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Abstract. This paper explores conditions under which the ability to commit in a principal-agent relationship
creates no additional benefit for the principal, over and above simultaneous interaction without commitment.
A central assumption is that the principal’s payoff depends only on the payoff to the agent and her type.

1. The Setting

Contracts are often written in anticipation of informational asymmetries that can make it impossible to achieve
first-best efficiency. The principal-agent model applies to a class of such problems where one agent, the
principal, designs a mechanism to influence an agent’s actions. For instance, an owner of a firm may design
a payment scheme for a worker whose effort is unobservable but correlated with output. Moreover, it is also
possible that the agent has private information. In this setting, the principal aims to design and commit to
a mechanism that serves her interest by providing the agent with the appropriate incentives. That ability to
commit is often critical. In contrast, we identify a class of principal-agent problems in which the principal’s
commitment power is unnecessary in the sense that the outcome of an optimal mechanism with commitment
can be achieved as an equilibrium of a simultaneous move game between the principal and the agent.1

The principal’s action set XP is taken to be a subset of a Banach space, while the agent’s action set is XA, also
a subset of a Banach space. The principal’s action can be thought of as a “contract” or a “reward function,”
typically an object that combines with the agent’s action to produce an outcome. For instance, in the optimal
taxation problem of Mirrlees (1971), the principal’s action is a tax function, so XP is the space of continuous
real-valued functions on some interval of potential incomes, with the sup norm, while XA might represent
labor-leisure choices made by the agent.

Following standard practice, we model the agent’s private information through a finite set of types, t1, . . . , T u.
Given actions p and a of the principal and agent respectively, an agent of type t has payoff function uApp, a, tq,
and the principal has payoff function uP pp, a, tq. We assume:

†Vohra: Brown University, rajiv vohra@brown.edu, Espinosa: University of Chicago, espinosa.fran@gmail.com; Ray: New York Uni-
versity and University of Warwick, debraj.ray@nyu.edu. Ray acknowledges funding under NSF grant SES-1851758. We are very
grateful to Bart Lipman for constructive and helpful comments on an earlier draft. We dedicate this paper to Ali Khan on the occasion
of his 70th birthday. He is a mentor and close friend – a guru – to the first and third authors (presented above in random order). His
unbounded enthusiasm for mathematical economics, philosophy and poetry continues to inspire us. On that last area of expertise, Khan
sahib would likely invoke the words of an immortal Bollywood song: “Maı̃ shāyar to nahı̃̄.” We respectfully disagree.
1For similar results in different settings, see Ben-Porath, Dekel and Lipman (2019, 2020), Deb, Pai and Said (2018), Espinosa r� Ray
(2018), Glazer and Rubinstein (2004, 2006), and Hart, Kremer and Perry (2017).
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[A] The agent’s choice set XA is compact, and for all t, uApp, a, tq is continuous in pp, aq and
Gâteaux differentiable with respect to p. Moreover, DpuApp, a, tq, the Gâteaux partial derivative of
uApp, a, tq, is continuous in pp, aq.

Our central assumption is that the principal’s payoff depends only on the payoff to the agent and
her type. In particular, it does not depend directly on the actions of either the principal or the agent.
Specifically, we assume that there is a function fpu, tq, differentiable in its first argument, such that

[U] uP pp, a, tq “ fpuApp, a, tq, tq.

The principal’s payoff could depend positively, negatively or in a non-monotonic way on the payoff
of the agent. It’s just not allowed to depend directly on the actions. This assumption is not general:
there are many situations in which it fails. But there are other situations in which this restriction is
salient; see Ray r� Vohra for a discussion.2

2. Mechanism Design With Commitment

Both the mechanism design problem and an accompanying game without commitment to be studied
in Section 3 rely on messages (about agent types) communicated by the agent to the principal. While
finite, we allow this message space, R, to be rich enough so as to communicate as much or as little
information as the agent wishes. While the revelation principle (Myerson 1982) tells us that R can
be set equal to T , we allow R to contain 2T , so that in the corresponding game without commitment,
the agent could report, for instance, that her type lies in a particular subset of T .

