
 
 

 

 Bounded Rationality and Limited Datasets∗ 
 

Bravo Working Paper # 2020-008 

 

Geoffroy de Clippel† and Kareen Rozen‡ 

 

 

Abstract: Bounded rationality theories are typically characterized over exhaustive data sets. We 
develop a methodology to understand the empirical content of such theories with limited data, 
adapting the classic, revealed-preference approach to new forms of revealed information. We apply 
our approach to an array of theories, illustrating its versatility. We identify theories and datasets 
testable in the same elegant way as Rationality, and theories and datasets where testing is more 
challenging. We show that previous attempts to test consistency of limited data with bounded 
rationality theories are subject to a conceptual pitfall that can yield false positives and empty out-
of-sample predictions. 
 

 

 
____________________________________________ 
     ∗This work greatly benefitted from suggestions by Eddie Dekel, K_r Eliaz, Yusufcan Masatlioglu, Larry 
Samuelson, and several seminar audiences. First version 2012. 
     †Department of Economics. Email address: declippel@brown.edu. 
     ‡Department of Economics. Email address: kareen rozen@brown.edu. Rozen thanks the NSF for financial 
support in early stages of this work (grant SES-0919955). 



BOUNDED RATIONALITY AND LIMITED DATASETS∗

Geoffroy de Clippel† and Kareen Rozen‡

December 2018

Abstract

Bounded rationality theories are typically characterized over exhaustive data sets.
We develop a methodology to understand the empirical content of such theories with
limited data, adapting the classic, revealed-preference approach to new forms of re-
vealed information. We apply our approach to an array of theories, illustrating its
versatility. We identify theories and datasets testable in the same elegant way as
Rationality, and theories and datasets where testing is more challenging. We show
that previous attempts to test consistency of limited data with bounded rationality
theories are subject to a conceptual pitfall that can yield false positives and empty
out-of-sample predictions.

∗This work greatly benefitted from suggestions by Eddie Dekel, Kfir Eliaz, Yusufcan Masatlioglu,
Larry Samuelson, and several seminar audiences. First version 2012.
†Department of Economics. Email address: declippel@brown.edu.
‡Department of Economics. Email address: kareen rozen@brown.edu. Rozen thanks the NSF for

financial support in early stages of this work (grant SES-0919955).



1. Introduction

The recent literature has proposed insightful and plausible choice procedures in

response to mounting evidence against rational choice. Great progress has been made

to understand the set of choice functions that these new theories generate, and which

characteristics of the Decision Maker (DM) can be identified. Though theoretically

insightful, such results do not apply to typical situations, in which only some choices

are observed.1 Indeed, one important purpose of a theory is the ability to make out-

of-sample predictions in such cases. For the theory of Rationality, the problems of

testable implications for limited data, out-of-sample prediction, and identification are

well understood.2 We explore how these ideas can be brought into the discourse on

bounded rationality.

A DM’s observed choices are consistent with a theory if they can be extended

to a complete choice function arising under the theory. Previous attempts to study

bounded rationality theories under limited data focus on explaining only observed

choices, without considering out-of-sample implications.3 Such an approach may at

first seem natural, since there is no need to worry about out-of-sample problems when

testing for Rationality in its standard description. Indeed, if one can find a preference

ordering for which observed choices are maximal, then choices may be defined for out-

of-sample problems simply by maximizing that same preference. We show that such

extensibility need not hold in general, resulting in a problem of false positives: a

DM’s choices may be incorrectly attributed to a theory for which no extension of

those choices can arise. A first contribution of this paper is thus to clarify what the

right definition of consistency is, effectively moving the goalpost for consistency tests

to the proper location.

We then explore how one might capture the empirical content of a wide range of

choice theories. For this, we build on the classic, revealed-preference approach for

testing Rationality. That insightful approach, culminating in the Strong Axiom of

Revealed Preference (SARP), can be decomposed as follows. First, infer key prefer-

ence comparisons under the presumption that the DM is rational. Next, observe that

1In empirical settings, the modeler cannot control the choice problems faced by individuals. In
experimental settings, generating a complete dataset requires an overwhelming number of decisions
by subjects: 26 choice problems when the space of alternatives contains 5 elements, 1,013 choice
problems when it contains 10 elements, and 32,752 choice problems when it contains 15 elements.

2 See Samuelson (1948), Houthaker (1950), Richter (1966), Afriat (1967), and Varian (1982).
3These include Manzini and Mariotti (2007), Manzini and Mariotti (2012) and Tyson (2013).
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transitivity of the DM’s preference requires these comparisons to be acyclic. Finally,

prove that acyclicity is not just necessary, but also sufficient for consistency, to ensure

that all key preference comparisons have been inferred from the data.

Moving on to recent preference-based theories of bounded rationality, a first ob-

servation we make through numerous illustrations is that choices can reveal more

elaborate preference restrictions than the simple preference comparisons (like a is

better than b) which are revealed under Rationality. Suppose the DM picks a from

the choice problem {a, b, d, e} and picks b from {a, b}. Under Masatlioglu, Nakajima

and Ozbay (2012)’s theory of Limited Attention, for instance, such a choice pattern

reveals that the DM prefers a to at least one of the options d or e, but does not tell

us which one(s).

Importantly, we observe that the emergence of such new forms of revealed prefer-

ence should not prevent us from pursuing the classic testing approach, which can be

adapted as follows: first, infer key preference restrictions under the presumption that

the theory holds; next note that consistency with the theory requires these restric-

tions to be acyclically satisfiable, meaning that there exists a strict acyclic relation

satisfying them; and finally, check that all key restrictions have been identified, by

proving that acyclic satisfiability is not only necessary but also sufficient. Acyclic

satisfiability is the natural extension of SARP to accommodate restrictions that may

be more complex than the simple comparisons revealed under Rationality.

Performing these steps is always insightful, and improves our understanding of

the theory at hand. Yet one may wonder about how acyclic satisfiability itself can be

checked in applications. This is straightforward when restrictions are simple compar-

isons (as in SARP), since such restrictions tell us precisely which incomplete relation

must be acyclic. Checking acyclic satisfiability of more complex restrictions, however,

entails some guesswork: one must find an acyclic relation satisfying them. Nonethe-

less, we show that one tests acyclic satisfiability in the same simple and elegant way

as one tests SARP, when the restrictions all pertain to lower-contour sets (LCS), as

in the example above (note the lower-contour set of a is required to contain d or e),

or all pertain to upper-contour sets (UCS).

To understand why, remember how we test whether some (possibly incomplete)

relation P is acyclic. Clearly, acyclicity implies that one can find at least one option,

call it x1, that is not P -superior to any alternative. Moreover, if there is no cycle

among elements of X \ {x1}, there must exist at least one option, call it x2, that is
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not P -superior to any alternative in X \ {x1}. Repeating this process, we see that

acyclicity implies that one can enumerate all the options in such a way that each xk

is not P -superior to any xj with j > k. Clearly, finding such an enumeration is also

sufficient for acyclicity. The procedure is simple, and its outcome definitive, because

success is independent of the way one makes a selection when multiple candidates for

some xk exist. We show in Proposition 2 that the same process applies when checking

acyclic satisfiability for LCS restrictions on a relation P .4 In a nutshell, the reason

is this: the key property in each step is merely the ability to find an element whose

lower contour set is not required to contain some remaining element(s); this does not

require knowing precisely which elements belong to that lower-contour set.

Perhaps surprisingly, we illustrate that a variety of theories beyond Rationality

can be tested in this manner, because their empirical content amounts to acyclic

satisfiability of all LCS (or all UCS) restrictions. We also show that there are several

bounded rationality theories which generate more complicated restrictions. How can

we rule out the possibility that, by thinking some more, those restrictions would be

simplifiable into LCS (UCS) ones? And, even if the restrictions cannot be simplified

further, is there perhaps a cleverer procedure which makes testing simple?

Our work also sheds light on these questions. We show in Proposition 3 that,

going beyond the LCS (or UCS) class, checking acyclic satisfiability is generally NP-

hard; and we apply this result several times to identify theories that are NP-hard

to test. Even in these cases, the characterization of the theory in terms of acyclic

satisfiability yields insights and makes the theory much easier to test than through

a brute force approach. Moreover, understanding the empirical content in terms of

acyclic satisfiability can also help pinpoint classes of datasets that are easy to test,

namely those where the corresponding restrictions fall into the LCS (or UCS) class.

For instance, testing is easy for some theories if the dataset includes all binary choice

sets. Indeed, being NP-hard to test means that there exist datasets where testing

is quite difficult, but does not mean that testing is always difficult. It does imply,

however, that if one could find a test of the theory that is easy for all datasets,

then one would overturn the widely held belief, first conjectured by John Nash in

the context of cryptography,5 that no algorithm solves every instance of an NP-hard

4Acyclic satisfiability with UCS restrictions is checked analogously, looking in each step for options
whose upper-contour sets are unrestricted.

