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Abstract

We study bargaining over contingent contracts in problems where private in-

formation becomes public or verifiable when the time comes to implement the

agreement. We suggest a simple, two-stage game that incorporates important

aspects of bargaining. We characterize equilibria in which parties always reach

agreement, and study their limits as bargaining frictions vanish. We show that

under mild regularity conditions, all interim-efficient limits belong to Myerson

(1984)’s axiomatic solution. Furthermore, all limits must be interim-efficient

if equilibria are required to be sequential. Results extend to other bargaining

protocols.

1 Introduction

Parties often come to the bargaining table holding private information. If that infor-

mation becomes public upon the agreement’s implementation, then the terms of the

contract can be made contingent on that future information.1 Which specific terms

should one expect as a result of negotiations?

∗Department of Economics, Brown University. We are grateful to seminar participants at North-
western and participants at the Cowles, SAET, and Stony Brook Game Theory conferences for
valuable comments.

1Contingent contracts play a central role in many economic models. Arrow-Debreu securities,
options, futures and other derivatives are all contingent contracts. The first appearance of con-
tingent contracts to study cooperation under incomplete information dates back to Wilson (1978).
Bazerman and Gillespie (1999) emphasize to practitioners the importance of considering contingent
contracts in different bargaining scenarios, including those with incomplete information. Contingent
contracts remain relevant when information does not become public, but incentive compatibility con-
straints must be imposed to guarantee the truthful revelation of information (see Myerson (1979)
and Myerson (1984)). We hope to cover this case in a future paper.
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For instance, suppose a laptop manufacturer and a microchip supplier bargain over

future monetary proceeds. The supplier knows whether it will be able to provide an

older chip (Old) or a new-generation chip (New) by the date production starts. The

laptop manufacturer knows the type of the other components it will use in the laptop

(e.g. screen, memory modules, fan, etc.). The components may be relatively old (Old)

or of the newest generation (New). This gives rise to four ex-post verifiable states

of the world, (Old,Old), (Old,New), (New,Old) and (New,New). The sales profit

when the manufacturer uses the older components is $12M independently of the chip,

as old components cannot exploit the benefits of the new chip. Fitting an older chip

in a machine with new components lowers profit to $9M due to compatibility issues,

while machines with the newest-generation components and chip generate the highest

profit, $15M . The laptop manufacturer and the chip supplier each believe the other

has probability 1/2 of having new-generation hardware available when production

starts. The laptop manufacturer is risk neutral (u1(x) = x) while the chip supplier,

a privately held firm, is risk averse (u2(x) =
√
x). The ex-post utility set in state t

for a given profit M(t) ∈ {9, 12, 15} is then U(t) = {v ∈ R2
+ : v1 + v2

2 ≤M(t)}.
The Nash bargaining solution is focal in complete information settings. When

information is incomplete, as in the above example, writing a contract that picks the

Nash bargaining solution for each ex-post informational state may sound reasonable

at first. Given a profit m, the Nash solution is obtained by maximizing (m − v2
2)v2,

the product of utilities over the feasible utility set, and results in giving one-third of

the profit to the chip supplier. Thus, the ex-post Nash contingent contract distributes

profits as follows:

Ex-post Nash Old Chip New Chip

Old Components $8M, $4M $8M, $4M

New Components $6M, $3M $10M, $5M

Notice that whatever his type, the chip supplier faces a substantial risk of ±$0.5M

with equal probability. This is inefficient at the interim bargaining stage. It is possi-

ble to rearrange the laptop manufacturer’s payoff, while keeping his expected utility

constant, to construct a contingent contract that fully insures the chip supplier. This

inefficiency is quite general: generically, in smooth bargaining problems, a contingent

contract that implements the ex-post Nash solution violates interim-efficiency (see

the Online Appendix).2

2If the ex-post Nash solution is interim efficient in some bargaining problem where both agents
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Harsanyi and Selten (1972) and Myerson (1984) axiomatically characterize two

distinct extensions of the Nash bargaining solution to related incomplete informa-

tion settings, both of which satisfy efficiency at the bargaining stage. We define

both solutions after formally presenting our bargaining framework. Loosely speaking,

Harsanyi-Selten’s solution selects contingent contracts that maximize the probability-

weighted product of interim utilities. Applied to our example, it awards the chip-

supplier with $4M in all states of the world:

Harsanyi-Selten Old Chip New Chip

Old Components $8M, $4M $8M, $4M

New Components $5M, $4M $11M, $4M

Myerson’s solution, on the other hand, selects contingent contracts that are both eq-

uitable and efficient for a rescaling of the interim utilities. It additionally incorporates

agents’ incentive constraints to truthfully reveal their type, which are not applicable

in our setting with verifiable types. We call the adapted solution with verifiable types

the Myerson solution.3 Applied to our example, it rewards the chip supplier with

$4.5M for a newer chip (which is associated with weakly larger profits) but gives him

only $3.5M for an old chip, with each of these payments made irrespective of the

laptop maker’s type.

Myerson Old Chip New Chip

Old Components $8.5M, $3.5M $7.5M, $4.5M

New Components $5.5M, $3.5M $10.5M, $4.5M

Beyond these two axiomatic solutions, there are many ways to construct an

interim-efficient contingent contract. Without further specifying how the manufac-

turer and the supplier bargain, it is difficult to say what agreement they may reach.

The main alternative to axiomatically characterizing bargaining solutions is a non-

cooperative approach: identifying the equilibria of bargaining games.4 The ‘Nash pro-

gram’, started by Nash (1953), links the axiomatic and non-cooperative approaches,

have at least two types, then the solution is inefficient when one agent’s utility is rescaled in some
state.

3We follow de Clippel and Minelli (2004) who revisit Myerson’s ideas in a context with contingent
contracts and verifiable types and show how Myerson’s solution can be straightforwardly adapted.

4See surveys by Osborne and Rubinstein (1990), Binmore et al. (1992), and Kennan and Wilson
(1993)). Among key differences with our approach, this literature has focused on bargaining over
non-contingent contract, say the price of a good, and considers private information (e.g. a bargainer’s
discount factor) that does not become public.
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in seeking bargaining procedures under which axiomatically founded solutions arise

in equilibrium. In this paper, we extend Nash’s agenda to problems with incom-

plete information, by showing a strong link between equilibrium outcomes and the

contingent contracts predicted by the Myerson solution.

We initially consider a simple, two-stage bargaining game. In the first stage –

the demand/offer stage – each bargainer independently suggests a state-contingent

contract. In the second stage – the bargaining posture stage – each bargainer indepen-

dently and privately decides whether to take a conciliatory stand, by being amenable

to the other party’s terms, or an aggressive stand, by adamantly insisting on his own.

If both parties are conciliatory, then bargaining is equally likely to end with an agree-

ment on either of the two contracts. Aggressiveness leads to a positive probability of

disagreement. If only one agent insists, then agreement is likely but not certain, and

the only scope for agreement is on the insistent agent’s terms. If both parties take

an aggressive stand, then bargaining ends in disagreement with probability one.

The payoff structure of this game is quite general and can accommodate other

scenarios as well. In particular, we show that it subsumes a bargaining protocol

studied by Evans (2003) under complete information. Offers go astray with positive

probability, and so a bargainer must decide whether to accept their counterpart’s

offer without knowing for certain whether their own offer reached its recipient. We

also show this payoff structure accommodates bargaining environments where each

party’s acceptance of the other’s proposal is recorded with stochastic delays. Payoffs

are exponentially discounted, and thus unilateral acceptance entails a greater delay (in

expectation) than bilateral acceptance. Our main results also extend to the stationary

equilibria of a war-of-attrition bargaining game. After a demand/offer stage, players

have alternating opportunities to concede to their opponent’s offer over an infinite

horizon, with each period of delay reducing payoffs by some discount factor.

Our first main result provides a full characterization of ‘conciliatory equilibria’,

in which agents formulate deterministic demands, and are conciliatory on path (and

so always agree). The risk of disagreement when one agent is insistent represents a

bargaining friction or cost.5 We are interested in the limit of conciliatory equilibrium

outcomes as bargaining frictions vanish. With complete information there is a unique

conciliatory equilibrium; it converges to the Nash bargaining solution as frictions

vanish. What happens under incomplete information?

5With no such friction, any ex-post efficient contract is an equilibrium.
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When feasible, efficiency is a desirable property in bargaining. In our second main

result, we show there always exist sequences of conciliatory equilibria converging to

an interim efficient contingent contract as bargaining frictions vanish. Suppose now

that the bargaining problem is smooth. Our third main result establishes that (i)

if such an interim efficient limit is strictly individually rational, then it must be

a Myerson solution, and (ii) under a rather mild boundary condition (satisfied in

the laptop maker-chip supplier example), any interim efficient limit must be strictly

individually rational. Under such conditions, therefore, not only must equilibria exist

which converge to a Myerson solution, but all interim efficient limits of conciliatory

equilibria must be Myerson solutions. Our fourth main result demonstrates that limits

must be interim efficient when conciliatory equilibria satisfy Fudenberg and Tirole

(1991)’s ‘no-signalling-what-you-don’t-know’ principle. Imposing this principle on

weak perfect Bayesian equilibrium corresponds to a natural extension of sequential

equilibrium in our infinite game.

Our results suggest that cross-agent and cross-type tradeoffs in the Myerson solu-

tion are, at some level, well justified. We are far from an anything-goes conclusion: all

other interim-efficient solutions, including the Harsanyi-Selten solution, are ruled out

at the limit (for smooth bargaining problems satisfying our boundary condition). This

is quite unusual for two-sided, incomplete-information bargaining problems, where the

opportunity to interpret deviations as coming from an opponent’s ‘worst’ possible type

can often make the equilibrium set so large that it is hard to say anything meaningful

about expected outcomes (e.g. see the discussion in Ausubel et al. (2002)). The

ability to offer contingent contracts in our setting helps limit the power of ‘punishing

with beliefs,’ because an agent can offer a contract that would be acceptable to his

opponent in every state of the world, and so secure payoffs associated with his true

type (see the notion of best-safe payoff in Section 3.2).

Related Literature

Early contributions on bargaining under incomplete information followed an ax-

iomatic approach (Harsanyi and Selten, 1972; Myerson, 1984). A long literature on

non-cooperative bargaining started in the mid-eighties. Given the relative prominence

of the Nash program under complete information,6 these two strands of the literature

6Forges and Serrano (2013), in a survey of open problems in cooperative games under incomplete
information, point to extending the Nash program as a direction to develop.
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were surprisingly disconnected.7 A possible explanation is that the non-cooperative

side of the literature mostly focuses on bargaining over direct terms of trade (e.g.,

what quantity to trade at what price), while the earlier axiomatic papers envisioned

bargaining over incentive compatible mechanisms.8 In our framework, agents bargain

over contingent contracts, which is closer to the object studied in the axiomatic liter-

ature, without worrying about incentive constraints for truthful revelation of types.

Contingent contracts have a long tradition in economics, starting with the notion

of Arrow-Debreu contingent commodities and securities. Wilson (1978) was first to

extend this approach to problems of asymmetric information (as opposed to sym-

metric uncertainty) in his discussion of the core of exchange economies. de Clippel

and Minelli (2004) adapted this incomplete-information framework to bargaining the-

ory, axiomatically revisiting Myerson (1983)’s principal-agent solution and Myerson

(1984)’s axiomatic-bargaining solution, in the absence of incentive constraints for

revelation of types. Okada (2016) studies alternating-offers in this framework. He

makes very strong assumptions on equilibria that bring them close to ex-post equi-

libria (where in each ex-post state, agents’ demands match those under complete

information),9 which helps explain Okada (2016)’s convergence result to the ex-post

Nash bargaining solution as impatience vanishes. More generally, one could extend

any complete-information bargaining protocol to incomplete information, by letting

7For instance, surveys on bargaining under incomplete information (Kennan and Wilson, 1993;
Ausubel et al., 2002) entirely focus on the non-cooperative approach, and cite neither Harsanyi and
Selten (1972) nor Myerson (1984). Osborne and Rubinstein (1990) say: “We have not considered in
this chapter the axiomatic approach to bargaining with incomplete information. A paper of particular
note in this area is Harsanyi and Selten (1972), who extend the Nash bargaining solution to the case
in which the players are incompletely informed.”

8To be precise, Harsanyi and Selten (1972) focuses on interim utilities that are achievable as
strict equilibrium outcomes of some specific mechanism. Myerson (1979) then points out that the
Harsanyi-Selten weighted Nash product could as well be maximized over the larger set of interim
utilities associated to incentive compatible mechanisms.

9First, offers are assumed to be independent of information learned in the past. Yet it seems
natural that an agent’s demands/offers might change as he learns information (e.g., about the
profitability of the joint venture). Second, an agent’s acceptance decision for a given type is assumed
to depend only on the offer’s payoffs in states that are compatible with that type. Yet this agent
could reasonably learn information, and change his acceptance decision, based on the terms of his
opponent’s offer in states that he (but not his opponent) knows are infeasible. For instance, those
terms could reveal that the deviation is profitable only when the opponent has a particular type. A
third assumption of ‘self-selection’ – that any type interprets deviations as coming from types that
would strictly benefit ex-post from such a proposal if accepted – is also imposed. Ex-post equilibria
satisfy these requirements, but it is unclear why they are reasonable features of equilibria under
alternating offers.
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agents offer contingent contracts. If equilibrium outcomes of the original protocol con-

verge to the Nash solution, then the ex-post Nash equilibrium outcomes will converge

to the ex-post Nash bargaining solution in the incomplete-information extension.

Multiple papers study a take-it or leave-it offer protocol under incomplete infor-

mation (see Myerson (1983), Maskin and Tirole (1990) and Maskin and Tirole (1992)

for early contributions, and de Clippel and Minelli (2004) for the case of contingent

contracts). Clearly, equilibrium outcomes are generally unrelated to Nash’s bargain-

ing solution,10 as the agent formulating the offer has the best position (e.g., he gets

his best payoff among all individually rational options under complete information).

By contrast, our protocol restores equal bargaining abilities by having both parties

independently formulate offers to each other. In our equilibria, taking an aggressive

stand against the opponent’s offer does not result in disagreement for sure, but instead

results in a small risk of disagreement with one’s own demands realized otherwise.

2 Framework

We consider an incomplete-information setting with two agents at the bargaining

table. Agent i = 1, 2 has a finite set of possible types Ti. For now, we assume agents

share a common prior p with full support over the type profiles (also called states)

in T = T1 × T2. Results extend to non-common priors, as discussed in Section 5.2.

The set of states consistent with type ti is defined as T (ti) = {t̂ ∈ T : t̂i = ti}. These

states become public or verifiable when the time comes to implement an agreement.

Each type profile t ∈ T is associated with an ex-post utility possibility set (or

feasible utility set) U(t) ⊂ R2
+. The collection of ex-post utility sets is U = ×t∈TU(t).

We assume U(t) is convex, compact, and contains its disagreement point (0, 0) for

all t ∈ T .11 The assumption that all ex-post utilities are larger or equal to the

10Kim (2017) studies symmetric bargaining problems with two types and two possible outcomes,
interesting knife-edge situations in which Myerson (1983)’s principal-agent and Myerson (1984)’s
bargaining solutions coincide. As she shows, any interim incentive efficient mechanism is an equi-
librium outcome and moreover survives all standard refinements. Myerson’s solution is, however,
uniquely selected by requiring that equilibria be ‘coherent’ in the sense of Myerson (1989).

11In many applications, disagreement corresponds to the absence of trade or production, which
fits well this assumption, and indeed most papers in bargaining take the disagreement point as
exogenously given. Starting with Nash (1953), some criteria have been proposed to endogenize the
disagreement point in more complex environments. Kalai and Kalai (2013) explores Nash’s rational
threat criterion in Bayesian games with transferable utility. We are not aware of extensions to
accommodate non-transferable utility as in our framework.
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disagreement payoff (U(t) ⊂ R2
+) is substantive, but is met in many applications and

must hold if agents retain the possibility of taking their disagreement payoff at the

ex-post stage. A bargaining problem is summarized by the tuple B = (T, U, p).

Let ui(t) be the highest utility that Agent i can get in state t; and let ui(t) be the

highest utility i can get conditional on j getting uj(t):

ui(t) = max
u∈U(t)

ui

ui(t) = max
u∈U(t): uj=uj(t)

ui,

for i = 1, 2. If U(t) has no flat part, then agent i would pick (uj(t), ui(t)) if he

were a dictator. If multiple options achieve his best utility ui(t), then i would be

indifferent between all of them, and (uj(t), ui(t)) is the one that is most favorable to

j (guaranteeing ex-post efficiency). We assume throughout that ui(t) > ui(t) for all

t, so that there is always something to bargain over.

We study the bargaining problem B at the interim stage: each agent knows his

own type, but not the type of his opponent. Formally, a bargaining agreement is

a contingent contract u ∈ U , which associates a utility profile u(t) ∈ U(t) for each

t ∈ T . Different bargaining problems may involve different underlying variables (e.g.,

the split of profits, the quantity or price of a good to be sold, the time a service

is rendered). Describing a bargaining agreement by the resulting utility profiles is a

notationally convenient and unifying device to encapsulate bargainers’ considerations.

Agents evaluate a contingent contract by its expected utility, with beliefs re-

garding the other’s type derived from the prior p by Bayes’ rule. The expected

utility from the contingent contract u to bargainer i of type ti ∈ Ti is:

E[ui|ti] =
∑
t∈T (ti)

p(t|ti)ui(t).

The contingent contract x is interim efficient if it is not interim-Pareto dominated

by another contingent contract; that is, there is no u ∈ U such that E[ui|ti] ≥ E[xi|ti]
for all i and ti, with strict inequality for some i and ti.

12 The contingent contract x

is ex-post efficient if, for every t ∈ T , x(t) is Pareto efficient within U(t); that is, for

12Aside from introducing interim efficiency, Holmström and Myerson (1983) also discusses the
related, strategic notion of durability. They show the two concepts are distinct in general. It is not
hard to check that they do coincide in our context (contingent contracts without IC constraints).
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all t, there is no a ∈ U(t) with ai ≥ xi(t) for all i and strict inequality for some i.