In the design problem with commitment, the principal selects a mechanism — a function ⇡ : R Ñ P

— thereby committing to an action ⇡prq for every agent report r P R. The agent freely chooses her
report ⇢ptq and her action ↵ptq as a function ⇢ptq of her type t P T . So a mechanism consists of
p⇡, ⇢,↵q. The principal’s expected utility from it is

UP p⇡, ⇢,↵q “
ÿ

t

 tuP p⇡p⇢ptqq,↵ptq, tq,

where  t is her strictly positive prior on agent type t. The constraint on mechanism design comes
from the incentive compatibility of the agent’s report and action. For every t P T , it must be that:

uAp⇡p⇢ptqq,↵ptq, tq • uAp⇡prq, a, tq (1)

for all r P R and a P XA. An optimal mechanism maximizes UP p⇡, ⇢,↵q subject to (1).

2A literature in game theory and welfare economics studies “nonpaternalistic externalities,” where a person’s payoff
depends on others’ payoffs, not directly their actions; see, for example, Pearce (1983), Ray (1987), Bergstrom (1999),
Ray r� Vohra (2020), and Vasquez and Weretka (2020). The present paper departs from that literature in several respects:
(1) the principal-agent model involves asymmetric information, (2) the agent’s payoff is allowed to depend on the actions
of the principal, (3) our focus here is in examining how this restriction on the principal’s payoff may make commitment
unnecessary. In Ray r� Vohra (2019) the focus is on deriving efficiency implications of non-paternalistic externalities.
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An important implication of (U) is that, given ⇡, all p⇢,↵q that are incentive-compatible for the
agent in the sense of (1), are payoff-equivalent for the principal. Whenever the agent is indifferent
between p⇢,↵q and p⇢1

,↵
1q so is the principal.

3. Equilibrium Without Commitment

Suppose now that the two parties play a simultaneous move game with no commitment. Prior to
play, the agent makes a costless announcement regarding her type, using the space R. Following
such an announcement, agent and principal simultaneously take actions a P XA and p P XP .

Equivalently, and using the notation already introduced, we can view this game as the simultane-
ous play of some ⇡ by the principal, and p⇢,↵q by the agent. By equilibrium we refer to a Nash
equilibrium of this “augmented game.”3

Certainly there are equilibria of the augmented game which involve ignoring the announcements
entirely. But there are other situations in which “credible neologisms” are available so that types
can usefully separate (Farrell 1993). For instance, suppose that there are two types of agent, and
agents actually have no action to play. If the principal knows that the agent is of a particular type,
she can take an action that yields both the principal and the agent of that type a payoff of 1 each,
while yielding a payoff of 0 to the “wrong” type. If, on the other hand, the type is unknown (say
with a uniform prior), then the principal chooses some third action which yields, say, 1/2 to each
type of agent and to the principal. Then there is an equilibrium of the augmented game in which the
principal will listen to the agent, who in turn will find it profitable to reveal her type.

4. Zero Value of Commitment

For any menu ⇡, incentive compatibility implies that no type t can gain by choosing ⇡p⇢pt1qq over
⇡p⇢ptqq. But indifferences are possible. To compare agent payoffs across menus it will be useful
to consider the agent’s value function, vApp, tq “ maxaPXa uApp, a, tq. Our next condition asks
that the menu corresponding to an optimal mechanism is reducible (if needed) to a smaller set or
“sub-menu,” in which each type obtains the same payoff as before, and strictly prefers her contract
to any other in this sub-menu.

[C] Suppose p⇡, ⇢,↵q is an optimal mechanism. Then there exists a partition T “ tT1, . . . Tmu of
T , and for every i “ 1, . . . ,m a contract qi P t⇡p⇢p⌧qqu⌧PT such that

(i) Each t P Ti is indifferent between qi and ⇡p⇢ptqq: vApqi, tq “ vAp⇡p⇢ptq, tq.

(ii) Each t P Ti strictly prefers her new contract to any other contract in tq1, . . . qmu: vApqi, tq °
vApqj , tq for j �“ i.

3This is equivalent to a sequential equilibrium of the two-stage game with agent announcements.
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Remark 1. Clearly, if the optimal mechanism is strictly incentive compatible, so every agent strictly
prefers her chosen contract to every other offered contract to begin with, [C] holds trivially — no
subset need be chosen or re-assignment contemplated.

Remark 2. Many models of interest effectively involve two types of agents, e.g., Deb, Pai and
Said (2018), Espinosa r� Ray (2018), Glazer and Rubinstein (2004, 2006) and Hart, Kremer and
Perry (2017).4 In all such cases [C] is satisfied. As Espinosa r� Ray (2018) point out, if type 1 is
indifferent to the contract that type 2 accepts, offer both types the contract designed for type 2. The
restricted subset is just that consisting of type 2’s contract, and [C] holds trivially.

