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1 Introduction

Consider the following decision problem faced by a principal who repeatedly interacts with

two agents. Each period, the principal faces a new task and needs to select one of the two

agents to carry it out. At the start of a period, each agent privately learns if he is qualified for

the current task (or, under an alternative interpretation, has enough time to perform it well),

and decides whether to apply to do it. The principal can select only among the submitted

applications. A completed task generates either a high or low profit for the principal, while a

task that is unassigned generates zero profit. The agent assigned to a task, and the profit he

generates, is publicly observed by all. A qualified agent is more likely to generate high profit

than an unqualified one, but the principal is unable to observe qualification. The principal

wants to maximize the expectation of her (average) discounted sum of profits, while each

agent wants to maximize the (average) discounted number of times he is selected. The only

action the principal can take each period is which applicant, if any, to select; there are no

transfers. Moreover, she cannot commit in advance to any plan of action. What is the best

outcome the principal can attain in equilibrium, and how?

This abstract problem shares stylized features with many economically relevant situa-

tions. Consider a manager who must decide which employee to assign to a new project or

client; a politician in office who needs to designate a staffer in charge of new legislation; or

an organization that needs someone to direct a new initiative. Oftentimes, such employees

receive a monthly salary or fixed payment per task. Interested employees may be required

to communicate their availability, provide some evidence of serious intention, or pitch their

vision for the project at hand. Alternatively, one can think of situations where the agents

propose ‘ideas’ to a decision-maker. For instance, think tanks and researchers submit pro-

posals for a grant; engineers suggest directions for new versions of a product. The problem

can also be interpreted as a stylized representation of a median voter choosing between

office-driven politicians in each election. More generally, our model can be viewed as the

repetition of a stage game with the classic, persuasion payoff structure: the principal wants

to choose the most qualified agent available, while each agent simply wants to be chosen.

In the benchmark model, each agent i has a commonly known ‘ability’ parameter θi,

which is his probability of being qualified for each new task (each period agent i makes a

new, independent draw of his qualification). The realized profit from the project can be

either high or low. A qualified agent who is selected generates high profit with probability

γ ∈ (0, 1). An unqualified agent generates high profit with a strictly smaller probability

β ∈ [0, γ), but expected profit is nonnegative. Both agents share the same discount factor

δ, and both receive a payoff of one whenever they are selected. The principal’s first-best
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outcome is to pick the most qualified agent in every period. Our first main result in Section

2 concerns the principal’s ability to attain her first-best in a perfect public equilibrium

(PPE). We characterize the full set of parameter values (θ1, θ2, β, γ, δ) for which the first-

best is attainable in PPE. In addition, we identify a simple strategy profile, dubbed the

Markovian Last Resort (MLR), that achieves the first best whenever it is feasible; that is,

over the entire set of parameter values that we characterized.

The MLR strategy profile can be described as follows. At each history, one agent is

designated as the agent of last resort, and the remaining agent is designated as discerning.

The agent of last resort proposes himself regardless of whether he is qualified, while the

discerning agent proposes himself if and only if he is qualified. The principal selects the

agent of last resort if he is the only one available, and otherwise picks the discerning agent.

The first agent of last resort is chosen arbitrarily, and he remains in that role so long as all

the principal’s past profits were high. Otherwise, the agent of last resort is the most recent

agent who generated low profit for the principal.

The MLR profile has a number of appealing features. First, it requires players to keep

track of very little information: they need only know who was the last agent to generate low

profit. Second, it does not require the agents to punish the principal (who is the mechanism

designer) to ensure that she follows the strategy: MLR remains an equilibrium even when

the principal’s discount factor is zero. Third, it is robust to having privately observed

heterogeneity in the agents’ abilities. To demonstrate this, we enrich our benchmark model

by having each agent privately draw his ability from the interval [θ, 1]. We then characterize

the set of parameter values (θ,β, γ, δ) for which the principal’s first-best is attainable in a

belief-free equilibrium, in the sense that it constitutes a PPE for any pair of realized abilities.

Moreover, we show that whenever the parameters belong to this set, the MLR profile attains

the first-best in a belief-free equilibrium.

In Section 3, we turn to analyze the challenging case of more than two agents. The

MLR strategy profile easily generalizes to this case: the only modification needed is that

whenever two or more discerning agents propose themselves, the principal chooses one of

them at random. Clearly, the MLR profile delivers the first-best outcome for the principal,

and the only question remaining is when it constitutes an equilibrium. We first note that

it is impossible to attain the principal’s first-best in PPE (or even in Nash equilibrium) if

the highest ability among the agents is below 1 − n−1

√
1
n
. We then characterize the sets of

parameters for which the MLR profile constitutes a PPE and a belief-free equilibrium. We

know that for any profile of abilities strictly superior to 1 − n−1

√
1
n
, the MLR will be an

equilibrium when agents are patient enough and realized profits are sufficiently informative

of qualification. In that sense, we have characterized the widest range of abilities for which
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first-best is achievable, and shown that it is achievable by MLR. We do not know if the

set of parameters where MLR is a PPE corresponds to the widest set of all parameters for

which first-best is achievable. This is in contrast to the two-agent case, where we have such

a characterization. The difficulty stems from the fact that, unlike in the two-agent case, the

shape of the set of PPE payoffs is unknown. In particular, we do not know if it is feasible

to bring more than one agent to the lowest PPE payoff.1

This leaves open the question of whether some other strategy profile attains the principal’s

first-best in PPE for a wider range for parameters than MLR. To at least partially address

this question, we compare the performance of MLR with an intuitive class of strategy profiles,

which we call hierarchical. In a hierarchical strategy profile, agents are assigned priorities, the

lowest-priority agent serves as last resort while all other agents are discerning, the principal

picks the proposing agent with the highest priority, and a discerning agent moves down the

ranking if he generates a low profit, with the ranking of agents with a higher priority than

him unaffected. The MLR profile can be thought of as a ‘flat’ hierarchy with only two tiers:

the last resort is at the bottom and everyone else has the same priority. Would more tiers

help attain the principal’s first-best in PPE for a wider range of parameter values? Focusing

on homogenous abilities, we show that (1) no hierarchical strategy profile ‘dominates’ MLR

in the sense of attaining the first-best in PPE whenever MLR does, and (2) MLR dominates

any hierarchical profile that sends a ‘failing’ agent to the bottom of the ranking.

There are numerous possible extensions of our benchmark model. In Section 4, we briefly

discuss how our analysis can accommodate agents who also care about their performance;

how to incorporate a continuum of profit levels; the implications of incurring losses (in

expectation) when selecting an unqualified agent; and the effect of imposing a refinement in

the spirit of renegotiation-proofness (but tailored towards problems of mechanism design),

in which case we fully characterize the set of PPE payoffs.

Our paper provides a thorough analysis of a common strategic dilemma: how should one

select the ‘right’ expert (idea, candidate) when the supply side mainly cares about being

chosen, and possesses private information pertinent for identifying the right choice? While

we naturally abstract from many details present in real-life situations, many of these often

share a few key features with our stylized model: the decision-maker repeatedly faces the

same group of individuals who want to be selected, she cannot credibly commit to a decision

rule and cannot make contingent transfers. Our analysis identifies a simple and intuitive

strategy profile that attains the decision-maker’s first-best payoff whenever this is feasible,

not just for the basic model but for several variants. Its structure is independent of the

1Indeed, we are not aware of any work that fully characterizes the set of PPE payoffs in a setting with
incomplete information, no transfers and more than two players.
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parameters, and is reminiscent of the tendency to avoid - whenever possible - choosing the

most recent individual to generate a disappointing result.

1.1 Related Literature

Our paper relates to several strands of literature. In our problem, the principal uses a form

of dynamic favoritism, the promise (threat) of future (dis)advantage, as a means of aligning

incentives. Strategic use of favoritism also arises in static mechanism-design environments

without monetary transfers. For example, in Ben-Porath, Dekel and Lipman (2014), a

principal allocates a good or task among multiple agents, each of whom is privately informed

about the principal’s value from allocating it to him. In their static setting, the principal can

pay a cost to learn a single agent’s type before deciding who to select. They show all optimal

mechanisms are essentially randomizations over ‘favored-agent mechanisms’, which consist of

a favored agent and a threshold value. If all other agents report values below the threshold,

the good or task is allocated to the favored agent. Otherwise, the agent who reports the

highest value is checked, and receives the good if and only if his report is confirmed. In

our setting, by observing the profit from a selected agent, the principal receives for free an

imperfect signal about the truthfulness of the agent’s past claim. An agent who is likely to

have lied is then punished only in future allocations. It would be inefficient to never again

pick an agent suspected of lying, and would also violate the principal’s equilibrium incentive

constraint. In fact, some form of redemption must occur with positive probability in our

dynamic setting: the principal must treat a suspected liar less favorably by decreasing his

discounted likelihood of being picked in the future, but others will be suspected of lying in

the future since profits provide only an imperfect signal. Despite terminology, the last resort

agent in our MLR strategy shares some similarity with the favored agent in Ben Porath et

al. A novelty in our approach is to select who that agent will be based on past realizations.

For a wide range of parameters, the first best allocation becomes achievable even if types

are not verifiable. Should types be verifiable at a cost, as in Ben Porath et al., our paper

suggests that the principal can oftentimes save on these costs when interacting repeatedly

with the agents, by conditioning her future allocation rule.

The problem we study may be thought of as dynamic mechanism design without transfers

when the planner is a player (and therefore, cannot commit). In our model, there is no

institutional device that enables the principal to credibly commit to a policy, and the agents’

payoffs cannot be made contingent on the payoff to the principal. Among other settings,

these features arise in political environments where voters (or a median voter) elect one of

multiple candidates to an office. A number of papers study infinitely repeated elections in
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which candidates have privately known types. According to a recent survey by Duggan and

Martinelli (2017), this literature has remained small due to the “difficult theoretical issues

related to updating of voter beliefs,” and has examined various restrictions to simplify this

difficulty. There are structural differences between our framework and this literature. Banks

and Sundaram (1993,1998), for instance, include moral hazard and model private information

as being persistent. By contrast, our model has persistence in the agent’s underlying ability,

and the agents’ private qualification varies over time.

The recent literature on dynamic mechanism design with neither transfers nor commit-

ment includes Lipnowski and Ramos (2016) and Li, Matouschek and Powell (2017). Both

study an infinitely repeated game in which a principal decides whether to entrust a task

to a single agent, who is better informed. Both papers predict different and interesting

non-stationary dynamics in equilibrium. By contrast, the competition between agents in our

model is a driving factor in the results: if there were only one agent, the principal could

achieve no better than having him propose regardless of qualification.

Our paper relates to a small literature on relational contracts with multiple agents. Board

(2011) and Andrews and Barron (2016) study how a principal (firm) chooses each period

among multiple contractors or suppliers whose characteristics are perfectly observed by the

principal, but whose post-selection action is subject to moral hazard. Both papers allow the

use of transfers. Board (2011) considers a hold-up problem, where the chosen contractor each

period decides how much to repay the principal for her investment. Assuming the principal

can commit to the selection rule, Board shows that it is optimal to be loyal to a subset of

‘insider’ contractors, because the rents the principal must promise to entice the contractor

to repay act as an endogenous switching cost. This bias towards loyalty extends when the

principal cannot commit, so long as she is sufficiently patient. Relaxing Board’s assumption

of commitment and introducing imperfect monitoring in the moral hazard problem, An-

drews and Barron (2016) consider a firm who repeatedly faces multiple, ex-ante symmetric

suppliers. The firm and suppliers use a common discount factor. A supplier’s productivity

level is redrawn each period but is observable to the principal. The principal approaches a

supplier and, upon agreeing to the relationship, the supplier makes a hidden, binary effort

choice yielding a stochastic profit for the principal. Each supplier observes only his own

history with the principal. They suggest an allocation rule, the ‘favored supplier’ rule, and

characterize the range of discount factors for which it is part of an equilibrium that attains

first-best. They provide additional parameter restrictions which guarantee no equilibrium

attains first-best for lower discount factors. The favored supplier rule has the feature that

in every period, the principal chooses the supplier with the highest observed productivity

level, breaking ties in favor of whoever most recently yielded high profit.
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There are several interesting differences between these two papers and ours. First, in our

environment the principal cannot use transfers as a means of aligning incentives. Second,

we study a problem of adverse selection: the principal cannot observe the distinguishing

characteristic – the agents’ qualification for the task at hand. In our model, an aim of the

principal’s selection rule is to influence her set of proposers; thus the set of possible agents

in each period is endogenous to the problem. Additional features distinguishing our analysis

from Andrews and Barron (2016) is that we provide a full characterization of first-best for

the two-agent case and allow for ex-ante asymmetric agents. Without any restriction on the

parameters, we show that the MLR attains first-best if and only if first-best is attainable.

Interestingly, in contrast to the MLR, Andrews and Barron’s favored-supplier rule “favors

past success and tolerates past failure.” In their environment, monetary incentives allow

the principal to punish by way of withholding compensation while rewarding through future

promises. In our environment, where monetary incentives are absent, these dynamics are

reversed - the principal does not tolerate past failure, and does not favor past success.

Furthermore, Andrews and Barron point out that if they were to relax private monitoring,

the agents could collectively punish the principal and the optimal allocation rule would

become stationary. By contrast, our results rely on the history being at least partially

public (the identity of the current agent of last resort must be known to all players), and the

MLR does not rely on punishing the principal: whenever it is an equilibrium, it remains so

for any discount factor of the principal, even if she is fully myopic.

Our first-best analysis relates to Athey and Bagwell (2001), where two colluding, ex-

ante symmetric firms play a repeated Bertrand game and are privately informed about their

respective costs. In a binary-types model, they show that the firms can use future “market-

share favors” in order to achieve first best payoffs. Besides differences in the game structure,

a key feature distinguishing our analysis is our derivation of a condition (on all parameters)

that is not only sufficient for first best, but also necessary. Since our focus is on features

of the equilibrium strategy profiles rather than properties of the equilibrium payoff set, this

condition plays a crucial role and allows us to show that the MLR strategy profile attains

first best whenever it is attainable. Whereas the general approach of the collusion literature

has been to model problems of private information on costs and imperfect monitoring of

prices separately, in our model both agents’ actions (whether or not to propose) and their

performance (a signal of their qualification) are observable, and neither perfectly reveals a

deviation. Lastly, our characterization of first best allows for heterogeneity across agents.

Finally, our work is also related to the literature on “trading favors” originating in Mobius

(2001) and Hauser and Hopenhayn (2008), where players have private opportunities to do

favors for one another. Among other differences, an important distinguishing feature is that
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in this literature the players benefit (in the stage game) at the expense of one another.

2 A Model

There is one principal and two agents, 1 and 2. Each period t = 0, 1, 2, ... there is a new task

(or project) available, and the principal can choose at most one agent to carry it out. The

principal’s profit from a project is either high (H) or low (L), where H > L, and depends

stochastically on whether or not the agent assigned to carry it out is qualified to do so. A

qualified agent has probability γ ∈ (0, 1) of generating high profit for the principal; while a

non-qualified agent generates high profit with a strictly smaller probability β ∈ [0, γ). We

assume βH + (1− β)L ≥ 0 , so that the principal prefers to hire a non-qualified agent over

hiring no one. In each period t, the probability that agent i is qualified for the t-th project

is constant and equal to θi ∈ [θ, 1), where θ > 0. Thus, the parameter θi captures the ability

of agent i. Each agent privately observes whether he is qualified for the specific project at

hand, but the agents’ general abilities (the probabilities θ1 and θ2) are commonly known.

In every period, the stage game unfolds as follows. Each agent privately observes whether

he is qualified for the current project, and decides whether to submit a proposal to the

principal. The principal then decides which agent, if any, to select.

Agent i gets a positive payoff in period t if the principal picks him in that period. We

normalize this payoff to one (having a different payoff for each agent has no effect on our

analysis). Agent i’s objective is then to maximize the expectation of the discounted sum∑∞
t=0 δ

t1{xt = i}, where δ is each agent’s discount factor, 1{·} is the indicator function and

xt ∈ {1, 2}∪{∅} is the identity of the agent that the principal picks in period t, if any. That

is, each agent simply wants to be selected regardless of the end profit from the project.

The principal’s profit in a given period is zero if she does not choose any agent, and is

otherwise equal to the realized profit from the project. Her objective is to maximize the

expectation of the discounted sum
∑∞

t=0 δ
t
0yt, where δ0 is the principal’s discount factor and

yt ∈ {0, L,H} is her period-t profit.

The agents’ proposal decisions, the agent chosen by the principal (if any), and the realized

profit are all publicly observed.2 We define a public history at any period t as the sequence

ht = ((x0, y0, S0), . . . , (xt−1, yt−1, St−1)), where Sτ ⊆ {1, 2} ∪ {∅} is the set of agents who

made a proposal in each period τ < t and, as defined above, xτ and yτ denote the chosen

agent and the profit he generated. A public strategy for agent i determines, for each period

t, the probability with which he makes a proposal to the principal as a function of his

2As we will show, our results would not change if players could only observe the identity of the last agent
who generated a low profit for the principal.
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current qualification and the public history of the game. A public strategy for the principal

determines, for each period t, a lottery over which agent to select (if any) from among the

set of agents who propose, given that set of proposers and the public history of the game.

