equal to zero). Indeed, one can always draw indifference curves to match local

restrictions at the finitely many bundles appearing in the demand data. As we all

know, the first-order conditions provide little information unless accompanied by the

second-order condition to guarantee a global optimum.

That being said, Proposition 2 suggests an interpretation of the FDI in terms of

price misperception, rather than departure from first-order conditions. In this view,

the consumer properly optimizes, but using prices in the vicinity of the true ones.

Though narrower in its interpretation, it has the advantage of remaining meaningful

without requiring quasi-concavity. Let the Price Misperception Index (PMI) of D be

the infimum of all ε’s such that (3a) and (3b) holds for some continuous and strictly

monotone utility function v and some perceived price vectors (pc(p, x))(p,x)∈D used by

the consumer. Quasi-concavity of v is not required. Nonetheless, Proposition 2 tells

us that PMI(D) = FDI(D).

Of course, the PMI can be adapted to any subclass U of utility functions that are

continuous and strictly monotone, simply by requiring v to belong to U . By definition,

PMIU(D) = ε if, and only if, for all ε′ > ε, one can find price vectors (pc(p, x))(p,x)∈D

such that (7) holds and the modified demand data Dc = {(pc(p, x), x)|(p, x) ∈ D}
is rationalizable with respect to U . This has two important implications. First,

PMIU(D) = FDIU(D) for any class U of regular utility functions. Second, the method-

ology suggested in Proposition 9 applies to the PMI as well. Tests in the spirit of

Afriat’s inequalities have been recently proposed to check rationalizability with re-

spect to important classes of preferences that need not be convex (e.g., expected

utility without risk aversion among others, see Polisson, Quah and Renou (2019)).

These tests extend at once to accommodate price misperception (by adding consumer

price variables), which allows one to determine the PMI.

We conclude by considering the PMI in our application from Section 5.2. It turns
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out that our theoretical results, combined with our earlier empirical ones, provide a

very similar picture of the data. We already know that the PMI of the dataset, which

does not require quasi-concavity, is identical to the FDI of the dataset. Next consider

state independence. The astute reader would point out that state independence im-

plies risk aversion with convex preferences. Indeed, getting (x1 + x2)/2 in both states

must be preferred to the bundle (x1, x2). Could it be that risk aversion plays a critical

role in the data analysis? Notice first that there is no evidence of risk-loving behavior

in the data.34 That being said, one might entertain the possibility of intermediate risk

preferences. For instance, considering a parametric class of Gul (1991) preferences

capturing disappointment aversion, Halevy et al. (2018) finds in another dataset that

some subjects are best described via a negative parameter of disappointment aversion

(in which case they are elation loving). Such preferences are neither convex nor con-

cave. Thus we may be interested in the PMI of the class SI−, obtained by dropping

quasi-concavity from SI.

It turns out that PMISI− is in fact equal to FDISI . Indeed, we have:

(9) FDISI(D) = FDI(D̄) = PMI(D̄) = PMISI−(D),

where D̄ is the mirror-extended dataset from (8). The first two equalities are by

now familiar. The first was already applied in Section 5.2, and is established in the

Appendix. The second is a corollary of Proposition 2. As for the third equality,

observe that if demand data is rationalizable by a utility function in SI−, then its

mirror-extended version is rationalizable by a continuous and strictly increasing utility

function. Applying this fact to the modified demand data in the definition of the PMI,

it follows that PMI(D̄) ≤ PMISI−(D). The reverse inequality also holds, since if a

mirror-extended dataset is rationalizable by a continuous and strictly increasing u,

then the original data is rationalizable by a utility function v ∈ SI−, where v(x) =

u(x) if x2 ≤ x1 and v(x) = u(x2, x1) if x2 ≥ x1.

While dropping quasi-concavity makes no difference for state-independent utility

functions, it does make a difference for expected utility (one can use Example 2 of

Polisson et al. (2019) to show this). Letting EU comprise the class of continuous and

34A risk-loving consumer would pick a corner solution in each budget set she faces. More than 80%
of the subjects never pick a corner solution, more than 95% of the subjects pick a corner solution in
less than half the budget sets they face, and only 6 subjects (out of 1182) picked a corner solution
in more than 90% of the budget sets they faced.
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strictly increasing expected utility functions, PMIEU can easily be computed by linear

programming through a simple adjustment of Polisson et al. (2019)’s test, both for

the true data and the randomly-generated Bronars choices. In this case, however, we

can conclude even without computing it that the empirical CDF of PMIEU will have

to squeeze in the tight space between the red and green curves in Figure 3. To see

this, observe that:

(10) PMISI−(D) ≤ PMIEU(D) ≤ PMIEUr(D) = FDIEUr(D).

The first two inequalities follows from the fact that EU r ⊂ EU ⊂ SI−, while the

equality follows from the fact that the FDI and PMI must coincide for any class

of regular utility functions. Thus, combining (9) and (10), we see that FDISI =

PMISI− ≤ PMIEU ≤ FDIEUr , which reinforces our conclusion from Section 5.2 using

the PMI and without relying on quasi-concavity.