Remark 3. With more than two types, if an optimal mechanism is such that each type is indifferent
to at most one other type’s contract and there are no indifference cycles, [C] hold. More generally
still, it can be shown that [C] holds if and only if every such cycle is of even length. A proof of this
assertion is available from the authors upon request.

Remark 4. It’s possible to identify assumptions on the preferences of the types that imply [C].
Suppose that for any pair of types t and t

1, and principal actions p and p
1,

vApp, tq “ vApp1
, tq implies vApp, t1q “ vApp1

, t
1q. (2)

So if ⇡ is an optimal mechanism and t is indifferent between her contract and that of t1, then t
1 is also

indifferent between her contract and t’s. Then types can be partitioned into sets such that all types
within each set are indifferent across contracts within their set and strictly prefer any such contract
to one in a different set: [C] is satisfied. Condition (2) is related to the simple type dependence

property used by Ben-Porath, Dekel and Lipman (2019) to show, in a somewhat different context,
that commitment is not necessary.5 They study a model in which the agent can present evidence
about his type but doesn’t have any other action. Simple type dependence is then the same as (2).6

In general, [C] is not to be had for free. In Example 2 below, [C] doesn’t hold. There are three
types, and types 1 and 2 prefer their assigned contracts, while type 3 is indifferent across all three
contracts. Because types 1 and 2 have their unique optima under their original contracts, these
cannot be dropped from the reduced set, so there is no way to give type 3 a unique optimum. As we
shall see, our main result also fails in this example.

4Glazer-Rubinstein, as well as Hart-Kremer-Perry actually allow for more than two types, but these differ in terms of
the evidence supplied to a principal. Once reduced to “equivalent types after evidence provision is removed, this is a
two-type model in our reduced-form setting.
5However, Condition [C] and their overall assumptions are not comparable: neither implies the other.
6It is always possible to write the agent’s payoff function as an indirect utility function that depends only on the principal’s
action, by optimizing out the agent’s action. Given (U), this leaves the principal’s optimization problem unchanged.
However, (2) can then acquire different meaning. For instance, type independence over the principal’s ”elementary
actions” (e.g., retain, not retain) may not translate into type independence over the principal’s actions in Xp. Consider the
Espinosa-Ray setting with costless choice of noise. The principal’s action, p, is a contract specifying the probability with
which he retains the agent as a function of the signal emitted by the agent. And the distribution of the signal is function
of the agent’s action. In a menu consisting of two such contracts, the agents may well be opposed in their preferences
over the two functions, even though they have the same preference for retention.
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We make one more (technical) assumption. Fix an action p for the principal, a set of types W Ñ T

and an action profile ↵ for the agents. Say that the principal’s payoff can be improved at pp,↵,W q
if there is p̂ P P such that

ÿ

tPW
 tuP pp̂,↵ptq, tq °

ÿ

tPW
 tuP pp,↵ptq, tq.

The assumption that follows asks for the existence of a “local improvement” whenever an improve-
ment is possible. By [A] and [U], uP pp, a, tq is Gâteaux differentiable in p, allowing us to measure
local changes through DpuP pp, a, tq.7 Let Spp, tq “ argmaxaPXA uApp, a, tq denote the set of best
responses for an agent of type t given p. Say that the principal’s payoff can be locally improved at
pp,↵,W q if, given aptq P Spp, tq for every t P W , there exists a direction d̂ P XP such that

ÿ

tPW
 tDpuP pp, aptq, tqd̂ ° 0.

[I] If uP can be improved at pp,↵,W q, then it can be locally improved at pp,↵,W q.

Condition [I] automatically holds if we think of the principal’s actions p as randomizations over
some finite set of pure actions, with d̂ “ pp̂ ´ pq.

We can now state our result.

THEOREM 1. Assume [A], [U] and [I]. If an optimal mechanism satisfies [C], then there exists an

equilibrium of the augmented game which replicates precisely the same principal and type-specific

agent payoffs.

