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the exploration of institutions in which the informational constraints of the designer

are incorporated, such resilience or robustness has been addressed in several ways.

The approach to robustness followed in the current study relies on a local analysis.

The model is tested against small mistakes in the assumptions. From this point of

view, our paper continues the methodology employed in Oury and Tercieux (2012,

henceforth OT) and Jehiel et al. (2012).1

But what sets this paper aside from all the work mentioned so far lies in how

individual behavior is modeled, considering participants with bounded depth of rea-

soning.2 As it turns out, the exact size of that bound will be of no significance for

our results. Rather, what will matter is the existence of such a bound, whatever it is,

which will render our conclusions markedly different from those based on equilibrium

analysis.

To capture these ideas, we propose to study OT’s notion of continuous implemen-

tation for the theory of level-k mechanism design introduced in de Clippel, Saran and

Serrano (2019, henceforth dCSS).3 To make results as transparent and accessible as

possible, we restrict attention in most of the paper to a simpler framework with (i)

simple type spaces as the benchmark model for the planner (where the entire belief

hierarchy is determined by the first-order beliefs), (ii) simple mechanisms (individuals

report the first-order beliefs), and (iii) truthful behavioral anchors (using truth-telling

as level-0). However, none of these expositional assumptions play a crucial role in our

results. Extensions are discussed in the final section, and presented in greater detail

1Other robustness checks with respect to information structures in mechanism design include
Chung and Ely (2003) for undominated Nash implementation, Aghion et al. (2012) for subgame-
perfect implementation, and Neeman (2004) and Heifetz and Neeman (2006) in the full surplus
extraction problem. See also McLean and Postlewaite (2002) and Weinstein and Yildiz (2007) for
related robustness concerns beyond implementation. For other approaches that model versions of
global (as opposed to local) robustness, in the sense that the model is tested against a wide class
of mispecifications, see, e.g., Bergemann and Morris (2005, 2012), Artemov et al. (2013), Ollár and
Penta (2017), and Lopomo et al. (2020).

2Bounded depth of reasoning can provide a better description of behavior than equilibrium mod-
els, especially when participants are inexperienced. For evidence of this in various contexts, see for
instance Rapoport and Amaldoss (2000), Costa-Gomes et al. (2001), and Katok et al. (2002) for
iterated elimination of strictly dominated strategies; Nagel (1995), Ho et al. (1998), and Bosch-
Domènech et al. (2002) for iterated elimination of weakly dominated strategies; and Binmore et al.

(2002) for backward induction.
3For other recent applications of level-k theory to mechanism design, see Kneeland (2020) and

Crawford (forthcoming).
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in an Online Appendix.

In a nutshell, the main result of the paper is this: any continuous social choice

function (SCF) that is level-k implementable for k smaller than a fixed, arbitrary

upper bound K is also continuously implementable in this sense. The proof is not

obvious because, contrary to what one may conjecture at first, the level-k correspon-

dence can fail to be upper hemicontinuous with respect to the players’ information

(see Section 2). A main issue is that there may be sequences of types under which

a level-k player (k ≥ 2) views others’ actions as correlated with the state, while no

such correlation is possible at the limit type. In that case, mechanisms implementing

the desired SCF over the planner’s model will have to be continuously extended with

care; see Section 4.

Independently of the difficulty of its proof, we find the result surprising and note-

worthy. Indeed, dCSS shows that an SCF is level-k implementable if and only if it

satisfies SIRBIC,4 a mild strengthening of Bayesian incentive compatibility. SIRBIC

is also equivalent to weak Bayesian implementation in strict equilibrium. But things

diverge dramatically when adding robustness to small modeling mistakes. While con-

siderably reducing the set of achievable SCFs under the equilibrium paradigm (see

OT), continuous level-k implementation obtains almost for free under SIRBIC.

As a step to elucidate this difference, we pursue the intuition of the revelation

principle in Section 5 to show that continuous strict implementation in OT’s sense

is possible only if the SCF admits for each larger type space a continuous extension

that (a) satisfies SIRBIC with respect to types in the planner’s model, and (b) is

Bayesian incentive compatible. Phrased in terms of SCFs, with no explicit refer-

ence to Bayesian Nash equilibria of mechanisms, this necessary condition facilitates

comparisons with our notion of continuous implementation. The latter is indeed

equivalent to the modified condition where (b) is simply dropped. We close Section

5 by illustrating how demanding (b) can be, first by means of a transparent example

and then by proving that our necessary condition for continuous strict equilibrium

implementation implies strict interim rationalizable monotonicity, a very restrictive

condition that, for example, boils down to a strengthening of Maskin monotonicity

(Maskin (1999)) in complete-information environments. We remark that no such

4SIRBIC stands for ‘Strict-if-Responsive Bayesian Incentive Compatibility.’
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connection to monotonicity conditions is found for the level-k implementation model.