5See Nash (1955), a recently declassified letter to the NSA.
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problem in polynomial time.

While so far we have only discussed restrictions pertaining to preferences, we de-

velop applications that illustrate the wide scope of our methodology. Restrictions

may pertain to orderings other than preference (e.g. salience or priority), and to re-

lations that may be incomplete (as in problems of just-noticeable differences). They

can capture satisficing instead of maximizing behavior. The methodology applies to

settings where X is not finite (e.g. consumer theory). It can apply when prefer-

ences are weak, when the choice data is stochastic, or when choices are observed only

coarsely. Beyond bounded rationality, it even provides useful insight in some classic

problems of interactive decision making with rational agents. Several of these appli-

cations are carried out in this paper and the Online Appendix; the rest are carried

out in subsequent works, some authored by ourselves and some by others.

The versatility of our approach, however, does not mean that there is no limitation.

For each application provided, seeing the theory’s empirical content through the lens

of acyclic satisfiability, and using Propositions 2 or 3 to see whether testing can be

done tractably as in SARP, takes a bit of thought.6 Of course, while many theories

(explicitly or implicitly) involve a relation to examine, it is also possible for a theory

to have a sufficiently different structure that capturing its empirical content through

acyclic satisfiability is unfruitful.

This paper is organized as follows. We set up the framework in Section 2. We

develop the appropriate notion of consistency for limited datasets in Section 3, and

identify the issue with prior approaches. In Section 4, we build some insight for the

methodology by using Limited Attention as a first example. In Section 5, we formalize

restrictions and acyclic satisfiability, show that the same process to test SARP applies

more broadly when all restrictions are LCS (or UCS), and that testing is generally

NP-hard otherwise. We discuss a variety of applications in Section 6.

2. Framework

Consider a finite set X of alternatives. A choice problem is a nonempty subset

of X and represents those alternatives that are feasible. The set of all conceivable

6This is not a feature unique to our work or to choice theory. For instance, neither the revelation
principle in mechanism design, nor recursive techniques in repeated games, immediately yield answers
in applications. In all these cases, the ideas require further work to bear fruit. See Myerson (1979)
and Abreu, Pearce and Stacchetti (1990), respectively.
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choice problems is denoted P(X). A choice function c : P(X) → X associates an

element c(S) ∈ S to each choice problem S.

A theory T formally describes the DM’s choice procedure. For instance, the classic

theory of Rationality posits that the DM uses a single preference ordering P to select

the best element from any choice problem: c(S) = arg maxP S for all S ∈ P(X).7

The literature has also proposed interesting and plausible choice procedures that

depart from Rationality. As a start, consider the following two theories that will

serve as illustrative examples for Section 3. In the theory of Limited Attention by

Masatlioglu, Nakajima and Ozbay (2012), a DM facing a choice problem S maximizes

a preference ordering P over a consideration set Γ(S) ⊆ S, with the restriction that

consideration sets don’t change when removing ignored alternatives:

(1a) c(S) = arg max
P

Γ(S), for all S ∈ P(X), and

(1b) Γ(S) ⊆ T ⊆ S ⇒ Γ(T ) = Γ(S), for all S, T ∈ P(X).

In Manzini and Mariotti (2007)’s theory of Shortlisting, the DM makes a shortlist of

undominated options using an asymmetric relation P1. She then chooses the undom-

inated element in the shortlist according to an asymmetric preference relation P2:

(2) {c(S)} = max(max(S, P1), P2), for all S ∈ P(X).8

This paper develops a methodology for characterizing the testable implications

of choice theories. Importantly, only the DM’s choices, not her thought process or

choice method, are observable. Each theory T yields a collection C(T ) of possible

choice functions. In the presence of limited data, one observes the DM’s choices only

for problems in a dataset D ⊆ P(X). An observed choice function cobs : D → X

associates to each choice problem S ∈ D the alternative in S that the DM selected.

7We use the term relation to mean a (possibly incomplete or cyclic) binary relation, while we use
the term ordering to mean a complete, asymmetric and transitive relation. For any relation P and
any S ⊆ X, we denote arg maxP S = {x ∈ S | xPy, ∀y ∈ S \ {x}}.

8Following Manzini and Mariotti (2007)’s notation, max(S,R) = {x ∈ S | @y ∈ S s.t. yRx}.
Their notation {c(S)} requires the undominated set to be a singleton.
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3. Testing for Consistency Using Limited Data

We aim to understand when observed choices are consistent with (that is, do not

refute) a given theory. This means that the theory must yield at least one choice

function that coincides with cobs on D, guaranteeing the ability to make coherent

predictions for unobserved choice problems.

Definition 1 (Consistency) An observed choice function cobs : D → X is consis-

tent with a theory T if there is c ∈ C(T ) such that cobs(S) = c(S) for every S ∈ D.

Definition 2 (Prediction) The set of predictions for S 6∈ D under a theory T is

given by {c(S) | c ∈ C(T ) and c coincides with cobs on D}.

Addressing the question of out-of-sample predictions thus reduces to identifying the

testable implications of a theory on limited data: x is a possible choice for S 6∈ D if

and only if the expanded observed choice function, derived from cobs by adding the

counterfactual that the DM picks x from S, is consistent with T .

The recent literature on bounded rationality has overlooked a potential pitfall one

should keep in mind in the presence of limited data. To test Shortlisting with limited

data, Manzini and Mariotti (Corollary 1, 2007) study when there exist asymmetric

relations P1, P2 such that (2) holds for S ∈ D. Manzini and Mariotti (Definition

4, 2012) take a similar approach for their theory of Categorize-Then-Choose. To

test Limited Attention, Tyson (2013) seeks conditions guaranteeing the existence of

an ordering P and a consideration set mapping defined on D such that (1a) and

(1b) hold for S, T ∈ D. In other words, the theory’s conditions describing how

choices emerge are checked only over observed problems. Such an approach may

seem natural at first. Taking Rationality as a benchmark, if there is an ordering P

such that cobs(S) is the P -maximal element for all S ∈ D, then it is trivial to extend

cobs to a rational choice function c by letting c(S) be the P -maximal element for all

S ∈ P(X). In general, however, such an approach may yield ‘false positives,’ as it

may be impossible to extend observed choices into a complete choice function under

the theory. This extensibility issue affects prevalent theories of bounded rationality,

leading to a potentially dangerous methodological pitfall.

The datasets below illustrate the possible issues that may arise. According to the

prior literature’s approach, cobs1 should be consistent with Limited Attention, and
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cobs2 should be consistent with Shortlisting.9 In fact, neither is true.

S ae ef abd ade bde bef

cobs1(S) e f d a b e

S ab bd ad abde abdf abdg

cobs2(S) a b d a b d

Consider Limited Attention. Suppose, by contradiction, that some Γ satisfying

(1b) and some ordering P generate an extension of cobs1 under the theory. By (1b), d

must be considered in {a, d, e}, since its removal changes the choice. As a is chosen

from {a, d, e}, we learn aPd. Similarly, we conclude b ∈ Γ({b, e, f}) and ePb. Now

consider the out-of-sample problem {b, d}. The ranking aPd implies a 6∈ Γ({a, b, d}),
thus (1b) requires Γ({b, d}) = Γ({a, b, d}). At the same time, the ranking ePb implies

e 6∈ Γ({b, d, e}), thus (1b) also requires Γ({b, d}) = Γ({b, d, e}). This is impossible, as

the choices from {a, b, d} and {b, d, e} differ. The problem here, quite simply, is that

a mapping Γ satisfying the required property over D need not satisfy it elsewhere.

Next take Shortlisting. Suppose, by contradiction, that some asymmetric relations

P1 and P2 yield an extension of cobs2 under the theory. As a is chosen from {a, b, d, e},
it must be P1-undominated in {a, b, d, e} and subsets thereof. Thus the choice of

d from {a, d} implies dP2a. Symmetric reasoning for b and d yields the preference

cycle aP2bP2dP2a, and none of these elements can P1-dominate one of the two others.

But then choice cannot arise from max(max(S, P1), P2) for the out-of-sample problem

S = {a, b, d}. The data requires P2 to be cyclic over {a, b, d}, and yet prevents P1 from

eliminating any from the shortlist. The problem here is that not all combinations

of asymmetric P1, P2 are valid inputs to the theory, and checking validity requires

thinking about both observed and unobserved choice problems.

4. Building Insights: Testing Limited Attention

Now that we have the proper notion of consistency, we can turn our attention

to developing a methodology for testing. To build insight for the ideas to come, we

begin by examining how the classic, revealed-preference approach can be adapted to

characterize Limited Attention.