In the next Section we explore the role that our assumptions play in our main result. In particular,
we provide examples to show that none of our substantive assumptions — [U], [I] or [C] — can be
dropped from the statement of the Theorem.8

5. Two Examples

A principal’s ability to commit to a mechanism can be valuable to her. Our first example illustrates
this well-known fact, but essentially to explain why our result does not apply:

EXAMPLE 1. (Failure of [U] or [I].) The principal can offer one of two jobs to an agent: an specialist
position S, or a generalist position G, or she can decide not to hire the agent at all (action N ). The
agent has two types: s, with probability q, or g with probability 1´q. The specialist is ideally suited
to position S, and his preferences are perfectly aligned with those of the principal. The principal

7Since f : R Ñ R is differentiable and uA is Gâteaux differentiable, the chain rule applies (see for example Proposition
2.47, Bonnans and Shapiro 2000) and DpuP pp, a, tq “ f 1DpuApp, a, tq.
8We view [A] as a technical restriction, one that permits us to state the substantive condition [I]. It also permits us to use
a general envelope theorem of Bonnans and Shapiro (2000). Of course, [A] cannot be dropped free of charge, but it is of
little economic import and we do not explore it in the examples.
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would prefer not to hire the generalist, but conditional on doing so, he does less damage in position
G, which is also the generalist’s top choice. The agent takes no separate action a.

The following table describes principal and agent payoffs. The first entry pertains to the agent; the
second to the principal. We assume that 0 † ✏ † 2q

p1´qq .

Principal’s Action
S G N

Specialist s (2, 2) (1, 1) (0, 0)
Generalist g (1, ´✏) (2, ´✏{2) (0, 0)

TABLE 1. Payoffs to principal and agent types in Example 1.

Note that uP can be written as a function f of uA and agent type t: fpuA, eq “ uA, while

fpuA, gq “

$
’&

’%

´✏ if uA “ 1

´✏{2 if uA “ 2

0 if uA “ 0

Commitment Solution. The first-best for the principal is to have type s in position S and not hire
type g, but that’s not incentive compatible; type g will then pretend to be of type s. The principal
must therefore bear an incentive cost. The optimal mechanism is one in which she commits position
S to an announcement of s and G to an announcement of g, with expected payoff 2q ´ ✏

2p1 ´ qq.

Nash Equilibrium. If, in the augmented game, the types were to reveal themselves, then the
principal wouldn’t hire type g: she would offer N rather than G in response to a revealing g-
announcement. In fact, the only Nash equilibrium is for the two types to not reveal themselves
(say, “announce” ts, gu) and for the principal to offer S.9 The principal’s equilibrium payoff being
2q ´ ✏p1 ´ qq, less than the payoff from the optimal mechanism, and commitment matters.

Theorem 1 fails to apply because [I] fails. At the optimal solution, offering N to the generalist
instead of G is an improvement for the principal, but no local improvement is possible. This issue
is easily circumvented by allowing the principal to randomize over actions: assumption [I] is now
satisfied. It can also be verified that the Nash equilibrium is unchanged: again, both types pool
and are offered S. But now commitment has even more value. The optimal mechanism offers the
g-announcement the positions G or N with equal probability, and S to the s-announcement. The
generalist is still willing to report truthfully, because his expected payoff from either announcement
equals 1. The principal earns still higher payoff than in the earlier commitment mechanism.

So Theorem 1 “fails” again, despite [I] being met. This time it does so because assumption [U] does
not hold on the mixed space of principal actions. The generalist is indifferent between the uniform

9This makes use of our assumption that ✏ † 2q{p1 ´ qq.
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lottery on tG,Nu, and the sure receipt of S. But the principal is not indifferent: she obtains ´✏{4
in the first situation, and ´✏ in the second. So the conditions of Theorem 1 do not apply, and indeed
its conclusion doesn’t hold.

That commitment has value even if mixed strategies are allowed is interesting in light of a recent
result of Ben-Porath, Dekel and Lipman (2020). Allowing for mixed strategies, they show that
the payoff corresponding to an optimal mechanism can be achieved through a Nash equilibrium of
the non-commitment game. Their main assumption is that preferences are semi-aligned: there is
a function ⌫ptq such that uP pp, tq “ ⌫ptquApp, tq. This is stronger than [U] in that it requires the
principal’s payoff to be linear in the agent’s payoff, which is not the case in our example. Thus, our
example shows that semi-alignedness cannot be dropped from the statement of their theorem.