Our verifiable-state product structure (T = T1 × T2) fits many settings of private

information, but not all. For instance, firms considering a joint venture may have pri-

vate information about the variety of outputs they can produce and the prices those

outputs will fetch, the availability of different inputs and their prices, the physical

locations of and existing contracts with suppliers and customers, all of which might

become verifiable ex-post. It does not, however, fit situations where there is a ver-

ifiable state of the world (e.g. the weather, future stock prices) which agents have

unverifiable beliefs about.

Despite calling U(t) an ex-post utility set, residual uncertainty may be present

even after the state is known. For instance, suppose an oil Firm 1 already conducted

a survey of oil reserves in different locations, while an engineering Firm 2 conducted a

survey on the difficulty of oil extraction and transportation at those locations. These

surveys represent agents’ verifiable types. When pooled, they allow firms to extract

oil from an optimal location, although the quantity of oil and the extraction costs

remain random variables.

2.1 Efficiency and Weighted Utilitarianism

The interim utility-possibility set U(B) is the set of interim utilities (E[xi|ti])i,ti achiev-

able through contracts x for the bargaining problem B. This set inherits compactness

and convexity from each U(t). By the supporting-hyperplane theorem, if a contract x

is interim efficient, then there is a nonzero vector of weights λ̂ = (λ̂i(ti))i,ti ∈ RT1
+ ×RT2

+

such that
∑

i=1,2

∑
ti∈Ti λ̂i(ti)E[ui|ti] is maximized within U(B) by the contract u = x.

In this case, we say λ̂ is interim orthogonal to U(B) at x.13 Similarly, for each t ∈ T , if

x(t) is Pareto efficient within U(t) then there is a nonzero vector of weights λ(t) ∈ R2
+

such that
∑

i=1,2 λi(t)ai(t) is maximized within U(t) by the allocation x(t). In this

case, we say λ(t) is ex-post orthogonal to U(t) at x(t). The lemma below summarizes

useful relationships, and is proved in the Appendix.

Lemma 1. The following relationships hold:

(i) If the allocation rule x is interim efficient, then it is ex-post efficient.

(ii) If x is interim efficient, then there is a non-zero vector λ̂ ∈ RT1
+ × RT2

+ which

13More formally, λ̂ is orthogonal to U(B) at the interim utility vector associated with x.
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is interim orthogonal to U(B) at x. Conversely, if a vector λ̂ ∈ RT1
++ × RT2

++ is

interim orthogonal to U(B) at x, then x is interim efficient.

(iii) If x is ex-post efficient, then for each t ∈ T there is a non-zero vector λ(t) ∈ R2
+

which is ex-post orthogonal to U(t) at x(t). Conversely, if λ(t) ∈ R2
++ is ex-post

orthogonal to U(t) at x(t) for each t, then x is ex-post efficient.

(iv) λ̂ ∈ RT1
+ × RT2

+ is interim orthogonal to U(B) at x if, and only if, λ(t) =(
λ̂1(t1)
p(t1)

, λ̂2(t2)
p(t2)

)
is ex-post orthogonal to U(t) at x(t) for all t ∈ T .

We will sometimes assume the bargaining problem is smooth, meaning for each t

and ex-post efficient u� 0 in U(t), there is a unique orthogonal vector to U(t) at u.

2.2 Myerson Solution

Under complete information, the Nash bargaining solution is obtained by maximizing

the product of the two agents’ utility gains over the utility possibility set. The ex-

post Nash solution gives agents the Nash solution in every state of the world. While

this solution is clearly ex-post efficient, it is generically interim inefficient for smooth

bargaining problems (see Online Appendix).

In the hope of attaining interim efficiency, one way to extend Nash’s solution to

accommodate incomplete information would be to introduce some interim welfare

function W and maximize it over the set of all feasible contingent contracts. This is

in fact the path followed by Harsanyi and Selten (1972) whose bargaining solution

adapted to the present framework maximizes∏
i=1,2

∏
ti∈Ti

(E[xi|ti])p(ti)

over the set of feasible contingent contracts x.

By contrast, Myerson (1984)’s bargaining solution is not derived from the max-

imization of a social welfare function over interim utilities, but instead defined con-

structively. While originally defined more generally to accommodate incentive con-

straints, it boils down to the following in our setting: an allocation rule x is a Myerson

solution for the bargaining problem B if there is λ̂ ∈ ∆++(T1)×∆++(T2) such that

E[xi|ti] =
∑

t−i∈T−i

p(t−i|ti) p(ti)

2λ̂i(ti)
max
v∈U(t)

∑
j=1,2

λ̂j(tj)

p(tj)
vj, (1)
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for all ti ∈ Ti and i = 1, 2. A Myerson solution is always interim efficient. The set of

Myerson solutions for B is denoted MY (B). As the reader may check, if the ex-post

Nash solution of a smooth bargaining problem happens to be interim efficient, then

it is also a Myerson solution.

That a Myerson solution exists in our framework is an additional implication of

our convergence results; but typically, few contracts meet the requirements.14 Take an

interim-efficient contract x with a strictly positive interim-orthogonal vector λ̂. From

Lemma 1, for each t ∈ T , the ex-post orthogonal vector to x(t) is λ(t) = ( λ̂1(t1)
p(t1)

, λ̂2(t2)
p(t2)

).

The following three-step process identifies whether x is a Myerson solution:

Step 1. For each t ∈ T , construct from U(t) a ‘linearized’ ex-post utility possibility set

Vλ(t) := {w ∈ R2
+ : λ(t) · w ≤ λ(t) · x(t) = maxv∈U(t) λ(t) · v}, which permits

transfers using the weights defined in λ(t).

Step 2. Find the Nash solution for Vλ(t) by picking the midpoint m(t) of the efficient

frontier, that is, mi(t) = p(ti)
2λi(ti)

maxv∈U(t) λ(t) · v, for i = 1, 2.

Step 3. Finally, x is a Myerson solution if it gives both bargainers the exact same

interim utilities as the contingent contract m.

Figure 1 illustrates this procedure for our example from the Introduction of the

laptop manufacturer (Agent 1) and microchip supplier (Agent 2). Let the old and

new types of Agent i be Oi and Ni, respectively. We can verify M is a Myerson

solution because it delivers the same interim utilities as m. For instance, type O1’s

gain of M1(O1, O1)−m1(O1, O1) = $0.75M relative to the midpoint in state (O1, O1)

is exactly offset by his loss of M1(O1, N1) −m1(O1, N1) = −$0.75M relative to the

midpoint in state (O1, N1).

Myerson derived this solution using three main axioms: probability invariance

(a generalization of invariance to rescaling utilities), a suitably adapted version of

independence over irrelevant alternatives, and a random dictatorship axiom.15 This

last axiom is an adaptation of Nash’s symmetry axiom, but merits further explanation.

Suppose that there is a ‘strong’ solution, as in Myerson (1983), to the modified

bargaining problem where the first agent has all the bargaining power and can make

a take-it-or-leave-it offer to his opponent, and also a strong solution when the second

agent has all the bargaining power. Suppose further that taking a 50/50 mixture of

14For our laptop-maker chip-supplier example there is a unique Myerson solution, but in general
this need not be true.

15See de Clippel and Minelli (2004, Section 4) for related results in the verifiable-types framework.
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Figure 1: Procedure for finding Myerson solution in the introductory example.

these two solutions gives a contract that is interim efficient. The random dictatorship

axiom then states that this mixture contract should be a solution to the original

bargaining problem with bargaining power on both sides.

2.3 Non-Cooperative Bargaining Protocol

We summarize our two-stage bargaining protocol, discussed in the Introduction, as

follows. First, each agent i = 1, 2 simultaneously sends the other agent a proposed

contract (an element of U). Agents choose a bargaining posture after observing

the offers. If both take a conciliatory stand, then each contract is equally likely

to be implemented. A risk of disagreement arises, however, if someone takes an

aggressive stand. If one bargainer intransigently insists on his terms and the other is

conciliatory, then the insistent agent’s offer is implemented but payoffs are discounted

by δ ∈ [0, 1).16 The disagreement point prevails if both take an aggressive stand.

Table 1 summarizes this information.

Our solution concept is (weak) Perfect Bayesian Equilibrium (PBE). An agent’s

16Equivalently, players agree to the insistent player’s demand with probability δ and otherwise
disagree.
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A C
A 0 δx
C δy x+y

2

Table 1: Prevailing Contingent Contract as a Function of Bargaining Stand
(x is 1’s offer; y is 2’s offer; A=Aggressive; C=Conciliatory; 1 picks row)

strategy specifies which offer/demand to make, and which bargaining posture to adopt

for each conceivable pair of offers. Throughout the paper we use the letter x (resp., y)

to denote contingent contracts proposed by Agent 1 (resp., 2). An agent’s belief sys-

tem specifies a probability distribution over his opponent’s types for each conceivable

pair of offers. A PBE then consists of a strategy and belief system for each agent,

such that each agent’s strategy maximizes his expected payoff at each information set

given his belief and opponent’s strategy, with beliefs given by Bayes’ rule whenever

possible. To clarify, we impose no restrictions on the beliefs of different types of an

agent following an opponent’s off-equilibrium path offer. We discuss the implications

of requiring consistent beliefs in subsection 4.3.

As hinted in the Introduction, our bargaining protocol admits many interpreta-

tions beyond the above scenario. For increased generality, consider the variant where

payoffs are discounted by a factor δ′ with δ′ ∈ (δ, 1] should both bargainers take a

conciliatory stand. Introducing δ′ does not change the strategic features of our bar-

gaining game. Indeed, the original payoff structure can be recovered by dividing all

payoffs by δ′, which simply amounts to rescaling the discount factor in case a single

bargainer takes an aggressive stand.

Consider the bargaining protocol introduced and analyzed by Evans (2003) under

complete information. Agents formulate demands/offers as before, but each offer goes

astray with probability ε > 0. Instead of facing a positive risk of disagreement by

insisting on one’s demands, agents must decide whether to accept their counterpart’s

offer without knowing whether their own offer went through. Of course, it would

be strategically equivalent for players to decide after the demand/offer stage which

offers to accept, before knowing whether they’ll receive one. Under this interpretation,

participants get (i) (1− ε2) times the average of the two contracts, if both accept, (ii)

(1 − ε) times the contract suggested by the rejecting party if the other accepts, and

(iii) 0 if both reject. This matches the payoffs for δ = 1− ε and δ′ = 1− ε2.

Alternatively, frictions may take the form of delays. Bargainers make acceptance

decisions privately and independently at time 0, but these decisions are recorded with

13



a random delay. The first contract accepted is implemented. With exponential dis-

counting, the problem has the payoff structure above with δ′ =
∫ ∫

e−rmin{t1,t2}dF (t1)dF (t2)

and δ =
∫
e−rtidF (ti), where F is an atomless CDF on R+ determining the time an

agent’s decision is recorded. Finally, concessions are modeled as an infinite-horizon

war of attrition in Section 5.1.

3 Conciliatory Equilibria

Our first main result provides a full characterization of conciliatory equilibria, whereby

agents formulate deterministic demands, and take conciliatory stands on path.17 The

characterization proceeds in two steps. First, we show that for any conciliatory equi-

librium, there is a pooling conciliatory equilibrium that generates the same outcome.

This is reminiscent of Myerson (1983)’s inscrutability principle for the informed prin-

cipal problem.18 Second, we fully characterize pooling conciliatory equilibria.

3.1 Inscrutability Principle

Consider a conciliatory equilibrium. It may be separating, in that some types of

Agent i propose distinct contracts. The other agent may then infer something about

i’s type from the offer, influencing his bargaining posture. This is indeed a central

feature of bargaining under incomplete information: offers can signal types, thereby

impacting which agreements crystallize.

The next result shows, however, that there is no loss of generality in restricting

attention to pooling strategies when it comes to conciliatory equilibria. An agent

follows a pooling strategy if he proposes the same contingent contract independently

of his type. This does not mean the intuition in the paragraph above is incorrect, but

rather that the signaling which shapes agreements under incomplete information can

be incorporated in new contracts that are part of a pooling conciliatory equilibrium

with the same outcome.

17When there is a single state of the world, the refinement to pure strategies alone leads to a unique
equilibrium, in which postures are conciliatory. With private information, equilibria can exist where
agents adopt pure strategies on the equilibrium path, but some types posture aggressively. Mixed
strategy equilibria exist even when there is a single state.

18See also de Clippel and Minelli (2004) for the inscrutability principle in the case of an informed
principal with verifiable types, and Okada (2012), Okada (2016) in the case of other bargaining
procedures with verifiable types.
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To illustrate, suppose Agent 1 can be of two types, t1 or t′1, and there is a con-

ciliatory equilibrium where he proposes the contingent contract x when his type is t1

and x′ when his type is t′1. Consider the contingent contract that coincides with x

when his type is t1 and with x′ when his type is t′1. It turns out that proposing this

alternative contract, independently of his type, is part of another conciliatory equi-

librium that generates the exact same outcome. The next proposition proves this,

and extends the idea to show that any conciliatory equilibrium can be replicated by

a pooling conciliatory equilibrium.

Proposition 1. For any conciliatory equilibrium, there is a pooling conciliatory equi-

librium that yields the same outcome in all states.

3.2 Characterization

By Proposition 1, we restrict attention to a pooling conciliatory equilibrium (x, y).

Since taking an aggressive stand has an intrinsic cost (δ < 1), Agent 1 may prefer to

be conciliatory when offered a contract ŷ 6= y slightly less favorable to him than x.

This decision typically depends on his beliefs regarding Agent 2’s type (updated given

ŷ), and the likelihood Agent 2 insists on ŷ following x (an off-path information set,

as it follows ŷ). Still, being conciliatory would be the best response, independently

of 1’s belief and 2’s bargaining stand, if

x1(t) + ŷ1(t)

2
> δx1(t) and ŷ1(t) > 0.

The first (resp., second) inequality guarantees Agent 1’s willingness to be conciliatory

when Agent 2 is conciliatory (resp., aggressive). Of course, in that case, being concilia-

tory is the best course of action whatever the mixed-strategy Agent 2 uses at the con-

cession stage. The two inequalities can be rewritten as ŷ1(t) > max{γx1(t), 0}, with

γ := 2δ − 1 ∈ [−1, 1). (2)

It is ‘safe’ for Agent 2 to propose such a contract ŷ, as Agent 1 will surely be concil-

iatory. Define Agent 2’s best-safe payoff given x at the type profile t by:

y
bs|x
2 (t) = sup{u2 | u ∈ U, u1 > max{γx1(t), 0}} = max{u2 | u ∈ U, u1 ≥ γx1(t)}.
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Since Agent 2 can always deviate to a contract that gives him a payoff arbitrarily

close to this best-safe payoff, we conclude that

E[y2|t1] ≥ E[y
bs|x
2 |t1], for all t2 ∈ T2

Similarly, it must be that E[x1|t1] ≥ E[x
bs|y
1 |t1], for all t1 ∈ T1, where

x
bs|y
1 (t) = arg max{u1 | u ∈ U(t), u2 ≥ γy2(t)},

for each t ∈ T , is Agent 1’s best-safe payoff at t given y.19

Additionally, an agent’s offer cannot be too favorable to himself in a conciliatory

equilibrium. Since he anticipates that Agent 1 will be conciliatory given y, Agent 2’s

expected payoff is δE[y2|t2] if he takes an aggressive posture, and E[(x2 + y2)/2|t2] if

he is conciliatory. For Agent 2 to be conciliatory whatever his type, we must have

E[x2|t2] ≥ γE[y2|t2], for all t2 ∈ T2.

Similarly, for Agent 1 to be conciliatory whatever his type, we must have

E[y1|t1] ≥ γE[x1|t1], for all t1 ∈ T1.

The next proposition shows that the above inequalities, which are necessary for

(x, y) to be part of a pooling conciliatory equilibrium, are also sufficient. For nota-

tional simplicity, we define x
bs|y
2 = γy2(t) and y

bs|x
1 = γx1(t).20

Proposition 2. Let x, y be contingent contracts in U . There is a pooling conciliatory

equilibrium where all types of Agent 1 propose x, and all types of Agent 2 propose y,

if and only if:

E[xi|ti] ≥ E[x
bs|y
i |ti] and E[yi|ti] ≥ E[y

bs|x
i |ti] (3)

19Myerson (1983) was first to introduce the notion of best-safe mechanism in the case of mechanism
design by an informed principal. In a more restrictive framework, Maskin and Tirole (1992) uses
the notion of best-safe mechanism – called a Rothschild-Stiglitz-Wilson allocation in their paper –
to characterize the equilibrium set of the informed principal noncooperative game. de Clippel and
Minelli (2004) adapts these ideas to the case of an informed principal with verifiable types. By
contrast, in the present paper, each agent’s best-safe payoff varies with the other agent’s equilibrium
offer.

20 Notice that xbs|y(t) and ybs|x(t) need not belong to U(t). Indeed, γ can be negative and, more
generally, U(t) need not be comprehensive over R2

+ either.
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for all ti ∈ Ti and all i = 1, 2.

Existence of pooling conciliatory equilibria follows as a corollary. For each y ∈ U ,

let x̂bs|y ∈ U be the unique ex-post efficient contract such that x̂
bs|y
1 = x

bs|y
1 . We can

define ŷbs|x analogously, for each x ∈ U . It is easy to check that the map associating

(x̂bs|y, ŷbs|x) to each (x, y) is continuous, and so there is a fixed point (x, y) that satisfies

x(t) = x̂bs|y(t) ≥ xbs|y(t) and y(t) = ŷbs|x(t) ≥ ybs|x(t). We have thus found a pooling

conciliatory equilibrium. Indeed, (x(t), y(t)) is an ex-post equilibrium for each t:

an equilibrium of our bargaining protocol applied to U(t), while assuming that t is

common knowledge. This shows equilibrium existence is not an issue; rather, there

is typically a large set of equilibrium outcomes.