References

Afriat, S.N. (1967), The Construction of Utility Functions from Expenditure Data,

International Economic Review, 8(1), 67–77.

Afriat, S.N. (1973), On a System of Inequalities in Demand Analysis: An Exten-

sion of the Classical Method, International Economic Review, 14(2), 460–472.

Apesteguia, J. and M. Ballester (2015), A Measure of Rationality and Welfare,

Journal of Political Economy, 123(6), 1278–1310.

Becker, G. (1962), Irrational Behavior and Economic Theory, Journal of Political

Economy, 70, 1–13.

Bronars, S. (1987), The Power of Nonparametric Tests of Preference Maximization,

Econometrica, 55(3), 693–698.

Brown, D. and C. Calsamiglia (2007), The Nonparametric Approach to Applied

Welfare Analysis, Economic Theory, 37, 183–188.

Chiappori P.A. and J.C. Rochet (1987), Revealed Preferences and Differentiable

Demand, Econometrica, 55(3), 687–691.

Choi, S., S. Kariv, W. Müller, and D. Silverman (2014), Who Is (More)

Rational?, American Economic Review, 104, 1518–1550.

35



de Clippel, G., and K. Rozen (2018), Bounded Rationality and Limited Datasets,

mimeo.

Debreu, G. and T.C. Koopmans (1982), Additively Decomposed Quasiconvex

Functions, Mathematical Programming, 24(1), 1–38.

Dean, M. and D. Martin (2016), Measuring Rationality with the Minimum Cost

of Revealed Preference Violations, Review of Economics and Statistics, 98(3), 524–

534.

Diewert, E. (2012), Afriat’s Theorem and Some Extensions to Choice under Un-

certainty, Economic Journal, 122, 305–331.

Echenique, F., T. Imai and K. Saito (2019), Approximate Expected Utility

Rationalization, mimeo.

Echenique, F., S. Lee and M. Shum (2011), The Money Pump as a Measure of

Revealed Preference Violations, Journal of Political Economy, 119(6), 1201–1223.

Esponda, I. and D. Pouzo (2016), Berk-Nash Equilibrium: A Framework for

Modeling Agents with Misspecified Models, Econometrica, 84(3), 1093–1130.

Forges, F. and E. Minelli (2009), Afriat’s Theorem for General Budget Sets,

Journal of Economic Theory, 144, 135–145.

Gabaix, X. (2014), A Sparsity-Based Model of Bounded Rationality, The Quarterly

Journal of Economics, 129(4), 1661–1710.

Green, R. and S. Srivastava (1986), Expected Utility Maximization and Demand

Behavior, Journal of Economic Theory, 38, 313–323.

Gul, F. (1991), A Theory of Disappointment Aversion, Econometrica, 59(3), 667–

686.

Halevy, Y., D. Persitz and L. Zrill (2018), Parametric Recoverability of Pref-

erences, Journal of Political Economy, 126 (4), 1558–1593.

Ito, K. (2014), Do Consumers Respond to Marginal or Average Price? Evidence

from Nonlinear Electricity Pricing, American Economic Review, 104(2), 537–563.

Lee, P., and K-C. Wong (2005), Revealed preference and differentiable demand,

Economic Theory, 25, 855–870.

Matzkin, R. and M. Richter (1991), Testing Strictly Concave Rationality, Jour-

nal of Economic Theory, 53, 287–303.

36



Polisson, M., J. Quah and L. Renou (2019), Revealed Preferences over Risk

and Uncertainty, American Economic Review, forthcoming.

Rose, H. (1958), Consistency of Preference: The Two-Commodity Case, Review of

Economic Studies, 25, 124–125.

Rubinstein, A. and Y. Salant (2012), Eliciting Welfare Preferences from Behav-

ioral Data Sets, Review of Economic Studies, 79, 375–387.

Saez, E., J. Slemrod and S. Giertz (2012), The Elasticity of Taxable Income

with Respect to Marginal Tax Rates:A Critical Review, Journal of Economic Lit-

erature, 50(1), 3–50.

Steiner, J. and C. Stewart (2016), Perceiving Prospects Properly, American

Economic Review, 106, 1601–1631.

Varian, H.R. (1982), The Nonparametric Approach to Demand Analysis, Econo-

metrica, 50(4), 945–973.

Varian, H.R. (1990), Goodness-of-Fit in Optimizing Models, Journal of Economet-

rics, 46, 125–140.

Woodford, M. (2012), Prospect Theory as Efficient Perceptual Distortion, Amer-

ican Economic Review, 102(3), 41–46.

37



Appendix

Proof of Proposition 1 (Ordering satisfying the axioms from Section 2.1)

Let α = 1/x2, β = 1/y2, α
′ = 1/x′2 and β′ = 1/y′2. Then, Unit Invariance tells us

that

(x, y) � (x′, y′)⇔ ((x1/x2, 1), (y1/y2, 1)) � ((x′1/x
′
2, 1), (y′1/y

′
2, 1)) .