Following Samuelson (1948)’s study of Rationality, an option x is revealed pre-

ferred to an alternative y if there exists a choice problem where y is available but

9Indeed, (1a) and (1b) hold for S, T ∈ D using the ordering P defined by aPdPePbPf , with
Γ(S) given by cobs1(S) and its P -lower counter set for S ∈ D; moreover, (2) holds for S ∈ D using P1

given by eP1d, fP1a and gP1b, and P2 given by aP2bP2dP2a and xP2y for x ∈ {a, b, d}, y ∈ {e, f, g}.
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the DM picks x instead. Clearly, consistency with Rationality requires the revealed

preference to be acyclic. Furthermore, the data cannot reveal any more critical infor-

mation about the DM’s preference, since acyclicity of the revealed preference is also

sufficient for consistency.

Now consider Limited Attention. Observing the DM pick x from S does not imply

that she prefers x over another option y in S, because she may have overlooked y.

Option x is only revealed preferred to alternatives in her consideration set at S, which

itself must be inferred from the choice data. What then is all the critical information

about preferences that can be gleaned from observed choices?

Masatlioglu, Nakajima and Ozbay (2012) provide an answer for full data sets (that

is, for D = P(X)). Consistency with Limited Attention is equivalent to acyclicity of

the following revealed preference: the DM prefers x over z ∈ S \ {x} if she picks x

from S but not from S \{z}.10 This result does not extend to limited data. Revealed

preference restrictions can also arise from observing choice problems that are not

related by dropping a single alternative; and while these restrictions are redundant

in case of full data, they may become critical with limited data.

However, the argument underlying Masatlioglu et al’s (2012) revealed preference

readily extends to more general IIA violations. Indeed, if the choice from T is available

but not chosen from S ⊂ T , then the DM must have considered at least one alter-

native in T \ S when choosing from T . Otherwise, (1b) would require Γ(T ) = Γ(S),

contradicting that the observed choices differ. The IIA violation thus informs the

modeler that there exists z ∈ T \ S such that cobs(T )Pz. More subtly, any violation

of the Weak Axiom of Revealed Preference (WARP) reveals some critical information

about the DM’s preference:

For all S, T ∈ D with cobs(S) 6= cobs(T ) and cobs(S), cobs(T ) ∈ S ∩ T :

cobs(S)Pz for some z ∈ S \ T or cobs(T )Pz′ for some z′ ∈ T \ S.
(3)

Otherwise, the choice from S∩T would be ill-defined by a similar argument as above:

Γ(S ∩ T ) would have to be identical to both Γ(S) and Γ(T ), contradicting that the

observed choices differ. As IIA violations are special types of WARP violations where

the sets are related by inclusion, the revealed preference restrictions inferred from IIA

violations are encompassed by (3).

10The DM must pay attention to z in S, as otherwise, her attention set and thus her choice would
be the same for S and S \ {z}.
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To summarize the above discussion, we have learned that if choices are consistent

with Limited Attention, then the DM’s preference must satisfy all the restrictions that

observed choices reveal in (3). Hence there must exist an acyclic relation satisfying

(3). Could it be that we have missed other critical restrictions? The answer is no, as

the existence of such an acyclic relation also guarantees consistency with the theory.

Proposition 1 Observed choices cobs : D → X are consistent with Limited Atten-

tion if and only if there exists an acyclic relation P satisfying (3).

Proposition 1 shows how the revealed preference approach to testing can be ex-

tended beyond Rationality, once we recognize that data can reveal restrictions about

the DM’s preference that are more complex than simple comparisons between two

alternatives (as opposed to Rationality, or Limited Attention in the case of full data).

We will see in Section 6 how this insight allows us to capture the empirical content

of many other theories beyond Limited Attention.

Figuring out whether a set of restrictions can be met by some acyclic relation –

what we will call acyclic satisfiability in the next section – seems harder than testing

SARP in cases such as (3), where the restriction does not immediately tell you which

comparison holds. The next section explores to what extent this intuition is correct.

It turns out that it is sometimes, but not always true; and that we can cleanly

distinguish which is which.

5. Acyclic Satisfiability, and How to Check It?

In this section, we introduce the notion of acyclic satisfiability, a natural extension

of SARP that captures the empirical content of many theories of choice (see Sections

4 and 6). We identify cases for which acyclic satisfiability can be tested in the same

way as SARP, as well as cases for which testing is much more challenging. The section

includes a first application of these results to Limited Attention, as a follow-up to

Section 4. Several other applications are provided in Section 6.

5.1 Formalizing Restrictions and Acyclic Satisfiability

For any x, y ∈ X, define the function 1(x,y) that takes as input a strict relation P and

tests whether the simple comparison xPy holds for that relation. In other words, the

function outputs ‘true’ if x is ranked above y according to P , and ‘false’ otherwise.

A simple comparison, if satisfied, thus provides definite information about how two
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elements compare. More generally, a restriction takes as input a strict relation P , and

outputs ‘true’ or ‘false’ based on logical conjunctions (‘and’, ∧) and/or disjunctions

(‘or’, ∨) of simple comparisons under P . Thus a simple comparison is a special case,

and may alternatively be called a simple restriction. There may be different ways a

restriction with disjunctions can be satisfied, corresponding to the different ways of

selecting which of the simple comparisons involved in the disjunctions are true.

Given an option x, we say that a restriction pertains to the lower-contour set

(LCS) of x if all the comparisons in it take the form 1(x,·). As is well known, any

logical formula can be written in disjunctive normal form, i.e., as a disjunction of

conjunctions. Thus a restriction pertaining to the LCS of x can be described by a

family of sets Σ ⊆ P(X) and denoted 1(x,Σ). A relation P satisfies 1(x,Σ) if and only if

some set in Σ belongs to the P -lower contour set of x.11 For notational convenience, we

assume throughout that LCS restrictions are given using the notation 1(x,Σ). Similar

definitions apply for upper-contour set (UCS) restrictions, which we denote 1(Σ,x).

Consider, for instance, the revealed preference restrictions arising from Limited

Attention. The data cobs({a, b, d}) = b and cobs({b, d, e}) = d creates a revealed

preference restriction 1(b,a) ∨ 1(d,e), that is, “b is preferred to a, or d is preferred to e.”

More generally, any WARP violation generates a revealed preference restriction that is

the disjunction of simple comparisons (see (3)). However, IIA violations exclusively

generate LCS restrictions; for instance, cobs({w, x}) = w and cobs({w, x, y, z}) = x

yields the restriction 1(x,{{y},{z}}), meaning “x is preferred to y or z.” Many other

examples of restrictions will be encountered in Section 6.

A collection of restrictions is acyclically satisfiable if there exists an acyclic relation

satisfying them. Note that simple comparisons pin down a (typically incomplete) rela-

tion, and in this case acyclic satisfiability just boils down to this relation being acyclic.

As illustrated in Proposition 1 and the results of Section 6, the empirical content of

various theories is naturally captured through acyclic satisfiability of restrictions sum-

marizing key information revealed by choices. Rationality being equivalent to SARP

is now understood as just one instance of this broader approach.

11Slightly more generally, an LCS restriction may also pertain to a set T ⊆ X: a relation P
satisfies 1(T,Σ) if and only if some member of Σ is contained in the P -lower contour set of every
x ∈ T (and similarly for a UCS restriction pertaining to a set). One can immediately see that all
our enumeration-related results (Lemmas 1-2, and Propositions 2 and 9) also hold for LCS (UCS)
restrictions pertaining to sets. We avoid this more cumbersome notation in the text, since our
only example of an application with LCS restrictions pertaining to sets appears in our study of
‘good-enough’ heuristics in Barberà et al (2018).
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5.2 Testing Acyclic Satisfiability

Recall our discussion in Section 1 regarding how to test SARP. For each step k ≥ 1,

simply look for, and remove from the set, an option xk that is not ranked above any

remaining alternatives according to Samuelson’s revealed preference. It is possible to

enumerate all ofX in this manner if and only if SARP holds (i.e., Samuelson’s revealed

preference is acyclic). Intuitively, one is trying to construct a possible preference

ordering for the DM from the bottom up, by iteratively identifying a candidate for

the worst remaining option. Our first observation, formalized in Section 5.2.1, is

that acyclic satisfiability can be tested essentially in the same, tractable way when

facing only LCS restrictions (or only UCS restrictions). Indeed, while lower-contour

set restrictions may not precisely identify which alternative must be ranked below an

option, they do reveal that some alternative must be ranked below it, which is all we

need to know to rule it out as a candidate-worst option.