4 Vanishing Bargaining Frictions

We are interested in understanding what happens to conciliatory-equilibrium out-

comes as the bargaining friction vanishes: that is, when δ, and thus γ = 2δ− 1, tend

to one. Let C(B) be the set of all such outcomes, that is, those contingent contracts

c for which one can find a sequence δn → 1 and a sequence of contingent contracts

cn → c such that cn is a conciliatory-equilibrium outcome of the non-cooperative

bargaining game associated to δn.

For a start, observe that C(B) is nonempty, because it contains the ex-post Nash

contingent contract. As pointed out after Proposition 2, for each t and each n, there

is a pooling conciliatory equilibrium with demands xn(t), yn(t) ∈ U(t) such that

xn(t) = x̂bs|y
n
(t) and yn(t) = ŷbs|x

n
(t). A standard argument, as in Binmore et al.

(1986), implies that the associated limit outcome c = lim xn+yn

2
corresponds to the

ex-post Nash solution.

Efficiency is a property to be desired in bargaining, at least whenever it is achiev-

able. Let C∗(B) be the set of contingent contracts in C(B) that are also interim

efficient. In this section, we first establish that efficiency is indeed achievable: C∗(B)

is always nonempty. Next, quite remarkably, we will show that under mild assump-

tions on B, all elements of C∗(B) are Myerson solutions. Finally, we show that

interim-efficiency must occur at the limit when conciliatory equilibria are sequential.
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4.1 Interim Efficiency is Achievable

The first result in this section establishes that interim-efficient limits always exist.

Proposition 3. C∗(B) is nonempty.

To show this, we first apply a fixed-point theorem and Proposition 2 to establish

that for any δ < 1, there exists a pooling conciliatory equilibrium with each player

proposing an interim-efficient contract; see Proposition 7 in the Appendix. By com-

pactness, there are convergent sequences δn → 1, xn → x and yn → y such that the

offers (xn, yn) are both interim efficient and comprise a pooling conciliatory equilib-

rium. To conclude the proof of Proposition 3, we show that the outcome (x+ y)/2 is

interim efficient.

Though perhaps intuitive, the result is not straightforward. First, interim effi-

ciency is usually not preserved when averaging. We prove, however, that the se-

quences (xn)n≥1 and (yn)n≥1 must converge to each other in the space of interim

utilities. Second, proving that the limit of interim-efficient contingent contracts is

itself interim efficient requires some effort. It is natural to proceed by contraposition.

If some contingent contract gives strictly higher interim utility to all types of both

agents, then clearly this contract will also be interim superior to some contracts in

the sequence before the limit. The issue is that interim inefficiency of the limit only

guarantees the existence of some contingent contract giving at least as much interim

utility to all types of all agents, and strictly more to at least one type of one agent.

Weak inequality need not be preserved before the limit, and a subtler argument is

needed to derive that a contract along the sequence is itself interim inefficient.

4.2 Convergence to Myerson

We next show that for smooth bargaining problems, any ex-post strictly individually

rational outcome in C∗(B) is a Myerson solution. This is a remarkably strong result.

In particular, it rules out equilibria which always converge to other interim-efficient

bargaining solutions, such as Harsanyi-Selten’s. We also provide a rather mild bound-

ary condition on B which guarantees that all elements of C∗(B) are ex-post strictly

individually rational. A contingent contract c is ex-post strictly individually rational

if ci(t) > 0 for all t and each agent i.
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In general, we may describe i’s maximal utility in state t given j’s payoff vj through

the function fi(t, .) : [0, uj(t)]→ R defined by:

fi(t, vj) = max{ui : (ui, vj) ∈ U(t)}.

Since U(t) is convex, fi(t, vj) is strictly decreasing on the interval [uj(t), uj(t)]. The

notion of a smooth bargaining problem, introduced at the end of Section 2.1, is

equivalent to requiring that fi(t, .) is continuously differentiable on (0, uj(t)), for all

t and i = 1, 2 with j 6= i. For such problems we denote f ′i(t, .) as the continuous

extension of this derivative over [0, uj(t)]. Part of the result below shows that elements

of C∗(B) must be ex-post strictly individually rational whenever the right derivative

at zero is not ‘too negative’, or more precisely,

f ′i(t, 0) > − p(t)ui(t)∑
t′∈T (tj)\{t} p(t

′)uj(t′)
, (BC)

for all i = 1, 2, j 6= i, and t ∈ T . This boundary condition (hence ‘BC’) means

that, in each state, starting from a utility pair where j gets nothing, j’s payoff can be

increased without decreasing i’s utility by much. Observe that (BC) is automatically

satisfied whenever ui(t) > 0 for all i and t ∈ T . The rationale for the specific bound

on the RHS, which is thus relevant only when ui(t) = 0 (and thus f ′i(t, 0) ≤ 0) for

some i and t, will become clear shortly.

Proposition 4 (Convergence to Myerson). Let B be a smooth bargaining problem,

and let c be a contingent contract in C∗(B). We have:

(a) If c is ex-post strictly individually rational, then it is a Myerson solution.

(b) If B satisfies (BC), then c is ex-post strictly individually rational.

Hence, C∗(B) ⊆MY (B) for all smooth B satisfying (BC).

We prove the first part of the proposition by deriving an appropriate approxima-

tion of each agent’s best-safe payoff. To simplify the sketch of proof, suppose each

xn is an ex-post strictly individually rational and ex-post efficient demand. Then

smoothness ensures a unique and strictly positive unit vector λn(t) orthogonal to

U(t) at xn(t). As depicted in Figure 2, we can thus approximate Agent 2’s best-

safe payoff through his best-safe payoff from the linearized utility-possibility frontier
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Vλn(t). This approximation,

ỹ
bs|xn
2 (t) = xn2 (t)− λn1 (t)

λn2 (t)
γnxn1 (t),

is at most O((1−γn)2) from y
bs|xn
2 (t) by a second-order Taylor expansion. Combining

this with our equilibrium conditions from Proposition 2 allows us to show that in the

limit, Agent 2’s expected payoff must be at least half of the linearized surplus in Vλx :

that is, E[c2|t2] ≥ 1
2
E[λ

x·x
λx2
|t2], where λn → λx. Similarly Agent 1 must get at least

half of the linearized surplus in Vλy in expectation. Since c is interim efficient, it must

also be ex-post efficient, and so λx = λy (and λx ·x = λx · c = λx · y). The assumption

that c is strictly ex-post individually rational ensures that λx is the unique ex-post

orthogonal vector to U(t) at c(t). By Lemma 1, therefore, there is some λ̂ ∈ RT1
+ ×RT2

+

which is interim orthogonal to U(B) at x such that λxi (t) = λ̂i(ti)
p(ti)

for i = 1, 2. This is

enough to show that each agent gets exactly half of the linearized surplus, making it

a Myerson solution.

We can now also explain how we prove part (b), which will also provide some

intuition for (BC). Consider a feasible utility set with u2(t) = 0, which is the only

case where condition (BC) is possibly binding, and suppose c2(t) = (u1(t), 0) so that

xn2 (t)→ 0. The reasoning from the previous paragraph remains valid, in that Agent

2’s expected payoff given t2 must be at least half of the expected linearized surplus

E[c2|t2] ≥ 1
2
E[λ

x·c
λx2
|t2]. This inequality is hard to satisfy if λx2(t)/λx1(t) is very small, as

then λx(t) · c(t)/λx2(t) is very large (infinity if λx2(t)/λx1(t) = 0). We don’t know much

about λx(t′) for t′ ∈ T (t2)\{t} but it is certainly true that c2(t′) ≤ λx(t′) ·c(t′)/λx2(t′).

Using this fact and c2(t′) ≤ u2(t′), we see that it is infeasible for c(t) = (u1(t), 0) and

E[c2|t2] ≥ 1
2
E[λ

x·c
λx2
|t2] if ever 1

2

∑
t′∈T (t2)\{t} p(t

′|t2)u2(t′) < 1
2
p(t|t2)λ

x(t)·c(t)
λx2 (t)

. But this

condition exactly corresponds to (BC) for i = 1 after noticing that the ratio on the

RHS is equal to −u1(t)/2f ′1(0, t).

It should be emphasized that while smoothness and (BC) are sufficient to ensure

the existence of a Myerson limit, they are far from necessary. However, there exist

simple counter-examples to the result when relaxing any one of these assumptions.21

Intuitively, when there is convergence to an interim-efficient limit outcome that is

ex-post strictly individually rational and at a smooth point of the feasible utility

set, the possibility of local deviations imposes considerable discipline on the relation

21Available from the authors on request.
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Figure 2: Approximation of Agent 2’s best safe yb2s|xn(t) by ỹ
bs|xn
2 (t)

between agents’ demands in different states. This discipline (captured by the unique

relationship between the interim and ex-post orthogonal vectors) is what ensures

those limits must be a Myerson solution, and is lacking at a kink or boundary point.

4.3 Sequential Equilibria

Under the notion of PBE studied thus far, beliefs following a demand/offer which is

off-the-equilibrium path are left unrestricted. When more structure is desired, Kreps

and Wilson (1982)’s sequential equilibrium comes to mind. However, the concept is

defined for finite games, and generalizations to infinite games remain an active field

of research (e.g., Myerson and Reny (2019)). In Section 4.3.1, we explain how the

notion of sequential equilibrium naturally extends to our infinite bargaining game.

We prove in Section 4.3.2 that, under rather mild regularity conditions, the limit

of conciliatory sequential-equilibrium outcomes must be interim efficient, and hence

Myerson solutions by Proposition 4. We cannot rely on general results to guarantee

existence of sequential equilibria in our infinite game (identifying sequential equilibria

is typically challenging even in finite games). Even so, we prove existence for a large

class of problems where bargainers have two types each (see Section 4.3.3). Proving

existence more generally remains an open question.22

22If sequential equilibria fail to exist in some cases (we haven’t encountered an example yet), then
the notion of PBE seems most appropriate as a fallback. Some may also simply generally prefer the
notion of PBE over that of sequential equilibrium. In all these cases, our previous results apply and
offer strong non-cooperative support for the Myerson solution.
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4.3.1 Definition

Under the notion of sequential equilibrium, which is defined for finite games, be-

liefs should be justified at all information sets as limits of Bayesian-updated beliefs

along some sequence of totally-mixed strategies which approximate the equilibrium

strategies. Of course, it is impossible for a single strategy to mix between each of a

continuum of offers with positive probability. To deal with this issue, consider any

finite subset Û of U , and define the Û -discretization of our game as its variant where

demands/offers are restricted to Û . The discretization is meaningful given a concilia-

tory equilibrium if Û contains equilibrium demands/offers. Fix now a belief system,

which specifies i’s belief about j’s type after each demand/offer j may make in the

original game. One can naturally restrict the equilibrium strategies and belief system

to any meaningful discretization, simply by ignoring agents’ bargaining stands and

beliefs after infeasible demands/offers. With a slight abuse of terminology, we will

not repeat this obvious step, and instead use the conciliatory equilibrium and the

belief system of the original game as if they were defined in the discretizations.

Definition 1. A conciliatory equilibrium, specifying strategies and a belief system,

is a sequential equilibrium if it forms a sequential equilibrium in all meaningful dis-

cretizations.

To provide further intuition regarding the restrictions imposed by sequential equi-

librium, we suggest an equivalent definition based on Fudenberg and Tirole (1991)’s

‘no-signaling-what-you-don’t-know’ principle (which was developed, once again, for

finite games). Their idea is that while an opponent’s unexpected demand/offer may

reveal information to an agent about that opponent’s type (no restriction is made

in that regard), the agent’s own demand/offer and own type provide no additional

information.”

If players’ types are independent, the above idea is easy to formalize: i can hold

any belief about j’s type after j makes an unexpected demand/offer, but this belief

cannot vary with i’s type, or i’s demand. In fact, however, the assumption of inde-

pendent types is without loss of generality: any Bayesian game with state-dependent

utility is strategically equivalent to a Bayesian game with independent types (My-

erson, 1985). For instance, we could redefine bargaining problems to get a uniform

prior by transforming each contract x into x̃i(t) = |T−i|p(t−i|ti)xi(t). Conciliatory

PBEs and sequential equilibria of the resulting non-cooperative game are derived by
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applying the same transformation to equilibria of the original game.23

Definition 2. If necessary, first reformulate the game so that types are indepen-

dent. Assuming that types are independent, a belief system respects the no-signaling-

what-you-don’t-know principle if Agent i’s belief about j’s type after j made any

off-equilibrium-path demand/offer does not vary with i’s type, or i’s demand/offer.

Beliefs in sequential equilibria clearly satisfy this principle, since Bayesian updated

beliefs associated to approximating strategies for the deviating agent can reveal in-

formation only about his type. Fudenberg and Tirole (1991) observe that, for finite

two-stage games, imposing the no-signaling-what-you-don’t-know principle is equiv-

alent to restricting attention to sequential equilibria. Their result clearly extends to

infinite games under the above definitions; the easy proof is left to the reader.

Observation 1. A conciliatory PBE is a sequential equilibrium if, and only if, the

belief system satisfies the no-signaling-what-you-don’t-know principle.

4.3.2 Interim Efficiency at the Limit of Sequential Equilibria

We start by providing some intuition for our result (that limits must be efficient).

For this, consider two-type bargaining problems (T1 = {t′1, t′′1}, T2 = {t′2, t′′2}) with a

uniform prior p over types. We begin by focusing on a particular, seemingly robust

type of conciliatory equilibrium: the ex-post PBE. With δ close to 1, ex-post equi-

librium demands (x, y) are close to the limit ex-post Nash solution (epN for short),

and satisfy x = xbs|y, y = ybs|x. We now explain why the ex-post PBE cannot be

sequential if there is a contingent contract e∗ ∈ U that is strictly interim superior to

epN .

We can assume, without loss of generality, that Agent 1 strictly prefers e∗ over epN

when types match, while Agent 2 strictly prefers e∗ over epN when types mismatch:

E[t) > epN1(t) for t = (t′1, t
′
2) or (t′′1, t

′′
2), and E[t) > epN2(t) for t = (t′1, t

′′
2) or

(t′′1, t
′
2).24 Now, if both of Agent 1’s types were conciliatory at the information set

23The result for sequential equilibria was proved in Fudenberg and Tirole (1991, Proposition 5.1).
Of course, they restricted attention to finite games, but their result carries over at once to infinite
games under Definition 1.

24This follows at once after proving that each type-agent prefers e∗ over epN for one type of the
opponent, and vice versa for the opponent’s other type. To see this, suppose 1 of type t′1 strictly
prefers e∗ over epN whatever is opponent’s type. Since epN is ex-post efficient, Agent 2 strictly
prefers epN over e∗ in those states. Since e∗ is interim strictly superior to epN , Agent 2 must strictly
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(x, e∗), then Agent 2 could profitably deviate by proposing the interim superior e∗

instead of y (getting E[
x2+e∗2

2
|t2] > E[x2+y2

2
|t2] by being conciliatory himself). Instead,

suppose only one of Agent 1’s types, say t′1, is conciliatory at (x, e∗), while type t′′1

insists on x. We know that Agent 2 strictly prefers e∗ over epN in state (t′1, t
′′
2). By

being conciliatory, type t′′2 profits by proposing e∗ instead of y. Indeed, the deviation’s

expected payoff is

1

2

x2(t′1, t
′′
2) + e∗2(t′1, t

′′
2)

2
+
δ

2
x2(t′′1, t

′′
2) ≥ δE[x2|t2] +

e∗2(t′1, t
′′
2)− x2(t′1, t

′′
2)

4
,

which is strictly greater than the equilibrium payoff E[x2+y2
2
|t2], as δ is close to 1 and

both x and y are close to each other, and close to epN .

The arguments above imply that both of Agent 1’s types must react aggressively

at (x, e∗) to deter 2’s deviation. Notice that, if type t′1 is conciliatory given some

belief after e∗, then he will also be conciliatory for any larger probability of t′2 (e∗

gives him more than epN1 ≈ γx1 in state (t′1, t
′
2)). Also, if type t′1 maintained his

prior belief (that he faces type t′2 with probability half), then he would certainly be

conciliatory, because e∗ delivers a higher expected payoff than epN . Thus, to trigger

an aggressive stand, Agent 1 of type t′1 must believe that t′′2 is strictly more likely than

t′2 at the information set (x, e∗). Similarly for Agent 1 of type t′′1 to be aggressive, he

must believe that t′2 is strictly more likely than t′′2 at (x, e∗). Thus these two types

must hold different beliefs to deter 2’s deviation to e∗. This is not permitted in a

sequential equilibrium.

We see that the ex-post PBE cannot be supported by a sequential equilibrium for

δ close to 1 when the ex-post Nash solution is interim inefficient. The logic applies

more generally, to all sequences of conciliatory equilibria (pooling and separating)

with inefficient limits, independently of the prior when each agent has two types.

With more than two types our argument extends assuming an additional regularity

condition. The condition strengthens (BC) slightly, requiring that at the margin, j’s

utility can be increased in any state t without decreasing i’s utility:

f ′i(t, 0) ≥ 0. (SBC)

This inequality holds (even strictly) whenever ui(t) > 0. If ui(t) = 0, then the

prefer e∗ over epN in both (t′′1 , t
′
2) and (t′′1 , t

′
2). But then e∗ is interim strictly inferior to epN for

Agent 1 of type t′′1 , a contradiction.
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inequality requires the orthogonal vector to U(t) at (0, uj(t)) to place a zero weight

on i. In other words, the Pareto frontier of U(t) must be flat (if i = 2) or vertical

(if i = 1) at the margin. This would be guaranteed, for instance, if utility possibility

sets arise from utility functions satisfying Inada’s conditions.