We apply the notion of perfect public equilibrium (PPE), that is, sequential equilibria where

players use public strategies.

We view this game as a mechanism design problem without commitment. The principal

wants to design a selection rule to maximize her payoff, but cannot commit to a rule. In-

stead, her rule must be justified endogenously, as an optimal response to that of the agents

in equilibrium. The principal cannot influence nature (the probability that each agent is

qualified, and the stochasticity of profit), but would ideally like to overcome the incentive

problem of agents. The first-best outcome from the principal’s point of view is to be able to

select, in every period, the qualified agent whenever one exists, and any agent otherwise.

Discussion

A proposal in our model can be thought of as a packet of documents that lays out a detailed

plan. Figuring out which agent is better qualified prior to making the selection is time

consuming and costly for the principal. However, we will show that the principal may take

advantage of the repeated nature of her interactions with the agents to reach her first-best,

even when her time is very limited and she cannot review the agents’ proposals before making

a selection. There is thus no need to explicitly model a proposal-review stage or review-cost

function to make this point. Furthermore, the assumption that agents simply want to be

selected regardless of the end profit from the project may capture situations where agents

want to accumulate experience, build a resume, or obtain certain resources associated with

carrying out a project, and where the principal’s payoff from a project cannot be verified by

an outside party.3

There are several key features in our model. First, there is no institutional device that

enables the principal to credibly commit to a selection policy. Second, the principal is better

off selecting some agent than not selecting any. The idea is that the loss from not performing

a task overweighs the loss from not doing it perfectly.4 Third, the principal cannot pick an

agent who has not submitted a proposal. This captures situations where either institutional

norms or explicit rules require an agent to give tangible evidence for his ability to take on

the project and to explicitly lay out his plans. Finally, the principal cannot sign complete

contracts with the agents that specify transfers as a function of profits. This feature captures

3Our analysis would not change if each agent i also received some fixed bonus λ when profits are high (see
Section 4), but would be considerably more tedious. The proof of Proposition 1 actually allows any λ ≥ 0.

4In Section 4, we discuss the case where selecting an unqualified agent leads to expected losses.
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situations where either the principal’s payoff cannot be verified by an outside party (e.g., it

may include intangible elements such as perceived reputation), or because of institutional

contraints that preclude such contracts (as in most public organizations where subordinates,

who receive a constant wage, may propose themselves to an executive decision maker).

2.1 Main result

A strategy profile achieves the principal’s first-best if a qualified agent is chosen in every

period where at least one agent is qualified, and some agent is chosen in all other periods.5

Our main result consists of two parts. First, it provides a complete characterization of the

parameter values for which the principal can attain the first-best in any PPE. Second, it

shows that a simple strategy profile, which we next introduce, attains the first-best PPE

payoff over the entire region of parameters for which a first-best PPE exists.

Definition 1 (The Markovian Last Resort (MLR) Strategy Profile). At each history, one

agent is designated as the agent of last resort, and the remaining agent is designated as

discerning. The agent of last resort proposes himself independently of his qualification, while

the discerning agent proposes himself if and only if he is qualified. The principal selects the

agent of last resort if he is the only one available, and otherwise picks the discerning agent.

The identity of the initial agent of last resort is chosen arbitrarily, and remains in that role

so long as all the principal’s past profits were high. Otherwise, the agent of last resort is the

most recent agent who generated low profit for the principal.

Clearly, the principal achieves her first best if she and the agents follow the MLR strategy

profile. She is sure to select an agent each period, and will select a qualified agent whenever

one exists. The question then is, under what condition is this profile a PPE?

Proposition 1. (a) A PPE that attains the principal’s first-best exists if and only if

δ ≥ 1

β + (θ1 + θ2) (γ − β)
. (1)

(b) The MLR strategy profile is a PPE if and only if (1) holds. Hence, there exists a strategy

profile attaining the first-best in PPE if and only if the MLR profile attains it.

This result implies that the first-best is attainable in equilibrium when agents are patient

5Of course, the principal would prefer picking only high-profit proposals when possible, but no one knows
at the selection stage whether high profit will be realized.
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enough if and only if the agents are sufficiently able, in the sense that:

θ1 + θ2 >
1

ι
(2)

where ι = γ−β
1−β = 1− 1−γ

1−β < 1 measures how informative low profits are of whether the agent

was unqualified.

The key incentive constraint, which generates condition (1), is the one facing an unquali-

fied discerning agent. This constraint explains why the incentives for player i are determined

both by θi and θ−i: When agent i is discerning, the probability with which he is selected is

θi, but he must also consider the case in which he becomes last resort, and the likelihood of

exiting that role is determined by θ−i.

Since abilities matter through their sum, the marginal contribution of having a second

agent - even of low ability - can be significant, so long as (1) holds. Suppose agent 1 has

rather high ability, say θ1 = 3/4. If he is the only agent, then the principal has no means

to incentivize him: he will submit a proposal independently of his qualification, and in

the first-best the principal achieves an expected payoff of 3/4H + 1/4L. However, if there

were an additional agent - even one with a much lower ability, say slightly higher than

1/4 - the expected payoff to the principal in the new first-best equilibrium increases to

(15/16)H + (1/16)L, which is significantly higher than the principal’s first-best equilibrium

with only a single agent.

To understand why the MLR attains the first-best for the widest range of parameters,

note that in any period, exactly one agent is discerning and one is last-resort. As shown in

the proof, the last-resort agent is worse off than the discerning agent. Hence, the harshest

possible punishment is to keep an agent as last-resort for as long as possible, conditional

on motivating the other agent. The best possible reward is to make an agent discerning for

as long as possible, conditional on motivating him. MLR does both. Note that the MLR

treats agents with different abilities symmetrically. The reason is that although agents are

asymmetric in expectation, they are identical conditional on being qualifed (or unqualified).

The proof of Proposition 1 (in the Appendix) proceeds as follows. We first observe that

if the principal attains the first-best, then the following must be true. At each history h,

there is an agent i(h) who proposes regardless of his qualification, while the other agent (the

‘discerning’ agent) proposes if and only if he is qualified. The principal picks the discerning

agent whenever he makes a proposal, and picks i(h) otherwise. We thus refer to agent i(h)

as the agent of ‘last resort.’ This structure allows us to write the equilibrium payoff of an

agent, both when he is last-resort and when he is discerning, as a function of the continuation

payoffs following the selection of some agent and the profit level he generates (in the first-best
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path, an agent is picked in each period).

We then proceed in several steps, in order to identify a condition on the parameters

necessary for the existence of a first-best equilibrium.6 Assuming first-best equilibria exist,

denote by σi, σi the minimal and maximal payoffs each agent i can obtain in a first-best

equilibrium as a function of the parameters.7 We first find the continuation payoffs that

minimize agent i’s first-best equilibrium payoff subject to the incentive constraints that a

discerning agent does not propose himself when he is unqualified (ignoring the constraint

that an agent should propose when he is qualified, which could potentially only raise the

equilibrium payoff), the feasibility constraints on the continuation payoffs of both agents

implied by (σ1, σ1, σ2, σ2), as well as the observation that the agents’ payoffs must sum up to

one in the first-best. We guess that an agent’s payoff in the principal’s first-best equilibrium

is minimized when he is the agent of last resort (we later verify this guess), and argue that

when the last-resort agent’s payoff is minimized, the incentive constraint of the discerning

agent must be binding. Using this binding constraint, we solve for σi as a function of the

parameters and the maximal equilibrium payoff σi. This leads to two cases, corresponding

to two possible solutions for σi, depending on which of the feasibility constraints on the

continuation payoffs bind.8

The second step is analogous to the first, except that we find the continuation payoffs that

maximize agent i’s equilibrium payoff subject to the incentive constraint that a discerning

agent does not propose himself when he is unqualified, the feasibility constraints on the

continuation payoffs of the agents, and the observation that the agents’ payoff must sum

up to one in the first-best. We derive an expression for the maximal equilibrium payoff σi

as a function of the parameters and the minimal equilibrium payoff σi (again, two different

potential solutions must be considered).

In the third step we consider the four possible solutions for (σi, σi) and show that the

inequality (1) is necessary for each of them, and hence necessary for the existence of a first-

best equilbrium. Finally, we verify that it is indeed the case that σi (σi) is attained when

an agent is discerning (last resort).

6Following Abreu, Pearce, and Stacchetti (1990; henceforth, APS), the equilibrium payoff set is the largest
self-generating set. However, this property by itself does not guarantee an explicit characterization of the
equilibrium payoff set as a function of the parameters. The crux of the proof is to use the property to derive
a necessary condition for the existence of first-best equilibria, as a function of the model’s parameters.

7Following APS, the set of PPE payoffs is compact. Hence, if the set of first-best PPE payoffs is non-
empty, such minimum and maximum payoffs exist. Note that since agents are not symmetric, their maximal
and minimal payoffs need not coincide.

8The minimization of agent i first-best payoff involves increasing his continuation payoff when the other
agent generates a high profit while decreasing his continuation payoff when the other agent generates a
low profit. These continuation payoffs are both constrained by σi and σi, and different solutions to the
minimization problem may arise depending on which of the constraints on the continuation payoffs binds.
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To show that condition (1) is also sufficient for attaining the principal’s first-best in a

PPE, we argue that the MLR profile is indeed a PPE if and only if (1) holds.

The MLR profile, despite using very little information about the environment and history

of past play, attains the first-best PPE payoff over the entire region of parameters for which

a first-best PPE exists. It also has several desirable properties. First, the principal and the

agents need not observe, nor remember, much information about past behavior. Recall that

at any history the principal’s selection decision is based only on the identity of the current

last resort agent – which changes if and only if a discerning agent fails – and the set of agents

who propose. In particular, past proposals play no direct role, and high profit realizations

do not trigger changes in the identity of the last resort agent. Furthermore, despite the

fact that agents may differ in their abilities, the principal’s strategy does not bias selection

decisions based on these differences.

Second, the principal’s selection rule is optimal for her (thereby providing endogenous

commitment) without relying on the agents to punish her if she deviates from it. While

efficient equilibria in the literature oftentimes rely on any deviator to be punished by others,

in our environment we would find it unnatural if the principal were to follow her part of the

equilibrium that achieves her first best only because of the fear of having the agents punish

her otherwise. The MLR strategy profile satisfies this property, since the profile remains a

PPE independently of the principal’s discount factor δ0.

Third, the MLR addresses questions of equilibrium robustness. From the analysis in

Proposition 1, it is clear that the MLR strategy profile is in fact an ex-post PPE whenever

(1) holds: Taking expectations over the future path of play, each agent’s proposal decision

remains optimal irrespective of his belief about the other agent’s current private information

(i.e., whether the other agent is qualified or not).9 In light of Proposition 1, such robustness

comes for free in our environment. In an ex-post equilibrium, stringent (simultaneous and

private) communication protocols are not necessary.10 Such robustness is particularly rele-

vant for environments in which it may be difficult or undesirable to restrict the way agents

share infomation with one another.

Finally, as we show below, the MLR strategy profile achieves the principal’s first best in

a belief-free way when there is uncertainty about the agents’ abilities. Suppose the principal

has little information about agents’ abilities and would like to guarantee her first-best out-

9Such notions of equilibrium, imposing ex-post incentive compatibility in each period taking expectations
over the future path of play, were introduced separately by Athey and Miller (2007) and Bergemann and
Valimaki (2010). The latter use the term “periodic ex-post.” Miller (2012) considers ex-post PPE in a model
of collusion with adverse selection.

10Such ex-post equilibria are also robust to the introduction of payoff-irrelevant signals and high-order
beliefs; see Bergemann and Morris (2005).
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come in all realizations. The notion of belief-free equilibrium directly addresses the question

of equilibrium robustness to such information.11 A strategy profile is a belief-free equilibrium

if it forms a PPE for any realized pair of abilities in [θ, 1]2. From condition (1), it follows

that the first best becomes harder to attain in PPE (in the sense of having a smaller range

of parameter values for which the first-best is attainable) the lower is sum of the abilities of

the agents. Hence, first-best is attainable in PPE for every possible realization of (θ1, θ2) if

and only if inequality (1) holds for θ1 = θ2 = θ. This observation, combined with Corollary

1, implies the following result.

Proposition 2. A belief-free equilibrium that attains the principal’s first-best exists if and

only if

δ ≥ 1

β + 2θ(γ − β)
. (3)

The MLR strategy achieves the objective when that condition holds.

It is worth noting the MLR strategy profile’s simplicity in comparison to other conceivable

strategies when information about abilities is incomplete. As in bandit problems, the princi-

pal could try to balance the desire to learn agents’ abilities and the exploitation of the agent

she currently believes has highest ability. The difficulty is that agents respond strategically

to the principal’s selection rule, which can impact her ability to learn. Continuing the anal-

ogy with bandit problems, whether an arm is available to pull becomes endogenous, and

may vary at equilibrium with the principal’s strategy. The MLR strategy profile simplifies

the problem by using this feature to the principal’s advantage: there is no need to learn the

agents’ abilities, and the first-best is achieved, if one agent is provided incentives to submit

proposals only when qualified.

3 Many agents

In the previous section we established that when the principal faces two agents, there is a

simple and intuitive strategy profile - the MLR - that attains the principal’s first-best in

PPE whenever the first-best is attainable in PPE.

In this section, we examine how some of our results generalize when there is a set A =

{1, 2, . . . , n} of n ≥ 2 agents, with ~θ denoting the vector of these agents’ abilities. Our first

observation identifies a necessary condition for the existence of any PPE that attains the

principal’s first-best. To present this result, define the threshold ability level θ∗ = 1− n−1

√
1
n
,

which decreases in n (starting from 1/2 for n = 2) and tends to 0 as n tends to infinity.

11Equilbria here are “ex-post” with respect to the agents’ abilities rather than the realization of the agents’
private information.
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Proposition 3. If maxi∈A θi < θ∗, then there is no PPE (and even no Nash equilbirium)

that attains the principal’s first-best.

When is the first-best is achievable, and how can the principal achieve it? To start

answering these questions, we observe that the underlying principle from our earlier analysis

generalizes to n ≥ 2 agents: at each history h, there must be n − 1 discerning agents each

of whom proposes himself if and only if he is qualified, and one agent of last resort who

proposes himself irrespective of his qualifications.

We will generalize the MLR strategy by treating all the n−1 discerning agents in a sym-

metric manner, with the principal randomizing uniformly when selecting among discerning

agents who have proposed. We will show that in the many agents case, MLR constitutes

a belief-free equilibrium for sufficiently patient agents if and only if all agents have ability

strictly higher than the threshold ability θ∗. Along the way, we find a necessary and sufficient

condition for the MLR to form a PPE when θi > θ∗ for all agents i. Finally, we will consider

the ‘optimality’ of this generalization of MLR in terms of whether another strategy profile

is capable of sustaining the principal’s first best in PPE for a wider range of parameters. In

particular, we show that there is no domination relationship with some ‘hierarchical’ strategy

profiles, in which the principal does not treat discerning agents symmetrically.

3.1 Characterizing when MLR is a PPE

Under the MLR strategy generalized to n ≥ 2, the behavior prescribed for the principal

and agent of last resort are clearly best responses to the discerning agents’ strategies. The

only question is whether a discerning agent is indeed willing to propose himself when he is

qualified, and refrain from proposing when he is not. The main difference between having

two or many agents play the MLR is that a discerning agent’s payoff depends on the abilities

of other discerning agents, through how often they propose themselves. A discerning agent’s

payoff is thus impacted by which of the n − 1 other agents is removed in each period from

the discerning pool to serve as the agent of last resort.

To understand incentives, we must thus understand the probability a given agent is

selected under these different possible circumstances. We let the probability that i is picked

when he is the agent of last resort be denoted by ρi(~θ). When ` is the agent of last resort,

we let the probability that a discerning agent i is picked, conditional on him proposing, be

denoted by σi(~θ, `). When ` is the agent of last resort, we let the probability that a discerning

agent j is picked, conditional on another discerning agent i proposing but not being picked,

be denoted by pj(~θ, i, `). Finally, when ` is the agent of last resort, we let the probability

that a discerning agent j is picked, conditional on another discerning agent i not proposing,
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be denoted by qj(~θ, i, `). These probabilities are given as follows:

ρi(~θ) =
∏
k 6=i

(1− θk),

σi(~θ, `) =

∑
S⊆A\{`}:i∈S

1
|S|
∏

k∈S θk
∏

k 6∈S,k 6=`(1− θk)
θi

,

pj(~θ, i, `) =

∑
S⊆A\{`}:i,j∈S

1
|S|
∏

k∈S θk
∏

k 6∈S,k 6=`(1− θk)

θi(1− σi(~θ, `))
,

qj(~θ, i, `) =

∑
S⊆A\{i,`}:j∈S

1
|S|
∏

k∈S θk
∏

k 6∈S,k 6=`(1− θk)
1− θi

.