Using Measurement Invariance with α = y2/y1 and α′ = y′2/y
′
1, this means

(x, y) � (x′, y′)⇔
((

x1/x2
y1/y2

, 1

)
, (1, 1)

)
�
((

x′1/x
′
2

y′1/y
′
2

, 1

)
, (1, 1)

)
.

Regularity implies the existence of a function f : R2
++ × R2

++ → R such that (x, y) �
(x′, y′) if and only if f(x, y) ≥ f(x′, y′). Defining g(α) := f((α, 1), (1, 1)), we have

(x, y) � (x′, y′) if and only if g(x1/x2
y1/y2

) ≥ g(
x′1/x

′
2

y′1/y
′
2
). By Monotonicity, g strictly in-

creases for α ≥ 1. By Symmetry, it must be that g(α) = g(1/α) and thus g(α) =

g(max{α, 1/α}). As max{α, 1/α} ≥ 1 for all α, the result follows from inverting g.

Q.E.D.

We now establish a few lemmas that we will use to prove Proposition 2.

Lemma 1 Let A ⊂ RL
++ be a finite set of bundles. The following statements hold:

(a) There exists a price vector q ∈ RL
++ and a bundle x ∈ A such that q · x > q · y

for all y ∈ A \ {x};

(b) There exists a price vector q ∈ RL
++ such that q · x 6= q · y for all x, y ∈ A.

Proof. (a) Let x be the unique maximal element of A according to the following

lexicographic order: x has the largest quantity of good 1 among all bundles in A,

it has the largest quantity of good 2 among all the bundles singled out so far, etc.

Let q = (1, η, η2, . . . , ηL−1). We claim that (a) is satisfied using x and the price

vector q, provided that η > 0 is small enough. Indeed, for each alternative y ∈ A,

let ` be the first good for which y` 6= x`. Then, by definition of x, y` < x`. Then

q · (x− y) = η`−1[(x` − y`) +
∑L

k=`+1 η
k−`(xk − yk)]. Clearly, there exists a threshold

η∗ such that this expression is strictly positive for all η < η∗, which proves (a).

(b) Pick x and q as in (a). Call them x1 and q1. If q1 · y 6= q1 · z, for all pairs y, z of

distinct bundles in A \ {x1}, then we are done. Otherwise, we show that there exists

another price vector q2 that preserves expenditure comparisons under q1 when they
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are strict, but breaks some ties: (i) q1 · y > q1 · z ⇒ q2 · y > q2 · z for all y, z ∈ A, and

(ii) there exists y, z ∈ A such that q1 · y = q1 · z and q2 · y 6= q2 · z. Property (b) will

then follow at once by iterating this reasoning. Let B ⊂ A be a set of at least two

elements such that such that q1 · y = q1 · z for all y, z ∈ B. By applying (a), there

exists x2 ∈ B and p such that p · x2 > p · y for all y ∈ B \ {x2}. Let then q2 = q1 + ηp.

We check that (i) and (ii) are satisfied by picking some η > 0 small enough. For any

y, z ∈ A, q2 · (y − z) = q1 · (y − z) + ηp · (y − z). So there is a threshold η∗ such that

(i) holds for all η < η∗. By construction, q2 · x2 > q2 · y, for all y ∈ B other than x2

and so (ii) is satisfied too, as desired. Q.E.D.

Lemma 2 If D satisfies GARP, then for each (p, x) ∈ D there exists a sequence

of price vectors (pcn(p, x))n≥1 in RL
++ such that (a) pcn(p, x) → p as n → ∞, and (b)

Dn = {(pcn(p, x), x)|(p, x) ∈ D} satisfies SARP for all n ≥ 1.

Proof. Let q ∈ RL
++ be a fictitious price vector such that q · x 6= q · y for all bundles

x, y ∈ X = {x ∈ RL
+ | (p, x) ∈ D for some p ∈ RL

++} (see (b) in Lemma 1). For

each (p, x) ∈ D, consider a new price vector pcη(p, x) = ηq + (1 − η)p, where η > 0

is small enough that pcη(p, x) · x′ > pcη(p, x) · x, for all (p, x) and (p′, x′) in D with

p · x′ > p · x. We now check that Dη = {(pcη(p, x), x)|(p, x) ∈ D} satisfies SARP.

Suppose there is a sequence {(pk, xk)|1 ≤ k ≤ K} in D such that xk+1 6= xk and

pcη(p
k, xk) · xk ≥ pcη(p

k, xk) · xk+1 for all 1 ≤ k ≤ K (with the convention K + 1 = 1).

First, observe pk · xk ≥ pk · xk+1 for all 1 ≤ k ≤ K, by definition of pcη. Now,

suppose that pk · xk = pk · xk+1 for all 1 ≤ k ≤ K. Then q · xk ≥ q · xk+1, for all

1 ≤ k ≤ K. Furthermore, the inequalities must be strict, by definition of q. We get

q · x1 > q · x2 > · · · > q · xK > q · x1, a contradiction. Thus the existence of such

a sequence {(pk, xk)|1 ≤ k ≤ K} means that D′ violates GARP, a contradiction. It

must be that Dη satisfies SARP, which concludes the proof of this lemma. Q.E.D.