Remember that C(B) denotes contingent contracts that can be approximated by

a sequence of conciliatory-equilibrium outcomes as δ tends to 1, while C∗(B) is the

subset of contracts in C(B) that are interim efficient. We let Cs(B) be the subset

of C(B) for which equilibria along the sequence are sequential. We next establish

Cs(B) ⊆ C∗(B) under mild conditions.

Proposition 5. Let B be a bargaining problem that either has |Ti| = 2 for i = 1, 2,

or is smooth and satisfies (SBC).25 Then Cs(B) ⊆ C∗(B).

4.3.3 Existence

Proving general existence results for adaptations of sequential equilibrium to infinite

games is notoriously hard. We now establish that assumptions underlying our con-

vergence result in Proposition 4 are also essentially sufficient for the nonemptiness

of Cs(B) when agents have two types each. The only additional assumption is that

fi(t, ·) is twice-differentiable at u−i(t), and f ′′i (t, u−i(t)) < 0, for all i and t ∈ T .

It is thus required that the utility possibility set is strictly convex at utility pairs

where one agent gets his best possible payoff. Finding sufficient conditions for the

non-emptiness of Cs(B) with larger type spaces remains an open question (we have

not found a counter-example).

Proposition 6. Suppose that B is smooth, (BC) holds, f ′′i (t, u−i(t)) < 0, and |Ti| = 2,

for all i = 1, 2 and t ∈ T . Then Cs(B) 6= ∅.26

We now briefly sketch the main ideas in the proof, which appears in the Ap-

pendix. Suppose first that utility is transferable and types are independent: risk

neutral bargainers divide M(t) dollars in each state t. The set of conciliatory equi-

libria is easy to describe in this case. Namely, each bargainer demands a fraction 1
1+γ

25The result also holds if one agent has no private information (|Ti| = 1 for some i). Ex-post
efficiency and interim efficiency are equivalent in that case, and Lemma 6 shows C(B) contains only
ex-post efficient contracts. So C(B) ⊆ C∗(B), and a fortiori Cs(B) ⊆ C∗(B).

26In fact, we prove a slightly stronger result: there exists a threshold δ < 1 such that conciliatory
sequential equilibria exist for all δ ∈ [δ, 1].
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of the expected money available (e.g., E[x1|t1] = E[M |t1]
1+γ

), while offering his opponent

an expected share of γ
1+γ

(e.g., E[x2|t2] = γE[M |t2]
1+γ

). We show that each conciliatory

equilibrium outcome can be supported by a sequential equilibrium in this case. Sup-

pose Agent 1 unilaterally deviates by demanding x̂ instead of the equilibrium x. One

must define a belief for Agent 2 that is independent of t2 and an equilibrium in the

bargaining-posture stage that makes both types of Agent 1 no better-off compared

to his equilibrium payoff. Getting both types of Agent 2 to take an aggressive stand

against x̂ and both types of Agent 1 to take a conciliatory stand would do it, but

there won’t be beliefs supporting this when x̂ is generous to Agent 2 (compared to

δy). When no such beliefs exist, Agent 2 will take a conciliatory stand for some

type, but there is a sense in which Agent 1 is too generous towards Agent 2 in such

deviations, and one can find some equilibrium of the continuation game that leaves

Agent 1 no better off. The argument here relies on Farkas’ lemma.

For general bargaining problems, we introduce the idea of a joint principal-agent

equilibrium. Essentially, it is a pair (x, y) of contingent contracts such x (resp., y) is

the analogue of Myerson (1983)’s principal-agent solution when Agent 2’s (resp., 1’s)

outside option is γy (resp., γx). The reasoning from the paragraph above extends

to any joint principal-agent equilibrium. The last step is to show the existence of a

joint principal-agent equilibrium, for which we use the facts that B is smooth, satisfies

(BC) and has f ′′i (t, u−i(t)) < 0. As should be clear from above, these conditions are

not necessary for existence.

5 Extensions

This section considers various extensions to our original model. Primary among these

is the extension of our results to an infinite horizon war of attrition game. We also

extend to non-common priors and asymmetry in discounting. Details are provided in

the Online Appendix.

5.1 Concession as a War of Attrition

Our results extend to a dynamic bargaining game, where the concession stage is a

war of attrition. At period 0, agents independently propose contingent contracts,

as in the demand/offer stage of our static game. Subsequently, and as long as no
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agent has conceded, an intermediary reaches out to one agent in each period s ∈
{1, 2, ...}, to inquire whether he’d like to concede. Future payoffs are discounted

using a common discount factor δ. Which of the two agents the intermediary contacts

first is determined by uniform randomization. The intermediary alternates thereafter

(contacting agent i in all odd periods and agent j in all even periods). In any given

period, there is an exogenous probability ε ∈ (0, 1) that the intermediary and the

designated agent do not get in touch (e.g., the agent is unavailable, the intermediary

gets sidetracked, or a technical issue arises).27

A stationary equilibrium is a perfect-Bayesian equilibrium where each type of each

agent decides whether to concede in period s solely based on the demands/offers and

his beliefs about his opponent in period s (but not explicitly on the time-period

s).28 Strategies induce initial concession if both agent 1 and 2 concede in period 1

conditional on being called by the intermediary.

In the Online Appendix, we show that the set of payoffs in stationary equilibria

with initial concession is equivalent to that of conciliatory equilibria in our simple

two-stage game, when γ = δ(1 − ε)/(1 − εδ2). And so, any interim efficient limits

of these equilibria (as δ → 1) are Myerson solutions, under our previous assumptions

about the bargaining problem.

5.2 Non-common priors

So far we have assumed that agents share a common prior. We now relax this as-

sumption, letting pi ∈ ∆(T1 × T2) denote Agent i’s prior. Disagreement about priors

give rise to the possibility of mutually-beneficial bets at the interim stage. Consider,

for instance, problems such as the introductory example where there is an amount

$m(t) to split in state t. To isolate the effect of non-common priors, suppose both

bargainers have the same utility function u : R+ → R that is smooth, strictly concave

and with an infinite marginal utility of money at zero. With these assumptions, the

ex-post bargaining problems satisfy all our assumptions, including the strong bound-

ary condition. Symmetry of preferences means the ex-post Nash solution–which will

27Hence, following any initial demands/offers, all future periods are on the equilibrium path,
which means that agent’s beliefs can be determined by Bayes’ rule from his beliefs after observing
an opponent’s initial demand and that opponent’s strategy.

28Strategies can still be time dependent, because beliefs may vary over time. Notice by the way
that higher-order beliefs may vary and matter as well (e.g., beyond i’s belief about ti, i’s assessment
about what j believes regarding ti may also matter, etc.).
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split m(t) equally between both bargainers in all states–will be interim efficient, for

any common prior.29 By contrast, the ex-post Nash solution is interim inefficient for

all non-common prior environments.30

The point we want to emphasize is this: all our main results extend to situations

where bargainers derive their beliefs from different priors. Indeed, Agent i’s expected

utility from x under pi is identical to his expected utility, under a uniform prior

over the state space, from receiving x̃i(t) = |T−i|pi(t−i|ti)xi(t) in each state t. Thus,

the bargaining problem U under the priors (p1, p2) is strategically equivalent to the

bargaining problem Ũ under the uniform common prior, where Ũ(t) is the set of x̃(t)

for x ∈ U .31

5.3 Asymmetric Bargaining Power

Under complete information, asymmetric bargaining power can easily be accommo-

dated in the Nash solution, by maximizing a weighted Nash product uα1u
1−α
2 . The

parameter α ∈ [0, 1] captures 1’s relative bargaining power.

A natural way to introduce asymmetry in our non-cooperative bargaining game

is to change the outcome that prevails when both agents take a conciliatory stand,

say (1− α)x+ αy instead of the plain average of the offers x and y. Under complete

information, a standard argument shows that, for α ∈ (0, 1), the Nash equilibrium

outcome converges to the weighted Nash solution discussed above, as δ tends to 1.

Notice that players do less well when their own proposal is agreed to with greater

frequency. What are the limit equilibrium outcomes arising under incomplete infor-

mation?

Assume that the bargaining problem is smooth, and that the stronger boundary

condition (SBC) holds. Following the same reasoning as in the proof of Proposition

4, any limit equilibrium outcome c∗ must be an α-weighted Myerson solution:32 there

29The vector (1, 1) is orthogonal to U(t) at the Nash solution. For the prior p, take λi(ti) as the
marginal p(ti) and apply Lemma 1.

30Following Morris (1994), for all non-common prior (p1, p2), there exists φ : T → R2 such that
(a) φ1(t) + φ2(t) = 0 for all t, and (b) Ei[φi|ti] > 0 for all i, ti. Consider a small (infinitesimal)

monetary transfer $ φi(t)dm
u′(0.5m(t)) in each state t between the two agents (budget balanced, by (a)). The

marginal impact on i’s ex-post utility in state t is φ(t)dm. By (b), the new contingent contract gives
strictly larger interim utility to all types of both agents.

31In other words, equilibrium outcomes must satisfy the analogue in our framework of Myerson
(1984)’s probabilistic invariance axiom.

32The proof is available from the authors on request. The stronger boundary condition can be
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exists λ̂ ∈ ∆++(T1)×∆++(T2) such that

E[c∗i |ti] =
∑

t−i∈T−i

p(t−i|ti)
αi maxv∈V (t)

∑
j=1,2 λj(tj)vj

λi(ti)
,

where α1 = α, α2 = 1 − α, and λj(tj) = λ̂j(tj)/p(tj), for all tj and both j = 1, 2.

In terms of the three-step process proposed in Section 2.2 to describe the Myerson

solution, only the second step is modified: a share αi of the surplus in Vλ(t) is now

allocated to agent i.

Finally, remember that we considered some alternative bargaining protocols in

Section 2.3. For the one introduced and analyzed by Evans (2003) under complete

information, suppose now that there is a probability εi that i’s demand/offer goes

astray. It is not difficult to check that, if both ε1 and ε2 vanish, then (under the

usual assumptions) the limit equilibrium outcome will be the α-weighted Myerson

solution where α = 1
1+lim

ε1
ε2

. Having one’s demand/offer go astray less often thus

corresponds to a higher weight in the limit. In the bargaining game where acceptance

is stochastically delayed, a natural asymmetry is differential discounting, so that agent

i’s discount rate is ri. It is again easy to check that as agents become patient, the

limit equilibrium outcome will be the α-weighted Myerson solution where α = 1
1+lim

r1
r2

.

Greater patience corresponds to a higher weight.

Proposition 5 (limits of sequential equilibria are efficient) goes through unchanged.33
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Appendix

A1 Preliminaries

Proof of Lemma 1 (Efficiency and Weighted Utilitarianism) For (i), re-

placing any ex-post dominated contract would improve interim utilities. Sufficient

conditions in (ii)-(iii) are easy to check. Necessity follows from the separating hyper-

plane theorem. It remains to show (iv). Observe that:

∑
i=1,2

∑
ti∈Ti

λ̂i(ti)E[yi|ti] =
∑
i=1,2

∑
ti∈Ti

λ̂i(ti)
∑

t−i∈T−i

p(ti, t−i)

p(ti)
yi(t) =

∑
t∈T

p(t)
∑
i=1,2

λ̂i(ti)

p(ti)
yi(t).

If y = x maximizes the LHS, it also maximizes the RHS. Hence, for each t ∈ T ,

y(t) = x(t) must also maximize
∑

i=1,2
λi(ti)
p(ti)

yi(t). Similarly, if y(t) = x(t) maximizes∑
i=1,2

λ̂i(ti)
p(ti)

yi(t) for each t = 1, 2 then it maximizes the LHS. �

We now establish useful properties of the correspondence F : U ⇒ U that asso-

ciates to any contingent contract v ∈ U the set of contingent contracts u ∈ U that

are weakly interim superior to v:

F (v) = {u ∈ U : E[ui|ti] ≥ E[vi|ti] for all ti ∈ Ti and i = 1, 2}.
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Lemma 2. F is continuous with non-empty, compact, and convex values.

Proof. We only prove that F is lower hemi-continuous, as other properties are straight-

forward to check. Let vn → v be a sequence in U , u ∈ F (v), and ε > 0. We have

to show that there exists an integer N large enough that F (vn) intersects B(u, ε),

for all n ≥ N . Let α < 1 be large enough that v + α(u − v) ∈ B(u, ε
2
). Notice that

there exists N ′ large enough that wn = vn + α(u − v) ∈ U , for all n ≥ N ′. Indeed,

consider t ∈ T , and assume that u(t) 6= v(t). If v(t) + α(u(t) − v(t)) ∈ int(U(t)),

then clearly wn(t) ∈ U(t) for all n large enough. Otherwise, the boundary of U(t)

contains both u(t) and v(t), and is flat in between. It is easy to check then that

wn(t) ∈ ch({0, u(t), v(t), (u1(t), u2(t)), (u1(t), u2(t))}) ⊆ U(t), for all n large enough,

as desired. Next, E[wni |ti] = E[vni |ti] + α(E[ui|ti] − E[vi|ti]) ≥ E[vni |ti], for all i, ti,

since u ∈ F (v). Hence wn ∈ F (vn), for all n ≥ N ′. As wn → u+α(u−v), we can find

N ≥ N ′ such that wn ∈ B(u+α(u−v), ε
2
) for all n ≥ N . Since u+α(u−v) ∈ B(u, ε/2),

wn is within distance ε of u, as desired.

The next lemma establishes that the set of interim efficient contingent contracts

is closed. This is true under complete information when there are two agents, but

not for three or more agents. With two agents under incomplete informations, there

are more than two type-agents and it is not clear a priori that interim efficiency is

preserved through limits.

Lemma 3. Consider a sequence of feasible contingent contracts xn → x ∈ U . If each

xn is interim efficient, then x is interim efficient.

Proof. (by contraposition) Suppose that z ∈ U is such that E[zi|ti] ≥ E[xi|ti] for all

i, ti, with at least one of the inequalities being strict. Let then zn = xn + α(z − x),

where α is say 1/2. A established in the proof of the previous lemma, there exists N ′

large enough that zn ∈ U for all n ≥ N ′. Notice that E[zni |ti] = E[xni |ti]+α(E[zi|ti]−
E[xi|ti]) ≥ E[xni |ti] for all i, ti, with at least one of the inequalities being strict. This

contradicts the fact that xn is interim efficient, which concludes the proof.

Contract z interim strictly dominates x if E[zi|ti] > E[xi|ti] for all i, ti, and x is

weakly interim efficient if there is no such contract z.

Lemma 4. Suppose |Ti| = 2 for i = 1, 2. If x is both ex-post efficient and weakly

interim efficient, then it is also interim efficient.
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Proof. Suppose x is not interim efficient. Let then z be an ex-post efficient contract

that is more efficient than x. For any λ ∈ (0, 1), zλ = λz + (1 − λ)x is also more

efficient than x.

Suppose that zλi (t) > ui(t) for all i, t. To fix ideas, say that E[zλ1 |t′1] > E[x1|t′1]

for some t′1 ∈ T1 where Ti = {t′i, t′′i }. Define ẑ(t) = zλ(t) if t 6∈ T (t′1) and ẑ(t) =

(zλ1 (t)− ε, f2(t, zλ1 (t)− ε)) otherwise. For ε > 0 small enough we clearly have ẑi(t) >

ui(t), E[ẑ1|t′1] > E[x1|t′1] and E[ẑ2|t2] > E[x2|t2] for t2 ∈ T2. Finally define z∗(t) =

(f1(t, ẑ2(t)− ε′), ẑ2(t)− ε′) otherwise. For ε′ > 0 small enough, E[z∗i |ti] > E[xi|ti] for

all i and all ti. Hence x is not weakly interim efficient, a contradiction.

It remains to consider the case zλi (t) = ui(t) for some i, t (being ex-post efficient,

both x and z are individually rational). Hence x(t) = z(t) since both are ex-post

efficient. Then it must be that x = z,34 which contradicts the fact that z interim

dominates x and establishes the lemma.

Contract e∗ interim dominates x when restricted to T ′1 × T ′2 if E[e∗i |ti, T ′−i] ≥
E[xi|ti, T ′−i] for all i, ti ∈ T ′i , with strict inequality for some i, ti.

Lemma 5. Consider a smooth bargaining problem where each agent has at least two

types. Suppose x is an ex-post efficient contract with xi(t) > ui(t) for i = 1, 2 and

t ∈ T . If x is not interim efficient, then there are T ′i ⊂ Ti for i = 1, 2 with |T ′i | = 2

and a contract e∗ that interim dominates x when restricted to T ′1 × T ′2.

Proof. Let λ(t) ∈ R2
++ be the unique strictly positive orthogonal unit vector to U(t)

at x(t), for each t ∈ T1 × T2. An orthogonal unit vector exists because x is ex-post

efficient, it is strictly positive by the fact that xi(t) ∈ (ui(t), ui(t)), and it is unique

by smoothness and xi(t) ∈ (ui(t), ui(t)).