The expression for ρi(~θ) follows because a last resort agent is selected under the MLR

strategy profile if and only if all discerning agents are unqualified. To understand the expres-

sion for σi(~θ, `), observe that while agent i’s proposal is selected uniformly among any set

of discerning agents’ proposals, we must consider all different possible sets of proposers and

their probabilities. The probabilities ρi(~θ) and σi(~θ, `) are needed to characterize the equi-

librium value functions of agents. The final two probabilities pj(~θ, i, `) and qj(~θ, i, `), whose

expressions follow from similar reasoning, will be needed to capture incentive conditions.

With these probabilities in mind, we turn our attention to understanding agents’ payoffs

and their resulting incentives. We denote by V D
i (~θ, `) agent i’s average discounted payoff

under the MLR strategy profile when he is discerning and agent ` is the agent of last resort.

We denote by V LR
i (~θ) agent i’s average discounted payoff under the MLR strategy profile

when he is the agent of last resort himself. These are jointly determined by the following

recursive system of equations for all possible agents ` 6= i:

V LR
i (~θ) =

i is
chosen︷︸︸︷
ρi(~θ)

(
(1− δi)ui + δV LR

i (~θ)
)

+
∑
j 6=i

j chosen when
i is last resort︷ ︸︸ ︷
θjσj(~θ, i)

(
γδV LR

i (~θ) +

low profit,
j becomes last resort︷ ︸︸ ︷

(1− γ)δV D
i (~θ, j)

)
,

V D
i (~θ, `) =

i chosen when
` is last resort︷ ︸︸ ︷
θiσi(~θ, `)

(
(1− δ)ui + γδV D

i (~θ, `) +

low profit,
i becomes last resort︷ ︸︸ ︷
(1− γ)δV LR

i (~θ)
)

+
∑
j 6=i,`

θjσj(~θ, `)︸ ︷︷ ︸
j chosen when
` is last resort

(
γδV D

i (~θ, `) + (1− γ)δV D
i (~θ, j)︸ ︷︷ ︸

low profit,
j becomes last resort

)
+ ρ`(~θ)︸ ︷︷ ︸

` is
chosen

δV D
i (~θ, `).

(4)

Of course, following the MLR strategy requires certain incentive conditions to be satisfied.

The incentive condition for a discerning agent i who turns out to be unqualified not to
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propose in a period when ` is the agent of last resort, is given by:

last resort
agent chosen︷ ︸︸ ︷
ρ`(~θ)

1− θi
δV D

i (~θ, `) +
∑
j 6=i,`

discerning
j chosen︷ ︸︸ ︷
qj(~θ, i, `)

(
γδV D

i (~θ, `) +

low profit, j
becomes last resort︷ ︸︸ ︷

(1− γ)δV D
i (~θ, j)

)

≥

i chosen︷ ︸︸ ︷
σi(~θ, `)

(
(1− δ)ui + βδV D

i (~θ, `) +

low profit, i
becomes last resort︷ ︸︸ ︷

(1− β)δV LR
i (~θ)

)
+ (1− σi(~θ, `))

∑
j 6=i,`

pj(~θ, i, `)︸ ︷︷ ︸
discerning j

chosen instead

(
γδV D

i (~θ, `) + (1− γ)δV D
i (~θ, j)︸ ︷︷ ︸

low profit, j
becomes last resort

)
.

(ICU)

Similarly, the incentive condition for a qualified discerning agent i to propose in a period

when ` is the agent of last resort, is:

σi(~θ, `)
(

(1− δ)ui + γδV D
i (~θ, `) + (1− γ)δV LR

i (~θ)
)

+ (1− σi(~θ, `))
∑
j 6=i,`

pj(~θ, i, `)
(
γδV D

i (~θ, `) + (1− γ)δV D
i (~θ, j)

)
≥ ρ`(~θ)

1− θi
δV D

i (~θ, `) +
∑
j 6=i,`

qj(~θ, i, `)
(
γδV D

i (~θ, `) + (1− γ)δV D
i (~θ, j)

)
,

(ICQ)

which differs from Condition ICU both in the direction of the inequality and because the

probability that agent i generates low profit is γ instead of β.

Incentive conditions ICU and ICQ are linear in the equilibrium payoffs. As will be seen

below, it turns out that ICU and ICQ depend on these payoffs only through the differences

∆Vi(~θ, `) = V D
i (~θ, `)− V LR

i (~θ)

in average discounted payoffs from being discerning instead of being the agent of last resort,

which vary with the identity of the agent of last resort when abilities are heterogeneous.

Furthermore, we will show that these payoff differences themselves depend on the vector

of abilities ~θ only through the likelihood premiums of being picked by the principal when

discerning versus when the agent of last resort. Formally, agent i’s likelihood premium of

being picked when discerning while ` is the agent of last resort, versus when i himself is the

agent of last resort, is:

π`i(~θ) = θiσi(~θ, `)− ρi(~θ)

For each i and each ~θ, let ~σi(~θ), ∆~Vi(~θ) and ~πi(~θ) be the (n − 1)-column vectors whose `-

component is σi(~θ, `), ∆Vi(~θ, `) and π`i(~θ), respectively, for each ` 6= i. These vectors thus list
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the selection probabilities, average payoff differences and likelihood premiums, respectively,

that are relevant for i as a function of the agent of last resort.

The claims above are established as intermediate steps in characterizing when the MLR

strategy profiles constitutes a PPE. Stating the characterization requires defining three ma-

trices: MQ
i (~θ), which collects terms from ICQ; MU

i (~θ), which collects terms from ICU ; and

Bi(~θ), which collects terms from the recursive system (4). Given its phrasing in terms of

matrix inequalities, the characterization may not seem insightful to the naked eye, but it

is very useful in two respects. First, it provides straightforward inequalities to numerically

check whether MLR constitutes a PPE. Second, the characterization is a critical intermedi-

ate step to understanding when MLR constitutes a belief-free equilibrium (as studied in the

next subsection), for which a far more transparent characterization emerges.

Proposition 4. Suppose θi > θ∗ for all i ∈ A. The MLR strategy profile constitutes a PPE

if and only if for all agents i:

MQ
i (~θ)Bi(~θ)

−1~πi(~θ) ≤ ~σi(~θ) ≤MU
i (~θ)Bi(~θ)

−1~πi(~θ), (5)

where the (n− 1)× (n− 1) matrices MQ
i (~θ), MU

i (~θ) and Bi(~θ) are defined in (6-8) below.

The proof, in the Appendix, has three main steps. First, we manipulate incentive conditions

ICU and ICQ to show that they depend on average discounted continuation payoffs only

through the payoff differences ∆~Vi(~θ). In particular, we show that the MLR strategy profile

constitutes a PPE if and only if

δ(1− γ)MQ
i (~θ)∆~Vi(~θ) ≤ (1− δ)~σi(~θ) ≤ δ(1− γ)MU

i ∆~Vi(~θ),

where these matrices are defined by

[MQ
i (~θ)]``′ =

{
q`′(~θ, i, `)− p`′(~θ, i, `)(1− σi(~θ, `)) if ` 6= `′,

ρ`(~θ)/(1− θi) if ` = `′;
(6)

and

[MU
i (~θ)]``′ =

 [MQ
i (~θ)]``′ if ` 6= `′,[

MQ
i (~θ)

]
``′

+ γ−β
1−γ σi(

~θ, `) if ` = `′.
(7)

This provides only a partial characterization of equilibrium conditions, since the payoff dif-

ferences are not yet expressed in terms of exogenous parameters of the problem. Second, we

manipulate the recursive system (4) defining payoffs themselves, to show that the differences

in payoffs depend on the ability vector ~θ only through the likelihood premiums (of which the
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matrix Bi(~θ) is a function). Namely, we show that:

Bi(~θ)∆~Vi(~θ) =
1− δ

δ(1− γ)
~πi(~θ),

where

[Bi(~θ)]``′ =

{
πi`′(~θ)− π``′(~θ) if ` 6= `′,

1 + πi`(~θ) + (1− δ)/(δ(1− γ)) if ` = `′.
(8)

The third and final step is establishing that the matrix Bi(~θ) is invertible, which turns out

to be nontrivial. We prove when θi > θ∗ for all agents i that the matrix Bi(~θ) has a special

property ensuring invertibility: it is strictly diagonally dominant, which means that for every

row, the absolute value of the diagonal element is strictly larger than the sum of the absolute

values of the off-diagonal elements.

Generalizing one of our points from Section 2, note that the equilibrium conditions are

independent of the principal’s discount factor δ0, which means that they would hold even if

the principal were fully myopic. The equilibrium thus doesn’t require that the principal’s

behavior be enforced by the threat of punishments from agents, which we consider a natural

property in a mechanism design context where the principal is the authority.

3.2 The MLR as a belief-free equilibrium

The principal may have little information about agents’ abilities and would like to guarantee

her first-best outcome in all cases. The MLR strategy profile constitutes a belief-free equi-

librium if it forms a PPE for any realized vector of abilities ~θ in the set [θ, 1]A of all possible

abilities. The necessary and sufficient condition for this to hold, depend on the minimal

probability premium π`i(~θ) for agent i when considering all possible ability levels and last

resort agents. As formally shown in the Appendix, the minimal probability premium is the

following function of θ, which is the lower envelope of its two components:

π =

 θ
n−1

if θ ≥ 1− n−2

√
1
n

1−n(1−θ)n−1

n−1
otherwise.

(9)

This characterization allows us to derive the agents’ minimal discount factor that sustains

the MLR as a belief-free equilibrium.

Proposition 5. The MLR forms a belief-free equilibrium if and only if for each agent i,

δ ≥ 1

γ + (γ − β)π
,
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where π is positive if and only if θ > θ∗.

Note that 1−n(1−θ)n−1

n−1
is the probability premium in the homogenous case where all agents

have an ability θ. Thus, by Proposition 5, the set of discount factors sustaining the MLR

as a belief-free equilibrium for ability profiles in [θ, 1]A is the same set that sustains it as

an equilibrium with homogenous abilities known to be θ when there are two agents or θ

falls below 1 − n−2

√
1
n
. Otherwise, the range of discount factors supporting the belief-free

equilibrium is smaller than in the case where the agents are commonly known to be θ.

Why is this so? In view of Proposition 5, we need to understand at which profile of

abilities the probability premium is minimized. Agent i’s probability premium π`i(~θ) is in-

creasing in both θi and θ`, so it is minimized by setting both equal to θ. On the other hand,

the abilities of discerning agents other than i have two opposing effects on π`i(~θ). When

these discerning agents have higher abilities, they reduce the probability σi(~θ, `) that i is

selected when he proposes (which lowers the premium), but they also reduce the probability

ρi(~θ) that i is picked when he is the agent of last resort (which raises the premium). The

effect associated to σi(~θ, `) becomes relatively more important as θ grows because σi(~θ, `) is

premultiplied by θi = θ in the definition of the probability premium, while ρi(~θ) is indepen-

dent of θi. Thus the ability vector minimizing the probability premium has all agents with

ability θ when it is relatively low, but involves some high-ability opponents otherwise.

The main challenge in proving Proposition 5 stems from the fact that all possible combi-

nations of abilities must be considered, and that inverting Bi(~θ) is non-trivial with heteroge-

nous abilities. Fortunately, Lemma 4 shows that the equilibrium conditions depend directly

on the vector Bi(~θ)
−1~πi(~θ). That vector can be shown to satisfy the relationship

Bi(~θ)
−1~πi(~θ) = [Id− 1− δiγ

δi(1− γ)
Bi(~θ)

−1]~1,

because the sum over any row ` of the matrix Bi(~θ) is equal to 1 + 1−δi
δi(1−γ)

+ π`i(~θ). This

reduces the problem at hand to understanding the vector Bi(~θ)
−1~1, that is, the vector of row

sums of Bi(~θ)
−1. Next, a power series development of Bi(~θ)

−1 establishes that Bi(~θ)
−1~1 is

decreasing in θi, or that Bi(~θ)
−1~πi(~θ) is increasing in θi. Since MU

i is a positive matrix, the

equilibrium constraint for discerning agents not to make a proposal when he is unqualified

is most challenging when θi = θ. After observing that the matrix Bi(~θ) is an M-matrix12 in

that case, we can apply the Ahlberg-Nilson-Varah bound to provide a sharp upper-bound

the row sums of Bi(~θ)
−1. Some algebra then establishes that a discerning agent does not

want to make a proposal when he is unqualified when his discount factor is above the bound

12I.e., a strictly diagonally dominant matrix with positive diagonal entries and negative off-diagonal entries.
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stated in Proposition 5. Similar techniques establish that discerning agents always want to

submit proposals when they are qualified, independently of their discount factors. As for

necessity in Proposition 5, we can just look at the equilibrium conditions stated in Lemma 4

for the ability vector that achieves π. Although abilities are heterogenous when θ is higher

than 1 − n−2

√
1
n
, the matrix Bi(~θ) remains easy to invert in that case because agents other

than i are all symmetric.

Propositions 3 and 5 together imply the following result.

Corollary 1. Consider the ability threshold θ∗ defined in Proposition 3. We have:

(i) If θ < θ∗, then the principal’s first best cannot be achieved in any belief-free equilibrium.

(ii) If θ > θ∗, then for all (β, γ) with 1−β
1−γ ≥

1+π
π

, the MLR strategy profile attains the

principal’s first best in a belief-free equilibrium.

The principal’s ability to achieve her first best in a belief-free manner thus hinges on her

worst possible agent, the organization’s ‘weakest link.’ Only when she is certain that all

agents have abilities greater than θ∗ can she incentivize them to be discerning. A principal

may or may not be able to screen agents to ensure a minimal standard for entry to the

organization. The threshold θ∗ decreases in the number of agents n, and is always smaller

than 1/2, so it would suffice that agents are simply more likely to be qualified than not.

3.3 Hierarchies

A natural question is whether a strategy profile other than MLR can achieve the principal’s

first best in PPE for a wider range of parameters. A complete characterization of the

necessary and sufficient conditions for attaining the first-best in PPE is a challenging task

when there are at least three agents. It is not immediately clear how the proof technique

used for the n = 2 case extends to n ≥ 3. First, solving the minimization problem to find

the lowest discounted probability with which an agent is picked in equilibrium becomes very

challenging to solve. Second, and more importantly, it is not clear that finding this minimum

would allow to characterize the range of parameters for which the principal’s first best is

achievable. This is because we do not know the shape of the convex set of equilibrium payoffs

(which, by contrast, must be an interval for n = 2).13

We therefore propose to evaluate the performance of MLR against an intuitive class of

alternative strategy profiles. To simplify the algebra, we focus on the case of homogenous

13We are not aware of applications of APS to derive simple closed-form solutions in problems with more
than two players and no transfers.
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abilities where θ1 = ... = θn = θ. A strategy profile is hierarchical if following each history

h, the principal uses a ranking (i.e., strict ordering) Rh of all the agents such that:

(i) In the period following history h, the principal picks the proposing agent ranked highest

according to Rh

(ii) If high profit is generated in the period following h, or if the lowest-ranked agent under

Rh was picked, then the ranking in the next period remains Rh.

(iii) If low profit is generated, then a deterministic rule is applied to generate the next

period’s ranking, as a function of the current rank k of the failing agent. Under this

rule, agents ranked above agent k keep their positions;

(iv) The top (n− 1)-ranked agents under Rh propose if and only if they are qualified (i.e.,

they are discerning), while the bottom-ranked agent always proposes himself.

The following are some examples of rules that determine how the agents’ rankings change

when a discerning agent generates low profit: (a) the “failing” agent drops to the bottom

of the ranking, and every agent ranked above i moves up one rank, (b) the “failing” agent

switches ranks with the bottom-ranked agent, and (c) the “failing” agent switches ranks with

the agent right below him. There are many possibilities, but none clearly dominates MLR.

Proposition 6. For two strategy profiles s and s′ that achieve the principal’s first-best, say

that s dominates s′ if s forms a PPE for all values of (β, γ, δ, θ) at which s′ does. Then:

(a) No hierarchical strategy profile dominates MLR.

(b) MLR does not dominate all hierarchical strategy profiles, but it does dominate any such

profile that sends a failing agent to the bottom of the ranking.

One rough intuition for why a hierarchy-based profile may not dominate MLR is because

the punishment MLR employs is “uniformly more severe,” in the sense that there are only

two tiers in the hierarchy, and a failing agent falls from the top of the hierarchy to the bottom.

In contrast, in a multi-tier hierarchy, the decrease in the probability of being chosen for an

agent in the second-to-last tier is not as severe.

It remains an open question whether there exists some strategy profile, which is not MLR

and lies outside the class of hierarchical strategy profiles, that achieves the principal’s first-

best in PPE for the widest range of parameters. If no such profile exists, then Proposition 6

suggests a more complex picture, where different strategy profiles have to be used for different

values of parameters to maximize the range of parameters where first best is achievable in

PPE. In the proof (in the Appendix), we show that MLR works for some parameter values,

while switching a failing agent with the next in the hierarchy works for others.
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4 Extensions

We now consider several extensions in the original context of a principal and two agents.