By contrast, Section 5.2.2 shows how testing acyclic satisfiability can become much

harder to perform when considering wider classes of restrictions.12 This will prove

useful in applications, both to check that it is impossible to reduce the identified

restrictions into all-LCS or all-UCS restrictions, and to ascertain that there isn’t

nonetheless an alternative, simple procedure to systematically test that theory.

5.2.1 Testing Comparable to SARP with LCS (UCS) Restrictions

The ability to apply the procedure used for checking SARP when considering a

collection of LCS restrictions rests on two observations, presented as lemmas. The

first lemma echoes the intuition above.

Lemma 1 Let X be a set of options and R be a set of LCS restrictions defined

on X. If R is acyclically satisfiable, then there exists an option x ∈ X such that no

restriction in R pertains to the lower-contour set of x.

Indeed, any acyclic relation satisfying R can be completed into an ordering satisfying

R, and x may be taken to be its minimal element. This provides a first, simple

necessary condition for acyclic satisfiability: traverse elements of X to find one that

12Testing acyclic satisfiability can be seen as an extension of the topological sort problem in
computer science. Some extensions have been studied in problems of job-scheduling with waiting
conditions; see Möhring et al. (2004) who provide a fast scheduling algorithm given conditions “job
i comes before at least one job in a set J,” which corresponds to a special case of 1(x,Σ) with every
S ∈ Σ a singleton. They show scheduling is NP-hard for the generalization “some job in a set I
comes before some job in a set J”; we show the problem is already NP-hard with simpler restrictions.
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does not appear at the top of a restriction. Let x1 be an element with this property

(if one exists). Because x1 will be treated as the bottom element of the ordering, any

restriction 1(x,Σ) such that {x1} ∈ Σ is now satisfied, and may be eliminated; all other

restrictions 1(x,Σ) simplify to 1(x,Σ′), where Σ′ = {S \ {x1} | S ∈ Σ}.13 Let R1 be this

reduced set of LCS restrictions over X \ {x1}.

Lemma 2 Let x1 satisfy the property of Lemma 1. Then R (defined over X) is

acyclically satisfiable if and only if R1 (defined over X\{x1}) is acyclically satisfiable.

Necessity obtains by considering the restriction of the acyclic relation satisfying R
to the set X \ {x1}. Sufficiency obtains by augmenting the acyclic relation satisfying

R1 by placing x1 at the bottom of any pairwise comparison.

Lemmas 1-2 hold independently of the set X and the set of LCS restrictions R,

so the reasoning may be iterated. The Lemmas thus provide a conceptual roadmap

for defining the enumeration procedure for LCS restrictions. The first step follows

as in Lemma 1, while Lemma 2 shows how to iterate the procedure. In each step

k, if there has been no failure to find a candidate-worst element thus far, then we

treat x1, . . . , xk−1 as if they are ranked below all remaining elements. Thus, we may

restrict attention to a simplified set of restrictions Rk−1, where x1, . . . , xk−1 have been

eliminated.14 Writing R0 = R, the enumeration procedure can be stated as follows.

Step k, for k ≥ 1: Look for an element xk ∈ X \ {x1, . . . , xk−1} that does not

appear at the top of any LCS restriction in Rk−1. Continue to the next step if

and only if such an element is found.

The enumeration procedure fails if in some step we cannot find a candidate xk for

the worst element; but if one can enumerate all of X in this way, then the enumeration

procedure succeeds. Importantly, Lemma 2 ensures path independence: even if there

are multiple candidates for the worst element in a step, a different selection among

these would not convert failure of the procedure to success, or vice versa; that is,

success and failure are definitive outcomes. The above reasoning shows that success of

the enumeration procedure is a necessary condition for R to be acyclically satisfiable.

13Without using the notation 1(x,Σ) for restrictions, this is equivalent to replacing functions of the
form 1(y,x1) for any y ∈ X by the logical value ‘true’.

14That is, each 1(x,Σ) ∈ R simplifies to 1(x,Σ′), where Σ′ = {S \ {x1, . . . , xk−1} | S ∈ Σ}; and any
restriction 1(x,Σ) such that S ⊆ {x1, . . . , xk−1} for some S ∈ Σ is eliminated entirely. Equivalently,
note we can just ignore in step k all restrictions 1(x,Σ) such that S ⊆ {x1, . . . , xk−1} for some S ∈ Σ.
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Vice versa, ranking options in opposite order from a successful enumeration will satisfy

R by construction. We have thus shown the following.

Proposition 2 A set of LCS restrictions R is acyclically satisfiable if and only if

the enumeration procedure succeeds.

The procedure can also be used to check acyclic satisfiability of a set of UCS restric-

tions. The only difference is that one seeks candidate maximal options in each step,

i.e., options that do not appear at the bottom of any remaining UCS restrictions.

Remark 1 Proposition 2 is also helpful for identification (e.g., preference identi-

fication). If a set of LCS restrictions R is acyclically satisfiable and every acyclic

relation P satisfying R has xPy, then we say that a ranking of x over y is identi-

fied. Clearly, one can test for such identification by adding the opposite restriction

1(y,x) to the restrictions characterizing consistency. If the augmented restrictions are

acyclically satisfiable, then it is possible to have the opposite ranking; but if acyclic

satisfiability fails, then a ranking of x over y is identified. Conveniently, if the orig-

inal restrictions are of the LCS (UCS) type, then adding a simple comparison does

not change this. Thus identification is testable through enumeration in such cases.

How easy is testing LCS (or UCS) restrictions through enumeration? The proce-

dure requires at most |X| − 1 iterations, so testing is tractable if finding a candidate

for minimal element is tractable in each iteration.15 Testing a theory using data also

requires constructing the restrictions in the first place, so one should confirm that

doing so is easy. We check these steps for all theories identified as tractably testable

in this paper. In those cases, testing can be carried out in a number of steps that

is at most polynomial in the size of the dataset. As a benefit, computers can carry

out the testing quickly for any dataset (and for relatively small datasets, answers can

systematically be found by hand).

Consider, for instance, the theory of Limited Attention. The restrictions for Lim-

ited Attention, captured in (3), are in general neither LCS nor UCS. However, notice

that only the LCS restrictions matter whenever D is closed under intersection (or

at least contains the intersection of any two choice problems causing a WARP vio-

15In fact, for many theories (including Rationality), a restriction pertains to the lower-contour
set of an option only if the DM chose it in some problem. In this case, options that are never
chosen can be randomly enumerated in a preliminary step of the enumeration procedure, and thus
the cardinality of the image of cobs bounds the number of nontrivial steps in the procedure.
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lation).16 Thus, we may conclude from Proposition 2 that testing consistency with

Limited Attention can be done in a way similar to checking SARP for datasets sat-

isfying this intersection property. How easy is it to test Limited Attention for a

general dataset? We defer this question until after we study non-LCS (and non-UCS)

restrictions in the next subsection.

5.2.2 Hard to Test Otherwise

As we are expanding the realm of the classic, revealed-preference testing method-

ology beyond Rationality, it is natural to ask whether we have reached the frontier of

‘tractable testing.’ Suppose we are facing a set of restrictions that is more complex

than those covered by Section 5.2.1. Is there some clever extension of the enumeration

procedure, or an entirely different algorithm, that would make acyclic satisfiability

easy to test for more general restrictions? The answer is essentially negative, in a

sense we now make precise.

So far we analyzed cases where all restrictions pertain to lower contour sets, or all

restrictions pertain to upper contour sets. To make the negative result most striking,

say a collection of restrictions is a mixed set of binary restrictions if each restriction

takes either the form 1(x,{{y},{z}}) (“x is better than y or z”) or the form 1({{y},{z}},x)

(“x is worse than y or z”) for some x, y, z ∈ X. We view such collections as a minimal

departure from those considered thus far, as each restriction must belong to either

the LCS or UCS class, and can be more complicated than a simple comparison by at

most one disjunction (“or”) between options. We show that this small generalization

of the problem becomes NP-hard; as a corollary, testing acyclic satisfiability with

more permissive classes of restrictions is NP-hard as well.17

Proposition 3 The problem of checking acyclic satisfiability for mixed sets of

binary restrictions is NP-hard.

If P 6= NP , as widely believed, no algorithm solves every instance of an NP-hard

problem in polynomial time. To prove Proposition 3, we show that every instance of

16If S and S′ cause a WARP violation, then S ∩S′ causes an IIA violation with S or S′. Suppose
it occurs with S. Then cobs(S) must be preferred to some element of S \ S′, satisfying the ‘or’
condition from the WARP violation between S and S′.

17P is the set of problems solvable in polynomial time; NP is the set of problems that may or
may not be solvable in polynomial time, but for which any conjectured solution can be checked in
polynomial time. A problem is NP-hard if solving it is at least as complex as solving the most
difficult problems in NP. Finding a polynomial-time solution for some NP-hard problem would have
the important implication that P = NP . No one has found such a solution thus far.
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SAT3 (a classic NP-hard problem18) has a polynomial-time reduction to an equivalent

problem of checking acyclic satisfiability of mixed sets of binary restrictions.