Suppose there is no contract e∗ which is more efficient than x when restricted

to T ′1 × T ′2 for any T ′1 × T ′2 such that |T ′i | = 2. We prove this implies x is interim

efficient, a contradiction. To do this we construct λ̃i(ti) > 0 for all ti and i such that

( λ̃1(t1)
p(t1)

, λ̃2(t2)
p(t2)

) is collinear with λ(t1, t2) which must imply that x is interim efficient by

34Otherwise, there is a state – say (t′1, t
′
2) – where an agent – say 1 – gets strictly more under

x than under z. Since z interim dominates x, it must be that 1 gets strictly more under z than
under x in state (t′1, t

′′
2). In that case, 2 is strictly worse under z than under x in that state, and

the comparison must reverse in state (t′′1 , t
′′
2) for z to be interim superior to x. Of course the same

reasoning also tells that 1 must be strictly better under z than under x in state (t′′1 , t
′
2). Thus if x

and z differ in one state, they must differ in all states.
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Lemma 1. Fix t̄2 ∈ T2. Let:

η(t1, t2) =
λ1(t1, t2)

λ2(t1, t2)

p(t1)

p(t2)
, λ̃1(t1) = η(t1, t̄2), and λ̃2(t2) =

η(t1, t̄2)

η(t1, t2)

for all (t1, t2). With this definition, λ̃1(t1)

λ̃2(t2)
= η(t1, t2) = λ1(t1,t2)

λ2(t1,t2)
p(t1)
p(t2)

. It remains to show

λ̃2(t2) is well-defined, that is, η(t1,t̄2)
η(t1,t2)

is independent of t1, for all t2. To establish this,

consider arbitrary distinct types t′1, t′′1, t′2 6= t̄2 and let T ′1 = {t′1, t′′1} and T ′2 = {t′2, t̄2}.
By definition of η, we have:

η(t1, t̄2)

η(t1, t2)
=
λ1(t1, t̄2)

λ2(t1, t̄2)

p(t1)

p(t̄2)

λ2(t1, t2)

λ1(t1, t2)

p(t2)

p(t1)
. (4)

Next define:

p′(ti) = p(ti|T ′i × T ′j) =
p(ti)p(T

′
j|ti)

p(T ′i × T ′j)

By Lemma 1 x is interim efficient when restricted to T ′1×T ′2 if and only if there exists

λ̂(ti) > 0 for ti ∈ T ′i such that

λ1(t1, t2)

λ2(t1, t2)
=
λ̂1(t1)p′(t2)

λ̂2(t2)p′(t1)
=
λ̂1(t1)p(t2)p(T ′1|t2)

λ̂2(t2)p(t1)p(T ′2|t1)
,

or
λ1(t1, t2)p(t1)

λ2(t1, t2)p(t2)
=
λ̂1(t1)p(T ′1|t2)

λ̂2(t2)p(T ′2|t1)
,

for all (t1, t2) ∈ T ′1 × T ′2. Plugging this into equation (4) we get

η(t1, t̄2)

η(t1, t2)
=
λ̂1(t1)p(T ′1|t̄2)

λ̂2(t̄2)p(T ′2|t1)

λ̂2(t2)p(T ′2|t1)

λ̂1(t1)p(T ′1|t2)
=
λ̂2(t2)p(T ′1|t̄2)

λ̂2(t̄2)p(T ′1|t2)

for each t1 ∈ T ′1, from which we conclude η(t1,t̄2)
η(t1,t2)

is independent of t1. Hence λ̃2(t2) is

well defined.
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A2 Characterization of Conciliatory Equilibria

Proof of Proposition 1 (Inscrutability) Take a separating conciliatory equilib-

rium. It is associated with partitions of the type spaces T1 and T2:

T1 = T
(1)
1 ∪ · · · ∪ T (m)

1 , and T2 = T
(1)
2 ∪ · · · ∪ T (n)

2 .

All the types t1 belonging to a cell T
(j)
1 propose x(j), and all the types t2 belonging to a

cell T
(j)
2 propose y(j). We may assume wlog that x(j) 6= x(k) and y(j) 6= y(k) when j 6= k.

We can thus define functions j : T1 → {1, . . . ,m} and k : T2 → {1, . . . , n}, where j(t1)

is the index of the cell in the partition of T1 to which t1 belongs (t1 ∈ T (j(t1))
1 ), and

k(t2) is the index of the cell in the partition of T2 to which t2 belongs (t2 ∈ T (k(t2))
1 ).

We define multiple best-safe contracts, xbs|y
(j)

for each j ∈ {1, . . . , n} and ybs|x
(k)

for

each k ∈ {1, . . . ,m}.
Consider a pooling strategy for Agent 1 where he offers x∗ independently of t1,

with x∗(t) = x(j(t1))(t) for t = (t1, t2), and a pooling strategy for Agent 2 where he

offers y∗ independently of t2, with y∗(t) = y(k(t2))(t) for t = (t1, t2). Followed by a

conciliatory posture from all types, these strategies yield the same outcome in all

states as the original separating conciliatory equilibrium. To conclude the proof we

show these new strategies are part of a conciliatory equilibrium, by verifying the

conditions of Proposition 2.

The desired condition E[x∗1|t1] ≥ E[x
bs|y∗
1 |t1] follows by observing that in the

original separating equilibrium, if Agent 1 (of any type) were to deviate and propose

xbs|y
∗

then all types of Agent 2 will take a conciliatory posture, for whatever beliefs

2 may have following this deviation. This follows by a similar computation as in

the proof of Proposition 2. Remember that in the original separating equilibrium,

Agent 1 of a type t1 ∈ T
(j)
1 instead proposes x(j), to which all types of Agent 2

respond with a conciliatory posture. The rationality of Agent 1 sending x(j) thus

requires that E[x
(j)
1 |t1] ≥ E[x

bs|y∗
1 |t1]. By construction of x∗, when t1 ∈ T (j)

1 we have

E[x
(j)
1 |t1] = E[x∗1|t1], yielding the desired inequality. A symmetric argument for Agent

2 implies the condition E[y∗2|t2] ≥ E[y
bs|x∗
2 |t2].

To conclude the proof, we show the condition E[x∗2|t2] ≥ E[x
bs|y∗
2 |t2] holds for all

t2; the condition that E[y∗1|t1] ≥ E[y
bs|x∗
1 |t1] for all t1 is derived analogously. Observe

that after receiving the proposal x(j) in the separating equilibrium, an Agent 2 of type

t2 ∈ T (k)
2 has Bayesian-updated beliefs given by p(t1|t2, T (j)

1 ). Agent 2 is conciliatory
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following Agent 1’s proposal when he also has the option of posturing aggressively.

By a similar computation as in the proof of Proposition 2, we conclude that being

conciliatory requires

E[x
(j)
2 |t2, T

(j)
1 ] ≥ γE[y(k)2|t2, T (j)

1 ] = E[x
bs|y(k)
2 |t2, T (j)

1 ] (5)

for every type t2 ∈ T
(k)
2 , every k ∈ {1, . . . , n} and every j ∈ {1, . . . ,m}. Multiply

the inequality (5) associated with each j ∈ {1, . . . ,m} by the probability p(T
(j)
1 |t2)

and sum up the corresponding inequalities over all j. The resulting inequality is

equivalent to the desired one by the construction of x∗ and y∗. �

Proof of Proposition 2 (Characterization of Conciliatory Equilibria) Ne-

cessity was established in the text. For sufficiency, suppose the contingent contracts

x and y satisfy (3). We construct a conciliatory equilibrium in which all types of

Agent 1 propose x and all types of Agent 2 propose y. Following the offer x, Agent

2’s updated belief over Agent 1’s type coincides with his interim belief, and being

conciliatory is a best response since E[x2|t2] ≥ E[x
bs|y
2 |t2], for all t2 ∈ T2. Similar

reasoning applies to Agent 1 following y.

We now define beliefs and strategies, and check incentives after a unilateral devia-

tion. Without loss, suppose Agent 1 proposes x′ instead, while 2 proposes y. For any

type t2, define Agent 2’s beliefs and action as follows. Let T1(t2, x
′, y) = {t1 ∈ T1 :

x′2(t1, t2) < γy2(t1, t2)}. If T1(t2, x
′, y) 6= ∅, let the probability type t2 believes that

he faces t1 given x′ be µ2(t1|t2, x′, y) = 1 for some t1 ∈ T1(t2, x
′, y), so Agent 2 takes

an aggressive stand against x′. If T1(t2, x
′, y) = ∅ then let µ2(t1|t2, x′, y) = 1 for some

arbitrary t1 ∈ T1, with Agent 2 conciliatory following x′. Agent 1’s belief following y

coincides with his interim belief, and he is conciliatory following 2’s proposal.

We now show that the off-equilibrium behavior following a unilateral deviation is

rational. If Agent 2 expects y to result in a conciliatory posture, then it is rational

for him to posture aggressively against 1’s deviation x′ given his off-equilibrium belief

when T1(t2, x, y) 6= ∅, and to be conciliatory otherwise. Moving on to Agent 1’s

strategy, posturing aggressively against y after proposing x′, when he is of type t1,

gives him an expected payoff of

δ
∑

t2∈T2(x′,y)

p(t2|t1)x′1(t1, t2),
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where T2(x′, y) = {t2 : T1(t2, x
′, y) = ∅} is the set of Agent 2’s types who will be

conciliatory after x′. By being conciliatory, Agent 1 of type t1 gets:

∑
t2∈T2(x′,y)

p(t2|t1)
x′1(t1, t2) + y1(t1, t2)

2
+ δ

∑
t2∈T2\T2(x′,y)

p(t2|t1)y1(t1, t2).

Multiplying the payoffs by 2
γ

and rearranging, we see that being conciliatory is prefer-

able to being aggressive if and only if

∑
t2∈T2(x′,y)

p(t2|t1)x′1(t1, t2) ≤ 1

γ
E[y1|t1] +

∑
t2∈T2\T2(x′,y)

p(t2|t1)y1(t1, t2).

Since x′2(t) ≥ γy2(t) for t = (t1, t2) such that t2 ∈ T2(x′, y) then we must have

x′1(t) ≤ x
bs|y
1 (t). Imposing this inequality as an equality and rearranging, we get that

a conciliatory posture is certainly preferable if

E[x
bs|y
1 |t1] ≤ 1

γ
E[y1|t1] +

∑
t2∈T2\T2(x′,y)

p(t2|t1)(y1(t1, t2) + x
bs|y
1 (t1, t2)).

By equation (3), we have E[y1|t1] ≥ E[y
bs|x
1 |t1] = γE[x1|t1] ≥ γE[x

bs|y
1 |t1]. Hence, a

conciliatory posture is preferable, since y(t) ≥ 0 and xbs|y(t) ≥ 0.

We now show that deviating from x to x′ is not profitable for Agent 1. Agent 1’s

expected payoff is equal to δy1(t) in any state t = (t1, t2) where Agent 2 refuses x′

(i.e. if t2 ∈ T2 \ T2(x′, y)), and is equal to
x′1(t)+y1(t)

2
for states where 2 is conciliatory.

Thus 1 has no strict incentive to deviate by proposing x′ instead of x if and only if

∑
t2∈T2(x′,y)

p(t2|t1)
x′1(t1, t2) + y1(t1, t2)

2
+δ

∑
t2∈T2\T2(x′,y)

p(t2|t1)y1(t1, t2) ≤ E[x1|t1] + E[y1|t1]

2

(6)

Multiplying both sides of the inequality by 2 and rearranging, we get:∑
t2∈T2(x′,y)

p(t2|t1)x′1(t1, t2) + γ
∑

t2∈T2\T2(x′,y)

p(t2|t1)y1(t1, t2) ≤ E[x1|t1]. (7)

Notice that x′1(t1, t2) ≤ x
bs|y
1 (t1, t2) when t2 ∈ T2(x′, y), by definition of T2(x′, y), and

that γy1(t) ≤ x
bs|y
1 (t), by definition of x

bs|y
1 . Thus the LHS of equation (7) is less or

equal to E[x
bs|y
1 |t1], which itself is less than the RHS of equation (7), thanks to our
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equilibrium conditions from equation (3). Thus Agent 1 does not find it profitable to

unilaterally deviate to x′, as claimed.

It remains to ensure there exist mutually optimal continuation strategies given be-

liefs after mutual deviations to x′ and y′. We define beliefs to be consistent with those

after unilateral deviations, so µ2(t1|t2, x′, y′) = µ2(t1|t2, x′, y), and µ1(t2|t1, x′, y′) =

µ(t1|t2, x, y′). These beliefs and agents’ posturing strategies determine expected con-

tinuation payoffs. Let those continuation payoffs correspond to payoff functions in an

auxiliary posturing game with T1 ∪ T2 players. That finite game must have a Nash

equilibrium and so we let postures following deviations x′, y′ be defined by one of

those equilibria. �

A3 Non-Emptiness of C∗(B)

We start by establishing, for any δ (before the limit), the existence of pooling concil-

iatory equillibria with interim efficient demands.

Proposition 7. There exists some pooling conciliatory equilibrium with interim effi-

cient demands.

Proof. Let U(t) = {u ∈ R2
+|(∃v ∈ U(t)) : u ≤ v}, and let φ̂ : U ⇒ U be the

correspondence defined by

φ̂(v) = arg max
u∈F (v)

∏
ti, i

(E[ui|ti]− E[vi|ti] + 1) ,

where F was defined right before Lemma 2. The set φ̂(v) is compact and convex,

since it is obtained by maximizing a concave function over a set that is itself compact

and convex. Clearly, it selects contingent contracts that are interim efficient in U .

The Theorem of the Maximum then implies that φ̂ is upper hemi-continuous (F is

continuous, thanks to Lemma 2).

Let then φ : U2 ⇒ U2 be the correspondence defined as follows: φ(x, y) =

(φ̂(xbs|y), φ̂(ybs|x)). This is well-defined since xbs|y and ybs|x belong to Ū (but not

necessarily U). Notice also that xbs|y is continuous in y and that ybs|x is continuous in

x. Let (x, y) be a fixed-point of φ, by Kakutani’s fixed point theorem. The construc-

tion of φ ensures interim efficiency for both x and y, and that E[xi|ti] ≥ E[x
bs|y
i |ti]

and E[yi|ti] ≥ E[ybs|x|ti] for all ti and i. Hence, by Proposition 2, the demands (x, y)

can be sustained by a pooling conciliatory equilibrium.
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The next lemma establishes that if players demands (xn, yn)→ (x, y) as δn → 1,

then x and y must give the same interim utilities

Lemma 6. Consider a sequence of bargaining games with δn → 1 and an associated

sequence of pooling conciliatory equilibria whose demands converge, (xn, yn)→ (x, y).

Then:

(i) E[xi|ti] = E[yi|ti] for all ti and i.

(ii) x and y are ex-post efficient.

Proof. For (i), observe that in a conciliatory equilibrium, we must have E[xn2 |t2] ≥
E[x

bs|yn
2 |t2] = γnE[yn2 |t2]. In the limit as γn → 1 we must have E[x2|t2] ≥ E[y2|t2].

We must also have E[yn2 |t2] ≥ E[y
bs|xn
2 |t2] ≥ E[xn2 |t2]. Hence E[y2|t2] ≥ E[x2|t2] and

so E[y2|t2] = E[x2|t2], and by identical logic E[y1|t1] = E[x1|t1].

We now prove (ii). If f2(t, x1(t′)) > x2(t′) for some t′, E[yn2 |t′2] ≥ E[y
bs|xn
2 |t′2] and

y
bs|xn
2 (t) ≥ f2(t, γnxn1 (t)) ≥ γnxn2 (t), for all t, imply that E[y2|t′2] ≥ limE[y

bs|xn
2 |t′2] ≥

E[f2(·, x1(·))|t′2] > E[x2|t′2], a contradiction to (i). Suppose now x is not ex-post

efficient. Given f2(t, x1(t)) = x2(t) for all t we must have x1(t′) < u1(t′) for some t′.

Then xn1 (t′) < u1(t′) for large n, and so y
bs|xn
2 (t′) = u2(t′) > f2(t, x1(t′)) = x2(t′). This

implies E[y2|t′2] ≥ limE[y
bs|xn
2 |t′2] > E[f2(·, x1(·))|t′2] ≥ E[x2|t′2], contradicting (i).

We are now ready to prove the non-emptiness of C∗(B).

Proof of Proposition 3 (C∗(B) is non-empty) Fix a sequence δn → 1, and an

associated sequence of pooling conciliatory equilibria with interim efficient demands

(xn, yn) (see Proposition 7). Since U(t) is compact, we may assume (considering a

subsequence if needed) (xn, yn) converges to some limit (x, y) as n tends to infinity.

By Lemma 3, x and y are interim efficient. By Lemma 6, E[xi|ti] = E[yi|ti] for all i, ti.

So the limit equilibrium outcome x+y
2

is interim efficient and belongs to C∗(B).

A4 Convergence to Myerson

Proof of Proposition 4

We fix a smooth bargaining problem B. We further assume that U is comprehensive,

that is, v ∈ R2
+ belongs to U(t) as soon as it contains some u ≥ v. To see why

this is without loss of generality, assume that U is not comprehensive. Consider then
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its comprehensive closure U defined at the beginning of the proof for Proposition 7.

Notice that u(t), u(t), and the set of interim efficient contingent contracts remain

unchanged when considering U(t) instead of U(t). Similarly, for all x, y in U , xbs|y(t)

and ybs|x(t) remain unchanged. Hence the set of strictly individually rational con-

tingent contracts that belong to C∗(B) is unchanged when taking the comprehensive

closure. The set of Myerson solutions also remains unchanged. Hence (a) in Proposi-

tion 4 holds if we can show it holds for U , which is comprehensive. As for (b), notice

that taking comprehensive closures has no impact on whether (BC) is satisfied. Also,

based on the above observations, any conciliatory equilibrium outcome for U is also

a conciliatory equilibrium outcome for U . Hence (b) in Proposition 4 holds if we can

show it holds for U , which is comprehensive.

Next, we associate to any weakly efficient u ∈ U(t) a unique positive unit vector

λu(t) that is orthogonal to U(t) at u. This is indeed unequivocally defined if u

is strictly individually rational (as U(t) is smooth). What if ui = 0 for some i?

There could be multiple orthogonal unit vectors in that case. Then λu(t) is defined

by the continuous extension over strictly individally rational payoff pairs: λu(t) =

limm λ
um(t) for any sequence of strictly individually rational and efficient payoff pair

um that converges to u. This is well-defined since U(t) is smooth.

Take now an element c∗ of C∗(B). Let δn → 1 and an associated sequence of pool-

ing conciliatory equilibria with equilibrium demands (xn, yn), such that (xn, yn) →
(x, y) and c∗ = x+y

2
. By Lemma 6, x and y are both ex-post efficient. Our proof of

Proposition 4 proceeds in two steps. First, Lemma 7 establishes that Agent 2 must

get at least half of the linearize surpluses Vλx(t) in expectation, while furthermore

showing that this implies x2(t) > u2(t) and hence c∗2(t) > u2(t) if B satisfies (BC).