4.1 When agents also enjoy success

Agents may also care about their reputation or enjoy positive psychological reinforcement

from successfully carrying out a project. We extend the analysis to allow agents’ payoffs

to depend on their performance as well as participation in the project. This generalization

allows for another possible interpretation, whereby an indivisible resource (e.g., server pro-

cessing capacity, a common space, a piece of equipment, etc.) is allocated in each period

to one of two agents, each of whom knows their probability distribution (using β or γ) of

getting a high or low payoff from using it that period. In this interpretation, the principal

is a social planner who can, but need not, derive personal payoff. Following a utilitarian

objective, in each period she would allocate the common good to the agent with highest

expected payoff.

Formally, an agent receives an additional utility λ ≥ 0 for generating high profit H, on

top of the utility u ≥ 0 he enjoys, irrespective of the outcome, from being selected to carry

out the project. The case λ = 0, u = 1 corresponds to our original model, whereas the

other extreme u = 0 corresponds to an environment in which the interests of the principal

and the agents are most aligned (though not entirely: an agent only cares about his own

performance). The following extension of our earlier results is proved in the Appendix.

Proposition 7. Suppose agents obtain additional utility λ for generating high profit in ad-

dition to the utility u for being picked.

(a) A PPE that attains the principal’s first-best exists if and only if

δ ≥ 1

β + (θ1 + θ2) (γ − β) + θ1θ2

(
λ(γ−β)(1−β)

1+λβ

) . (10)

(b) The MLR strategy profile is a PPE if and only if (10) is satisfied; that is, there exists

a strategy profile attaining first-best if and only if the MLR attains it.

Thus, the MLR strategy profile still attains the first-best whenever doing so is possible,

independently of the agents’ payoff structure (u, λ). Notice that agents benefitting more

from high outcomes introduces an additional positive component θ1θ2

(
λ(γ−β)(1−β)

1+λβ

)
into the

denominator of (10), extending the region for which first-best is attainable. Intuitively, the
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bonus utility helps to align incentives. This has two implications. First, MLR is a belief-free

equilibrium for a larger range of abilities [θ, 1]2 than before.14 Second, the first-best region

depends on the composition of abilities, not their sum. When λ = 0, differences in the agents’

abilities had no implications for the possibility of attaining first-best. Such differences,

however, play an important role when agents directly care about their performance. Holding

fixed the sum of the agents’ abilities, the first-best region is maximized when agents are

identical, whereas heterogeneity reduces the positive effect from the alignment of incentives.

4.2 Losses

A key feature of our model is that the principal weakly prefers to choose a non-qualified

agent to carry out a project, than to choose no agent at all. Suppose instead that a non-

qualified agent who is hired for the task generates losses in expectation: βH + (1−β)L < 0,

which requires L < 0 and for β,H to be relatively small. In this case, the principal attains

his first-best payoff if in every period he chooses a qualified agent whenever one is available,

and chooses no one otherwise. Can this first-best payoff be attained in a PPE? We address

this question in the case of equally able agents and focus on pure-strategy PPEs.

Proposition 8. Assume θ1 = θ2 = θ and βH + (1 − β)L < 0. Then there exists no

pure-strategy PPE in which every period each agent proposes himself if and only if he is able.

Thus it is impossible for the principal to never pick the wrong agent, while simultaneously

ensuring the right agent always makes himself available. The proof, which appears in the

Online Appendix, proceeds along the same lines as our proof of the necessary conditions for

attaining the principal’s first-best payoff in a PPE in our original model (Proposition 1).

4.3 Principal-renegotiation-proofness

In standard problems of mechanism design, the notion of partial implementation only requires

the mechanism to have some equilibrium that achieves the principal’s desired outcome. In

this view, the principal has the ability to make her desired equilibrium focal. How does

one extend this idea to dynamic mechanism design without commitment? As a starting

point, consider the refinement of renegotiation proofness (Farrell and Maskin, 1989). Loosely

speaking, an equilibrium strategy profile for a repeated game is weakly renegotiation-proof

if at every history, there is no other continuation equilibrium under that strategy profile

which all players would unanimously agree to switch to. The ability to always switch to a

14The analog of Proposition 3 would add the term θ2
(
λ(γ−β)(1−β)

1+λβ

)
in the threshold δ’s denominator.
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more-preferred equilibrium has a similar flavor to the principal’s ability in mechanism design,

but gives equal power to all players. That is, standard renegotiation-proofness treats the

principal just like any other agent.

We propose instead a notion of principal-renegotiation-proofness that applies to dynamic-

mechanism design without commitment. A PPE satisfies this refinement if at every history,

there is no other continuation equilibrium under that PPE that achieves a higher expected

payoff for the principal. Our notion is precisely that of renegotiation-proofness with power

given to a single agent instead of the group as a whole (unanimity). More generally, one can

define S-renegotiation-proof equilibrium, where S represents a coalition that has the power

to select equilibria (conventions, norms) within a game. The principal may not be able

to commit in our dynamic mechanism design problem, and thus faces incentive constraints

of her own; but she does not lose the power to select the equilibrium being played in her

organization at any point. Hence the natural choice in our framework is S = {principal}.
Under this refinement, we identify a stark characterization of the payoffs that can be

sustained, which also address cases in which the principal’s first-best cannot be achieved in

a PPE. The rather lengthy proof appears in the Online Appendix.

Proposition 9. Consider a principal-renegotiation-proof PPE in which the agents use pure

strategies.15 Then the principal’s first-best is achieved (e.g, using the MLR strategy) if (1)

holds, and otherwise the one-shot Nash equilibrium is played in every stage game.

4.4 General profit distributions

Our model assumes there are only two profit levels, H and L. Suppose instead that profit

follows a more general distribution, conditional on an agent’s qualification. Formally, suppose

the principal’s profit y in any period is drawn from [y, ȳ] according to the CDF Q (U) when

the agent is qualified (unqualified). We allow for y < 0; we only require that the expected

profit from an unqualified agent is positive, and strictly lower than the expected profit

from a qualified agent. This setting includes environments where qualified agents first-order

stochastically dominate unqualified ones, or where qualified agents have higher variance.

For which profit levels should an agent be punished in this case? Notice that the MLR

strategy profile can be adapted by endogenizing β and γ. A discerning agent still proposes

only when he is qualified, and the agent of last resort still proposes regardless of qualification.

The principal still selects an agent just as before. The only difference is that a discerning

agent becomes the new agent of last resort when he generates a profit in some punishment

set Y ⊂ [y, ȳ] which has positive measure according to U . Then γ∗ = 1 −
∫
y∈Y dQ(y) is

15The principal is allowed to randomize in the event both agents make proposals.

24



the probability that a qualified agent generates a payoff outside the punishment set, and

β∗ = 1 −
∫
y∈Y dU(y) is the probability that an unqualified agent does so. If this adjusted-

MLR strategy profile is an equilibrium, then the principal obtains her first best. In the

Online Appendix, we examine how the punishment set Y should be chosen to sustain the

equilibrium, when possible. In particular, we may want to select the punishment set so that

first-best is achievable for the largest range of discount factors. We show, for instance, that

under the monotone likelihood ratio property, the punishment set will consist of all profit

levels below some optimally chosen threshold y∗.16

Analogous reasoning accommodates settings where outcomes are judged through lenses

other than profit (an invention, a work of art, a research article) and may depend on the

principal’s perception. The principal may have gradations in her assessments of outcomes,

but it only matters how she pools those into ‘high’ and ‘low’ categories to determine when

to punish discerning agents. Her perception of outcomes need only be sufficiently astute to

sustain equilibrium. In such settings, the distribution of the principal’s possible assessments,

conditional on an agent’s qualification, must be common knowledge. The principal’s assess-

ment itself, however, need not be observed by agents. It suffices to allow her to publicly

announce the next agent of last resort, as she has an incentive to speak truthfully.

5 Concluding Remarks

The literature on dynamic mechanism design has accumulated a rich set of results on what

is the best outcome a principal can achieve in a variety of contexts, and what incentive

schemes she should use for that purpose. That literature, however, requires the principal

to credibly commit to her incentive schemes, and typically uses monetary transfers as a

means for providing incentives. The repeated games literature, on the other hand, treats the

principal as just another player (meaning it assumes away commitment), and has developed

tools for characterizing the set of payoffs that can be sustained in equilibrium. However,

most of the sharp results in that literature consider the limit case when the players are

infinitely patient, or when transfers are allowed. There are no ‘off-the-shelf’ results that are

applicable to an arbitrary game to obtain the best equilibrium payoffs a player can obtain for

any combination of the game’s parameters. Results tend to rely on complex strategy profiles,

calibrated to the game’s parameters, as a means for delineating the equilibrium payoff set.

This paper studies a simple repeated interaction between a principal and a group of

16We are thus able to extend our necessary and sufficient conditions for MLR to be an equilibrium to the
case of a continuum of profits. However, it remains an open question whether in this case, MLR attains the
first-best in equilibrium for the widest range of parameters.
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agents, which naturally arises in many contexts: deciding which worker is best for a new job,

which team member’s idea has the most potential, which candidate is most qualified for the

position. Many of these examples can be seen as a problem of ‘pure persuasion’: the candi-

dates or applicants simply want to be selected, while the decision-maker wants to select an

individual only under certain circumstances (e.g., if he’s qualified for the task). Oftentimes,

the decision-maker in these scenarios cannot make contingent monetary transfers, and has

no credible means of committing to a decision rule.

Intuition suggests that the principal should contemplate selecting someone else after an

agent generates a disappointing outcome, if she hopes to incentivize at least some of the

agents to be discerning. It is not obvious however, whether the principal should act after a

single failure, whether her decision rule should depend on the number of past successes or

failures, or whether the best outcome is attained by a rule which is sensitive to the parameters

of the environment. It is therefore interesting to learn that whenever the principal’s first-best

outcome is achievable in equilibrium, it is achievable by a simple Markov strategy, which is

independent of the environment’s parameters. Furthermore, if we view the principal as a

figure of authority who can steer the agents away from equilibria that are inferior (in her

eyes), then either the repeated interaction leads to the best outcome for the principal, or

it doesn’t help the principal at all (she gets the same payoff as if the game was static),

and regardless of the parameter values, the players follow simple Markov strategies. Given

the rising interest in the areas of dynamic mechanism design, mechanism design without

transfers, and mechanism design without commitment, we hope our notion of principal-

renegotiation-proofness will prove useful in analyzing the intersection of these three areas.

Appendix

Proposition 1 is a special case of Proposition 7 with λ = 0, so we prove the latter here.

Proof of Proposition 7. Suppose a first-best PPE exists, and denote the set of first-best

equilibrium payoffs by EFB ⊂ R3. Given the reward scheme (u, λ), the sum of the two agents’

(average) continuation payoffs must equal

σ∗ = u+ λ [(1− θ1)(1− θ2)β + (1− (1− θ1)(1− θ2)) γ] (11)

at any history. Furthermore, in each stage game it must be the case that one of the agents, say

agent i, is discerning (D) and proposes if and only if he is qualified, the other, last-resort,

agent (LR), −i, proposes regardless of whether he is qualified, and the principal selects

agent i if he proposes and −i otherwise. Following APS, each pair of first-best equilibrium
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payoffs for the players can be supported by such a stage-game action profile together with

a rule specifying promised (average) continuation payoff vectors, one for each outcome of

the stage-game, each of which is itself an element of EFB. For convenience, we assume that

after each period firms can observe the realization of a public randomization device, and

select continuation equilibria based on these realizations. This guarantees the convexity of

the equilibrium payoff set, but is not needed for our results.

Denote by [σi, σi] the set of average payoffs attainable in a first-best equilbrium for agent

i.17 Note that the payoff sets may differ, since the agents may have different abilities. Let

pi = γθi + β(1 − θi) be agent i’s ex-ante probability of carrying out a project successfully,

and let σi(jS) (respectively, σi(jF )) denote player i’s promised continuation payoff when j

is picked and succeeds (respectively, fails). We proceed in several steps to derive conditions

on the parameters necessary for the existence of a first-best equilibrium.

Step 1. Solving for σ1. Given the observations above, σ1 must be the minimal payoff of

agent 1 that can be supported when promised continuation payoffs are restricted to EFB.

Suppose σ1 is obtained when agent 1 is LR (we will confirm this later). We assume σ1 actually

solves the following weaker minimization problem, where some of the incentive constraints

of the agents are ignored. Specifically, we assume σ1 minimizes

(1− θ2) [(1− δ)(u+ p1λ) + p1δσ1(1S) + (1− p1)δσ1(1F )] + θ2δ [γσ1(2S) + (1− γ)σ1(2F )]

(12)

subject to the IC constraint that agent 2 does not propose when unqualified,

δ [p1σ2(1S) + (1− p1)σ2(1F )] ≥ (1− δ)u+ β ((1− δ)λ+ δσ2(2S)) + (1− β)δσ2(2F ),

as well as the feasibility constraints, i.e., the constraints on the continuation values, σi ∈
[σi, σi], i = 1, 2. Adding the remaining IC constraints could only make the minimum greater,

potentially yielding more stringent necessary conditions. However, this will be redundant

since the necessary condition found will be sufficient.18 Using the fact that agents’ continu-

ations sum to σ∗ for any realization, we can rewrite agent 2’s IC constraint as follows:

δ (βσ1(2S) + (1− β)σ1(2F )) ≥ (1− δ) (u+ βλ) + δ [p1σ1(1S) + (1− p1)σ1(1F )] .

Clearly, (12) is minimized only if σ1(1S) = σ1(1F ) = σ1 (lowering these continuations

17Compactness of the PPE payoff set follows from standard arguments.
18Alternatively, once obtained, it can be verified that the solution to the relaxed minimization problem

also solves the original one.
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decreases the objective and can only relax the constraint). Therefore, σ1 minimizes

(1− θ2) [(1− δ) (u+ p1λ) + δσ1] + θ2δ [γσ1(2S) + (1− γ)σ1(2F )] (13)

subject to the binding IC constraint δ (βσ1(2S) + (1− β)σ1(2F )) = (1 − δ) (u+ βλ) + δσ1

and the feaasibility constraints. Using the IC constraint, we see the coefficient on σ1(2S)

is (γ − β)/(1 − β) > 0, and hence (13) is increasing in σ1(2S). Since a decrease in σ1(2S)

yields an increase in σ1(2F ), there are two cases to consider.

Case 1: σ1(2S) = σ1 does not violate the feasibility constraints. Then σ1(2F ) = σ1 +
(1−δ)(u+βλ)

δ(1−β)
and feasibility requires σ1(2F ) ≤ σ1. Setting σ1 equal to the objective in the

minimization problem, we obtain σ1 = (1−θ2) (u+ p1λ)+θ2
1−γ
1−β (u+ βλ) . To check whether

the feasibility constraint σ1 + (1−δ)(u+βλ)
δ(1−β)

≤ σ1 is satisfied, we will consider later below the

problem of maximizing 1’s continuation payoff.

Case 2: σ1(2F ) = σ1. If σ1(2S) cannot be brought down further, then σ1(2F ) must be

at its maximum value, σ1. Then σ1(2S) = (1−δ)(u+βλ)
δβ

+
σ1

β
− (1−β)σ1

β
and, setting σ1 equal to

the objective in the minimization problem,

σ1 =
(1− δ)

[
(1− θ2) (u+ p1λ) + θ2

γ(u+βλ)
β

]
− δθ2σ1

[
γ−β
β

]
1− δ

[
(1− θ2) + θ2

γ
β

] . (14)

Feasibility requires that 1−δ
δβ

+
σ1

β
− (1−β)σ1

β
∈ [σ1, σ1].

Step 2. Solving for σ1. Suppose that agent 1’s first-best equilbrium payoff is maximized

when 1 is discerning (this will later be confirmed). Analogously to step 1, we now solve for

σ1 as a solution to the problem of maximizing 1’s payoff

θ1 [(1− δ)(u+ γλ) + γδσ1(1S) + (1− γ)δσ1(1F )] + (1− θ1)δ [p2σ1(2S) + (1− p2)σ1(2F )]

subject to the IC constraint that agent 1 does not propose when he is unqualified,

δ [p2σ1(2S) + (1− p2)σ1(2F )] ≥ (1− δ)u+ (β ((1− δ)λ+ δσ1(1S)) + (1− β)δσ1(1F )) ,

and the feasibility constraints. As in step 1, ignoring remaining constraints is wlog. Setting

σ1(2S), σ1(2F ) to σ1 (increases objective, can only relax IC), the objective becomes

θ1 [(1− δ)u+ (γ ((1− δ)λ+ δσ1(1S)) + (1− γ)δσ1(1F ))] + (1− θ1)δσ1
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and the IC constraint, which must bind, becomes

δσ1 = (1− δ) (u+ βλ) + δ (βσ1(1S) + (1− β)σ1(1F )) .

Solving the maximization problem involves increasing σ1(1S) as much as possible (intuitively,

increasing agent 1’s payoff when he is discerning and succeeds). There are 2 cases:

Case 3: σ1(1S) = σ1 does not violate the feasibility constraints. Then σ1(1F ) = σ1 −
(1−δ)(u+βλ)

δ(1−β)
and feasibility requires σ1(1F ) ≥ σ1. Setting σ1 equal to the objective in the

maximization problem, we obtain σ1 = θ1(λ+ u)
[
γ−β
1−β

]
.