Say that D with ε-rationalizable with strict inequalities if Definition 1 holds with

strict inequalities in (2) from the paper, instead of weak.

Lemma 3 ε-rationalizability is equivalent to ε-rationalizability with strict inequali-

ties.

Proof. Sufficiency is obvious. For necessity, suppose that the regular utility function

u ε-rationalizes D. Definition 1 specifies a vector g(p, x) ∈ ∂u(x) for each (p, x) ∈ D.

Hence x is u-maximal in the fictitious budget set arising when taking g(p, x) as a
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price vector. The fictitious dataset {(g(p, x), x) | (p, x) ∈ D} then satisfies SARP. The

modified dataset D′ = {(αp + (1 − α)g(p, x) | (p, x) ∈ D} also satisfies SARP for all

α > 0 small enough. Indeed, should α be small enough, (αp+(1−α)g(p, x))·(x′−x) > 0

for all (p, x) ∈ D and x′ ∈ X \{x} such that g(p, x) · (x′−x) > 0 (that is, the modified

dataset adds no new revealed preference comparison). There is thus a regular utility

function v that rationalizes D′, which means that

ĝ(p, x) = αp+ (1− α)g(p, x) ∈ ∂v(x),

for all (p, x) ∈ D. Hence, for any pair `, `′ of goods, we have:

(1− ε) p`
p`′
ĝ`′(p, x) = (1− ε)[αp` + (1− α)g`′(p, x)

p`
p`′

]

≤ (1− ε)αp` + (1− α)g`(p, x) = ĝ`(p, x)− αεp` < ĝ`(p, x),

where the weak inequality follows from the definition of g. This proves that v ε-

rationalizes D with strict inequalities, as desired. Q.E.D.

Proof of Proposition 2 (ε-Rationalizability and misperceived prices)

(Necessity) See discussion in the paragraph after the statement of the proposition,

which relied on Lemma 3 proved above.

(Sufficiency) For each (p, x) ∈ D, let pc(p, x) be a price vector satisfying (3b) such

that (3a) holds. Since v rationalizes the demand data D′ = {(pc(p, x), x)|(p, x) ∈ D},
we know D′ satisfies GARP. Using Lemma 2, we can adjust price vectors appear-

ing in D′ a little bit to satisfy SARP, while still satisfying (3b). By Lee and Wong

(2005), there exists a continuous, strictly concave and strictly monotone utility func-

tion rationalizing this modified demand data, which means that D is ε-rationalizable.

Q.E.D.

Lemma 4 (Linearity of the superdifferential) Take f1, . . . , fL : RL
++ → (−∞,∞)

strictly concave and (β1, . . . , βL) ∈ RL
++. Then

(i) ∂(
∑L

`=1 β`f`) =
∑L

`=1 β`∂f`, where the RHS is given by pointwise addition.

(ii) Suppose that for all ` there is f̂` : R+ → R such that f`(x) = f̂`(x`) for all x.

Then g ∈ ∂(
∑L

`=1 f`)(x) if and only if (β1g1, . . . , βLgL) ∈ ∂(
∑L

`=1 β`f`)(x).
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Proof. (i) A vector g is a supergradient of f` at x if f`(x) ≥ f`(x
′) + (x′ − x) · g for

all x′. Multiplying by β` > 0, a first observation is that g is a supergradient of f`

at x if and only β`g is a supergradient of β`f` at x; that is, ∂(β`f`)(x) = β`∂f`(x).

Moreover, since g is a subgradient of a convex function h at x if h(x′) ≥ h(x) +

(x′ − x) · g for all x′, a second observation is that g is a supergradient of −h if

and only if it is a subgradient of h. Following Rockafeller (1970), each −β`f` may be

extended to a proper convex function on RL. As the effective domains of the functions

coincide, ∂(−
∑L

`=1 β`f`) =
∑L

`=1 ∂(−β`f`) by Rockafeller’s Theorem 23.8. The first

two observations then complete the proof.

(ii) The desired result follows from (i) and the following claim, which we will prove:

under the conditions stated in (ii), we have g ∈ ∂(
∑L

`=1 β`f`)(x) if and only if for every

`, the vector which has `-th component equal to g` and is zero otherwise, belongs to

β`∂f`(x). To prove this claim, first observe that by (i) above, g ∈ ∂(
∑L

`=1 β`f`)(x)

if and only if g =
∑L

`=1 ĝ
`, where ĝ` ∈ ∂(β`f`)(x). Since ĝ` by definition satisfies

β`f`(x) ≥ β`f`(x
′) + (x′− x) · ĝ` for all x′, including for all x′ with x` = x′` but x 6= x′,

it must be that ĝ``′ = 0 for all `′ 6= `. Q.E.D.

Proof of Proposition 3 (ε-Rationalizability and additively separable utility)

We begin with some preliminary definitions. For each `, let ū` : RL
+ → R be defined

by ū`(x) = u`(x`). Given any β : D → R++, let Ū(y|x, β) =
∑L

`=1 β`(p, x)ū`(y) be the

perturbed additive utility function. Let Ū(y) =
∑L

`=1 ū`(y).