Similarly, Agent 1 must get at least half of the linearized surpluses Vλy(t) in expecta-

tion and y1(t) > u1(t) and c∗1(t) > u1(t) given (BC). The second step of the proof is

Lemma 8, which shows that, if c∗ is strictly individually rational and interim efficient,

then λy = λx and each agent expects exactly half of the linearized surplus so that c∗

must be a Myerson solution.

Lemma 7. Let Mx(t) = λx(t) · x(t) and My(t) = λy(t) · y(t). Then λx2(t) > 0 and

λy1(t) > 0 and:

E[c∗2|t2] ≥ 1

2
E[
Mx

λx2
|t2], and E[c∗1|t1] ≥ 1

2
E[
My

λy1
|t1]. (8)
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Furthermore, if in state t the bargaining problem satisfies (BC) for i = 1, then x2(t) >

u2(t), and if it satisfies (BC) for i = 2, then y1(t) > u1(t), so that if it satisfies (BC)

for i = 1, 2 then c∗i (t) ∈ (ui(t), ui(t)).

Proof. We prove the claims regarding λx, Mx and c∗2(t) with the claims regarding λy,

My and c∗1(t) proved analogously. While x is ex-post efficient by Lemma 6, this need

not be true of xn. Define, therefore, x̄n(t) to be the vertical projection to the utility

possibility frontier: x̄n(t) = (xn1 (t), f2(t, xn1 (t))), where this clearly also converges to

x. By the fact that the bargaining problem is smooth, we have f2(t, .) is continuously

differentiable on the set (u1(t), u1(t)), where this derivative is f ′2(t, .). This function

f ′2 is continuously extended to the closed interval. Clearly, f ′2(t, x̄n1 (t)) = −λn1 (t)

λn2 (t)
,

where λn(t) stands for λx̄
n
(t). Then for some small ε > 0 with λx2(t) 6= ε define

λ̄n2 (t) = max{ε, λn2 (t)}, λ̄n1 (t) = 1−λ̄n2 (t), λ̄x2(t) = max{ε, λx2(t)} and λ̄x1(t) = 1−λ̄x2(t).

Finally, define M̄n(t) = λ̄n(t) · x̄n(t) and M̄x(t) = λ̄(t) ·x(t). For our fixed ε, we claim:

y
BS|xn
2 (t) ≥ M̄n(t)

λ̄n2 (t)
− γn λ̄

n
1 (t)

λ̄n2 (t)
xn1 (t)−O((1− γn)2). (9)

If λx2(t) > ε then λn2 (t) > ε for sufficiently large n and equation (9) holds thanks

to a Taylor’s expansion of Agent 2’s best safe payoff against xn around x̄n(t). The

remainder O((1−γn)2) is a constant times a quadratic factor of the distance between

xn1 (t) and γnxn1 (t); hence dividing it by (1 − γn)2 gives an expression that converges

to a constant as γn → 1 (the smoothness assumption is important here). This is

illustrated in Figure 2, where the the boundary of the linearized utility set Vλn(t) is

the line z2 = M̄n(t)

λ̄n2 (t)
− λ̄n1 (t)

λ̄n2 (t)
z1 which tangent to U(t) at xn(t) (where in this example

xn(t) = x̄n(t) and λn(t) = λ̄n(t)). If on the other hand λx2(t) < ε so that λn2 (t) < ε

for sufficiently large n, then we must directly have y
BS|xn
2 (t) > M̄n(t)

λ̄n2 (t)
− γn λ̄

n
1 (t)

λ̄n2 (t)
xn1 (t)

for sufficiently large n because the slope of the linearized set is less steep than the

slope of the utility frontier, i.e. −1−ε
ε

= − λ̄n1 (t)

λ̄n2 (t)
> −λn1 (t)

λn2 (t)
= f ′2(t, xn1 (t)). Notice also

that if for every ε > 0 we have λn2 (t) < ε for large enough n, then we must have

x(t) = (u1(t), u2(t)). Taking expectations we have:

E[y
BS|xn
2 |t2] ≥ E[

M̄n

λ̄n2
|t2]− γnE[

λ̄n1
λ̄n2
xn1 |t2]−O((1− γn)2) (10)
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Moreover, we also have:

E[
M̄n

λ̄n2
|t2]− E[

λ̄n1
λ̄n2
xn1 |t2] = E[x̄n2 |t2] ≥ E[xn2 |t2] ≥ E[x

BS|yn
2 |t2] = γnE[yn2 |t2]. (11)

The first equality follows from M̄n = λ̄n · x̄n, the first inequality follows from the

definition of x̄, the second inequality follows from our equilibrium conditions, and the

second equality follows from the best safe’s definition. Inequality (11) thus implies

−E[
λ̄n1
λ̄n2
xn1 |t2] ≥ γnE[yn2 |t2]− E[

M̄n

λ̄n2
|t2].

Combining this with (10) and the equilibrium condition E[yn2 |t2] ≥ E[y
BS|xn
2 |t2],

E[yn2 |t2] ≥ E[y
BS|xn
2 |t2] ≥ E[

M̄n

λ̄n2
|t2] + γn

(
γnE[yn2 |t2]− E[

M̄n

λ̄n2
|t2]

)
−O((1− γn)2).

(12)

The above inequality simplifies to

(1− (γn)2)E[yn2 |t2] ≥ (1− γn)E[
M̄n

λ̄n2
|t2]−O((1− γn)2). (13)

Dividing this by (1− (γn)2) = (1− γn)(1 + γn) we get:

E[yn2 |t2] ≥ 1

1 + γn
E[
M̄n

λ̄n2
|t2]−O(1− γn) (14)

Since xn → x and x̄n → x, we have λ̄n → λ̄x and M̄n → M̄x. Taking the limit of

(14) as n→∞, and noting E[xi|ti] = E[yi|ti] by Lemma 6 we get:

E[y2|t2] = E[x2|t2] = E[c∗2|t2] ≥ 1

2
E[
M̄x

λ̄x2
|t2]. (15)

Taking ε → 0 we have M̄x(t)

λ̄x2 (t)
→ Mx(t)

λx2 (t)
so long as λx2(t) > 0. If λx2(t) = 0 then M̄x(t)

λ̄x2 (t)

explodes as ε → 0, contradicting the feasibility of equation (15) for all ε sufficiently

small. This establishes that λx2(t) > 0 and equation (8). Given that λx2(t) > 0 it

is clear that when u2(t) > 0 we must have x2(t) > u2(t) and x1(t) < u1(t) because

otherwise we would have λx2(t) = 0 when x2(t) = u2(t) > 0. Finally, suppose x2(t′) =
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u2(t′) = 0 and so x1(t′) = u1(t′) for some t′ ∈ T (t2). Then equation (15) implies:

∑
t∈T (t2)\{t′}

p(t)

p(t2)
x2(t) = E[x2|t2] ≥ 1

2
E[
Mx

λx2
|t2]

≥ 1

2p(t2)
[
λx1(t′)

λx2(t′)
p(t′)u1(t′) +

∑
t∈T (t2)\{t′}

p(t)x2(t)]

This is impossible if T (t2) = {t′}, so suppose otherwise. Rearrange the far left and

right terms above and use
λx1 (t′)

λx2 (t′)
= − 1

f ′1(t′,0)
and x2(t) ≤ u2(t) to get:

−f ′1(t′, 0) ≥ p(t′)u1(t′)∑
t∈T (t2)\{t′} p(t)x2(t)

≥ p(t′)u1(t′)∑
t∈T (t2)\{t′} p(t)u2(t)

Clearly, this cannot hold if the bargaining problem satisfies (BC).

Lemma 8. If c∗ is interim-efficient and strictly individually rational, then it is a

Myerson solution.

Proof. If c∗ is interim efficient then it is ex-post efficient, and so λx(t) = λy(t), call

it λ(t), and Mx = My = M = λ(t) · c∗(t) (Mx and My are defined in the proof

of Lemma 7). This is the unique orthogonal vector at c∗(t) given that c∗ is strictly

individually rational. By Lemma 7 we know λi(t) > 0 for all i. By Lemma 1, c∗ being

interim efficient implies there exists a vector λ̂ ∈ RT1
++ × RT2

++ such that λi(t) = λ̂i(ti)
p(ti)

for all i and t. Hence (8) implies

λ̂i(ti)E[c∗i |ti] ≥ p(ti)E[
M

2
|ti]. (16)

Summing up the inequalities in equation (16) over t1 and over t2, we get:∑
i=1,2

∑
ti∈Ti

λ̂i(ti)E[c∗i |ti] ≥ E[M ], (17)
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Using the definitions of M(t) and λ̂i(ti), we have:∑
i

∑
ti∈Ti

λ̂i(ti)E[c∗i |ti] =
∑
i=1,2

∑
ti∈Ti

λ̂i(ti)
∑

t−i∈T−i

p(t−i|ti)c∗i (t)

=
∑
t∈T

∑
i=1,2

p(t−i|ti)λ̂i(ti)c∗i (t)

=
∑
t∈T

p(t)
∑
i=1,2

λi(t)c
∗
i (t)

= E[M ]

But then (17) must hold with equality, and hence (16) must also hold with equality

for each i = 1, 2, which means c∗ is a Myerson solution.

A5 Sequential Equilibria

Proof of Proposition 5 (Interim Efficiency at the Limit)

For this proposition, B is assumed to be smooth and satisfy (SBC) if |Ti| > 2 for some

i. As explained in the main text, we can also assume without loss of generality that p

is uniform. Suppose c∗ ∈ C∗(B) is not interim efficient. Let δn → 1 and consider an

associated sequence of conciliatory equilibria. These need not be pooling equilibria,

so let xn(t) and yn(t) correspond to agents actual equilibrium demands in state t. In

other words, xn(t1, t2) is the demand of type t1 in state (t1, t2) (rather than of type

t′1) and yn(t1, t2) is the demand of type t2. Considering a subsequence if necessary,

let (xn, yn) → (x, y) and c∗ = x+y
2

. By Lemma 6, x and y are both ex-post efficient

and E[xi|ti] = E[yi|ti] = E[c∗i |ti] so that x and y are not interim efficient either. To

get closer to the proof sketch provided in the main text, we would like to focus on

type subsets with two elements for each agent. To do this, we could apply Lemma 5

to x. Unfortunately, while we know that x1(t) < u1(t) for all t, by Lemma 7 ((SBC)

implies (BC)), we cannot be sure that x1(t) > u1(t), for all t. We must consider a

complementary lemma to cover this case.

Lemma 9. If x1(t) = u1(t) for some t, then there are T ′i ⊂ Ti for i = 1, 2 with

|T ′i | = 2 and a contract e∗ that interim dominates x when restricted to T ′1 × T ′2.

Proof. By Lemma 7 ((SBC) implies (BC)) we have y1(t) > u1(t) for all t. By assump-

tion we have that x1(t′) = u1(t′) < y1(t′) for some t′ = (t′1, t
′
2) and so we also have

44



y2(t′) < x2(t′) = u2(t). Because E[xi|t′i] = E[yi|t′i] we must have some states (t′1, t
′′
2)

and (t′′1, t
′
2) such that x1(t′1, t

′′
2) > y1(t′1, t

′′
2) and x1(t′′1, t

′
2) > y1(t′′1, t

′
2). Finally, notice

that x1(t′′1, t
′′
2) < u1(t) because of Lemma 7. Let T ′i = {t′i, t′′i }.

Now consider the alternative allocation e∗ defined by e∗2(t′1, t
′
2) = x2(t′1, t

′
2) − ε,

e∗2(t′′1, t
′
2) = x2(t′′1, t

′
2) + Kε, e∗2(t′′1, t

′′
2) = x2(t′′1, t

′′
2) − K ′ε, e∗2(t′1, t

′′
2) = x2(t′1, t

′′
2) +

K ′′ε and e∗1(t) = f1(t, e∗2(t)) for some ε,K,K ′, K ′′ > 0. Choosing K >
p(t′1,t

′
2)

p(t′′1 ,t
′
2)

ensures that E[e∗2|t′2, T ′1] > E[x2|t′2, T ′1], and choosing K ′′ >
K′p(t′′1 ,t

′′
2 )

p(t′1,t
′′
2 )

ensures that

E[e∗2|t′′2, T ′1] > E[x2|t′′2, T ′1]. Notice that limε→0
e∗1(t′1,t

′
2)−x1(t′1,t

′
2)

ε
= −f ′1((t′1, t

′
2), u2(t)) =

∞, limε→0
e∗1(t′1,t

′′
2 )−x1(t′1,t

′′
2 )

ε
= K ′′f ′1((t′1, t

′′
2), x2(t′1, t

′′
2)) > −∞, hence for any K ′′, for suf-

ficiently small ε we haveE[e∗1|t′1, T ′2] > E[x1|t′1, T ′2]. Also notice limε→0
e∗1(t′′1 ,t

′
2)−x1(t′′1 ,t

′
2)

ε
=

Kf ′1((t′′1, t
′
2), x2(t′′1, t

′
2)) > −∞, and limε→0

e∗1(t′′1 ,t
′′
2 )−x1(t′′1 ,t

′′
2 )

ε
= −K ′f ′1((t′′1, t

′′
2), x2(t′′1, t

′′
2)).

Choosing K ′ > −Kp(t′′1 ,t
′
2)f ′1((t′′1 ,t

′
2),x2(t′′1 ,t

′
2))

p(t′′1 ,t
′′
2 )f ′1((t′′1 ,t

′′
2 ),x2(t′′1 ,t

′′
2 ))

we have E[e∗1|t′′1, T ′2] > E[x1|t′′1, T ′2] for all suf-

ficiently small ε, completing the proof.

If |Ti| > 2 for some agent i, then we know by Lemmas 5 and 9 that there is T ′j ⊂ Tj

for j = 1, 2 with |Tj| = 2 such that x is not interim efficient restricted to T ′1 × T ′2. If

|Ti| = 2 then let T ′i = Ti. By Lemma 4, x is not weakly interim efficient restricted to

T ′1 × T ′2, and so there is some alternative (ex-post efficient) contract e which strictly

interim dominates x when restricted to T ′1 × T ′2. Let e∗ be defined by e∗ = e(t) if

t ∈ T ′1 × T ′2 and e∗(t) = x(t) otherwise. Clearly we have E[e∗i |ti] > E[xi|ti] for all

ti ∈ T ′i and i = 1, 2. Furthermore, let en be defined by en = e(t) if t ∈ T ′1 × T ′2 and

en(t) = ŷbs|x
n
(t) otherwise.35 Given that ŷbs|x

n
(t) → x(t), we clearly have en → e∗

and hence E[eni |ti] > E[xni |ti] for all ti ∈ T ′i and i = 1, 2 for sufficiently large n.

Consider now a unilateral deviation for Agent 2, who proposes en. We will show

that this deviation is profitable for some type in T ′2 when n is large enough. The

first step is to show that, for all sufficiently large n, some type of Agent 1 in T ′1 is

conciliatory after this deviation. Since e∗ strictly interim dominates x when restricted

to T ′1 × T ′2, we have:∑
t∈{t1}×T ′2

(e∗1(t)− x1(t))p(t) > 0 and
∑

t∈{t2}×T ′1

(e∗2(t)− x2(t))p(t) > 0 (18)

for all t1 ∈ T ′1 and t2 ∈ T ′2. If Agent 1 believes that 2 is conciliatory, then his

35Remember the definition of ŷbs|x
n

introduced at the very end of Section 3. It’s derived from
ybs|x

n

to guarantee feasibility and ex-post efficiency.
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payoff difference from being conciliatory instead of aggressive following the deviation

is 1
2
(en1 (t) − γnxn1 (t)) in state t. Let µ1(t|t1, en) be the probability that Agent 1

attributes to state t after 2’s deviation, when of type t1. Type t1 ∈ T1 is certainly

conciliatory following en if

µn1 (T ′1 × T ′2|t1, en)[
∑

t∈T (t1)∩T ′1×T ′2

(en1 (t)− γnxn1 (t))µn1 (t|t1, en, T ′2)]

+ (1− µn1 (T ′1 × T ′2|t1, en))[
∑

t∈T (t1)\T ′1×T ′2

(en1 (t)− γnxn1 (t))µn1 (t|t1, en, T2\T ′2)] > 0.

As argued in the main text, we can also assume an agent is always conciliatory

if offered his best safe payoff in every state that he considers possible. Hence, if

µn1 (T ′1 × T ′2|t1, en) = 0 then Agent 1 is certainly conciliatory, in particular if t1 6∈ T ′1.

Suppose then that µn1 (T ′1 × T ′2|t1, en) > 0. Clearly en1 (t)− γnxn1 (t) ≥ 0 if t 6∈ T ′1 × T ′2,

and so type t1 ∈ T ′1 must certainly be conciliatory if∑
t∈{t1}×T ′2

(en1 (t)− γnxn1 (t))µn1 (t|t1, en, T ′2) > 0

Considering a subsequence if needed, say that µn1 (t|t1, T ′2, en) converges to µ∗1(t|t1, T ′2).