Case 4: σ1(1F ) = σ1. Then σ1(1S) = σ1

β
− (1−β)σ1

β
− (1−δ)(u+βλ)

δβ
∈ [σ1, σ1]. Plugging into

the objective, we obtain

σ1 = θ1

[
γ

β
− 1

] (1− δ)u+ δσ1

δθ1

[
γ
β
− 1
]
− (1− δ)

 . (15)

In particular, note that it must be the case that δθ1

[
γ
β
− 1
]
− (1− δ) > 0.

Step 3. Combining σ1 and σ1. We now combine the possible cases.

Cases 1 and 3. Combining σ1 = (1 − θ2) (u+ p1λ) + θ2
1−γ
1−β (u+ βλ) and σ1 = θ1(λ +

u)
[
γ−β
1−β

]
, together with the necessary conditions for these cases (which boil down to σ1−σ1 ≥

(1−δ)(u+βλ)
δ(1−β)

), the following condition must hold:

θ1(λ+ u)

[
γ − β
1− β

]
−
(

(1− θ2) (u+ p1λ) + θ2

[
1− γ
1− β

]
(u+ βλ)

)
≥ (1− δ) (u+ βλ)

δ(1− β)
.

This condition simplifies to condition (10) in the statement of Proposition 7.

Cases 2 and 4. Combining (14) and (15), it can be shown that

σ1 − σ1 = (1− δ) (u+ λβ)
1 + (θ1 + θ2)

[
γ
β
− 1
]
− θ1θ2

[
γ
β
− 1
]

λβ
u+λβ

δ(θ1 + θ2)
[
γ
β
− 1
]
− (1− δ)

.

Furthermore, the feasibility conditions for the two cases reduce to

σ1 − σ1 ∈
[

1− δ
δ

(u+ βλ) ,
1− δ

δ(1− β)
(u+ βλ)

]
.
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The requirement that σ1 − σ1 ≤ 1−δ
δ(1−β)

(u+ βλ) is equivalent to the inequality,

δ(1− β) + δ(1− β) (θ1 + θ2)
[
γ
β
− 1
]
− δ(1− β)θ1θ2

[
γ
β
− 1
]

λβ
u+λβ

δ(θ1 + θ2)
[
γ
β
− 1
]
− (1− δ)

≤ 1.

By the observation in case 4 that δθ1

[
γ
β
− 1
]
− (1− δ) > 0, the denominator is positive. The

inequality can therefore be rewritten to again obtain (10). Finally, note that the conditions

for cases 1 and 4 can be satisfied jointly only for a parameter set of measure zero, since case

1 requires σ1 − σ1 ≥
(1−δ)(u+βλ)

δ(1−β)
, whereas case 4 requires σ1 − σ1 ≤

(1−δ)(u+βλ)
δ(1−β)

. The same

holds for the combination of cases 2 and 3.

We next verify our conjecture that agent 1’s minimal (respectively, maximal) first-best

equilibrium payoff is obtained when he is LR (respectively, discerning).

Step 4. Verifying the postulated roles.

Claim 1. σ1 is attained when agent 1 is LR.

Proof. Assume, by contradiction, that σ1 is attained when agent 1 is discerning. Agent 1’s

average payoff is therefore

θ1 ((1− δ) (u+ γλ) + γδσ1(1S) + (1− γ)δσ1(1F )) + (1− θ1)δ (p2σ1(2S) + (1− p2)σ1(2F )) .

The IC constraint for agent 1 not proposing when he is unqualified is

δ (p2σ1(2S) + (1− p2)σ1(2F )) ≥ (1− δ) (u+ λβ) + δ (βσ1(1S) + (1− β)σ1(1F )) .

Therefore,

σ1 ≥ θ1 ((1− δ) (u+ γλ) + δ (γσ1(1S) + (1− γ)σ1(1F ))) + (1− θ1)δ (p2σ1(2S) + (1− p2)σ1(2F ))

≥ θ1 ((1− δ) (u+ γλ) + γδσ1(1S) + (1− γ)δσ1(1F ))

+ (1− θ1) ((1− δ) (u+ λβ) + δ(βσ1(1S) + (1− β)σ1(1F )))

≥ (1− δ) (u+ λp1) + δσ1,

which implies that σ1 ≥ (1− δ)(u+ λp1) + δσ1, or that σ1 ≥ u+ λp1. But u+ λp1 is agent

1’s average payoff when he is selected in all periods, a contradiction. �

Claim 2. σ1 is attained when agent 1 is discerning.
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Proof. By contradiction. If σ1 is attained when agent 1 is LR, then agent’s average payoff is

(1−θ2) ((1− δ) (u+ p1λ) + δ (p1σ1(1S) + (1− p1)σ1(1F )))+θ2δ (γσ1(2S) + (1− γ)σ1(2F )) .

The IC constraint of the discerning agent 2 for not proposing when he is unqualified is:

(1− δ) (u+ βλ) + δ (βσ2(2S) + (1− β)σ2(2F )) ≤ δ (p1σ2(1S) + (1− p1)σ2(1F )) .

Recalling that each outcome x ∈ {1S, 1F, 2S, 2F}, σ1(x) + σ2(x) = σ∗, we can rewrite this:

(1− δ) (u+ βλ) + δ (p1σ1(1S) + (1− p1)σ1(1F )) ≤ δ (βσ1(2S) + (1− β)σ1(2F )) .

Therefore

σ2 ≤ (1− θ2) ((1− δ) (u+ p1λ) + δ (p1σ1(1S) + (1− p1)σ1(1F ))) + θ2δ (γσ1(2S) + (1− γ)σ1(2F ))

≤ (1− θ2)δ (βσ1(2S) + (1− β)σ1(2F )) + θ2δ (γσ1(2S) + (1− γ)σ1(2F ))

+ (1− θ2)(1− δ) ((u+ p1λ)− (u+ βλ))

≤ δσ1 + (1− θ2)(1− δ)λ (p1 − β) ,

which means σ1 ≤ (1−θ2)λ (p1 − β) < (1−θ2) (u+ λp1) . But (1−θ2)(u+λp1) is 1’s average

payoff when he is last resort in all periods, a contradiction. �

We conclude that we have in (10) a necessary condition for the existence of a first-best

PPE. In fact, since (10) is also sufficient for cases 1 and 3 to hold jointly, this immediately

implies (10) is also sufficient for the existence of a first-best PPE.19 We next show directly

that the MLR forms a (first-best) PPE whenever (10) holds.

Step 5: Sufficient conditions for MLR. Let V D
1 and V LR

1 represent agent 1’s average

discounted payoff (prior to learning his qualification status) under the MLR strategy profile

when he is discerning and when he is last-resort, respectively. Then the IC constraint for an

unqualified discerning agent not to propose is given by:

δV D
1 ≥ (1− δ) (u+ βλ) + βδV D

1 + (1− β)δV LR
1 .

Subtracting δV LR
1 from both sides of the inequality yields:

V D
1 − V LR

1 ≥ (1− δ) (u+ βλ)

δ(1− β)
. (16)

19More precisely, following APS, condition (10) guarantees that a non-empty, bounded, self-generating set
of first-best payoffs (payoff vectors in which the principal obtains her first best) exists.
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To express the LHS in terms of the parameters we solve for V D
1 and V LR

1 :

V D
1 = θ1[(1− δ) (u+ λγ) + γδV D

1 + (1− γ)δV LR
1 ] + (1− θ1)δV D

1 ,

V LR
1 = (1− θ2)[(1− δ) (u+ λp1) + δV LR

1 ] + θ2[γδV LR
1 + (1− γ)δV D

1 ].

Rearranging, we have

V D
1 =

θ1(1− δ) (u+ λγ) + θ1(1− γ)δV LR
1

(1− δ) + θ1(1− γ)δ
, (17)

V LR
1 =

(1− θ2)(1− δ) (u+ λp1) + θ2(1− γ)δV D
1

(1− δ) + δθ2(1− γ)
.

Solving explicitly for V LR
1 :

V LR
1 =

(1− θ2)(1− δ) (u+ λp1) + θ1(1− θ2)(1− γ)δ (u+ λp1) + θ1θ2δ(1− γ) (u+ λγ)

(1− δ) + δ(1− γ)(θ1 + θ2)
,

and from (17) it follows that

V D
1 − V LR

1 =
θ1(1− δ) (u+ λγ)− (1− δ)V LR

1

(1− δ) + θ1(1− γ)δ
.

Plugging in the expression for V LR
1 yields:

V D
1 − V LR

1 = (1− δ)(u+ λβ) (θ1 + θ2 − 1) + θ1θ2λ(γ − β)

(1− δ) + δ(1− γ)(θ1 + θ2)
,

which combined with the IC constraint (16) yields the condition (10). �

Proof of Proposition 3. Suppose that there is a PPE that achieves the first best for the

principal. Thus at each history h, there is i(h) ∈ A such that agents other than i(h) propose

themselves iff they are qualified, i(h) proposes himself regardless of quality, the principal

picks i(h) only when he is the sole proposer, and otherwise picks an agent other than i(h).

An agent j could follow the strategy of proposing himself in each round, whatever its

quality. By doing this, the agent gets picked with probability at least (1−maxi∈A θi)
n−1 at

any history h with j = i(h), and he gets picked with probability at least (1−maxi∈A θi)
n−2

at any history h with j 6= i(h). Each agent can thus secure himself a discounted likelihood

of being picked which is larger than or equal to (1−maxi∈A θi)
n−1/(1− δ).

To achieve her first best in equilibrium, the principal picks exactly one agent in each

round. So, in total, the aggregate discounted likelihood of being picked is 1/(1−δ). The equi-

librium could not exist if 1/(1− δ) were strictly smaller than the aggregate discounted likeli-
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hood of being picked that agents can minimally guarantee, that is, n(1−maxi∈A θi)
n−1/(1−δ).

That relationship holds if and only if maxi∈A θi < θ∗. �

Remark 1. Observe that
∑

j 6=` θjσj(
~θ, `)+ρ`(~θ) = 1, since the principal always selects some

agent, resorting to the last resort agent if no discerning agent proposes. Moreover, note that∑
j 6=i,` pj(

~θ, i, `) = 1, since the fact that player i has proposed means that the selected agent

will come from the discerning pool. On the other hand,
∑

j 6=i,` qj(
~θ, i, `) + ρ`(~θ)

1−θi = 1, since it

is possible that no discerning agent will propose.

Proof of Proposition 4 The proof follows from Lemmas 1 and 2, combined with the

invertibility of Bi(~θ) proved in Lemma 4(d) further below.

Lemma 1. The MLR strategy profile constitutes a PPE if and only if

δ(1− γ)

(1− δ)
MQ

i (~θ)∆~Vi(~θ) ≤ ~σi(~θ) ≤
δ(1− γ)

(1− δ)
MU

i ∆~Vi(~θ).

Proof. First note that the MLR strategy of the principal is first best for him, regardless of his

discount factor and agents’ types, so long as agents follow their strategies. Moreover, given

that the principal follows this strategy, a last resort agent cannot change his probability of

going back into the discerning pool of agents by his own actions. The last resort agent thus

finds it optimal to propose himself with probability one, regardless of his discount factor and

agents’ types. It remains to check the incentive conditions for discerning agents.

Subtracting δV LR
i (~θ) from both sides of the incentive condition (ICU) for i to refrain from

proposing when unqualified and when ` is the last resort agent, we find that

ρ`(~θ)

1− θi
δ∆V D

i (~θ, `) +
∑
j 6=i,`

qj(~θ, i, `)
(
γδ∆V D

i (~θ, `) + (1− γ)δ∆V D
i (~θ, j)

)
≥ σi(~θ, `)

(
1− δ + βδi∆V

D
i (~θ, `)

)
+ (1− σi(~θ, `))

∑
j 6=i,`

pj(~θ, i, `)
(
γδ∆V D

i (~θ, `) + (1− γ)δ∆V D
i (~θ, j)

)
.

Collect all ∆V D
i terms on the left-hand side, and multiply the inequality through by 1

1−δ .

Then, for each j 6= `, the coefficient multiplying (1−γ)δ
1−δ ∆V D

i (~θ, j) is easily seen to be

[MU
i (~θ)]`j. Using Remark 1, the coefficient multiplying (1−γ)δ

1−δ ∆V D
i (~θ, `) is

1

1− γ

(
ρ`(~θ)

1− θi
+ γ

∑
j 6=i,`

qj(~θ, i, `)− βσi(~θ, `)− γ(1− σi(~θ, `))
∑
j 6=i,`

pj(~θ, i, `)

)

=
1

1− γ

(
ρ`(~θ)

1− θi
+ γ(1− ρ`(~θ)

1− θi
)− βσi(~θ, `)− γ(1− σi(~θ, `))

)
= [MU

i (~θ)]``.

33



Stacking the inequalities for ` 6= i yields the matrix inequality with MU
i (~θ).

Next, subtracting δV LR
i (~θ) from both sides of the incentive condition (ICQ) for agent i

to propose himself when qualified and when ` is the last resort agent, we find that

σi(~θ, `)
(

1− δ + γδ∆V D
i (~θ, `)

)
+ (1− σi(~θ, `))

∑
j 6=i,`

pj(~θ, i, `)
(
γδ∆V D

i (~θ, `) + (1− γ)δ∆V D
i (~θ, j)

)
≥
∑
j 6=i,`

qj(~θ, i, `)
(
γδ∆V D

i (~θ, `) + (1− γ)δ∆V D
i (~θ, j)

)
+
ρ`(~θ)

1− θi
δ∆V D

i (~θ, `).

Collect all ∆V D
i -terms on the right-hand side, and multiply the inequality through by 1

1−δ .

Then the coefficient multiplying (1−γ)δ
1−δ ∆V D

i (~θ, j) is easily seen to be [MQ
i (~θ)]`j. Given Re-

mark 1, the coefficient multiplying (1−γ)δ
1−δ ∆V D

i (~θ, `) reduces to

1

1− γ

(
γ
∑
j 6=i,`

qj(~θ, i, `) +
ρ`(~θ)

1− θi
− γ

)
= [MQ

i (~θ)]``.

Stacking the inequalities for ` 6= i yields the matrix inequality with MQ
i (~θ).

Lemma 2. For all i and ~θ, the average discounted payoff differences ∆~Vi(~θ) satisfy:

Bi(~θ)∆~Vi(~θ) =
ui(1− δi)
δi(1− γ)

~πi(~θ),

where Bi(~θ) is the (n− 1)-square matrix whose ``′-entry, for any `, `′ in A\ {i}, is given by

[Bi(~θ)]``′ =

{
πi`′(~θ)− π``′(~θ) if ` 6= `′,

1 + πi`(~θ) + (1− δi)/(δi(1− γ)) if ` = `′.

Proof. The value function V D
i is defined by the equation

V D
i (~θ, `) = θiσi(~θ, `)

(
1− δ + γδV D

i (~θ, `) + (1− γ)δV LR
i (~θ)

)
+
∑
j 6=i,`

θjσj(~θ, `)
(
γδV D

i (~θ, `) + (1− γ)δV D
i (~θ, j)

)
+ ρ`(~θ)δV

D
i (~θ, `),

(18)

while the value function V LR
i is defined by

V LR
i (~θ) = ρi(~θ)

(
1− δ + δV LR

i (~θ)
)

+
∑
j 6=i

θjσj(~θ, i)
(
γδV LR

i (~θ) + (1− γ)δV D
i (~θ, j)

)
. (19)
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Subtracting δV LR
i (~θ) from both sides of Equation (18), we find that

V D
i (~θ, `)− δV LR

i (~θ) = θiσi(~θ, `)
(

1− δ + γδ∆V D
i (~θ, `)

)
+
∑
j 6=i,`

θjσj(~θ, `)
(
γδ∆V D

i (~θ, `) + (1− γ)δ∆V D
i (~θ, j)

)
+ ρ`(~θ)δ∆V

D
i (~θ, `),

(20)

In view of Remark 1, Equation (18) simplifies to

V D
i (~θ, `)− δV LR

i (~θ) = θiσi(~θ, `)(1− δ) + (1− γ)δ
∑
j 6=i,`

θjσj(~θ, `)∆V
D
i (~θ, j)

+ δ∆V D
i (~θ, `)

(
γ + (1− γ)ρ`(~θ)

)
.

(21)

Similarly, subtracting δV LR
i (~θ) from both sides of Equation (19), we find that

V LR
i (~θ)− δV LR

i (~θ) = ρi(~θ)(1− δ) + (1− γ)δ
∑
j 6=i

θjσj(~θ, i)∆V
D
i (~θ, j). (22)

Subtracting Equation (22) from Equation (21), and using the definition of π``′(~θ), we find:

∆V D
i (~θ, `) = π`i(~θ)(1− δ) + δ∆V D

i (~θ, `)
(
γ − (1− γ)πi`(~θ)

)
+ (1− γ)δ

∑
j 6=i,`

(
θjσj(~θ, `)− θjσj(~θ, i)

)
∆V D

i (~θ, j).
(23)

Note that θjσj(~θ, `)− θjσj(~θ, i) = π`j(~θ)− πij(~θ). We can thus rearrange Equation (23) and

divide through by (1− γ)δ to find that Bi(~θ)∆~Vi(~θ) = 1−δ
(1−γ)δ

~πi(~θ), as claimed.