The plan of the paper is as follows. Section 2 presents an important example

explaining the lack of upper hemicontinuity of level-k behavior, a point that is of

relevance for general Bayesian games. Section 3 describes the elements of our model.

Section 4 provides our main characterization result of continuous level-k implementa-

tion in terms of SIRBIC (Theorem 1). Section 5 discusses at length the connections

between our approach and that in OT, including a decomposition of the implications

of their implementation notion, which lead to our Theorems 2 and 3, pinning down

exactly the source of the difference in the results of the two approaches. Section 6

concludes with a brief discussion of generalizations and applications. Some proofs

are relegated to an Appendix, and an Online Appendix presents more details on

generalizations and applications of our approach.5

2 Level-k Fails Upper Hemicontinuity: An Exam-

ple

In this preliminary section, we make a point that is relevant for general Bayesian

games. Following Harsanyi (1967, 1968), individuals’ information is described by a

state space Θ and a type space T = (Ti, πi)i∈I , where Ti is the set of types of individual

i, assumed to be a compact metric space, and πi : Ti → ∆(Θ × T−i) is a continuous

function, specifying the beliefs πi(ti) over the realized state of the world and other

individuals’ types for each type ti of individual i.
6 Player i’s payoff is a continuous

function of the state and players’ chosen actions.

It follows from Berge’s Maximum Theorem (Berge (1963)) that best-response

correspondences are upper hemicontinuous: Fix a player i in a Bayesian game with

a compact action space for each player, and a continuous strategy σj for each j 6= i.

Take a sequence (tni )n≥1 of types converging to some t∗i , and a sequence ai(t
n
i ) of best

5The Online Appendix is available at https://tinyurl.com/1wxolg5z.
6We keep the standard definition of a type space in order to have a clear comparison with OT.

Our point of departure from OT lies in the modeling of individual behavior, equilibrium for OT
and level-k for us. See Kets (2017) and Heifetz and Kets (2018) for the construction of type spaces
when departing from the assumption that players have infinite ability to reason about each other’s
beliefs. These papers show how equilibrium and rationalizability predictions are sensitive to such
departures.
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responses against σ−i. If ai(t
n
i ) → a∗i , then the limit action a∗i is a best response

against σ−i for player i of type t∗i .

Since level-k behavior is associated with iterations of best-responses, one might

expect level-k behavior itself to be upper hemicontinuous with respect to types when

anchors are continuous. But this intuition is flawed, as the following example shows.

Example 1. Consider the following two-player Bayesian game. There are two states

of the world, θ and θ′. Players’ types and beliefs are defined as follows: Ti = Si ×Zi,

where Si = {0, 0.4, 0.8} and Zi = [0, 1], for all i ∈ {1, 2}. Player i of type ti = (si, zi)

places probability (si + 0.2zi)/3 on
(

θ, (sj, zi)
)

and probability (1 − si − 0.2zi)/3 on
(

θ′, (sj, 1 − zi)
)

for all sj ∈ Sj . Notice that this is a simple type space, i.e., distinct

types have distinct first-order beliefs.

The two players play a direct mechanism in which player i is asked to report his

type (ŝi, ẑi) ∈ Ti. The outcome, however, is determined solely on the basis of the

first components of the reports, ŝ1 and ŝ2. The associated payoffs are defined in the

following tables:

ŝ1

ŝ2 0 0.4 0.8

0 (0, 0) (0, 0) (0, 1)

0.4 (0, 0) (0, 0) (0,−1.5)

0.8 (1, 0) (−1.5, 0) (−1,−1)

State θ

ŝ1

ŝ2 0 0.4 0.8

0 (0, 0) (0, 0) (0,−1.5)

0.4 (0, 0) (0, 0) (0, 1)

0.8 (−1.5, 0) (1, 0) (−1,−1)

State θ′

Table 1: Payoff Functions.