EXAMPLE 2. (Failure of [C]). The principal has three kinds of positions: a hardware specialist,
H , a software specialist, S, and in addition to offering one of these positions, can also mix it with
a general job G, using a time allocation of � P r0, 1s for the specialist position and 1 ´ � for G.
(The no-job option N is not available.) Moreover, each of the specialist jobs H and S comes on a
continuum of grades or scales x P r0, 1s, while job G can only be done at one level. The principal’s
action set can therefore be described by

XP “ ttpH,x,�q | x P r0, 1s,� P r0, 1su, tpS, xq | x P r1, 2s,� P r0, 1su

where an offer of � “ 0 is equivalent to offering G full-time. The agent has no action and is of
three possible types: a hardware specialist h, a software specialist s (each with probability q) and a
generalist g (with probability r). Assume r ° q ° 0.

Principal’s Action
pH,x,�q pS, x,�q

Hardware specialist h p�rx ` 1s,�rx ` 1sq p0, 0q
Software specialist s p0, 0q p�rx ` 1s,�rx ` 1sq
Generalist g p�x ` 1, 1 ´ �xq p�x ` 1, 1 ´ �xq

TABLE 2. Payoffs to principal and agent types in Example 2.

Note that the principal’s payoff is also fully aligned with the specialists, and also with the generalist
(though with opposite sign). Therefore [U] holds: uP puA, tq “ uA for t “ h, s and uP puA, gq “
2 ´ uA. It can also be checked that [I] is satisfied: every improvement comes from changing the
scale x of the specialists or the time � allocated to each, and then a suitable adjustment of x and
� will produce a local improvement. Nevertheless, we will show that commitment has value. Of
course, given our main result, this must be a result of [C] being violated at an optimal mechanism.

Pure-strategy Nash equilibrium of the augmented game. There is (always) an equilibrium in
which the principal disregards all type announcements, and offers a specialist position full time
(� “ 1) at level x “ 0. To see this, we only need to verify that the principal is playing a best
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response. If the principal offers any combined specialist-generalist position at scale x and time
allocation �, her payoff is q�px ` 1q ` rp1 ´ �xq. Because r ° q, she must set x “ 0 and � “ 1,
with resulting principal payoff q ` r.

Moreover, there is no other equilibrium. If the agents separate fully, then the best response of the
principal to each announcement of s or h is to offer that specialist job at scale x “ 1 and time � “ 1,
but then the generalist will deviate by announcing that he is s or h. If the agents separate partially,
then (without loss) there are two cases: one is thg, su, and the other is ths, gu. In the former case,
the principal will offer S at x “ 1 and � “ 1 in response to the announcement s. In response to hg,
her unique best response is to offer H at x “ 0 and � “ 1, obtaining a conditional expected payoff
of 1 (H at any other scale and time allocation is dominated by H at x “ 0 and � “ 1). This yields
the generalist a payoff of 1, but then he will deviate and announce s to pick up the job S at scale
x “ 1 and time � “ 1, which yields him a payoff of 2.

In the latter case, the principal will offer either H or S to the announcement hs, with x “ 1 and
� “ 1 (she takes advantage of the 50-50 chance that the specialist is the right one). To g she will
offer either of the specialist jobs but only at scale x “ 0, but at any time allocation. In either case
the generalist will deviate to announcing hs.

Commitment solution. There is a feasible commitment solution in which the types all reveal
themselves, and the principal offers full-time jobs (� “ 1) to match the specialist announcements,
at scale x “ 0. To the generalist she offers a full-time generalist job, with � “ 0. No type will want
to deviate. This yields a payoff to the principal of 1, strictly higher than the Nash payoff.10

Since preferences are semi-aligned in this example, it follows from Ben-Porath, Dekel and Lipman
(2020) that allowing the principal to mix must result in commitment value being 0.

6. Proof of Theorem 1

Suppose p⇡, ⇢,↵q is an optimal mechanism that satisfies [C]. Let T “ tT1, . . . , Tmu and tqmi“1u
be as specified in [C]. Consider the simultaneous move game without commitment, and define
strategies p⇡1

, ⇢
1
,↵

1q as follows, where for each t, r “ ⇢
1ptq lies in R, and the domain of ⇡1 is R.

Recall that R Ö 2T .

(i) An agent of type t P Ti chooses ⇢1ptq “ Ti and action ↵1ptq P Spqi, tq.

(ii) The principal chooses strategy ⇡1 where ⇡1pTiq “ qi for i “ 1, . . .m and ⇡1prq “ q1 for r R T .