As γnxn → x, t1 ∈ T ′1 is conciliatory for all large n if∑
t∈{t1}×T ′2

(e∗1(t)− x1(t))µ∗1(t|t1, T ′2) > 0. (19)

By (18), e∗2(t′) > x2(t′) for some t′ = (t′1, t
′
2) and so e∗1(t′) < x1(t′) where we let T ′i =

{t′i, t′′i }. As in footnote 34, we must have e∗2(t′1, t
′′
2) < x2(t′1, t

′′
2), e∗2(t′′1, t

′′
2) > x2(t′′1, t

′′
2)

and e∗2(t′′1, t
′
2) < x2(t′′1, t

′
2). Ex-post efficiency of e∗ and x also implies e∗2(t′1, t

′
2) >

x2(t′1, t
′
2), e∗1(t′1, t

′′
2) > x1(t′1, t

′′
2), e∗1(t′′1, t

′′
2) < x1(t′′1, t

′′
2), and e∗1(t′′1, t

′
2) > x1(t′′1, t

′
2). Sup-

pose now, contradictory to what we set out to prove, that neither t′1, nor t′′1, take a

conciliatory stand. Hence equation (19) is violated for both types, and it must be

that µ∗1((t′1, t
′
2)|t′1, T ′2) >

p(t′1,t
′
2)

p(t′1×T ′2)
=

p(t′′1 ,t
′
2)

p(t′′1×T ′2)
> µ∗1((t′′1, t

′
2)|t′′1, T ′2) (where the equality

follows from the fact that p has been assumed from the start, without loss of gener-

ality, to be uniform). But since equilibria along the sequence are sequential, it must

be µ∗1((t′1, t
′
2)|t′1, T ′2) = µ∗1((t′′1, t

′
2)|t′′1, T ′2). It follows from this contradiction that, as

claimed, at least one of t′1 and t′′1 is conciliatory after en, for all large n. Without
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loss, assume this is type t′′1 for all sufficiently large n. Say type t′1 is conciliatory

following en with probability αn ∈ [0, 1] and assume αn → α (consider a subsequence

if needed).

We established above that e∗2(t′′1, t
′′
2) > x2(t′′1, t

′′
2) while e∗2(t′1, t

′′
2) < x2(t′1, t

′′
2). Agent

2 offering en and being conciliatory following Agent 1’s offer of xn ensures a limiting

utility for type t′′2 of:

p(t′1|t′′2)[α
e∗2(t′1, t

′′
2) + x2(t′1, t

′′
2)

2
+ (1− α)x2(t′1, t

′′
2)] + p(t′′1|t′′2)

e∗2(t′′1, t
′′
2) + x2(t′′1, t

′′
2)

2

+
∑

t1∈T1\T ′1

p(t1|t′′2)x2(t1, t
′′
2).

This is decreasing in α given that e∗2(t′1, t
′′
2) < x2(t′1, t

′′
2), and so is minimized when

α = 1. However, we also know that e∗ strictly interim dominates x when restricted

to T ′1 × T ′2, implying E[e∗2|t′′2, T ′1] > E[x2|t′′2, T ′1] and so the above deviation payoff is

strictly larger than the limit of type t′′2 equilibrium payoffs E[x2|t′′2] = E[c∗2|t′′2]. Hence,

the deviation to en must be profitable for all sufficiently large n. �

Proof of Proposition 6 (Cs(B) 6= ∅)

We start by introducing the notion of joint principal equilibrium. Then we show such

equilibrium exists in smooth problems satisfying (BC), and finally use this fact to

establish Proposition 6.

Definition 3. We say that (x, λ̂x) and (y, λ̂y), both in U × ∆++(T1) × ∆++(∪T2)

are a joint principal equilibrium if x and y form an equilibrium with acceptance, and

additionally for all t1 ∈ T1 and t2 ∈ T2:

E[x1|t1] =
∑
t2∈T2

p(t2|t1)[ max
u∈U(t)

u1 +
λ̂x2(t2)

p(t2)

p(t1)

λ̂x1(t1)
(u2 − γy2(t))], (20)

E[y2|t2] =
∑
t1∈T1

p(t1|t2)[ max
u∈U(t)

u2 +
λ̂y1(t1)

p(t1)

p(t1)

λ̂y2(t2)
(u1 − γx1(t))],

E[x2|t2] = γE[y2|t2], E[y1|t1] = γE[x1|t1].

Proposition 8. For any smooth bargaining problem which satisfies (BC) and f ′′i (t, uj(t)) <

0 for all j 6= i = 1, 2 and t ∈ T , there exists δ < 1 such that if δ > δ there is a joint

principle-agent equilibrium.
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Proof. Let EPE be the set of ex-post efficient contingent contracts in U .

We now construct a correspondence from EPE×EPE into itself, and prove that

it admits a fixed-point. We will use this result in the second-half of the proof to

establish the existence of a joint principal-agent equilibrium for sufficiently large δ.

Fix (x, y), a pair of ex-post efficient contingent contracts in EPE. For i = 1, 2,

we take a few steps to define a subset Fi(x, y) of EPE. We start by detailing the

construction for i = 1. The case i = 2 proceeds analogously, as explained below.

First, let λt(x) denote the unique normalized vector in ∆({1, 2}) that is orthogonal

to U(t) at x(t) and continuous in x. In each state t, we expand U(t) using the

supporting hyperplane defined by λt(x). Then we select the payoff pair on that

hyperplane that pays γy2(t) to the second bargainer. This is not well-defined though

if λt1(x) = 0. For that purpose, we introduce a large number M ,36 and define the

continuous function g by:

[g(x, y)](t) =

(
min

{
M, (x1(t) +

λt2(x)

λt1(x)
(x2(t)− γy2(t))

}
, γy2(t))

)
.

Second, given that g(x, y) typically falls outside of U , we wish to project it back to

feasible contingent contracts, in fact ones that are ex-post efficient. For the fixed-point

to be useful, though, we have to proceed carefully. Let

H(x, y) = {u ∈ RT1
+ |(∃z ∈ U)(∀ti) : u(t1) = E[z1|t1] ≥ E[x

bs|y
1 |t1], and

E[z2|t2] = γE[y2|t2]}

and define h(x, y) ∈ H(x, y) to be the vector of interim utilities for the first bargainer

which is closest (minimum Euclidean distance) to (E[g(x, y)1|t1])t1 . It is not difficult

to check that h is a continuous function.37 We can then construct another continu-

ous function IE such that IE(x, y) ∈ RT1
+ × RT2

+ is a interim efficient payoff profile

36M is taken large enough that E[zi|ti] < Mp(t|ti) for all i, ti and z ∈ U , that is, the expected
utility of getting M in some state and zero elsewhere is infeasible.

37Clearly, H has compact, convex values and always contains (E[x
bs|y
1 |t1])t1∈T1

. Lemma 2 implies
that H is continuous. The Euclidean distance is continuous and so the theorem of the maximum
implies that h is continuous.
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satisfying the following inequalities for all t1 and t2:38

[IE(x, y)]1(t1) ≥ [h(x, y)]1(t1) and [IE(x, y)]2(t2) ≥ γE[y2|t2].

Finally, let F1(x, y) be the set of feasible contingent contracts that generate the

interim utility profile IE(x, y):

F1(x, y) = {z ∈ U |(∀i = 1, 2)(∀ti) : E[zi|ti] = [IE(x, y)]i(ti)}.

By construction, any z ∈ F1(x, y) is interim efficient, and a fortiori ex-post efficient.

A symmetric construction applies to the second bargainer, which defines a cor-

respondence F2 that associates a set of interim efficient contingent contract to any

pair (x, y) of ex-post efficient contracts in U .39 The correspondence F = F1 × F2 is

defined from EPE × EPE into itself, is upper-hemi continuous, and has compact,

convex values. Since EPE is compact and homeomorphic to a convex set, F admits

a fixed-point by Kakutani.

We now examine the properties of such fixed points (x, y) ∈ F (x, y). First, notice

that the interim efficient contracts (x, y) form an equilibrium because our construction

ensured [IE(x, y)]1(t1) ≥ [h(x, y)]1(t1) ≥ E[xbs|y|t1] and [IE(x, y)]2(t2) ≥ γE[y2|t2].

We next claim that there exists δ < 1, such that for δ ≥ δ we must have xi(t) >

ui(t). If this was not true, then there must exist some sequence of δn → 1 and

associated sequence of equilibria arising from our fixed points such that for all n,

xni (t) ≤ ui(t) for some player i and state t. Considering a subsequence if necessary

let (xn, yn) → (x, y). By Lemma 7 and (BC), we must have x2(t) > u2(t) and

y1(t) > u1(t) for all t, and so it must be that x1(t) ≤ u1(t) for some t. This combined

with f ′′1 (t, u2(t)) < 0 implies that (x + y)/2 is not ex-post efficient. By Lemma 6,

however, we must have E[xi|ti] = E[yi|ti] = [xi + yi|ti]/2 for all ti and by Lemma

3, x and y must be interim efficient. This contraction ensures xi(t) > ui(t) for all

sufficiently large δ. In this case, we clearly have a uniquely defined positive unit

38For instance, pick IE(x, y) by maximizing the function
∏
ti∈Ti,i=1,2(wi(ti) + 1) over the set of

feasible interim utilities w ∈ RT1
+ ×RT2

+ that satisfy w1(t1) ≥ [u(x, y)]1(t1) w2(t2) ≥ γE[y2|t2] for all
t. Again the constraint set has compact, convex values and non-empty and continuous by Lemma 2
ensuring the continuity of IE by the theorem of the maximum.

39Now γx is used as an outside option for the first bargainer, and the second bargainer gets the
remaining surplus in the linearized problem using in each t the vector that is orthogonal to U(t) at
y(t). Details, which are simple once the construction of F1 is understood, are left to the reader.
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vector λ̂x ∈ ∆++(T1)×∆++(∪T2) which is interim orthogonal to U at x.

We next claim that E[x1|t1] = [h(x, y)]1(t1) ≤ E[g(x, y)1|t1] and E[x2|t2] =

γE[y2|t2] for all t1, t2. To establish this, first notice that [h(x, y)]1(t1) ≤ E[g(x, y)1|t1]

for all t1, or we could find points inH(x, y) that are strictly closer to (E[g(x, y)1|t1])t1∈T1

than h(x, y).40 Also notice that if [h(x, y)]1(t1) = E[g(x, y)1|t1] for all t1 then we

would have E[x1|t1] = [h(x, y)]1(t1) = E[g(x, y)1|t1] and E[x2|t2] = γE[y2|t2] =

E[g2(x, y)|t2] for all t2 because g(x, y) is interim efficient in the bargaining prob-

lem where each U(t) is expanded by the supporting hyperplane defined by λt(x) =

(λ̂x1(t1)/p(t1), λ̂x2(t2)/p(t2)).41 For our claim not to hold, therefore, there must be some

type t′1 such that [h(x, y)]1(t′1) < E[g(x, y)1|t′1).

By construction we have E[xi|ti] = [IE(x, y)]i(ti) and so E[x1|t1] ≥ [h(x, y)]1(t1)

and E[x2|t2] ≥ γE[y2|t2]. If E[x2|t′2) > γE[y2|t′2) for some t′2, then we could increase

[h(x, y)]1(t′1) slightly to find a point in H(x, y) that is closer to (E[g(x, y)1|t1])t1∈T1

than h(x, y).42 Similarly, if E[x1|t′′1) > [h(x, y)]1(t′′1) for some t′′1, then we could slightly

increase [h(x, y)]1(t′1) and decrease [h(x, y)]1(t′′1) to find a point in H(x, y) that is closer

to (E[g(x, y)1|t1])t1∈T1 than h(x, y).43 This establishes the claim.

Identical logic applies to player 2’s demand y. Thus we are ready to show that x, y

with interim orthogonal vectors λ̂x and λ̂y form a joint principal-agent equilibrium.

We have established E[x2|t2] = γE[y2|t2]. Because x is interim efficient we have:

[g(x, y)]1(t)
λ̂x1(t1)

p(t1)
=x1(t)

λ̂x1(t1)

p(t1)
+ (x2(t)− γy2(t))

λ̂x2(t2)

p(t2)

= max
u∈U(t)

u1
λ̂x1(t1)

p(t1)
+ (u2 − γy2(t))

λ̂x2(t2)

p(t2)

for all t = (t1, t2), where the first equality is by definition. We now multiply this by

40Consider v1(t1) = min{[h(x, y)]1(t1), E[g(x, y)1|t1]}. We can always assume U is comprehensive
and so ensure v ∈ H(x, y), because adding all less efficient utility pairs to U doesn’t affect EPE.

41The vector λ̂x is interim orthogonal even given feasible utility sets V (t) = {v ∈ R2
+|v · λt(x) ≤

x(t) · λt(x)} ⊇ U(t).
42Consider v ∈ H(x, y) defined by v1(t1) = min{E[x̂1(t1), E[g(x, y)1|t1]} where x̂(t) = x(t) except

for in state (t′1, t
′
2) where x̂ gives player 2 slightly less than x, and player 1 slightly more. This clearly

implies v1(t′1) > [h(x, y)]1(t′1).
43For some arbitrary t′2, let x̂(t) = x(t) except for in state (t′1, t

′
2) and (t′′1 , t

′
2). Let x̂ give player 2

slightly less than x in state (t′1, t
′
2) slightly more in state (t′′1 , t

′
2), with player 1 getting the residual,

so that type t′2 obtains the same interim utility under x̂ and x. The point v ∈ H(x, y) defined by
v(t1) = min{E[x̂1(t1), E[g(x, y)1|t1]} is closer to (E[g(x, y)1|t1])t1∈T1

than h(x, y).
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p(t) and sum it up over t ∈ T to get:∑
t1∈T1

E[g(x, y)1|t1]λ̂x1(t1) =
∑

t1∈T1,t2∈T2

p(t2|t1)x1(t)λ̂x1(t1) + p(t1|t2)(x2(t)− γy2(t))λ̂x2(t2)

=
∑
t1∈T1

E[x1|t1]λ̂x1(t1)

where the second equality holds because E[x2|t2] = γE[y2|t2] for all t2. But now using

the established claim that E[x1|t1] ≤ E[g(x, y)1|t1] for all t1, it is clear that the above

equality can only hold if E[x1|t1] = E[g(x, y)1|t1] for all t1. But in which case,

E[x1|t1] = E[g(x, y)1|t1] =
∑
t2∈T2

p(t2|t1)[ max
u∈U(t)

u1 + (u2 − γy2(t))
p(t1)λ̂x2(t2)

p(t2)λ̂x1(t1)
].

This establishes equation (20) for (x, λ̂x) in the joint principle equilibrium definition.

Identical logic then applies to (y, λ̂y), establishing the result.

Proposition 9. Consider a bargaining problem, where each agent has two types Ti =

{ti, t′i} and there is a joint principal-agent equilibrium where Agent 1 demands x and

Agent 2 demands y. Then there is a joint principal-agent equilibrium with those

demands, which is sequential.

Proof. Consider a joint principal-agent equilibrium with demands x, y in B, where

λ̌x, λ̌y ∈ ∆++(T1) × ∆++(∪T2) are the interim orthogonal unit vectors. We can

transform this into a strategically equivalent problem B̂ = (Û , p̂) using the invertible

mapping φ̂ : U → RT
+, with φ̂(u)i(t) = Ki(t)ui(t) and Ki(t) = λ̌xi (ti)p(t−i|ti), where

Û = {v ∈ RT
+ : v = φ̂(u), u ∈ U} and p̂ is a common uniform prior over T . This

transformation, implies Ep[ui|ti]λ̌xi (ti)/|T−i| = Ep̌[φ̌(u)i|ti] for all u ∈ U and is similar

to those used in Sections 4.3.1 (on the definition of sequential equilibrium) and 5.2 (on

non-common priors). We have a joint principal-agent equilibrium with demands x, y

in the original problem if and only if we have a joint principal-agent equilibrium with

demands φ̂(x), φ̂(y) in the transformed problem. Notice, that in this new bargaining

problem the vector (1,1) is ex-post orthogonal to Û(t) at φ̂(x) for all t.

It is easy to check that, if a joint principal equilibrium with demands φ̂(x), φ̂(y)

for B̂ is sequential, then there is a joint principle equilibrium with demands (x, y)

for B that is sequential. Hence, from now on we will work with B̂. To avoid unnec-

essary notation assume that the joint principal-agent equilibrium demands in B̂ are
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in fact x, y (not φ̂(x), φ̂(y)). Following Agent 1’s unilateral deviation x̂ we specify

π2 ∈ ∆(T1) and an acceptance/rejection equilibrium in the continuation game that

leaves all types of Agent 1 no better off than with (x + y)/2. Let A2 ∈ RT be the

matrix defined by A2(t) = γy2(t)− x̂2(t) (with rows corresponding to player 1’s types

and columns to player 2’s types).

Case 1: A2 has only non-positive entries Then Agent 2 could keep his interim

belief, and both agents accepting (for all types) forms an equilibrium of the continua-

tion game, which makes no type of Agent 1 strictly better off than with (x+y)/2. To

see this, notice that x̂2 ≥ γy2 implies x
bs|y
1 ≥ x̂1, but E[x1|t1] ≥ E[x

bs|y
1 |t1]. The payoff

from accepting compared to rejecting for agent 2 is (x̂2 + y2)/2− δy2 = (x̂2− γy2)/2,

which is clearly positive. For agent 1 the difference is (x̂1 +y1)/2−δx̂1 = (y1−γx̂1)/2,

which combined with the equilibrium conditions E[y1|t1] ≥ γE[x1|t1] ≥ γE[x
bs|y
1 |t1]

ensures E[y1|t1] ≥ γE[x̂1|t1] so that acceptance is optimal for all t1.

Case 2: A2 has a column with non-positive entries Having dealt with Case 1

already, we can assume that A2 has a strictly positive entry in the other column. Pick

then 2’s belief so that the expected value of that column is strictly positive. Him re-

jecting x̂ for the type corresponding to that column, and accepting for the other, while

1 accepts whatever his type, forms an equilibrium of the continuation game which

makes no type of Agent 1 strictly better off than with (x + y)/2. This follows from

similar logic to Case 1, combined with the fact that we also have δy1 ≤ (x
bs|y
1 + y1)/2.

Case 3: There exists a belief π2 ∈ ∆(T1) such that π2A2 ≥ 0. Pick π2 as Agent

2’s updated belief. Notice that him rejecting x̂ whatever his type, and 1 accepting

y whatever t1, forms an equilibrium of the continuation game. The outcome is γy,

which is no better than (x+ y)/2 for Agent 1, whatever his type.