Proof of Proposition 5. The result follows from Lemmas 3-7. We start by establishing

properties of selection probabilities and probability premiums. We let σ∗ = σi(θ
∗, . . . , θ∗, `)

for any i 6= ` (the selection probability does not vary on i and ` when agents are identical).

Lemma 3. (a) For each agent ` 6= `′,
ρ`′ (

~θ)

σ`′ (
~θ,`)

is decreasing in θk, for all k ∈ A.

(b) π``′(~θ) > 0 for all ~θ ∈ [θ, 1]n and any ` 6= `′ in A, if and only if θ > θ∗.

(c) (1− θ∗)σ∗ ≤ 1/2.

(d) Suppose θ > θ∗, and ` 6= i is such that θ` ≤ θi. Then π`i(~θ)− πi`(~θ) ≤ 1/2.
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(e) The minimal probability premium π := min`∈A\{i}min~θ∈[θ,1]n π`i(
~θ) is given by

π =

 θ
n−1

if n ≥ 3 and θ ≥ 1− n−2

√
1
n

1−n(1−θ)n−1

n−1
otherwise.

Proof. (a) This is true since the following function is decreasing in θk, for all k ∈ A:

ρ`′(~θ)

σ`′(~θ, `)
=

∏
j 6=`′ (1−θj)∑n−2

k=0
1
k+1

∑
S⊆A\{`,`′},|S|=k

∏
j∈S θj

∏
j∈A\S,j 6=`,`′ 1−θj

= 1−θ`∑n−2
k=0

1
k+1

∑
S⊆A\{`,`′},|S|=k

∏
j∈S

θj
1−θj

∏
j∈A\S,j 6=`,`′

1−θj
1−θj

= 1−θ`∑n−2
k=0

1
k+1

∑
S⊆A\{`,`′},|S|=k

∏
j∈S

θj
1−θj

.

(b) Notice that π``′(~θ) > 0 if and only if θ`′ >
ρ`′ (

~θ)

σ`′ (
~θ,`)
. From (a), the RHS takes its highest

value at ~θ = (θ, . . . , θ). Using this, notice π``′(~θ) > 0 for all ~θ ∈ [θ, 1]n and any two distinct

`, `′ in A, if and only if θ > θ(n− 1) (1−θ)n−1

1−(1−θ)n−1 , or equivalently, θ > θ∗ = n−1

√
1
n
.

(c) First note that the definition of σ∗ is independent of the choice of i, ` since σ is evaluated

when all abilities are equal to θ∗. Then observe (1 − θ∗)σ∗ ≤ 1/2 if and only if 2
n
n−1

√
1
n
≤

1 − n−1

√
1
n
, since, by construction, θ∗σ∗ = ρ∗ := ρi(θ

∗, . . . , θ∗) and θ∗ = 1 − n−1

√
1
n
. The

desired inequality is thus equivalent to 1 ≤ nn

(n+2)n−1 Taking natural logs on both sides, and

adding and subtracting ln(n+ 2), 1 ≤ nn

(n+2)n−1 is equivalent to

n (lnn− ln(n+ 2)) + ln(n+ 2) ≥ 0. (24)

The inequality 1 ≤ nn

(n+2)n−1 , and thus (24), is satisfied for n ∈ {2, 3, 4} (i.e., 1 ≥ 1, 27/25 ≥ 1

and 256/216 ≥ 1 respectively), and we now show it holds for all larger n by proving that the

derivative of the LHS of (24) is positive for all n ≥ 4. Indeed, that derivative is

3

n+ 2
+ lnn− ln(n+ 2) >

3

n+ 2
− 2

n
=

n− 4

n(n+ 2)
,

where the inequality follows using strict concavity of lnn, so that ln(n+2)−lnn
2

< d
dn

lnn = 1
n
.

(d) Note that θi ≥ θ` implies that

π`i(~θ)− πi`(~θ) = θiσi(~θ, `)− ρi(~θ)− θ`σ`(~θ, i) + ρ`(~θ)
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= (θi − θ`)

(
σi(~θ, `)−

∏
j 6=i,`

(1− θj)

)
≤ (θi − θ`)σi(~θ, `) ≤ (1− θ∗)σ∗.

The proof concludes by applying the inequality from (c).

(e) Notice that π`i(~θ) is increasing in θi, so that one should take θi = θ to find the minimum.

If n = 2, then the minimum is reached by taking θ−i = θ as well. Suppose n ≥ 3. The

expression π`i(~θ) is linear in θk for all k 6= i, `. Thus one need only consider the cases

θk ∈ {θ, 1} for all k. Notice, however, that ρi(~θ) = 0 as soon as one such θk = 1, in which

case π`i(~θ) is decreasing in θj for j 6= i, `, k, and independent of θ`. In addition, if θk = θ for

all k 6= i, `, then π`i(~θ) is strictly increasing in θ` and the minimum will be reached at θ` = θ.

To summarize, the minimal π`i(~θ) is reached at a profile ~θ where θi = θ, and other agents’

abilities are either all θ or all 1. The probability premium is20 1−n(1−θ)n−1

n−1
in the former case,

and θ
n−1

in the latter case. It is then easy to check that the former expression is smaller than

the latter if and only if θ ≤ 1− n−2

√
1
n

(which is larger than θ∗).

Lemma 4. The matrix Bi(~θ) satisfies the following properties.

(a) Bi(~θ)~1 = 1−δγ
δ(1−γ)

~1 + ~πi(~θ).

(b) Diagonal entries of Bi(~θ) are positive. Off-diagonal entries are positive on any row `

with θi > θ`, negative on any row ` with θi < θ`, and zero on any row ` with θi = θ`.

(c) For each ` 6= i, let z` be the difference between row `’s diagonal entry and the sum

of the absolute value of its off-diagonal entries: z` = [Bi(~θ)]`` −
∑

`′ 6=` |[Bi(~θ)]``′ |. If

θi ≤ θ`, then z` = 1−δγ
δ(1−γ)

+ π`i. If θi ≥ θ`, then z` = 1−δγ
δ(1−γ)

+ 2πi` − π`i.

(d) Bi(~θ) is (row) strictly diagonally dominant, and thus invertible.

(e) ||Bi(~θ)
−1||∞ ≤ 1

min 6̀=i z`
.

(f) Bi(~θ)
−1~πi(~θ) = [Id− 1−δγ

δ(1−γ)
Bi(~θ)

−1]~1.

(g) Bi(~θ)
−1 =

∑∞
k=0(−1)k(θi−θ∗)k(X−1

i Yi)
kX−1

i , where Xi is the matrix Bi(~θ) evaluated at

θi = θ∗, and Yi is the positive matrix whose ``′-entry is ρ`(~θ)
1−θi if ` = `′, and −θ`′ dσ`′dθi

(~θ, `)

if ` 6= `′.

(h) Each component of the vector Bi(~θ)
−1~π(~θ) is increasing in θi, and each component of

the vector Bi(~θ)
−1~1 is decreasing in θi, for θi ∈ [θ∗, 1].

20Indeed, agents other than i are symmetric and the fact that one must be chosen implies (n−1)θσi(~θ, `)+

ρ`(~θ) = 1, or θσi(~θ, `) = 1−(1−θ)n−1

n−1 .
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Proof. (a) Notice that∑
`′ 6=i,`

(πi`′(~θ)− π``′(~θ)) =
∑
`′ 6=i,`

θ`′(σ`′(~θ, i)− σ`′(~θ, `)) = ρ`(~θ)− ρi(~θ) + θiσi(~θ, `)− θ`σ`(~θ, i).

Thus the sum over the columns of the entries of Bi(~θ) appearing on row ` is equal to

1 + 1−δ
δ(1−γ)

+ π`i(~θ). Thus Bi(~θ)~1 = 1−δγ
δ(1−γ)

~1 + ~πi(~θ), as desired.

(b) The fact that diagonal entries are positive is obvious. Off-diagonal entries on row ` are

of the form πi`′(~θ) − π``′(~θ), which is equal to θ`′(σ`′(~θ, i) − σ`′(~θ, `)). The result about the

sign of off-diagonal entries then follows as the likelihood for a discerning `′ to be picked

diminishes when part of a better pool of discerning agents.

(c) By (b), off-diagonal entries on a row ` are non-positive when θi ≤ θ`, in which case z`

is simply the sum of the elements appearing on row `, whose value is given in (a). Suppose

now θi ≥ θ`. The first computation in the proof of (a) shows that the sum of the off-

diagonal elements on row ` (which are all positive, by (b)) is equal to π`i(~θ)− πi`(~θ). Thus

z` = 1−δγ
δ(1−γ)

+ πi` − (π`i(~θ)− πi`(~θ)), and the result follows.

(d) We need to check that z` > 0 for all `. Since 1−δγ
δ(1−γ)

> 1, the result follows from the fact

that π`i ≥ 0 for the case θ` ≥ θi, and from πi` ≥ 0 and π`i < 1 for the case θ` ≤ θi.

(e) This follows from the Ahlberg-Nilson-Varah bound (see e.g. Varah (1975)) since Bi(~θ)

is strictly diagonally dominant.

(f) Since Bi(~θ) is invertible by (e), it follows from (a) by multiplying both sides by Bi(~θ)
−1.

(g) Notice that the entries of Bi(~θ) are affine functions of θi. Indeed, the matrix Yi is obtained

by taking the derivative with respect to θi of the entries of Bi(~θ), and is independent of θi.

Thus Bi(~θ) = Xi + (θi − θ∗)Yi. The result then follows from the power series expansion

of matrix inverses, after showing that ||X−1
i Yi||∞ < 1. To check this, first notice that

||X−1
i ||∞ < 1 by (e) given that θ` ≥ θ∗ for all ` 6= i. Consider Yi next. It is a positive matrix,

so its infinite norm is obtained by computing for each row the sum of its entries, and then

taking the maximum of these sums over the rows. Observed that Yi is the derivative with

respect to θi of the matrix Bi(~θ). Using the computations from (a), the sum of the elements

on row ` of Yi is simply the derivative with respect to θi of π`i(~θ), which is equal to σi(~θ, `).

This expression is decreasing in ~θ for each `, and thus lower or equal to σ∗, which is less than

1. Then ||X−1
i Yi||∞ ≤ ||X−1

i ||∞||Yi||∞ < σ∗ < 1, as desired.

(h) By (a), the derivative of Bi(~θ)
−1~π(~θ) with respect to θi is equal to the opposite of the

derivative of Bi(~θ)
−1~1, which by (g) is equal to

∑∞
k=1(−1)k+1k(θi − θ∗)k−1(X−1

i Yi)
kX−1

i
~1.
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Notice that 2(θi − θ∗)YiX−1
i
~1 ≤ 2(1 − θ∗)YiX−1

i
~1 < ~1. The first inequality follows from

the facts that Yi and X−1
i (inverse of an M -matrix) are positive, and θi ≤ 1. The strict

inequality follows from (c) in Lemma 3, since each component of the vector YiX
−1
i
~1 is lower

of equal to ||YiX−1
i ||∞, which is strictly less than σ∗ (see (g) above).

Being a product of positive matrices, the matrix X−1
i YiX

−1
i is positive. Hence we know

X−1
i YiX

−1
i
~1− 2(θi − θ∗)(X−1

i Yi)
2X−1

i
~1 is a strictly positive vector. This corresponds to the

first two terms in the above expression for the derivative of Bi(~θ)
−1~π(~θ) with respect to θi.

A fortiori, 3X−1
i YiX

−1
i
~1− 4(θi− θ∗)(X−1

i Yi)
2X−1

i
~1 is a strictly positive vector, and hence

3(θi−θ∗)2(X−1
i Yi)

3X−1
i
~1−4(θi−θ∗)3(X−1

i Yi)
4X−1

i
~1 is a strictly positive vector as well (since

(θi−θ∗)2(X−1
i Yi)

2 is a positive matrix). This corresponds to the next two terms in the above

expression for the derivative of Bi(~θ)
−1~π(~θ) with respect to θi. Iterating the argument this

way, we conclude that this derivative is strictly positive.

Lemma 5. Discerning agents are always willing to propose themselves when qualified.

Proof. Remember that discerning agents propose themselves when qualified if and only

if MQ
i (~θ)Bi(~θ)

−1~πi(~θ) ≤ ~σi(~θ). To establish this inequality, it is sufficient to show that

||Bi(~θ)
−1~πi(~θ)||∞ ≤ 1, since MQ

i (~θ) is a positive matrix with the sum of entries on any

row ` equal to σi(~θ, `). It is sufficient to establish the upper-bound on the infinite norm

under the assumption that θi = 1, because of (h) in Lemma 4. Using ||Bi(~θ)
−1~πi(~θ)||∞ ≤

||Bi(~θ)
−1||∞||~πi(~θ)||∞, combined with (c) and (e) from Lemma 4, it is sufficient to check that

πki(~θ) <
1− δγ
δ(1− γ)

− π`i(~θ) + 2πi`(~θ), (25)

where k is an agent j 6= i that maximizes πji(~θ) and ` is an agent j 6= i that minimizes

2πij(~θ) − πji(~θ). Inequality (25) holds when k = `, since π`i(~θ) − πi`(~θ) ≤ 1/2 by (c) in

Lemma 3, and 1−δγ
δ(1−γ)

> 1. Suppose then that k 6= `. Inequality (25) becomes (as θi = 1)

σi(~θ, k)− θ`σi(~θ, `)− 2ρi(~θ) + (1− θ`)σi(~θ, `) <
1− δγ
δ(1− γ)

.

It is sufficient to check that σi(~θ, k) − θ`σi(~θ, `) + (1 − θ`)σi(~θ, `) ≤ 1. Notice that the

expression on the LHS is linear in θ`, and it is thus maximized by taking θ` = 1 or θ∗. The

inequality is obvious if θ` = 1, so let’s assume that θ` = θ∗. Thus it is sufficient to prove that

σi((θ
∗, ~θ−`), k) − θ∗σi(~θ, `) + (1 − θ∗)σi(~θ, `) ≤ 1. Remember that θ∗ is less than 1/2 when

n ≥ 2, so the total weight on σi(~θ, `) is positive. The expression on the LHS is thus lower or

equal to (2− 2θ∗)σ∗. The desired inequality then follows from (c) in Lemma 3.

Lemma 6. Discerning agents do not propose themselves when unqualified if δ ≥ 1
γ+(γ−β)π

.
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Proof. Remember that discerning agents do not propose themselves when unqualified if and

only if ~σi(~θ) ≤MU
i (~θ)Bi(~θ)

−1~πi(~θ). By (f) from Lemma 4, this is equivalent to

~σi(~θ) +
1− δγ
δ(1− γ)

MU
i (~θ)Bi(~θ)

−1~1 ≤MU
i (~θ)~1 = ~σi(~θ) +

γ − β
1− γ

~σi(~θ),

or
1− δγ
δ(1− γ)

MU
i (~θ)Bi(~θ)

−1~1 ≤ γ − β
1− γ

~σi(~θ). (26)

The RHS is independent of θi, while all the components of the LHS vector are decreasing in

θi (by (h) from Lemma 4, using the fact that MU
i is a positive matrix). It is thus sufficient

to prove this inequality for θi = θ, which we assume from now on. Since MU
i is positive, the

LHS vector is smaller or equal to 1−δγ
δ(1−γ)

||Bi(~θ)
−1||∞MU

i (~θ)~1. Using (e) from Lemma 4 and

the fact that MU
i (~θ)~1 = 1−β

1−γ~σi(
~θ), it is sufficient to check that

1− δγ
δ(1− γ)

1
1−δγ
δ(1−γ)

+ min`6=i π`i(~θ)

1− β
1− γ

≤ γ − β
1− γ

,

or δ ≥ 1

γ+(γ−β) min` 6=i π`i(~θ)
. Then observe π ≤ min`6=i π`i(~θ), for all ~θ ∈ [θ, 1]n s.t. θi = θ.

Lemma 7. If the MLR is a belief-free equilibrium then δ ≥ 1
γ+(γ−β)π

for all i.

Proof. The proof of Lemma 6 shows that condition (26) is necessary and sufficient for discern-

ing agents to refrain from proposing when unqualified. Given θ, consider the ability vector
~θ for which the minimal probability premium π is achieved. For the MLR to be a belief-free

equilibrium, it is necessary that it is an ex-post equilibrium for this ~θ. By Lemma 3(e), this

ability vector either has all agent abilities equal to θ, or there is some agent i with ability

θ and all others have ability 1. In both cases, the value of π`i(~θ) is constant in `. By the

characterization in Lemma 4(a), for this ~θ we have that Bi(~θ)~1 =
(

1−δγ
δ(1−γ)

+ π
)
~1. If a matrix

has constant row sums equal to s, then the inverse has constant row sums equal to 1/s. Thus

B−1
i (~θ)~1 = 1

1−δγ
δ(1−γ)+π

~1. Applying this expression as well as the fact that M b
i (
~θ)~1 = 1−β

1−γ~σi(
~θ) in

the necessary condition (26), we immediately obtain the desired condition on δ.