We now show necessity. Given regularity, note that condition (4a) holds for x ∈
RL

+ and some β : D → R++ if and only if the first-order optimality condition p ∈
∂Ū(x|x, β) holds for all (p, x) ∈ D. By Lemma 4, this holds if and only if for some

g ∈ ∂Ū(x), p` = β`g` for all `. Thus optimality for the additive utility function in (4a)

holds by setting β`(p, x) = p`/g`, where g ∈ ∂Ū(x) is chosen to satisfy the defining

bounds of ε-Rationalizability using Ū(x) at (p, x). Then (4b) follows.

For sufficiency, (4a) implies that for each (p, x) ∈ D, the optimality condition

p ∈ ∂Ū(x|x, β) holds for all (p, x) ∈ D. By Lemma 4, this holds if and only if for some

g ∈ ∂Ū(x), p` = β`g` for all `. The desired result then follows from (4b). Q.E.D.

Proof of Proposition 4 (ε-rationalizability and acyclic satisfiability)

It remains to prove sufficiency. By acyclic satisfiability, there is a strict ordering

� over X with the feature that for all (p, x) ∈ D, there is g(p, x) ∈ Cε(p, x) such

that x � x′ for all x′ ∈ Γ(x, g(p, x)). We now construct an auxiliary demand data
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D′ = (g(p, x), x)(p,x)∈D where the vector g(p, x), which is strictly positive, is taken to

be the price vector when x is chosen. This data satisfies SARP, since any cycle in

the revealed preferences from D′ would imply a cycle in �, a contradiction. Thus by

Lee and Wong (2005) there exists a continuous, strictly monotone and strictly quasi-

concave (i.e., regular) function u : RL
+ → R that rationalizes D′ in the classic sense.

In particular, for any (g(p, x), x) ∈ D′, optimality of the demands requires g(p, x) ∈
∂u(x). Since g(p, x) ∈ Cε(p, x), we know by construction that for all (p, x) ∈ D,

p`
p`′

(1− ε) ≤ g`(p, x)

g`′(p, x)
≤ p`
p`′

(
1

1− ε

)
.

Hence the original demand data D is ε-rationalizable. Q.E.D.

Proof of Proposition 5 (FDI with Two Commodities and Two Observations)

Proof. Clearly, the FDI is zero in the absence of SARP violation. Suppose instead that

there is a SARP violation (implying x 6= x′), and that δ(p, o(x, x′)) ≤ δ(p′, o(x, x′))

(a similar argument applies if the opposite inequality holds). Following the reasoning

from Section 3, it is easy to check that the demand data is ε-rationalizable if and only

if there exists (py, y) ∈ {(p, x), (p′, x′)} and g ∈ Cε(py, y) such that g ·y′ > g ·y, where y′

is the element in {x, x′} distinct from y. (In words, one of the two budget lines can be

adjusted within the limits imposed by ε in a way that eliminates the SARP violation.)

First, we check that the demand data is ε-rationalizable for all ε > f−1(δ(p, o(x, x′))),

where f(x) := 1/(1−x) for all x. Notice that o(x, x′) ·x = o(x, x′) ·x′, by construction,

and hence one can find a vector g(p, x) such that g(p, x)·x′ > g(p, x)·x and g(p, x) close

enough to o(x, x′) that ε ≥ f−1(δ(p, g(p, x))), or 1
1−ε ≥ δ(p, g(p, x)). Second, consider

an ε ≤ f−1(δ(p, o(x, x′))). It is not difficult then to check that g · x′ ≤ g · x and

g′ · x ≤ v′ · x′, for all g, g′ ∈ R2
++ such that δ(g, p) ≤ 1

1−ε and δ(g′, p′) ≤ 1
1−ε . Hence D

is not ε-rationalizable. The above arguments show that the FDI is f−1(δ(p, o(x, x′))),

from which the result follows. Q.E.D.

Proof of Proposition 6 (FDI with Two Commodities)

Proof. Clearly, if a demand data is ε-rationalizable, then so is any pair of observations

in it. Hence, the FDI of any demand data if larger or equal than the FDI associated

to any pair of observations. As for the converse, we show that the demand data

is ε-rationalizable, for any ε strictly larger than the FDI’s associated to all pairs of

observations.
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By Proposition 4, it is sufficient to prove that Rε(D) is acyclically satisfiable. We

do that by induction: for each subset X ′ of remaining elements in X, there is an

element x ∈ X ′ and v ∈ Cε(p, x) such that Γ(x′, v) ∩X ′ = ∅.
Fix the set X ′ ⊆ X of remaining elements in X. Let X ′′ be the subset of elements y

in X ′ such that y cannot be obtained as a convex combination of elements in X ′ \{y}.
If X ′′ is a singleton, say X ′′ = {y}, then z ≥ y for all z ∈ X ′. Then Γ(y, v) ∩X ′ = ∅,
for all v ∈ R2

++, and in particular for any v ∈ Cε(p, y), whatever p such that (p, y) ∈ D.