Proposition 3 illustrates how small departures from only LCS or only UCS restric-

tions can make acyclic satisfiability much harder to test. Showing that the empirical

content of a theory involves such restrictions is suggestive that testing is likely to

be NP-hard, but reaching that conclusion requires a formal argument that the re-

strictions cannot be significantly simplified. Proposition 3 can be used to prove this

formally: one must show that for any mixed set of binary restrictions R, there is

choice data (constructed in polynomial time given R) such that the theory is consis-

tent with these choices if and only if R is acyclically satisfiable.

Our first of several applications of Proposition 3 is to Limited Attention. Propo-

sition 4 in the Appendix shows that testing consistency with this theory is NP-hard.

Recall that Limited Attention generates LCS restrictions from IIA violations, but

doesn’t exactly generate UCS restrictions. For intuition on how Proposition 4 is

proved, recall that WARP violations can give rise to restrictions of the form aPb or

a′Pb′, with a 6= a′ and b 6= b′. Additional data, for example cobs({b, e}) = e and

cobs({b, d, e}) = b, could reveal that b is preferred to d. Similar data could reveal that

b′ is also preferred to d. Then, the restriction aPb or a′Pb′ implies the binary UCS

restriction aPd or a′Pd. This lights a path towards an application of Proposition

3. The proof finds easy-to-construct classes of datasets for which testing consistency

with Limited Attention is equivalent to testing acyclic satisfiability of mixed sets of

binary restrictions.

Being NP-hard to test means that there exist datasets for which testing consis-

tency is intractable. A first implication is that it may be possible to prove a theory

is NP-hard even with a partial understanding of its testable implications. Indeed, it

suffices to know how to test consistency within some class of datasets, and then show

that testing acyclic satisfiability of mixed sets of binary restrictions reduces to testing

consistency in those cases. A second implication is that there may be other classes of

datasets for which testing remains tractable; and that these datasets can be identified

by when the restrictions take only the LCS, or only the UCS, form. For instance, we

argued in the previous subsection that the enumeration procedure applies to Limited

Attention when the dataset has the intersection property. As noted later, a similar

18Given any set of ‘clauses’ that are disjunctions of three ‘literals’ (variables or their negations),
the question is whether there is a truth assignment for the variables that makes all clauses true.
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conclusion applies to some theories of categorization and rationalization, which are

NP-hard to test in general, but easy to test by enumeration if the dataset includes,

for instance, all pairs of observed choices.

6. Applications

Beyond the theory of Limited Attention that we have already covered, this section

illustrates the surprising versatility of our approach. Restrictions can pertain to

orderings other than preference (e.g. salience or priority), and to relations that may be

incomplete (as in problems of just-noticeable differences). They can capture satisficing

instead of maximizing behavior. The methodology applies to settings where X is not

finite (e.g. consumer theory). It can apply when preferences are weak. It can apply

when choices are observed only coarsely, as well as when the choice data is stochastic.

It even provides useful insight in some classic problems of interactive decision making

with rational agents. Details for the applications in Sections 6.1-6.4 are found in

Appendix B, while details for Section 6.5 appear in the Online Appendix. Section 6.6

discusses applications carried out in subsequent works.

6.1 Choice Overload

A main alternative to condition (1b) when considering the maximization of a

preference ordering over consideration sets is:

(4) S ⊂ T ⇒ Γ(T ) ∩ S ⊆ Γ(S), for all S, T ∈ P(X).

In other words, if the DM considers an option in a choice problem, then she must

consider it in smaller choice problems as well. This captures several heuristics a

DM may use to deal with choice overload. Lleras, Masatlioglu, Nakajima and Ozbay

(2017) impose the property directly, as it naturally encapsulates the idea that a DM is

better at making choices from small sets than large ones. Cherepanov, Feddersen and

Sandroni (2013) shows that property (4) characterizes the consideration sets arising

from psychological rationalization, which comprise those elements that are top-ranked

for some rationale (a binary relation).19

19Cherepanov et al (2013) also consider an extension permitting cyclic preferences; the resulting
theory is observationally equivalent to Manzini and Mariotti (2012)’s categorization theory. While
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Under (4), preference comparisons can be inferred from IIA violations. By defi-

nition, the DM pays attention to cobs(T ) in every set S ⊆ T such that cobs(T ) ∈ S.

Hence an IIA violation, cobs(S) 6= cobs(T ), reveals that the DM prefers cobs(S) over

cobs(T ). This is a simple preference comparison. Are there other, perhaps more

complex restrictions to consider? Not in this case. Proposition 5 in Appendix B

shows that acyclic satisfiability of these restrictions guarantees consistency. Hence

the theory is testable by enumeration. Interestingly, the same revealed preference

identified by the above authors for full datasets happens to also capture the testable

implications in limited datasets.

6.2 Reference Dependence

Reference effects provide an important context in which multiple preferences play a

role. Without further restrictions, any choices can be explained by the maximiza-

tion of a reference-dependent preference. Rubinstein and Salant (2006b)’s theory of

Triggered Rationality20 structures reference-point formation, by positing a salience

ordering �σ over the alternatives and a collection of preference orderings {Px}x∈X .

The most salient element in a set is the DM’s reference point, anchoring the preference

Px maximized.

We apply our methodology to the salience ordering. Suppose we conjecture that

an option x ∈ S is the most salient alternative in S. This means x is the most

salient alternative in all R ⊆ S in which it is contained. In particular, the DM must

apply the preference Px in all those choice sets, and we can consider the resulting,

Samuelson-revealed preference from those that are observed. If that revealed prefer-

ence is cyclic, then our original conjecture must have been wrong: that is, we learn

that some element in S is more salient than x. We show in Proposition 6 of Appendix

B that acyclic satisfiability of these restrictions is both necessary and sufficient for

consistency with Triggered Rationality. These restrictions are of the UCS type, and

can be tractably tested by enumeration.

our methodology cannot be applied to the DM’s preference in this case, de Clippel and Rozen (2019c)
show that any consideration set mapping satisfying (4) generates a natural ranking of alternatives.
They characterize the testable implications of these theories through acyclic satisfiability of restric-
tions on this ranking. These are UCS restrictions if the data is rich enough (e.g. includes all pairs),
in which case consistency is testable by enumeration. Otherwise, they show testing is NP-hard as a
corollary of Proposition 3.

20See also Rubinstein and Salant (2006a, Example 4).
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6.3 Shortlisting

Noteworthily, our methodology applies to acyclic relations, not just orderings. This

proves useful in studying Manzini and Mariotti (2007)’s theory of Shortlisting. Ob-

serve that the shortlisting relation P1 must be acyclic for choices to be well defined,

else the DM’s shortlist would be empty in the choice problem corresponding to the

cycle. However, P1 may still be incomplete; indeed, if it were complete then the DM’s

observed choices would be consistent with rationality.

It is easy to see that UCS restrictions on the shortlisting relation P1 are gen-

erated by certain choice configurations. For instance, suppose cobs({a, x}) = x but

cobs({a, x, y, z}) = a. Since a is not eliminated by P1 in {a, x, y, z}, it is also not

eliminated in {a, x}. Hence x, which is chosen from the latter set, must be preferred

to a. As a is chosen from {a, x, y, z} instead, y or z must eliminate x from consid-

eration under P1. However, non-UCS restrictions on P1 can be generated as well.

Suppose we also observe cobs({b, y, z}) = y and cobs({d, y, z}) = z. Hence y and z are

incomparable under P1, and so they must be comparable under P2. To explain this

data, y and z cannot both survive the shortlist in both {b, y, z} and {d, y, z}. Thus

we learn the following restriction for P1: P1 ranks d above y, or P1 ranks b above

z. This is not quite a LCS restriction, since the elements at the top of the simple

comparisons are not the same. Further data, though, may require a third alternative

e to eliminate both b and d, lighting a path towards an application of Proposition 3.

Indeed, Proposition 7 in Appendix B shows that testing consistency with Short-

listing is NP-hard. To show this, a full characterization of Shortlisting’s empirical

content is not required. Indeed, it suffices to show there is subclass of datasets on

which testing consistency of the theory amounts to testing acyclic satisfiability of a

mixed set of binary restrictions. The result happens to also hold for Order Shortlist-

ing, which requires the DM’s preference to be an ordering.