Since ⇡1p⇢1ptqq “ qi for t P Ti and ↵1ptq P Spqi, tq, choosing p⇢1
,↵

1q under ⇡1 yields agent t

vApqi, tq “ vAp⇡p⇢ptq, tq “ uAp⇡p⇢ptq,↵ptq, tq, (3)

10In fact, this is an optimal mechanism if q § 0.25. Otherwise it is optimal to offer each of the two specialist jobs at
level 1 and � “ 1, which yields 4q to the principal.
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where the first equality is a consequence (from [C]) of the fact that type t P Ti is indifferent between
⇡p⇢ptqq and qi. Since the range of ⇡1 is tqmi“1u, (3) implies that given ⇡1, p⇢1ptq,↵1ptqq satisfies the
incentive compatibility constraints (1). This has two important implications:

(a) p⇢1
,↵

1q is a best response to ⇡1,

(b) p⇡1
, ⇢

1
,↵

1q is an optimal mechanism since (3) and [U] imply that UP p⇡, ⇢,↵q “ UP p⇡1
, ⇢

1
,↵

1q.

To complete the proof of the theorem we will show that p⇡1
, ⇢

1
,↵

1q is an equilibrium of the game.
Given (a), it suffices to show that ⇡1 is a best response of the principal. Suppose it is not. Then there
is strategy ⇡̂ such that

UP p⇡̂, ⇢1
,↵

1q ° UP p⇡1
, ⇢

1
,↵

1q.
There must therefore exist Ti P T with

ÿ

tPTi

 tuP p⇡̂p⇢1ptqq,↵1ptq, tq °
ÿ

tPTi

 tuP pqi,↵1ptq, tq.

Letting q̂i “ ⇡̂pTiq and using the fact that ⇢1ptq “ Ti for all t P Ti, this means that
ÿ

tPTi

 tuP pq̂i,↵1ptq, tq °
ÿ

tPTi

 tuP pqi,↵1ptq, tq.

In other words, q̂i is an improvement at pqi,↵1
, Tiq.

By Condition [I], given aptq P Spqi, tq for all t P W , there exists a direction d̂ such that
ÿ

tPW
 tDpuP pqi, aptq, tqd̂ “

ÿ

tPW
 tf

1
DpuApqi, aptq, tqd̂ ° 0. (4)

The expression on the left hand side of (4) is based on partial derivatives with respect to p and does
not take into account the indirect effect of a differential change in p on the optimal actions of the
agent. Because Tj has a strict best response at qj among the set tqku, one must conclude that this
will continue to hold for a differential change in qj , so no one changes their preferred “location”.
In other words, ⇢1 remains an optimal reporting strategy for the agent. Of course, the actions of
the agents in Ti will generally change in response to a differential change in qi. All such changes
are included in the agent’s value function, vApp, tq. Letting vP pp, tq “ fpvApp, tq, tq, to complete
the proof it suffices to obtain a version of (4) in terms of DpvP pqi, tq instead of DpuApqi, aptq, tq.
Indeed, if the value functions were differentiable, a suitable envelope theorem may suggest a way
of showing that the indirect effects are of order 0, allowing us to argue that (4) implies

ÿ

tPW
 tDpvP pqi, tqd̂ ° 0,

which would clearly yield the contradiction to (b) that we seek. While vApp, tq and vP pp, tq are not
in generally differentiable, we can use a general envelope theorem of Bonnans and Shapiro (2000) to
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show that they possess directional derivatives that are related to the partial derivatives of uApp, a, tq
and uP pp, a, tq, showing that the indirect effects are, in some sense, negligible.11

Let v1
App, t, dq ” limrÑ0`rvApp ` rd, tq ´ vApp, tqs{r denote the directional derivative of vApp, tq

in the direction d. If this limit exists for every direction, vApp, a, tq is said to be directionally
differentiable. Given assumption [A], we can apply Theorem 4.13 in Bonnans and Shapiro (2000)
to assert that vApp, t, dq is directionally differentiable and for every t, and for every d P Xp

v
1
App, t, dq “ max

aPSpp,tq
DpuApp, a, tqd

Thus, for every d P XP , and every t, there exist aptq P Spp, tq such that12

v
1
P pp, t, dq “ f

1
v

1
App, t, dq “ f

1
DpuApp, aptq, tqd.

Combining this with (4), there exists a direction d̂ for which
ÿ

tPW
 tv

1
P pqi, t, d̂q ° 0

which contradicts (b) and completes the proof.
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