Next, suppose that X ′′ contains two or more elements. Let’s enumerate X ′′: X ′′ =

{x1, x2, . . . , xK} with the property that xj1 < xk1 for all j < k (in which case we also

have xj2 > xk2). If there is x ∈ X ′′ such that p · x < p · y for all y ∈ X ′ and all p

such that (p, x) ∈ D, then Γ(x, p) ∩ X ′ = ∅, and we are done since p ∈ Cε(p, x). So

let’s assume instead that for all k there exists p and j 6= k such that (p, xk) ∈ D and

p · xj ≤ p · xk.
By the structure of X ′′, given any such p, either all j’s with this property are larger

than k, or all such j’s are smaller than k. Of course, when varying the p’s such that

(p, xk) ∈ D, it may be possible to find larger-than-k j’s associated to some p’s, and

smaller-than-k j’s associated to others. For each k, let f(k) be the letter L (resp. R)

if we find only smaller-than-k (resp. larger-than-k) j’s when considering the various

p’s such that (p, x) ∈ D. Thus f indicates the direction in which Samuelson revealed

preferences can occur. Finally, f(k) = LR if there exists both p and p′ such that

(p, xk) ∈ D, (p′, xk) ∈ D, p · xj ≤ p · xk for j < k, and p′ · xj ≤ p′ · xk for k < j.

Suppose there exists j such that f(xj) = R and f(xj+1) = L. Let pj be the

price vector with the smallest price ratio pj1/p
j
2 among those such that (pj, xj) ∈ D.

Let pj+1 be the price vector with the largest price ratio pj+1
1 /pj+1

2 among those such

that (pj+1, xj+1) ∈ D. Since the FDI of {(pj, xj), (pj+1, xj+1)} is stricly less than ε,

it must be that δ(o(xj, xj+1), pj) < 1
1−ε or δ(o(xj, xj+1), pj+1) < 1

1−ε . Suppose the

latter holds (a similar reasoning holds in the other case), then consider a vector v

that is very close to o(xj, xj+1) but with a slightly smaller first component (making

the line orthogonal to it slightly flatter). By construction, Γ(xj+1, v) = ∅ and v ∈
Cε(p, x

j+1), as δ(pj+1, v) will remain strictly smaller than 1
1−ε when v is close enough

to o(xj, xj+1). That same vector v also belongs to Cε(p
′, xj+1) for all p′ such that

(p′, x) ∈ D and p′1/p
′
2 ≥ o1(x

j, xj+1)/o2(x
j, xj+1) (the line orthogonal to p′ is steeper

than the line orthogonal to o(x, x′)). Finally, for vectors p′ such that (p′, x) ∈ D
and p′1/p

′
2 < o1(x

j, xj+1)/o2(x
j, xj+1), Γ(xj+1, p′) = ∅ (and, trivially, p′ ∈ Cε(p′, xj+1))
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since f(xj+1) = L.

Now notice that f(x1) = R and f(xK) = L. If there is no j such that f(xj) = R

and f(xj+1) = L, then there must be a sequence of indices {j, j + 1, . . . , k} such that

f(j) = R, f(k) = L and f(i) = LR for all j < i < k. The reasoning from the previous

paragraph can be applied to j and j + 1. The only issue that may arise is that the

price vector q with the smallest price ratio q1/q2 among those such that (q, xj+1) ∈ D
does not admit a v ∈ Cε(q, x

j+1) such that Γ(xj+1, v) = ∅. (This wasn’t an issue

previvously, when f(j + 1) = L, because we could just pick q itself and be sure that

Γ(xj+1, q) = ∅. Should f(j + 1) = LR instead, Γ(xj+1, q) 6= ∅ and we cannot be

sure that ε provides enough leeway to twist the line orthogonal to q in a way that

makes the Γ set empty.) Let q′1/q
′
2 be the price ratio in between q1/q2 and pj+1

1 /pj+1
2

such that δ(q, q′) = 1
1−ε . If q′ · xj+1 < q′ · xi for all i > j + 1, then we are done

because Γ(xj+1, v) = ∅ and v ∈ Cε(q, xj+1), for some v close enough to q′ (obtained

by decreasing a little bit the first component).

Assume instead that q′ · xj+1 ≤ q′ · xi for some i > j + 1 (hence in particular for

i = j + 2). Let pj+2 be the price vector with the largest price ratio pj+2
1 /pj+2

2 among

those such that (pj+2, xj+2) ∈ D. Since the FDI of {(q, xj+1), (pj+2, xj+2)} is stricly

less than ε and δ(o(xj+1, xj+2), q) ≥ 1
1−ε , it must be that δ(o(xj+1, xj+2), pj+2) < 1

1−ε .

Now the same reasoning as in the above paragraph applies. We would be done if the

new q′ that arise from it has the property that q′ · xj+2 < q′ · xi for i > j + 2. If not,

then we iterate the construction. Remember though that f(xK) = L, and thus, even

though the q′ arising in each step may have failed the property until now, it will have

to pass it in the last step. Q.E.D.