6.4 Undominated Alternatives

Consider a DM who chooses the set of undominated alternatives according to an

acyclic (possibly incomplete) relation. This choice procedure, which yields an ob-

served choice correspondence, has several interesting interpretations. It has the same

testable implications as Masatlioglu and Nakajima (2013)’s Markovian Choice by It-

erative Search, when the starting point of the DM’s search process is unobserved.
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It corresponds to the shortlist in Manzini and Mariotti (2012)’s Shortlisting, which

in some cases the modeler observes (e.g., alternatives considered by a committee,

candidates interviewed for a position). It also relates to theories of just-noticeable

differences. Following Luce (1956) and ensuing works, insights from psychology that

people have difficulty discerning differences in stimuli (e.g., the Weber-Fechner law)21

may apply to preference comparisons. Consider a DM with a utility function u

and a threshold function τ : X × X → R+. She discerns y is preferable to x if

u(y) > u(x) + τ(x, y) (i.e., when the utility difference is big enough given the op-

tions); and selects alternatives for which she cannot discern anything better. This

theory, too, is equivalent to choosing undominated elements.22

While the possibility of choice correspondences departs somewhat from our origi-

nal framework, our methodology accommodates the testing of these theories. Given

an acyclic relation �, let C� : P(X)→ P(X) associate with each choice problem the

set of �-undominated elements. Say that the observed choice correspondence Cobs is

consistent with the theory if there is an acyclic relation � such that Cobs(S) = C�(S)

for all S ∈ D. Now consider what we learn about � from observed choices. Suppose

x is not among the observed choices for some S ∈ D with x ∈ S. Then, there must

be y ∈ S such that y � x. However, the data may disqualify some y’s from playing

this role. This would be the case, for instance, if x is ever picked in the presence of y.

Thus, we may more accurately conclude that there is some y in S \
⋃
{T | x∈Cobs(T )} T

that �-dominates x. Proposition 8 in Appendix B establishes that this is all the infor-

mation that can be gleaned: these UCS restrictions are both necessary and sufficient

for consistency.23 Hence the above theories can be tested by enumeration.

21See Fechner (1860)’s seminal work and the large literature that follows.
22A perceived-preference cycle x1 � x2 � xn � xn+1 = x1 implies

∑n
i=1 τ(xi+1, xi) < 0, yet

τ(·, ·) ≥ 0. Conversely, for an acyclic �, take u : X → R respecting �-comparisons, with τ(a, b) = 0
if a � b and τ(a, b) = maxy u(y)−minx u(x) otherwise. Then y � x iff u(y) > u(x) + τ(x, y). This
theory includes Luce (1956)’s theory with constant thresholds as well as generalizations proposed in
the large ensuing literature, which examines how the threshold varies with the alternatives compared,
and the impact on perceived preferences.

23Notice that acyclic satisfiability does not require the relation satisfying the restrictions to be
complete. Of course, the existence of an acyclic relation satisfying the restrictions, also implies
the existence of an ordering satisfying the restrictions. However, that ordering need not yield the
observed choices, generating for instance a single-valued choice function instead of a correspondence.
Thus allowing the relation to be incomplete in the definition of acyclic satisfiability is useful indeed.
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6.5 Indifferences

Most preference-based theories of bounded rationality assume strict preferences.

As such, we have focused on restrictions pertaining to orderings, which are strict.

Though it may be slightly precocious to advance our testing methodology to accom-

modate indifferences prior to further developments in bounded rationality, the Online

Appendix nonetheless offers some steps in this direction. The methodology we advo-

cate is the same: (a) identify necessary restrictions; (b) ensure one has gained a full

understanding of the theory by checking that acyclic satisfiability of these restrictions

is sufficient for consistency; (c) evaluate whether testing acyclic satisfiability can be

done by enumeration like SARP, or is necessarily complex. However, interesting new

features arise.

Data will typically reveal some restrictions that must hold strictly, while others

may hold weakly. It may be tempting to apply the results of Section 5 by treating

the weak ones as strict. This, however, can yield false negatives: 1(x,y), 1(y,z), and

1(z,x) can be satisfied weakly (with x, y, z in one equivalence class) but not strictly.

In settings with weak simple restrictions and strict LCS (UCS) restrictions, we show

how testing can be performed tractably by enumerating equivalence classes.

As an illustration, we also show how this result applies to Choice Overload when

the DM’s preference may be a weak ordering. Characterizations in terms of acyclic

satisfiability, and tractable tests by enumeration, are derived for consistency à la

Afriat (observed choices belong to the choice set predicted under the theory), as well

as consistency à la Richter (the set of observed choices coincides with the choice

set predicted under the theory).24 Interestingly, there is a new form of revealed

(in)attention in theories where the DM maximizes a weak preference ordering over

a consideration set. Witnessing the DM select both x and y in a choice problem

reveals that she is indifferent between them. With Richter’s consistency, seeing her

select x but not y in a different problem reveals she did not consider y there. This

may have important consequences for testing. For instance, adding the possibility of

indifference to Choice Overload makes it subject to the extensibility issue highlighted

in Section 3, and also generates revealed preference restrictions that are not simple.

These added restrictions are nonetheless of the LCS type, so the theory remains

testable by enumeration.

24See Richter (1966) and Afriat (1967) regarding these two notions for correspondences.
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6.6 Further Applications (in Subsequent Works)

Our methodology is useful for other theories and contexts studied in separate works.

We briefly discuss those applications, and which of Propositions 2 or 3 applies.

Barberà, de Clippel, Neme and Rozen (2018) study a variety of satisficing heuris-

tics. For example, a DM may stop searching when her consideration set is large

enough; she may be happy choosing a sufficiently well-ranked option (e.g., top two,

or top quintile of a set); or she may first sample some alternatives to endogenously

construct her satisficing threshold. They show the empirical content of these theories

is captured by acyclic satisfiability of LCS restrictions on the DM’s preference, and

thus testable by enumeration. By contrast, they use Proposition 3 to show that it is

NP-hard to test Sen (1993)’s theory of choosing the second best.

Applying our methodology to consumer demand data, de Clippel and Rozen

(2018a) consider a consumer who fails to perfectly optimize due to misperception of

prices or utility tradeoffs. They show that testing consistency of consumer-demand

data with misperception amounts to acyclic satisfiability of LCS restrictions on the

consumer’s preference over bundles. Hence it is easy to test, by Proposition 2.

In both of the above papers, the DM (consumer) may face the same choice problem

multiple times. Framing, perception and random events can lead to different choices

for the same problem, so that the data may take the form of a correspondence. These

two papers allow for the data to be limited in two senses: beyond our standard

sense that not all choice problems are observed, there may also be too few repeated

observations per choice problem to construct reliable probability distributions. The

approach in both works is to consider the support of choices but ignore sampling

frequencies. However, as discussed later below, our methodology can also be useful

for theories that use stochastic choice data.

While motivated by bounded rationality, our methodology also applies to other

theories. de Clippel and Rozen (2018b) consider rational agents implementing some

classic assignment/matching methods. The unobserved constraints from others’ choices

means even rational agents appear to violate SARP. The modeler observes final alloca-

tions as a function of some (collective or individual) endowments, but not preferences

or other primitives of the problem. Under serial dictatorship, for instance, agents are

ranked according to a power relation, and pick their best option among those un-

chosen by more powerful agents. The data generates LCS restrictions on the power

relation; thus testing is tractable by Proposition 2. They show stability is also easy
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to test for an interesting class of many-to-one matching problems. However, the core

of Shapley and Scarf (1974)’s housing market is shown to be NP-hard to test using

Proposition 3.

For another application, say an observed choice correspondence Cobs is coarsely

rationalizable if there is a preference ordering � such that the best element from

each choice problem S ∈ D belongs to Cobs(S). Fishburn (1976) first introduced this

idea (under the name ‘representability’), and proved it is equivalent to the following

axiom: for every family of choice sets, there must exist at least one option x such

that x ∈ Cobs(S) for each choice set S in the family with x ∈ S. Let us instead study

this problem with our methodology. Observe that for any set S ∈ D and x 6∈ Cobs(S),

x cannot be preference-maximal in S (that is, 1({y}y∈S\{x},x)). Acyclic satisfiability

of these UCS restrictions is not only necessary for ‘coarse rationalizability’, but also

sufficient, simply by taking the preference to be any transitive completion O of an

acyclic relation satisfying them: for any S ∈ D, x = arg maxS O must belong to

Cobs(S), else there would have been a restriction saying x cannot be maximal in S.

Thus our approach provides a revealed-preference test of coarse rationalizability that

is also tractable. We are aware of this additional application thanks to Hu, Li, Quah

and Tang (2018), who introduce the interpretation in terms of coarse data, and show

that the testable implications of both minimax regret preferences and correspondences

arising from frames amount to the coarse rationalizability of cleverly constructed,

auxiliary datasets. For instance, consider correspondences arising from frames, where

the DM has a fixed set of preferences and the observed choices are the maximizers for

each preference. For each S ∈ D and each x ∈ Cobs(S), consider the auxiliary choices

CS,x which equals Cobs except that CS,x(S) = {x}. Having a fixed set of preferences

applied to all the problems means that the original data arises from frames if and

only if each auxiliary CS,x is coarsely rationalizable. Since our approach applies to

coarse rationalizability, it applies to those theories as well.