Proof of Proposition 6. Let V k denote the normalized discounted expected utility of an

agent in position k of the ranking. Consider the incentive constraint of not proposing for an

unqualified agent whose rank is between 1 and n− 1:

X + pδV k ≥ X + p[1− δ + βδV k + (1− β)δV j(k)],

where j(k) is the rank (≥ k) at which the agent of rank k is sent to in case of low profit,
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p is the probability that all agents ranked above are unqualified, and X is the expected

continuation value for an agent at position k when the principal selects an agent of higher

priority (lower rank).21 The inequality can be written more concisely as V k−V j(k) ≥ 1−δ
δ(1−β)

.

In particular, we see that j(k) must be strictly larger than k as the RHS is strictly

positive. In particular, V k ≥ V n + α(k) 1−δ
δ(1−β)

, for all k, where α(k) is the number of times

j(·) must be iterated to reach n. We have:

1 ≥
n∑
k=1

V k ≥ nV n +
n−1∑
k=1

α(k)
1− δ

δ(1− β)
. (27)

We can also determine a lower bound for V n. Notice that

V n = (1− θ)n−1(1− δ) + δV n +
n−1∑
k=1

p(k)(1− γ)δ(V j′(k) − V n),

where j′(k) is the rank where n is sent if the agent at rank k gets low profit, and p(k) =

(1− θ)k−1θ is the probability the agent of rank k is chosen. Thus V n ≥ (1− θ)n−1 + P (1−γ)
(1−β)

,

where P is the probability an agent of rank k with j′(k) 6= n is picked (the sum of those

p(k)’s).

Given (27), for the hierarchical strategy profile to be an equilibrium, it must be that:

1 ≥ n
(

(1− θ)n−1 +
P (1− γ)

(1− β)

)
+

n−1∑
k=1

α(k)
(1− δ)
δ(1− β)

. (28)

On the other hand, MLR forms an equilibrium if and only if 22

1 ≥ n
(

(1− θ)n−1 +
(1− (1− θ)n−1)(1− γ)

(1− β)

)
+ (n− 1)

(1− δ)
δ(1− β)

. (29)

Consider the necessary condition (28) for the case of hierarchical strategy profiles that

send failing agents to the bottom. Here, P = 1 − (1 − θ)n−1 and α(k) = 1 for all k, which

proves the second half of the result in (b).

Consider next the case of any hierarchical strategy profile. Observe that P ≥ θ(1− θ)n−2

21It is notationally heavy to develop X in terms of the V ’s as k may reshuffle position even if others follow
equilibrium strategies since γ < 1, but it does not matter since the term appears on both sides.

22One can check directly that the same condition on δ as in Proposition 5 but with π replaced with
1−n(1−θ)n−1

n−1 . However, there is also an intuition why this must be true: For MLR, P is just the probability

that a discerning agent is picked, or 1 − (1 − θ)n−1, and each of the IC constraints (only one common IC
constraint really because of symmetry of the MLR) must be binding to get the widest range of parameters,
or V D − V LR = 1−δ

δ(1−β) , in which case we can derive the exact values for V LR and V D, and the equation

V LR + (n− 1)V D = 1 gives the largest range of parameters.
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since j(k) = n for least one agent of rank k ≤ n − 1, with k = n − 1 in the worst-case

scenario. If the strategy profile does not send all failing agents to the bottom (the case we

have already treated), then
∑n−1

k=1 α(k) ≥ n. Thus in this case, (28) implies the following

necessary condition for the hierarchy to form an equilibrium:

1 ≥ n
(

(1− θ)n−1 +
θ(1− θ)n−2(1− γ)

(1− β)
+

(1− δ)
δ(1− β)

)
.

The second term is smaller than the corresponding term for MLR because θ(1 − θ)n−2 <

1 − (1 − θ)n−1 over the relevant range of θ’s; but the last term is larger as there is at least

an extra 1−δ
δ(1−β)

. It is easy to find (e.g. taking γ near 1) parameter combinations for which

the MLR inequality is verified, but the above inequality is violated. This proves (a).

Finally, we prove the first part of (b) by way of example. We let n = 3 and consider the

hierarchical strategy profile where the failing agent trades his spot with the one right after

him in the ranking. The recursive equations that give the agents’ payoffs are:

V 1 = θ(1− δ) + p1δV
2 + (1− p1)δV 1

V 2 = (1− θ)θ(1− δ) + p1δV
1 + p2δV

3 + (1− p1 − p2)δV 2

V 3 = (1− θ)2(1− δ) + p2δV
2 + (1− p2)δV 3,

where p1 = θ(1 − γ) is the ex-ante probability that the top player drops to second, and

p2 = (1− θ)p1 is the ex-ante probability that the player in the second spot drops to third..

Now consider the case of β = 0, γ = 4/5, δ = 5/6 and θ = 1. The RHS of inequality (29)

is 3/5 + 2/5 = 1. Thus, MLR is a PPE for these parameters, but it ceases to be one for any

lower θ. Let us now look back at the recursive equations for the hierarchical equilibrium.

They become: V 1/3 − V 2/6 = 1/6, V 2/3 − V 1/6 = 0 and V 3 = 0, or V 1 = 2/3, V 2 = 1/3

and V 3 = 0. The IC constraints (as derived earlier in the proof, using j(k) = k + 1) are

V 1 − V 2 ≥ 1−δ
δ(1−β)

and V 2 − V 3 ≥ 1−δ
δ(1−β)

, both of which hold strictly since 1−δ
δ(1−β)

= 1/5. The

determinant of the matrix defining continuation values is strictly positive at these parameters,

so diminishing θ a bit will only change those values a bit, and the ICs will still hold. �
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Bergemann, D. and J. Välimäki, 2010. “The Dynamic Pivot Mechanism.” Econometrica

78:771-789.

Board, S., 2011. “Relational Contracts and the Value of Loyalty.” American Economic

Review 101, 3349–3367.

Carnicer, J.M., T.N.T. Goodman and J.M. Peña, 1999. “Linear Conditions for

Positive Determinants.” Linear Algebra and Its Applications 292, 39-59.

Duggan, J. and C. Martinelli, 2017. “The Political Economy of Dynamic Elections: Ac-

countability, Commitment and Responsiveness.” Journal of Economic Literature 55(3),

916-84.

Hauser, C. and H. Hopenhayn, 2008. “Trading Favors: Optimal Exchange and Forgive-

ness.” Working paper.

Li, J., N. Matouscheck and M. Powell, 2017. “Power Dynamics in Organizations.”

American Economic Journal: Microeconomics, 9, 217–241.

Lipnowski, E. and J. Ramos, 2016. “Repeated Delegation.” Working Paper.

Miller, D. A., 2012. “Robust Collusion with Private Information.” The Review of Eco-

nomic Studies 79:778– 811.
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This Online Appendix contains proofs for the results discussed in Section 4.

S.1 Principal-renegotiation-proof equilibria

Proof of Proposition 9. Our first observation is that principal-renegotiation-proof PPEs
have a very simple payoff structure.

Lemma S.1. Consider a PPE where the principal gets the same (maximum) discounted
expected payoff at the start of period, no matter the history. Then the principal gets the
same expected equilibrium payoff within each stage game.

Proof. Let X be the principal’s discounted payoff at the start of any period. Let x be the
principal’s expected equilibrium payoff within that period. Then X = (1 − δ)x + δX, and
hence x = X, which is independent of the history. �

This observation reduces the type of strategies that the principal employs in equilibrium.
For example, it cannot be that there is a history after which the principal switches from
not selecting the last agent who generated a low profit, to always selecting that agent,
because these can give different expected payoffs to the principal within a stage game. Hence,
characterizing the principal-renegotiation-proof PPEs reduces to finding which stage game
behaviors lead to the same outcome and whether those stage games in the same ‘equivalence
class’ can be sequenced in a way that forms a repeated-game equilibrium. It turns out that
any PPE that satisfies our refinement gives the principal either his first-best payoff or his
one-shot Nash payoff.

Note that each agent has four strategies in the stage game: propose regardless of quali-
fication, don’t propose regardless of qualification, propose only when qualified, and propose
only when unqualified. There are thus sixteen combinations to consider for the agents. As
for the principal, renegotiation-proofness implies that she gets the same discounted payoff
at the beginning of any new round in the game, independently of what happened in the

∗Department of Economics, Brown University.
†Corresponding author: Eitan Berglas School of Economics, Tel-Aviv University and the David Eccles

School of Business, University of Utah. Kfire@tauex.tau.ac.il
‡Eitan Berglas School of Economics, Tel-Aviv University.
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past. Hence it must be that she selects agents optimally in each repetition of the stage game
taken individually (e.g. picking the discerning agent instead of the last resort in the MLR
strategy profile when both agents make proposals). Otherwise, she would have a profitable
unilateral deviation by picking the one that has a higher likelihood (given their equilibrium
report strategies) of being qualified.

We already analyzed the following cases: (i) both agent propose regardless of their qual-
ification, (ii) the most able agent proposes regardless of his qualification while the other
agent does not propose regardless of his qualification, and (iii) one agent proposes only
when qualified and the remaining agent proposes regardless of his qualification (note that
these are two cases since the identity of the constant proposer can change). Cases (i) and
(ii) correspond to the one-shot Nash equilibrium outcome, while case (iii) corresponds to
the MLR strategy profile.

A fourth possible case is when every period both agents propose only when they are
qualified. This generates the payoff

(
1−(1−θ1)(1−θ2)

)(
γH+(1−γ)L

)
to the principal, which

is higher than the one-shot Nash payoff if min{θ1, θ2} >
(
βH + (1− β)L

)
/
(
γH + (1− γ)L

)
.

We establish the following observation:

Lemma S.2. Suppose there exists a PPE in which the agents propose if and only if they are
qualified and the principal picks one of the proposing agents. Then the MLR strategy profile
is also a PPE.

Proof of Lemma S.2. We follow the same methodology as in the proof of Proposition 7.
Using the same notation as in that proof, we let σi(∅) denote agent i’s promised continuation
payoff when no agent is selected.

Step 1. Deriving σ1. Suppose first σ1 is obtained when agent 1 is LR. to find σ1, minimize

(1− θ2)θ1 [(1− δ) + δ (γσ1(1S) + (1− γ)σ1(1F ))] +

(1− θ2)(1− θ1)δσ1(∅) + θ2δ [γσ1(2S) + (1− γ)σ1(2F )]

subject to the IC constraints that both agents do not propose when unqualified:1

δ [θ1(γσ2(1S) + (1− γ)σ2(1F )) + (1− θ1)σ2(∅)] ≥ (1− δ) + δ (βσ2(2S) + (1− β)σ2(2F )) ,

for agent 2, and for agent 1: δσ1(∅) ≥ (1− δ) + δ [βσ1(1S) + (1− β)σ1(1F )]. Since the sum
of continuation payoffs is always 1− (1− θ1)(1− θ2), we can rewrite agent 2’s IC as

δβσ1(2S) + δ(1− β)σ1(2F ) ≥ (1− δ) + δθ1γσ1(1S) + δ(1− γ)θ1σ1(1F ) + δ(1− θ1)σ1(∅).

Hence, we can decrease σ1(1S), σ1(1F ) all the way to σ1 (reduces the continuation payoff
and can only relax the IC). We then have the following problem:

min (1− θ2)θ1 [(1− δ) + δσ1] + (1− θ2)(1− θ1)δσ1(∅) + θ2δ [γσ1(2S) + (1− γ)σ1(2F )]

subject to the feasibility constraint that continuation payoffs lie in [σ1, σ1], and the IC’s

δ (βσ1(2S) + (1− β)σ1(2F )) ≥ (1− δ) + δθ1σ1 + δ(1− θ1)σ1(∅)
1As in the symmetric case, we ignore the remaining constraints, which will turn out to be without loss.
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and δσ1(∅) ≥ (1 − δ) + δσ1. Substituting the latter IC (which must clearly bind) into the
former, and also into the objective function, we wish to minimize

(1− θ2) [(1− δ) + δσ1] + θ2δ [γσ1(2S) + (1− γ)σ1(2F )]

subject to feasibility and σ1(2F ) = 1−δ
δ(1−β)(2− θ1) +

σ1

1−β −
β

1−βσ1(2S). Plugging this back into

the objective function we obtain that the coefficient on σ1(2S) is γ−β
1−β > 0. We therefore wish

to reduce σ1(2S) as much as possible, noting that a decrease in σ1(2S) yields an increase in
σ1(2F ). There are therefore two cases to consider:

Case 1. σ1(2S) = σ1 and σ1(2F ) = 1−δ
δ(1−β)(2 − θ1) + σ1 ≤ σ1 . In this case it must hold

that σ1−σ1 ≥ 1−δ
δ(1−β)(2− θ1). Setting σ1 equal to the objective in the minimization problem,

we obtain σ1 = (1− θ2) + θ2
1−γ
1−β (2− θ1). The necessary condition for Case 1 is therefore:

(1− θ2) + θ2
1− γ
1− β

(2− θ1) +
1− δ

δ(1− β)
(2− θ1) ≤ σ1.

To check when it is satisfied, we will consider later below the problem of maximizing 1’s
continuation payoff.

Case 2. σ1(2F ) = σ1 and σ1(2S) = 1−δ
δβ

(2− θ1) +
σ1

β
− 1−β

β
σ1 ∈ [σ1, σ1]. Setting σ1 equal

to the objective in the minimization problem, we obtain that

σ1 =
(1− δ)

[
(1− θ2) + θ2

γ
β
(2− θ1)

]
− δθ2σ1

[
γ−β
β

]
1− δ

[
(1− θ2) + θ2

γ
β

] . (S.1)

Step 2. Deriving σ1. We now maximize 1’s continuation payoff. Suppose first that this
occurs when 1 is discerning. We maximize

θ1 [(1− δ) + δ (γσ1(1S) + (1− γ)σ1(1F ))]+(1−θ1)δ [θ2(γσ1(2S) + (1− γ)σ1(2F )) + (1− θ2)σ1(∅)]

subject to the IC that neither agent wants to propose when unqualified:

δ [θ2(γσ1(2S) + (1− γ)σ1(2F )) + (1− θ2)σ1(∅)] ≥ (1− δ) + δ (βσ1(1S) + (1− β)σ1(1F ))

δσ2(∅) ≥ (1− δ) + δ (βσ2(2S) + (1− β)σ2(2F ))

and σ1 ∈ [σ1, σ1]. Using the fact that continuation payoffs following each event must sum to
1−(1−θ1)(1−θ2), we rewrite agent 2’s IC as δ (βσ1(2S) + (1− β)σ1(2F )) ≥ (1−δ)+δσ1(∅).
Setting σ1(2S), σ1(2F ) = σ1 (increases objective and only relaxes IC), we wish to maximize

θ1 [(1− δ) + δ (γσ1(1S) + (1− γ)σ1(1F ))] + (1− θ1)θ2δσ1 + (1− θ1)(1− θ2)δσ1(∅)

subject to feasibility,

δθ2σ1 + (1− θ2)δσ1(∅) ≥ (1− δ) + δ (βσ1(1S) + (1− β)σ1(1F )) ,
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and δσ1 ≥ (1− δ) + δσ1(∅). Since the latter must bind, plugging into the other the first IC,
we obtain δσ1 ≥ (1 − δ)(2 − θ2) + δ (βσ1(1S) + (1− β)σ1(1F )) , which clearly must bind.
Therefore the objective of maximization becomes:

(1− δ) (θ1 − (1− θ1)(1− θ2)) + θ1δ (γσ1(1S) + (1− γ)σ1(1F )) + (1− θ1)δσ1.

To solve the maximization problem, we must increase σ1(1S) as much as possible (in-
tuitively, increase agent 1’s payoff when he is discerning and succeeds), and run into two
cases:

Case 3. σ1(1S) = σ1 and σ1(1F ) = σ1 − (1−δ)
δ(1−β)(2 − θ2) ≥ σ1. Setting σ1 equal to the

objective in the maximization, σ1 = θ1(2− θ2)γ−β1−β − (1− θ2). So the necessary condition is

θ1(2− θ2)
γ − β
1− β

− (1− θ2)−
(1− δ)
δ(1− β)

(2− θ2) ≥ σ1.

Case 4. σ1(1F ) = σ1 and σ1(1S) = σ1

β
− (1−β)σ1

β
− 1−δ

δβ
(2− θ2) ∈ [σ1, σ1]. Plugging into

the objective yields,

σ1 =
(1− δ)

(
θ1 − (1− θ1)(1− θ2)− θ1(2− θ2) γβ

)
− δσ1θ1

(
γ
β
− 1
)

1− δ
(
θ1

γ
β

+ (1− θ1)
) . (S.2)

Since θ1 − (1− θ1)(1− θ2)− θ1(2− θ2) γβ < 0, it must be that 1− δ
(
θ1

γ
β

+ (1− θ1)
)
< 0.

Step 3. Combining cases 1 and 3. From Case 3 we have σ1 = (θ1 − (1− θ1)(1− θ2))−
θ1(2−θ2) 1−γ

1−β and σ1−σ1 ≥ 1−δ
δ(1−β)(2−θ2), and from Case 1 we have σ1 = (1−θ2)+θ2 1−γ

1−β (2−θ1)
and σ1 − σ1 ≥ 1−δ

δ(1−β)(2− θ1). Therefore, we have

σ1 − σ1 = 2 (θ1 + θ2 − θ1θ2)
(
γ − β
1− β

)
− 2 + θ1θ2.