Proof of Proposition 7 (Relation to CCEI)

Proof. Fix ε ≥ 0, and suppose FDI(D) = ε. By definition of ε-rationalizability, for

every (p, x) ∈ D, there is g(p, x) ∈ Cε(p, x) such that the auxiliary demand data D′ =
(g(p, x), x)(p,x)∈D is rationalizable (in the classic sense) by a regular utility function u.

We will use u to show that Afriat’s CCEI for the original data D is at most 1 − ε,
which will imply the desired result.

Take any (p, x) ∈ D, and consider the indifference curve of u passing through x.

As illustrated in Figure 6, rationalizability of D′ means the hyperplane determined by

the vector g(p, x) (and going through x) separates the upper contour set of x from

those bundles below the hyperplane. We claim that p·y
p·x ≥ 1−ε for any bundle y above
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Figure 6: Construction for the proof of Proposition 7.

this hyperplane, i.e., any y such that g(p, x) · y ≥ g(p, x) · x. This holds trivially if

p = g(p, x), so suppose they are different and consider the optimization problem

min
{y | g(p,x)·y≥g(p,x)·x}

p · y.

The constraint must bind at the optimum, else the objective could be further reduced.

Also, as seen in Figure 6, linearity of the objective and constraint imply the solution

must occur at a bundle y with only one positive component: that is, there is ` such

that y` = g(p,x)·x
g`(p,x)

and yi = 0 for all i 6= `. Using the fact that g(p, x) ∈ Cε(p, x), the

minimal expenditure satisfies:

p · y = p`y` = p`

L∑
i=1

gi(p, x)

g`(p, x)
xi ≥ (1− ε)p`

L∑
i=1

pi
p`
xi = (1− ε)p · x.

By quasi-concavity of u, any bundle z with u(z) ≥ u(x) must satisfy g(p, x) · z ≥
g(p, x) · x. Hence, the above inequality shows that if (1 − ε)-percent of income is

retained, the choice x from the original budget set is strictly preferred under u to all

bundles in the remaining budget set. To finish the proof that the CCEI is at most

1 − ε, observe that any cycle in �A,1−ε would imply a cycle in the corresponding

utilities generated by u, which is impossible. Q.E.D.
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Proposition 11 (FDI with respect to SI for L = 2) Let D be some portfolio

demand data with two equally-likely states. Then FDISI(D) = FDI(D̄), where D̄ is

defined in (8).

Proof. As explained in the text, a utility function is state-independent if, and only if,

it is symmetric around the 45o line, as the two states are equally likely. FDI(D) ≤
FDISI(D) follows from the fact that a symmetric utility function rationalizes (x2, x1)

given the price vector (p2, p1) if it rationalizes x given the price vector p.

For the converse inequality, fix ε > FDI(D). The proof will be complete after

showing that D is ε-rationalizable with respect to SI. Since D is ε-rationalizable,

Rε(D) is acyclically satisfiable. There must exist a bundle x among those appearing in

D with the following property: for all p such that (p, x) ∈ D, there exists g ∈ Cε(p, x)

such that g · x′ > g · x for all bundles x′ 6= x appearing in D. A few observations

are worth making: (i) we can assume without loss of generality that x2 ≤ x1, as one

can take the symmetric bundle otherwise; (ii) the vector g associated to any (p, x)

will have g1 < g2 if x2 < x1, as otherwise g · (x2, x1) ≤ g · x; and (iii) the vector g

associated to any (p, x) can be chosen so that v1 ≤ v2 if x1 = x2, since (g2, g1) has

the same property as g (D is symmetric). Of course, we can eliminate (x2, x1) in the

next step of the enumeration procedure. We can now iterate. By acyclic satisfiability,

there must exist y among the remaining bundles that appear in D with the following

property: for all q such that (q, y) ∈ D, there exists g ∈ Cε(q, y) such that g · y′ > g · y
for all bundles y′ appearing in D that are different from x, y, and (x2, x1). Similar

observations as above apply: we can assume without loss of generality that y2 ≤ y1,

the g associated to each (q, y) is such that g1 < g2 (resp., g1 ≤ g2) if y2 < y1 (resp.,

y1 = y2), and we can eliminate (y2, y1) in the next step of the enumeration. Iterating

like this, we identify for each (p, x) ∈ D with x2 ≤ x1 a strictly positive vector g(p, x)

such that g1(p, x) ≤ g2(p, x) (the inequality being strict if x2 < x1) and the fictitious

demand data

D′ = {(g(p, x), x) | (p, x) ∈ D, x2 ≤ x1}

satisfies SARP. By Lee and Wong (2005), let u be a continuous, strictly monotone

and strictly quasi-concave utility function that rationalizes D′.
Let η be such that 1 − η > g1(p, x)/g2(p, x), for all (p, x) ∈ D such that x2 ≤ x1

and g1(p, x) 6= g2(p, x). For each income m, let k(m) be the (unique, by strict quasi-

concavity) bundle that is u-maximal in the budget set {y ∈ R2
+ | y2 ≤ y1, (1− η)y1 +
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y2 ≤ m}. As m varies, the function k defines a continuous, monotone path of bundles

(an ‘income-offer curve’). Let f : R+ → R+ describe this path: for each x1, f(x1) is

the unique quantity of good 2 for which one can find m such that k(m) = (x1, f(x1)).