Finally, Cattaneo, Ma, Masatlioglu and Suleymanov (2018) study stochastic choice

data arising from a DM who maximizes a preference ordering over stochastic consider-

ation sets. Their theory requires an intuitive property of monotonic attention, which

they verify is satisfied by many recent contributions in the literature on stochastic

attention. Stochastic choice data is shown to be consistent with their theory if and

only if a revealed preference is acyclic. Following up on the ideas presented here, they

uncover restrictions on the revealed preference that are more complex than UCS (or
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LCS), and show that acyclic satisfiability of those restrictions captures the empirical

content with limited data. It is not difficult to see that these restrictions boil down,

in the special case of deterministic data, to those we uncovered in Section 4 when

studying Limited Attention. They can thus be seen as a (far from trivial) extension

of (3) for stochastic data. Given Proposition 4 in the Appendix, testing is a fortiori

NP-hard. One can check, however, that the restrictions they uncover greatly simplify

when the dataset is closed under intersection. The relevant restrictions become: for

all S ⊂ T , if the DM is strictly less likely to pick a from S than from T , then there

exists b ∈ T \ S such that aRb. This defines a collection of LCS restrictions, and we

conclude that, in this case, testing can tractably be done by enumeration.
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APPENDIX A: Proofs for Sections 4-5

The proofs of Lemmas 1-2 and Proposition 2 are provided in the text.

Proof of Proposition 1: Consistency for Limited Attention

The argument for necessity appears in the main text. For sufficiency, suppose an

acyclic relation satisfying (3) exists, and let P be a transitive completion (so P still

satisfies (3)). We define Γ : P(X)→ P(X) as follows. For S ∈ D, Γ(S) = {cobs(S)}∪
{x ∈ S|cobs(S)Px}; for S 6∈ D,

Γ(S) =

{
Γ(T ) if S ⊆ T, T ∈ D, and Γ(T ) ⊆ S

S otherwise.

Clearly Γ(S) 6= ∅ for any S ∈ P(X) and the P -maximal element in Γ(S) is cobs(S)

for any S ∈ D. We show Γ is well-defined and satisfies (1b).

Suppose by contradiction that Γ is not well-defined for some S. This means that

for some S 6∈ D, there exist T, T ′ ∈ D such that S ⊆ T∩T ′ with Γ(T )∪Γ(T ′) ⊆ S, but

Γ(T ) 6= Γ(T ′). This implies cobs(T ) 6= cobs(T
′). Consider any y ∈ T \ T ′. Then, since

S ⊆ T ′, y ∈ T \S. Moreover, since Γ(T ) ⊆ S, we know y ∈ T \Γ(T ). By definition of

Γ(T ) for T ∈ D, this means yPcobs(T ). Similarly, if y ∈ T ′\T , we conclude yPcobs(T
′),

contradicting that P satisfies (3). To show Γ satisfies (1b), consider S ∈ P(X) and

x ∈ S \ Γ(S). We prove Γ(S \ {x}) = Γ(S) in each of the four possible cases:

Case 1: S \ {x}, S ∈ D. Since S ∈ D, and x 6∈ Γ(S), we know xPcobs(S). Suppose

that Γ(S \ {x}) 6= Γ(S). Then cobs(S) 6= cobs(S \ {x}). Applying (3) for choice

problems S and S \ {x}, we conclude cobs(S)Px, a contradiction.

Case 2: S \ {x} ∈ D, S 6∈ D. Since S \ {x} ∈ D, we know Γ(S \ {x}) = cobs(S \
{x}) ∪ {y ∈ S|cobs(S \ {x})Py}. Since S \ Γ(S) 6= ∅, there exists T ∈ D with S ⊆ T

and Γ(T ) ⊆ S. Because T ∈ D, zPcobs(T ) for all z ∈ T \ S. Since Γ(S) = Γ(T ),

we know x ∈ T \ Γ(T ). Hence xPcobs(T ). If Γ(S \ {x}) 6= Γ(S) = Γ(T ), then

cobs(S \ {x}) 6= cobs(T ) contradicting (3) for the pair of sets T and S \ {x}.

Case 3: S \ {x} 6∈ D, S ∈ D. Since S ∈ D, Γ(S) = cobs(S) ∪ {y ∈ S|cobs(S)Py}. If

x ∈ S \ Γ(S) then Γ(S) ⊆ S \ {x}, so by construction Γ(S \ {x}) = Γ(S).

Case 4: S \ {x}, S 6∈ D. Since S \ Γ(S) 6= ∅, there exists T ∈ D with S ⊆ T and

Γ(T ) ⊆ S. Since x ∈ S \Γ(S), then Γ(T ) = Γ(S) ⊆ S \{x} and so Γ(S \{x}) = Γ(T )

by construction, and equals Γ(S) by transitivity. Q.E.D.
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Proof of Proposition 3: Testing mixed binary restrictions is NP-hard

Fix an instance of SAT3 with a set V of variables and a set C of clauses. The three

literals (a variable or its negation) involved in a clause C are denoted `Ci for i = 1, 2, 3.

Consider the set of options X that contains all variables v and their negations (v̄), all

clauses C, an option xC for each clause C, and an option t. Let R be the following

mixed set of binary restrictions: the restriction 1({v,v̄},t) for each v ∈ V and the

restrictions 1(t,C), 1(xC ,{`C1 ,`C2 }) and 1(C,{xC ,`C3 }) for each clause C.

We show the instance of SAT3 has a truthful assignment if and only if R is

acyclically satisfiable. Given a truthful assignment for SAT3, an ordering constructed

as follows will satisfy R: place from worst to best, first all variables v that are true,

then v̄ for each false variable v, then xC for all clause C such that `C1 or `C2 is true,

then all clauses C, then t, then all remaining xC ’s, then v for all false variables v, and

finally v̄ for all true variables v. Conversely, let P be an acyclic relation satisfying

R. We can assume without loss of generality that P is an ordering (otherwise take a

completion of P ; this will still satisfy R). All variables ranked below t are declared

true, while all others are declared false. It is easy to check that this defines a truthful

assignment for the instance of SAT3. Q.E.D.

Proposition 4 Testing consistency with Limited Attention is NP-hard.

Proof. Fix a mixed setR of binary restrictions defined on a set X. For each restriction

r, let xr be the option whose contour set is being restricted, and let yr and zr (yr = zr

is allowed) be the two options potentially included in the upper (or lower) contour set

of xr if r is an UCS (or LCS) restriction. Consider the set of options X ′ that contains

all options in X, plus a new option tr for each LCS restriction r and new options ur,

vr, and wr for each UCS restriction r, and the following observed choices:

S trxr urvr urwr urvrxr urwrxr vryrzr wryrzr trxryrzr

cobs(S) tr ur ur vr wr yr zr xr

for each restriction r. By Proposition 1, cobs is consistent with Limited Attention if

and only if there is an acyclic relation P satisfying the following restrictions R′:

(i) xrPyr or xrPzr, from cobs({tr, xr}) = tr and cobs({tr, xr, yr, zr}) = xr,

for each LCS r, and the following three restrictions for each UCS r:

(ii) yrPvr or zrPwr, from cobs({vr, yr, zr}) = yr and cobs({wr, yr, zr}) = zr,
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(iii) vrPxr, from cobs({ur, vr}) = ur and cobs({ur, vr, xr}) = vr,

(iv) wrPxr, from cobs({ur, wr}) = ur and cobs({ur, wr, xr}) = wr.

We show acyclic satisfiability holds for R if and only if it holds for R′. Let P be

an acyclic relation satisfying the restrictions in R. We can assume without loss of

generality that P is an ordering (otherwise take a completion of P that still satisfy

restrictions in R). Then extend P to any ordering on X ′ that ranks the new options

vr and wr for each r directly above the corresponding xr, and below any other y ∈ X
such that yPxr. It is easy to check that any such extension satisfies R′. Conversely,

let P ′ be an acyclic relation satisfying the restrictions in R′. We can assume without

loss of generality that P ′ is an ordering (otherwise take a completion of P ′; that will

still satisfy R′). Clearly, the restriction of P ′ to X satisfies R. Q.E.D.

APPENDIX B: Proofs for Sections 6.1-6.4

B.1 Choice Overload

Proposition 5 Observed choices cobs are consistent with the theory of maximizing

a preference ordering over a consideration set satisfying (4) if and only if the following

collection of restrictions is acyclically satisfiable:

(5) For all S, T ∈ D with cobs(S) 6= cobs(T ) ∈ S ⊂ T : cobs(S)Pcobs(T ).