Case 4: None of the previous cases Since we are not in Case 2, then the convex

sets C = {π2A2 : π2 ∈ ∆(T1)} and RT2
+ are disjoint. The separating hyperplane then

implies that there exists a π1 ∈ ∆(T2) such that v · π1 ≥ 0 ≥ v′ · π1 for all v ∈ RT2
+

v′ ∈ C, where any non-positive orthogonal vector π1 would allow v · π1 arbitrarily

negative for some v ∈ RT2
+ . For 0 ≥ π2A2 ·π1 for all π2 we clearly must have 0 ≥ A2 ·π1.

Suppose, wlog, that π1(t2) ≤ π1(t′2) (a similar argument applies otherwise). It

must be that A2(t1, t2) and A2(t′1, t2) have opposite signs (both being negative would

correspond to Case 2, which is ruled out; if they are both positive, then the other

column must have negative entries to avoid Case 3, but then we are back to Case 2,

which is ruled out). So we can find p such that pA2(t1, t2) + (1− p)A2(t′1, t2) = 0. Of
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course, since we are not in Case 3, it must be that pA2(t1, t
′
2) + (1− p)A2(t′1, t

′
2) < 0.

Assume Agent 1 accepts y whatever his type. For that belief p, it is by construction

a best response for Agent 2 to accept when of type t′2, and to accept with probability
1−π1(t′2)

π1(t′2)
∈ [0, 1] when of type t2. We next check that, given these strategies, the

deviation is not profitable for Agent 1. Define x∗ ∈ RT
+ by x∗2(t) = γy2(t) and

x∗1(t) = x1(t) + (x2(t)− γy2(t)). Because x, y form a joint principal-agent equilibrium

we must have E[x∗i |ti] = E[xi|ti]. Notice that if player 1 conditions her belief about

2’s type on the event that 2 accepts x̂, then this belief is precisely π1. In that case,

E[x̂1|t1, 2 accepts) ≤ E[x∗1 + A2|t1, 2 accepts) ≤ E[x∗1|t1, 2 accepts),

where the first inequality follows from the fact that x̂1 + x̂2 ≤ x∗1 + γy2 because the

vector (1,1) is orthogonal to U(t) at x(t), and the second inequality follows from the

fact that A2 · π1 ≤ 0. Thus, conditional of the acceptance event, 1 prefers (x∗ + y)/2

over (x̂ + y)/2 whatever his type. Conditioning now on 2 rejecting, 1 gets δy, which

is worse than (x∗ + y)/2 whatever his type. Agent 1 does not know whether 2 will

accept or reject, but we see that whichever case holds, he prefers (x∗ + y)/2 over the

outcome of the acceptance/rejection game after proposing x̂. By definition, (x+ y)/2

gives 1 the same expected payoff as (x∗+ y)/2, and hence 1 is indeed no better off by

deviating. It remains to check that 1 accepting (whatever his type) is a best response

against 2’s strategy. Before, accepting y1 made sense when the “outside option” to

E[y1|t1] was γE[x1|t1] = γE[x∗1|t1]. Now the outside option gets worse (see above

for conditional on acceptance, and 0 conditional on rejection). To be precise, the

difference between 1’s expected payoff from accepting and rejecting is:

Pr[2 accepts] · E[y1 − γx̂1|t1, 2 accepts]/2 + Pr[2 rejects] · δE[y1|t1, 2 rejects]

≥E[y1 − γx∗1|t1]/2 = 0.

We can clearly deter deviations by agent 2 in a similar manner (we can rescale each

type’s payoffs so that the vector (1,1) is orthogonal to U(t) at y(t)). Following the

joint deviation x̂, ŷ, agent i’s beliefs match those following j’s unilateral deviation,

and in the continuation game agents have a finite strategy set, and so there must be

at least one Nash equilibrium.
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Online Appendix (not for publication)

Generic inefficiency of Nash

In the text we stated that the ex-post Nash solution is generically inefficient. What we

mean by generic inefficiency is that: if the ex-post Nash solution is interim efficient

in some bargaining problem where both players have at least two types, then the

solution is inefficient when one player’s utility is rescaled (in any way) in some state.

A more concrete way to highlight the inefficiency is to specialize to the case of risk

averse players with CRRA utility functions but players have different coefficients of

relative risk aversion, have at least two types, and players divide $M(t) > 0 in state

t. If the ex-post Nash solution is interim efficient, then any change in the money

available in some state implies the solution is no longer interim efficient (the simple

proof follows similar arguments to the result below and is left to the reader).

Lemma 10. Suppose for a smooth bargaining problem B = (T, U, p) with |Ti| ≥ 2

for i = 1, 2 that the ex-post Nash solution uN ∈ U is interim efficient. Then for any

t∗ = (t∗1, t
∗
2) ∈ T , and K ∈ (0, 1) ∪ (1,∞), in the bargaining problem B̃ = (T, Ũ , p),

with Ũ(t) = U(t) for t 6= t∗ and Û(t∗) = {(u1, Ku2) : u ∈ U(t∗)}, the ex-post Nash

solution is not interim efficient.

Proof. For the smooth problem B, the ex-post Nash bargaining solution uN , must

satisfy f ′1(t, uN2 (t))uN2 (t) + uN1 (t) = 0 in state t and have uNi (t) > ui(t). This in turn

implies that there is a unique positive unit vector w(t) which is ex-post orthogonal

to U(t) at uN(t), which satisfies w2(t)
w1(t)

= −f ′1(t, uN2 (t)) =
uN1 (t)

uN2 (t)
. Fix t′1 6= t∗1. The

characterization of interim-efficiency in Lemma 1 implies there is a unique vector

λ̂ ∈ RT1
+ ×RT2

+ normalized so that λ̂1(t′1) = 1, which is interim orthogonal to U at uN .

Moreover, this interim orthogonal vector must satisfy λ̂(t1)p(t2)

λ̂(t2)p(t1)
= w1(t1,t2)

w2(t1,t2)
.

Now consider the ex-post Nash solution ũN for bargaining problem B̃. The Nash

solution does not change for t 6= t∗ and so neither do the associated ex-post orthogonal

unit vectors, ũN(t) = uN(t) and w̃(t) = w(t). This means λ̂ remains the unique

vector in RT1
+ × RT2

+ such that λ̂(t1)p(t2)

λ̂(t2)p(t1)
= w1(t1,t2)

w2(t1,t2)
for (t1, t2) 6= t∗ and normalized

so that λ̂1(t′1) = 1. However, the Nash solution in state t∗ must satisfy ũN(t∗) =

(uN1 (t∗), KuN2 (t∗)) by invariance. So the unique ex-post orthogonal unit vector w̃(t∗)

satisfies w̃2(t∗)
w̃1(t∗)

=
uN1 (t∗)

KuN2 (t∗)
6= λ̂(t∗1)p(t∗2)

λ̂(t∗2)p(t∗1)
, which implies ũN cannot be interim efficient.
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War of attrition

We show here how our results can be extended to the war of attrition bargaining

game outlined in the text. We are interested in characterizing the set of stationary

equilibria with initial acceptance. Following on path demands in such equilibria,

players must accept in every future period (as beliefs must match those in period 1).

For the same reasons as in our simple one period model, it is without loss of generality

to focus on stationary pooling equilibria with initial acceptance (the proof is identical

to Proposition 1). The expected outcome of such an equilibrium is c = δ x+y
2

where

δ = 1−ε
1−εδ and x and y are the pooling demands. Thus given equivalent demands x

and y, payoffs are simply discounted by δ compared to the our one period model.

As noted in the main text, for the war of attrition model we define γ = δ(1−ε)/(1−
εδ2). We then define best-safe contracts and payoffs exactly as in the main text but

using this new γ (e.g. y
bs|x
1 (t) = γx1(t) and y

bs|x
2 (t) = max{u2 | u ∈ U, u1 ≥ γx1(t)}).

The result below then shows that stationary equilibrium with initial acceptance are

characterized by the same necessary and sufficient conditions as conciliatory equilib-

rium in our single period model. The proof follows a similar structure to Proposition

2. Given this result, Proposition 4 establishes conditions for convergence to the Myer-

son solution. We have not extended our sequential equilibrium results to this model.

Proposition 10. Let x, y be contingent contracts in U . There is a stationary pooling

equilibrium with initial acceptance where all types of player 1 propose x, and all types

of player 2 propose y, if and only if for all ti ∈ Ti and all i = 1, 2:

E[xi|ti] ≥ E[x
bs|y
i |ti] and E[yi|ti] ≥ E[y

bs|x
i |ti].

Proof. To establish the necessity of E[y1|t1] ≥ E[y
bs|x
1 |t1] notice that following equi-

librium demands x and y, if player 1’s type t1 rejects in period s and then returns to

his equilibrium strategy (of always accepting) he gets:

(1− ε)δ
∞∑
j=1

(
(εδ)2j−2E[x1|t1] + (εδ)2j−1E[y1|t1]

)
=

(1− ε)δ
1− (εδ)2

(E[x1|t1] + εδE[y1|t1]) .

For this to be less than his payoff of E[y1|t1] from accepting, we need E[y1|t1] ≥
γE[x1|t1] = E[y

bs|x
1 |t1]. By identical logic E[x2|t2] ≥ E[x

bs|y
2 |t2]

To establish the necessity of E[y2|t2] ≥ E[y
bs|x
2 |t2], temporarily suppose that there
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is a single state of the world so players 1 and 2 make demands x ∈ R2
+ and y ∈ R2

+.

Clearly if x2 > y2 then it cannot be optimal for player 2 to reject x in any period s,

so suppose that y2 ≥ x2, then 2’s best possible continuation payoff after rejecting x

clearly requires that 1 always accepts. Let V2 be player 2’s maximum expected utility

when he gets to accept in period r ≥ s assuming player 1 always accepts then:

V2 = max

{
x2,

δ(1− ε)
1− δ2ε2

y2 +
δ2ε(1− ε)
1− δ2ε2

V2

}
= max{x2, γy2}.

If γy2 < x2, therefore, player 2’s maximum possible payoff from rejecting an of-

fer is strictly less than x2, and so player 2 must certainly accept whenever he gets

the chance. Returning now to bargaining problems with multiple states of the world.

Player 1 can ensure that player 2 accepts whenever possible when 1 deviates to propos-

ing (arbitrarily close to) his best-safe contract in every state. Player 1’s expected

payoff from making this deviation and then always accepting y is δ
E[x

bs|y
1 |t1]+E[y1|t1]

2

and so we clearly need E[x1|t1] ≥ E[x
bs|y
1 |t1] for that deviation to be unprofitable. By

identical logic, E[y
bs|x
2 |t2] ≤ E[y2|t2].

We now turn to establishing sufficiency and so consider two pooling contingent

contracts x and y satisfying our equilibrium inequalities. After receiving offer x,

player 2’s updated belief over player 1’s type coincides with his interim belief, and

acceptance of x is a best response since E[x2|t2] ≥ E[x
bs|y
2 |t2], for all t2 ∈ T2. For

identical reasons, player 1 optimally accepts y.

We now define beliefs and strategies after a unilateral deviation where player 1

proposed x′ 6= x, but 2 proposed y. Unilateral deviations y′ by player 2 are deterred

analogously. As in Proposition 2’s proof, let T1(t2, x
′, y) = {t1 ∈ T1 : x′2(t1, t2) <

γy2(t1, t2)}. If T1(t2, x
′, y) 6= ∅, then the probability type t2 believes he faces type t1 is

µ2(t1|t2, x′, y) = 1 for some t1 ∈ T1(t2, x
′, y) and he always rejects x′. If T1(t2, x

′, y) = ∅
then type t2 believes µ2(t1|t2, x′, y) = 1 for some arbitrary t1 ∈ T1, and always accepts.

Player 1’s belief after y coincides with his interim belief and he always accepts.

We next check that this behavior is sequentially rational. If type t2 expects that

1 always accepts y, then it is certainly optimal to reject x′ when T1(t2, x
′, y) 6= ∅

(as x2(t1, t2) < γy2(t1, t2) for t1 ∈ T1(t2, x
′, y)) and to accept x′ otherwise. To check

player 1’s incentives, let T2(x′, y) = {t2 ∈ T2 : T1(t2, x
′, y) = ∅} be the set of player 2’s

types who accept x′. Let the probability that type t1 believes the state is t in period
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s following x′ and y be denoted µs1(t|t1, x′, y). Given player 2’s strategy, this satisfies:

µ2k+d
1 (T2(x′, y)|t1) =

p(T2(x′, y)|t1)εk

p(T2(x′, y)|t1)εk + p(T2 \ T2(x′, y)|t1)

where d ∈ {1, 2}. This is decreasing in k. Beliefs about opponent types are then:

µ2k+d
1 (t2|t1) = µ2k+d

1 (T2(x′, y)|t1)p(t2|T2(x′, y), t1) + µ2k+d
1 (T2 \ T2(x′, y)|t1)p(t2|T2 \ T2(x′, y), t1).

Type t1’s expected payoff from accepting y in period s = 2k + d is then:

UA
t1

(2k + d) =µ2k+d
1 (T2(x′, y)|t1)

∑
t2∈T2(x′,y)

p(t2|T2(x′, y), t1)y1(t1, t2)

+ µ2k+d
1 (T2 \ T2(x′, y)|t1)

∑
t2∈T2\T2(x′,y)

p(t2|T2 \ T2(x′, y), t1)y1(t1, t2).

By contrast his payoff from a one-step deviation of rejecting in period s is:

URt1 (2k + d) =µ2k+d
1 (T2(x′, y)|t1)

∑
t2∈T2(x′,y)

p(t2|T2(x′, y), t1)
δ(1− ε)
1− (εδ)2

(x′1(t1, t2) + δεy1(t1, t2))

+ µ2k+d
1 (T2 \ T2(x′, y)|t1)

∑
t2∈T2\T2(x′,y)

p(t2|T2 \ T2(x′, y), t1)
δ2(1− ε)
1− εδ2

y1(t1, t2)

These payoffs are linear in µ2k+d
1 (T2(x′, y)|t1) = 1−µ2k+d

1 (T2 \T2(x′, y)|t1), and hence

so is their difference. Given that µ2k+d
1 (T2(x′, y)|t1) is decreasing in k, it is therefore

sufficient to check player 2’s incentive to accept when k = 0 and when k → ∞. In

the latter case, if T2(x′, y) 6= T2 then limk→∞ µ
2k+d
1 (T2(x′, y)|t1) = 0 and accepting

is certainly a best response (as remaining opponents always reject). Of course, if

T2(x′, y) = T2 then beliefs are stationary, and we only need to check the former case

of k = 0, where µd1(T2(x′, y)|t1) = p(T2(x′, y)|t1). The payoff to rejecting then satisfies:

UR
t1

(d) ≤ δ(1− ε)
1− (εδ)2

E[x
bs|y
1 + εδy1|t1] ≤ δ(1− ε)

1− (εδ)2
E[x1 + εδy1|t1],

where the first inequality follows from x′1(t1, t2) ≤ x
bs|y
1 (t1, t2) for t2 ∈ T2(x′, y) and

from x
bs|y
1 (t) ≥ y1(t) (so that δ2(1−ε)

1−εδ2 y1(t) ≤ δ(1−ε)
1−ε2δ2 (x

bs|y
1 (t) + εδy1(t)). The second

follows from E[x
bs|y
1 |T1] ≤ E[x1|t1]. Hence, we have UA

t1
(d) = E[y1|t1] ≥ UR

t1
(d) when:
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δ(1− ε)
1− (εδ)2

E[x1 + εδy1|t1] ≤ E[y1|t1],

which rearranges to give the (assumed) equilibrium condition E[y1|t1] ≥ γE[x1|t1].

We now show deviating to x′ is unprofitable. Type t1’s payoff from doing this is:

Ut1 =
(1− ε)

2

( ∑
t2∈T2(x′,y)

p(t2|t1)
1

1− δε
(x′1(t1, t2) + y1(t1, t2))

+
∑

t2∈T2\T2(x′,y)

p(t2|t1)
1 + δ

1− δ2ε
y1(t1, t2)

)
Again, we can bound this from above:

Ut1 ≤
1− ε
1− δε

E[x
bs|y
1 + y1|t1]

2
≤ 1− ε

1− δε
E[x1 + y1|t1]

2
,

where the first inequality again follows from x′1(t1, t2) ≤ x
bs|y
1 (t1, t2) for t2 ∈ T2(x′, y)

and from x
bs|y
1 (t) ≥ y1(t) (so that 1+δ

1−δ2εy1(t) ≤ x
bs|y
1 +y1(t)

1−δε ). The second inequality

again follows from E[x
bs|y
1 |T1] ≤ E[x1|t1]. The right hand side is exactly type t1’s

equilibrium payoff of δE[x1+y1
2
|t1], and so the deviation is not profitable.

It remains to ensure there exist mutually optimal, stationary continuation strate-

gies given the players’ beliefs after the joint deviation to x′ and y′. We define beliefs

consistent with those after unilateral deviations: the probability type t2’s believes

that he faces type t1 is µ2(t1|t2, x′, y′) = µ2(t1|t2, x′, y), and similarly, µ1(t2|t1, x′, y′) =

µ1(t1|t2, x, y′). As these beliefs are degenerate they are not be updated over time. Let

tj(ti) = tj if µi(tj|ti, x′, y′) = 1. Define an auxiliary game with players T1 ∪ T2 where

type ti chooses a “mixed” strategy σti ∈ [0, 1]. Type t1’s expected payoff given σ is:

Ut1(σ) = σt1y
′
1(t1, t2(t1)) + (1− σt1)

δ(1− ε)σt2(t1)

1− δ2(1− (1− ε)σt2(t1))
x′1(t1, t2(t1))

The utility of a player of type t2 is defined similarly. This game has a Nash equilibrium

σ∗ in “mixed” strategies by standard reasoning (e.g., using Kakutani). In particular,

type ti’s payoffs are linear in σti , so if σti ∈ (0, 1) is a best response, then so is

σti ∈ [0, 1]. Denote type ti’s stationary acceptance probability in each period of the

war of attrition by σ∗ti . It is easy to verify optimality of σ∗ti in the auxiliary game

entails no profitable one shot deviations in the war of attrition.
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