It is easy to check f is well-defined, continuous and strictly increasing.

Let g : R− → R+ be defined by g(α) = −α − ηln(1 − α). Notice that g(0) = 0,

g′(0) = −1 + η, g′(α) ∈ (−1,−1 + η) for all α < 0, and g is strictly convex. For each

bundle x below the diagonal (x2 ≤ x1) and above the income offer curve defined by

k (x2 ≥ f(x1)), let h(x) be the unique bundle on that curve such that the translated

graph of g, starting at h(x) instead of (0, 0), goes through x, that is, such that x2 =

h2(x) + g(x1 − h1(x)). To see that this is well-defined, consider the function that

associates to any quantity β ≥ x1 of good 1 the quantity f(β) + g(x1 − β). This

function equals f(x1) ≤ x2 at β = x1 and is strictly increasing. Thus there will be a

unique β giving a value x2.

We are now ready to define a new utility function for bundles below the diagonal:

(11) v(x) =

u(x) if x2 ≤ f(x1)

u(h(x)) if x2 ≥ f(x1),

for each bundle x such that x2 ≤ x1. While it is not difficult to check analytically

that v is continuous, strictly monotone and strictly quasi-concave, it is perhaps best

to provide a graphical explanation of what the indifference curves and upper contour

sets look like for bundles below the diagonal, to understand why these properties hold.

Let’s focus on an indifference curve going through a bundle x such that x2 ≤ f(x1) (a

similar reasoning holds for the opposite inequality). Hence v(x) = u(x). For bundles

y below the income offer curve define by k (y2 ≤ f(y1)), v(y) = u(y), and hence the

indifference curve of v coincides with that of u. Let y∗ be the bundle at which the

u indifference curve going through x crosses the income offer curve. For bundles y

above the income offer curve, v(y) = u(h(y)). To be indifferent to x according to v, it

must thus be that h(y) = y∗. Thus the v indifference curve now follows the graph of g

translated to start at y∗ instead of (0, 0). Notice that, by definition of y∗, (1−η, 1) is a

quasi-gradient of u at y∗. Since the derivative of g at 0 is −1+η, strict quasi-concavity

is preserved. To summarize, indifference curves of v are simply obtained by ‘pasting’

at points along the income offer curve defined by k indifference curves associated to

u below that curve and the translated graph of f above.
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By construction, any g ∈ ∂v(x) at a bundle x with x2 < x1 has g1/g2 < 1 (as u

has that property if x2 < f(x1) and g′(α) ∈ (−1,−1 + η] for all α ≤ 0). Hence the

extension of v by symmetry around the 45o line, v(x) = v(x2, x1) for all x such that

x2 ≥ x1, remains strictly quasi-concave. Of course, strict monotonicity and continuity

are preserved too. Consider now (p, x) ∈ D such that x2 ≤ x1 and g1(p, x) 6= g2(p, x)

(which is always the case if x2 < x1). If y is the unique maximum of v given the

fictitious prices g(p, x) and the income g(p, x) · x, then g(p, x) belongs to ∂v(y). Then

it must be that y2 ≤ f(x1), as otherwise ∂v(y) contains only rescaling of the gradient

of v, which does not match g(p, x) (remember that 1− η > g1(p,x)
g2(p,x)

, by definition of η).

Either y2 < f(y1) and g(p, x) ∈ ∂v(y) = ∂u(y), or y2 = f(y1) and any quasi-gradient

ĝ ∈ ∂v(y) such that 1 − η ≥ ĝ1/ĝ2, and thus in particular g(p, x), belongs to ∂u(y).

Thus y is the u-maximal bundle given the fictitious prices g(p, x) and the income

g(p, x) · x, that is, y = x.

Finally, let (p, x) ∈ D such that x1 = x2. If g1(p, x) = g2(p, x), then clearly

the v-maximal bundle in the budget set with fictitious prices g(p, x) and the income

g(p, x) ·x is x, by symmetry and strict quasi-concavity of v. If g1(p, x) 6= g2(p, x), then

the v indifference curve going through x coincides with that of u below the diagonal.

Indeed, x is on the income offer curve defined by k, since 1− η > ĝ1/ĝ2 for all quasi-

gradient at all bundles y 6= x on the u-indifference curve going through x (indeed,

g(p, x) is a subgradient of u at x, 1− η > g1(p, x)/g2(p, x) by definition of η, and u is

strictly quasi-concave). Clearly, g(p, x) thus belongs to ∂v(x), and x is the v-optimal

in the budget set with fictitious prices g(p, x) and the income g(p, x) · x.

We have thus proved that v rationalizes D′, which implies that it ε-rationalizes D
with respect to SI, and a fortiori also D. Q.E.D.
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