Proof. Necessity was given in the text. For sufficiency, suppose there is an acyclic

relation satisfying (5), and let P be a transitive completion (hence P still satisfies

(5)). Define ΓP by ΓP (S) = {arg minP S}∪{cobs(T ) | S ⊆ T, T ∈ D, cobs(T ) ∈ S} for

all S ∈ P(X). This ΓP satisfies (4) and thus by CFS13 (Section 4.1), it is the set of

rationalizable elements for some rationales {Rk}k. Let c be the choice function arising

from (P, {Rk}k) under the theory. For any S ∈ D, we show c(S) = cobs(S). Suppose

otherwise; then ΓP (S) contains at least two elements, and c(S) must be the observed

choice from some T ∈ D with S ⊂ T . This implies cobs(S) is revealed preferred to

c(S), contradicting P -maximality of c(S) in ΓP (S) for a P satisfying (5). Q.E.D.
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B.2 Reference Dependence

Formalizing the discussion in the text, the DM’s revealed preference given the refer-

ence point x in S is aPS,xb if cobs(R) = a for some R ⊆ S such that b, x ∈ R. Thus

x cannot be most salient in S if PS,x is cyclic. Let Rref be the following necessary

UCS restrictions on �σ: for each S ∈ P(X) and x ∈ S such that PS,x is cyclic, there

is y ∈ S \ {x} with y �σ x. These restrictions are also sufficient:

Proposition 6 Observed choices cobs are consistent with Triggered Rationality if

and only if Rref is acyclically satisfiable.

Interestingly, the proof reveals that it is without loss of generality for the theory

to require that if x is preferred to y when the reference point is y, then x is also

preferred to y when the reference point is x, capturing a form of anchoring bias.

Proof. It remains to show sufficiency. Suppose an acyclic relation satisfying Rref

exists, and let �σ be a transitive completion (hence �σ still satisfies Rref ). Let xi

denote the i-th maximal element according to �σ. For each i, let Pxi be a transitive

completion of PXi,xi . Such a completion exists, because xi being �σ-maximal in

Xi = {xi, xi+1, . . . , xn} implies PXi,xi is acyclic. The choices generated by these

primitives will now be shown to coincide with cobs on D. Take any S ∈ D. Let

k be the smallest index such that xk ∈ S. Then S ⊆ Xk. By definition of Pxk ,

cobs(S) �xk y for all y ∈ S \ {cobs(S)}. Q.E.D.

While there could be many restrictions in Rref , the enumeration procedure always

tests the theory tractably, since one need only consider the |X| − 1 nonsingleton sets

X, X \ {x1}, X \ {x1, x2}, . . . encountered along the enumeration. If PS,x is acyclic,

then so is PS′,x for x ∈ S ′ ⊂ S. Moreover, within each such set, there is no need to

consider all the restrictions: one may move to the next set upon finding any x for

which PS,x is acyclic. Finally, a nested enumeration procedure tests if PS,x is acyclic.

B.3 Shortlisting

Proposition 7 Testing consistency with Shortlisting is NP-hard. This remains

true for Order Shortlisting (which requires the DM’s preference to be an ordering).

Proof. Fix a mixed setR of binary restrictions defined on a set X. For each restriction

r, let xr be the option whose contour set is being restricted; and without loss of
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generality assume yr 6= zr are the two options potentially included in the upper (or

lower) contour set of xr if r is an UCS (or LCS) restriction. Consider the set of options

X ′ that contains all options in X, plus the options ar, br, cr for each UCS restriction

r and the options dr, er, fr, gr for each LCS restriction r. Take the following data:

S arbr crxr brcrxr arbryrzr

cobs(S) br xr cr ar

for each UCS restriction r, and

S drfr ergr drfrxr ergrxr dryrzr eryrzr

cobs(S) dr er fr gr zr yr

for each LCS restriction r.

Define the following set of restrictionsR′ over X ′, which pertain to the shortlisting

relation P1 and are necessary conditions for consistency of cobs with Shortlisting:

(i) 1(br,xr) from the two middle observed choices for UCS restrictions r, since cr

cannot eliminate xr and xr is revealed preferred to cr.

(ii) 1({yr,zr},br) from the first and last observed choices for UCS restrictions r, since

ar cannot eliminate br and br is revealed preferred to ar.

(iii) 1(xr,dr) and 1(xr,er) from the first four choices for LCS restrictions r, since by

adding xr, the DM chooses the revealed-worse options fr and gr, respectively.

(iv) The restriction 1(dr,yr)∨1(er,zr) from the last two choices for the LCS restrictions

r, since neither yr nor zr can eliminate each other, yet one is more preferred.

Acyclic satisfiability is also sufficient for consistency with Shortlisting. Let P ′ be

an ordering on X ′ satisfying R′, which exists by acyclic satisfiability of R′. The

restriction of P ′ to X, denoted P , satisfies the restrictions in R. Let then P1 be

the relation on X ′ defined as follows: (a) for each LCS restriction r: xrP1dr, xrP1er,

frP1xr, grP1xr, drP1yr if xrPyr, and erP1zr if xrPzr, and (b) for each UCS restriction

r: arP1yr, arP1zr, brP1xr, yrP1br if yrPxr and zrP1br if zrPxr. Notice that P1 is

acyclic.25 Take P2 as a preference ordering on X ′ such that brP2ar and xrP2cr, for

25Indeed, one can derive from P an ordering on X ′ satisfying these restrictions, simply by placing
ar above all options in X and br right above xr, for each UCS restriction r, and by placing fr and
gr above all options in X, and dr and er below xr but above any other element of X, for each LCS
restriction r, and cr at the bottom for each UCS restriction.
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each UCS restriction r, and yrP2er, zrP2dr, drP2fr, erP2gr, yrP2zr if zrPyr, and

zrP2yr if yrPzr, for each LCS restriction r.26 It is easy to check that the choice

function associated to (P1, P2) coincides with cobs on D. Given that the constructed

P2 is an ordering, this proof will also establish that Order Shortlisting is NP-hard.

Finally, we claim R′ is acyclically satisfiable if and only if R is acyclically satisfi-

able. Necessity follows from the argument at the beginning of the previous paragraph.

For the converse, let P be an acyclic relation satisfying R. Then, just as in Footnote

25, we may derive from P an acyclic relation P ′ over X ′ that satisfies R′. Q.E.D.

B.4 Undominated Alternatives

Define Z(x) to be the union of all the choice problems T ∈ D such that x ∈ Cobs(T ).

As discussed in the text, if x 6∈ Cobs(S) for some S ∈ D, then there must exist

some y in S \ Z(x) that dominates x. Let RUD(Cobs) be the set of of strict UCS

restrictions 1(Σ,x), where Σ = {{y}|y ∈ S \ Z(x)}), derived by varying S ∈ D and

x ∈ S \ Cobs(S). If some S ⊆ Z(x), then satisfying RUD(Cobs) is clearly impossible,

and observed choices must be inconsistent with choosing the undominated elements

for some acyclic relation. Thus, we henceforth assume that S \Z(x) is nonempty for

all restrictions in RUD(Cobs).
27 These strict UCS restrictions capture the empirical

content of the theory.

Proposition 8 The observed choice correspondence Cobs is strongly consistent

with choosing undominated elements according to an acyclic relation if and only if

RUD(Cobs) is acyclically satisfiable.

Proof. Necessity follows from the above discussion. As for sufficiency, let � be acyclic

relation satisfying the restrictions in RUD(Cobs). As � may be overly complete,

construct �∗ by y �∗ x if y � x and there is S ∈ D such that x ∈ S \ Cobs(S) and

y ∈ S \ Z(x). Then �∗ inherits the property of acyclicity from �. Let T ∈ D. We

have to check that Cobs(T ) = {x ∈ T | @y ∈ T : y �∗ x}. Suppose that x ∈ Cobs(T )

and that y ∈ T . Then y ∈ Z(x), and thus it is not the case that y �∗ x. Conversely,

let x ∈ T \ Cobs(T ). Then there is y ∈ T \ Z(x) such that y � x since � satisfies the

restrictions in RUD(Cobs), and moreover y �∗ x holds. Q.E.D.

26For instance, rank from bottom to top: ar, br, cr, for all UCS restriction r, then fr, gr, dr, er
for all LCS restriction r, then options in X in opposite order than P .

27This assumption is only to simplify notation; one can instead create an auxiliary option �,
augment RUD(Cobs) by including � in every Z(x) and adding the restrictions 1(y,�) for all y ∈ X,
and then test acyclic satisfiability of these restrictions over X ∪ {�}.
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