And the combined necessary condition for the two cases is

δ ≥ maxi∈{1,2}

{
1

g(θ1,θ2,γ,β)
2−θi + 1

}
, (S.3)

where g(θ1, θ2, γ, β) = 2 (θ1 + θ2 − θ1θ2) (γ − β) − (1 − β)(2 − θ1θ2). Note that the effective
constraint is the one with the smaller θ1.

Assume first that θ1 ≤ θ2. We want to verify that the necessary constraint for the
candidate equilibrium (proposing only when qualified) is more restrictive than the one for
MLR, i.e., that

2− θ1
g(θ1, θ2, γ, β) + 2− θ1

>
1

β + (θ1 + θ2)(γ − β)
.

This inequality holds if and only if (θ2 − θ1)(γ − β) > −(1 − β)(1 − θ2), which holds since
γ > β. The analogous argument holds for θ1 > θ2. It follows that indeed the necessary
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conditions of cases 1 and 3 are more stringent than the condition that assures that MLR is
a PPE.

Step 4. Combining cases 2 and 4. From Case 2 we have (S.1) and from Case 4 we
have (S.2). Combining the two yields:

σ1 − σ1 =
(1− δ)

[
2 (θ1 + θ2 − θ1θ2)

(
γ
β
− 1
)

+ 2− θ1θ2
]

δ(θ1 + θ2)
(
γ
β
− 1
)
− (1− δ)

,

and the necessary conditions for these two cases reduce to

maxi∈{1,2}

{
(1− δ)(2− θi)

δ

}
≤ σ1 − σ1 ≤ mini∈{1,2}

{
(1− δ)(2− θi)

δ(1− β)

}
.

Suppose first that θ2 ≥ θ1. Then it suffices to check the upper bound (1−δ)(2−θ2)
δ(1−β) and the

lower bound (1−δ)(2−θ1)
δ

. Starting with the upper bound:

σ1 − σ1 =
(1− δ)

[
2 (θ1 + θ2 − θ1θ2)

(
γ
β
− 1
)

+ 2− θ1θ2
]

δ(θ1 + θ2)
(
γ
β
− 1
)
− (1− δ)

≤ (1− δ)(2− θ2)
δ(1− β)

which can be rewritten as

δ ≥ 2− θ2(
γ
β
− 1
)

[(2− θ2) (θ1 + θ2)− (1− β)2 (θ1 + θ2 − θ1θ2)] + (2− θ2)− (1− β) (2− θ1θ2)
.

We want to show that that this constraint is more restrictive than the one for MLR. That
is, that the RHS of the last inequality is greater than 1

β+(θ1+θ2)(γ−β) . After some algebra, it

can be shown that this is equivalent to (θ2 − θ1) γβ (β − 1) < (1− θ2)(1− β), which is clearly
satisfied since the LHS is negative. So for θ2 ≥ θ1 it must be that the combination of cases 2
and 4 hold only under conditions more restrictive than the equilibrium condition for MLR;
equivalently, the condition for the existence of a first-best equilibrium (there is no need to
check the lower bound).

Next suppose θ2 < θ1. Then it suffices to check the upper bound (1−δ)(2−θ1)
δ(1−β) and the lower

bound (1−δ)(2−θ2)
δ

. As before, we start with the upper bound:

σ1 − σ1 =
(1− δ)

[
2 (θ1 + θ2 − θ1θ2)

(
γ
β
− 1
)

+ 2− θ1θ2
]

δ(θ1 + θ2)
(
γ
β
− 1
)
− (1− δ)

≤ (1− δ)(2− θ1)
δ(1− β)

,

or equivalently

δ ≥ 2− θ1
(2− θ1)(θ1 + θ2)

(
γ
β
− 1
)

+ (2− θ1)− (1− β)
[
2 (θ1 + θ2 − θ1θ2)

(
γ
β
− 1
)

+ 2− θ1θ2
] .

(S.4)
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We therefore want to show that the RHS of this last inequality is greater than 1
β+(θ1+θ2)(γ−β) .

This is equivalent to the inequality (1− β)(1− θ1) > γ
β

(θ1 − θ2) (β − 1) , which holds since
the RHS is negative. It follows that the conditions for cases 2 and 4 are more stringent than
the condition for attaining the first-best in PPE.

Step 5. Combining cases 1 and 4. From Case 1 we have σ1 = (1− θ2) + θ2
1−γ
1−β (2− θ1),

and σ1 − σ1 ≥ 1−δ
δ(1−β)(2− θ1), and from Case 4 we have

σ1 =
(1− δ)

(
(1− θ1)(1− θ2)− θ1 + θ1(2− θ2) γβ

)
+ δσ1θ1

(
γ
β
− 1
)

δ
(
θ1

γ
β

+ (1− θ1)
)
− 1

(S.5)

and σ1 − σ1 ∈
[
(1−δ)(2−θ2)

δ
, (1−δ)(2−θ2)

δ(1−β)

]
. Combining these, we get the necessary condition

(2− θ1)[1− θ2(γ−β1−β )]− θ1 + θ1(2− θ2) γβ
δ
(
θ1

γ
β

+ (1− θ1)
)
− 1

≤ (2− θ2)
δ(1− β)

.

Note that an implicit requirement for Case 4 is that δ
(
θ1

γ
β

+ (1− θ1)
)
− 1 > 0, since the

numerator in the expression (S.5) is positive and hence the denominator must also be positive
to guarantee σ1 > 0. Therefore, rearranging the necessary condition above yields:

δ ≥ 2− θ2
θ1(2− θ2)γ + (1− θ1)(2− θ2) + θ2(2− θ1)(γ − β)− 2(1− β)(1− θ1)

. (S.6)

We want to show that the RHS of (S.6) is greater than 1
β+(θ1+θ2)(γ−β) . The last inequality,

after some algebra, is equivalent to (1−β)− θ1(1− γ)− (γ−β)θ2 > 0, which clearly holds.

Step 6. Combining cases 2 and 3. From Case 3 we have

σ1 = (θ1 − (1− θ1)(1− θ2))− θ1(2− θ2)
1− γ
1− β

and σ1−σ1 ≥ 1−δ
δ(1−β)(2−θ2), and from Case 2 we have (S.1) and σ1−σ1 ∈

[
(1−δ)(2−θ1)

δ
, (1−δ)(2−θ1)

δ(1−β)

]
.

Solving for σ1 − σ1, we get

σ1 − σ1 = (1− δ)
2(1− θ2) + γ

β
θ2(2− θ1)− θ1(2− θ2)γ−β1−β

δ
[
(1− θ2) + θ2

γ
β

]
− 1

.

One necessary condition is therefore:

2(1− θ2) + γ
β
θ2(2− θ1)− θ1(2− θ2)γ−β1−β

δ
[
(1− θ2) + θ2

γ
β

]
− 1

≤ (2− θ1)
δ(1− β)

.
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Suppose first that δ
[
(1− θ2) + θ2

γ
β

]
−1 > 0, i.e., δ > 1

(1−θ2)+θ2 γβ
. Then after some algebra

we obtain that the necessary condition can be rewritten as

2− θ1≤ δ
(

(2− θ
1
)(1− θ2) + (2− θ1)θ2

γ

β
+θ1(2− θ2)(γ − β)− (1− β)2(1− θ2)

− γ

β
θ2(2− θ1) + γθ2(2− θ1)

)
.

Note that if the RHS is negative, we are done, since a necessary condition for cases 2 and 3
cannot be satisfied. We can therefore divide to obtain

δ ≥ 2− θ1
(2− θ1)(1− θ2) + θ1(2− θ2)(γ − β)− (1− β)2(1− θ2) + γθ2(2− θ1)

. (S.7)

We want to show that the RHS of (S.7) is greater than 1
β+(θ1+θ2)(γ−β) . This inequality reduces

to (1− β)− (γ − β)θ1 − θ2(1− γ) > 0, which holds since (1− β)− (γ − β)θ1 − θ2(1− γ) >

(1− β)− (γ − β)− (1− γ) = 0. It remains to consider the case δ
[
(1− θ2) + θ2

γ
β

]
− 1 < 0,

i.e., δ < 1
(1−θ2)+θ2 γβ

. Recall that another necessary condition for cases 2 and 3 is that

σ1 − σ1 =
2(1− θ2) + γ

β
θ2(2− θ1)− θ1(2− θ2)γ−β1−β

δ
[
(1− θ2) + θ2

γ
β

]
− 1

≥ (2− θ1)
δ

.

Rearranging, since δ
[
(1− θ2) + θ2

γ
β

]
− 1 < 0, we get 2− θ1 ≤ δθ1

(
(2− θ2)γ−β1−β − (1− θ2)

)
.

If (2− θ2)γ−β1−β − (1− θ2) < 0, we are done. Assuming (2− θ2)γ−β1−β − (1− θ2) > 0, we get

2− θ1
θ1

[
(2− θ2)γ−β1−β − (1− θ2)

] ≤ δ. (S.8)

We therefore get a contradiction if we show that

2− θ1
θ1

[
(2− θ2)γ−β1−β − (1− θ2)

] > 1

(1− θ2) + θ2
γ
β

(S.9)

since this, together with (S.8), contradicts δ < 1
(1−θ2)+θ2 γβ

. Indeed, (S.9) simplifies to

(2− θ2)
(

1− θ1
γ − β
1− β

)
+ θ2

(
(2− θ1)

γ

β
− 1

)
> 0,

which holds since 1− θ1 γ−β1−β > 0 and (2− θ1) γβ − 1 > 0.

Step 7. Verifying the postulated configuration of roles.

Claim 1. σ1 is attained when agent 1 is last-resort.

Proof. Assume, by contradiction, that σ1 is attained when agent 1 is discerning. Then

σ1 ≥ min θ1[(1− δ) + δ
(
γσD1 (1S) + (1− γ)σD1 (1F )

)
+ (1− θ1)δ

(
θ2
(
γσD1 (2S) + (1− γ)σD1 (2F )

)
+ (1− θ2)σD1 (∅)

)
.
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The IC constraint of agent 1 for not proposing when unqualified is:

δ
(
θ2
(
γσD1 (2S) + (1− γ)σD1 (2F )

)
+ (1− θ2)σD1 (∅)

)
≥ (1−δ)+δ

(
βσD1 (1S) + (1− β)σD1 (1F )

)
.

Hence, we must have:

θ1
(
(1− δ) + δ

(
γσD1 (1S) + (1− γ)σD1 (1F )

))
+(1−θ1)δ

(
θ2
(
γσD1 (2S) + (1− γ)σD1 (2F )

)
+ (1− θ2)σD1 (∅)

)
≥ θ1

(
(1− δ) + δ

(
γσD1 (1S) + (1− γ)σD1 (1F )

))
+(1−θ1)

(
(1− δ) + δ

(
βσD1 (1S) + (1− β)σD1 (1F )

))
≥ (1− δ) + δσ1.

But this implies that σ1 ≥ (1− δ) + δσ1 or that σ1 ≥ 1, a contradiction.

Claim 2. σ1 is attained when agent 1 is discerning.

Proof. Assume, by contradiction, that σ1 is attained when agent 1 is last-resort. Then

σ1 ≤ max(1− θ2)
(
θ1
(
(1− δ) + δ

(
γσLR1 (1S) + (1− γ)σLR1 (1F )

))
+ δ(1− θ1)σLR1 (∅)

)
+ δθ2

(
γσLR1 (2S) + (1− γ)σLR1 (2F )

)
The IC constraint of the discerning agent 2 for not proposing when unqualified is:

(1− δ) + δ
(
βσD2 (2S) + (1− β)σD2 (2F )

)
≤ δθ1

(
γσD2 (1S) + (1− γ)σD2 (1F )

)
+ δ(1− θ1)σD2 (∅).

Since σLR1 (x) + σD2 (x) = 1 for x ∈ {1S, 1F, 2S, 2F}, we can write this constraint as:

(1−δ)+δθ1
(
γσLR1 (1S) + (1− γ)σLR1 (1F )

)
+δ(1−θ1)σLR1 (∅) ≤ δ

(
βσLR1 (2S) + (1− β)σLR1 (2F )

)
.

Therefore:

(1− θ2)
(
θ1
(
(1− δ) + γδσLR1 (1S) + (1− γ)δσLR1 (1F )

)
+ (1− θ1)δσLR1 (∅)

)
+ θ2δ

(
γσLR1 (2S) + (1− γ)σLR1 (2F )

)
≤ −(1− θ2)(1− θ1)(1− δ) + (1− θ2)δ

(
βσLR1 (2S) + (1− β)σLR1 (2F )

)
+ θ2δ

(
γσLR1 (2S) + (1− γ)σLR1 (2F )

)
≤ δσ1.

But this implies that σ1 ≤ δσ1 or 1 ≤ δ. �

This implies that if the principal’s first-best cannot be attained in a PPE, then there
cannot be a PPE where the agents propose if and only if they are qualified. It is straight-
forward to verify that none of the remaining cases lead to an expected stage-game payoff for
the principal that is higher than that of the one-shot Nash. �

S.2 Non-existence of PPE where only qualified agents propose

Proof of Proposition 8. Recall the necessary conditions derived for the four cases in
the proof of Lemma S.2 (inequalities (S.3)-(S.4)). When θ1 = θ2 = θ the lower bound for
cases (1+3), (2+3) and (1+4) are exactly the same, and lower than that of (2+4). Hence, a
necessary condition for this case is:

δ ≥ 1

2θ(γ − β)− (1− β)(2−θ
2

2−θ ) + 1
.

This requires 1− 1−γ
1−β >

2−θ2
2θ(2−θ) . But since 2−θ2

2θ(2−θ) > 1, this condition can never hold. �
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S.3 General profit distributions

Recall the definitions of Q, U , y, ȳ, γ∗, β∗, and the adjusted-MLR strategy from the main
text. We now examine how the punishment set Y should be chosen to sustain the equilibrium,
when possible. Consider, for instance, the model with uncertain abilities in [θ, 1]2 that we
characterized in Proposition 2. As seen from that result, the first-best is achievable in a
belief-free equilibrium if and only if for all agents i,

δ ≥ 1

β∗ + 2θ(γ∗ − β∗)
=

1

1− PU(Y ) + 2θ(PU(Y )− PQ(Y ))
. (S.10)

First, it is clear from (S.10) that the punishment set Y must be more likely for an unqual-
ified agent than a qualified one (i.e., γ∗ > β∗). Intuitively, incentive conditions would be
impossible to satisfy if this were not the case. Moreover, the punishment set must be chosen
so that the denominator in (S.10) is strictly larger than one, or equivalently:

2θ >
PU(Y )

PU(Y )− PQ(Y )
=

PU(Y )/PQ(Y )

PU(Y )/PQ(Y )− 1
. (S.11)

The smallest θ for which this is possible is obtained by picking Y to maximize the likelihood
ratio PU(Y )/PQ(Y ) that the punishment set comes from an unqualified agent versus a qual-
ified one. If there exists a profit level y in the support of B but not of G, then this ratio is
made arbitrarily large by setting Y = [y − ε, y + ε] for small enough ε.

What happens when unqualified agents cannot be identified with certainty (i.e., the
support of U is contained in the support of Q)? Suppose, for instance, that U and Q have
continuous densities u and q satisfying the monotone likelihood ratio property, with u(y)/q(y)
decreasing in y.2 Assuming y is in the support of u, the maximum of PU(Y )/PQ(Y ) can
be shown to be limy→y u(y)/q(y).3 Hence a belief-free equilibrium achieves the first-best if

2θ >
limy→y u(y)/q(y)

limy→y u(y)/q(y)−1 . If the likelihood ratio goes to infinity as y decreases to y, then for any

θ > 1/2, one can find a y∗ low enough to guarantee that the first-best can be achieved in a
belief-free way with Y = [y, y∗] for sufficiently patient agents.

We may want to select the punishment set so that first-best is achievable for the largest
range of discount factors. In view of (S.10), we would choose Y to maximize the objective:

−PU(Y ) + 2θ[PU(Y )− PQ(Y )] =

∫
y∈Y

(
(2θ − 1)u(y)− 2θq(y)

)
dy.

To that end, a profit level y should be included in the punishment set if and only if

u(y)

q(y)
≥ 2θ

2θ − 1
. (S.12)

Under the monotone likelihood ratio property, the optimal punishment set will be an interval
Y = [y, y∗], where y∗ satisfies condition (S.12) with equality.

2The case of probability mass functions u, q satisfying the monotone likelihood ratio property is similar.
3For Y = [y, y], we have limy→y PU (Y )/PQ(Y ) = limy→y U(y)/Q(y) = limy→y u(y)/Q(y) by l’Hôpital’s

rule. Moreover, for any other Y with positive measure under U (and thus Q, by the inclusion of the support),

PU (Y )

PQ(Y )
=

∫
y∈Y u(y)dy∫
y∈Y q(y)dy

=

∫
y∈Y

u(y)
q(y) q(y)dy∫

y∈Y q(y)dy
≤ lim

y→y

u(y)

q(y)
.
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