The reader is referred to Section 3 below for detailed definitions of concepts in

the level-k model, which we proceed to illustrate here. We assume truthful anchors,

meaning that a level-1 player assumes his opponent will report his type truthfully. In

that case, regardless of his type, the level-1 of player i believes that, in each state,

his opponent is equally likely to report any ŝj ∈ Sj . The expected payoffs are then

state-independent, and any report with ŝi equal to either 0 or 0.4 is a best response

whatever player i’s type (giving a zero expected payoff in both states, whereas any
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report with ŝi = 0.8 gives an expected payoff of −0.5 in both states).

In particular, the following strategy

σ2(t2) =







(0, 0), for all t2 = (s2, z2) s.t. z2 ≤ 1/2

(0.4, 0), for all t2 = (s2, z2) s.t. z2 > 1/2

is a level-1 strategy for player 2 (i.e., a best response to the assumed truthful behav-

ioral anchor).

For level-2 reasoning, we identify best responses to the belief that the opponent is

a level-1 agent. In particular, against the above strategy of player 2, any report with

ŝ1 = 0.8 is a best response for all types t1 = (0.4, z1) of player 1 such that z1 < 1/2.

Indeed, in that case, such a type of player 1 believes that player 2 reports (0, 0) when

the state is θ (with probability 0.4 + 0.2z1) and (0.4, 0) when the state is θ′ (with

probability 0.6 − 0.2z1). But the best response against σ2 is such that ŝ1 is equal

to either 0 or 0.4 when t1 = (0.4, 1/2). Berge’s theorem fails to apply because σ2 is

discontinuous.

Now, could it be that a report with ŝ1 = 0.8 is a best-response for player 1 of level-

2 and type t1 = (0.4, 1/2) against another level-1 strategy for player 2? The answer

is “No”, and here is the reason. Since the mechanism ignores the second component

of player 2’s report, what is important for player 1 is the marginal distribution of

ŝ2 in each state. As argued above, any level-1 strategy for player 2 must be such

that the marginal distribution of ŝ2 in each state puts zero probability on ŝ2 = 0.8.

Player 1 of type t1 = (0.4, 1/2) believes that both states are equally likely and, in

each state, player 2 is also equally likely to be of type (0, 1/2), (0.4, 1/2) or (0.8, 1/2).

Hence, from the perspective of type t1 = (0.4, 1/2), the marginal distribution of ŝ2

generated by any level-1 strategy for player 2 is independent of the state and puts a

positive probability on either 0 or 0.4. Then the best response for player 1 of type

t1 = (0.4, 1/2) is to submit a report such that ŝ1 is either equal to 0 or 0.4, but not

0.8.

Notice that, as long as t1 = (0.4, z1) is such that z1 < 1/2, player 1 believes that

2’s action is correlated with the states when 2 employs σ2, but such a correlation is

lost when t1 = (0.4, 1/2). This is the culprit for the level-2 correspondence to fail
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upper hemicontinuity.

The preceding example highlights the difficulties entailed in the model of level-

k reasoning when it comes to issues of continuity. Nevertheless, the current paper

poses the question of what rules can be implementable if one insists on the continuity

desideratum under level-k reasoning, and in doing so, allows a comparison with the

model of (fully rational) equilibrium implementation. We turn to it next.

3 The Model

Our setting essentially mirrors that of OT, although we do not require their assump-

tion that type spaces be countable for our first two results (Theorems 1 and 2). To

enhance the comparability with their main conclusions, we shall assume countability

for Theorem 3.

Alternatives, States, and Utility Functions: A social planner/mechanism de-

signer needs to select an alternative from a set X , which is assumed to be a compact

metric space. Her decision impacts the satisfaction of individuals in a finite set I.

Unfortunately, she does not know their preferences. Formally, individual i’s prefer-

ence is represented by a continuous and bounded Bernoulli function ui : X ×Θ → R,

where Θ is the set of states, assumed to be a compact metric space. Individual i

evaluates any lottery ℓ ∈ ∆X by its expected utility Ui(ℓ, θ) =
∫

x∈X
ui(x, θ)dℓ.

Belief Hierarchies: Recall the definition of type spaces at the start of Section 2.

Given a type space T and individual i, let q1i : Ti → ∆Θ be a function such that

q1i (ti) is the first-order belief of type ti, i.e., the belief about the realized state, which

is equal to the marginal distribution of πi(ti) on Θ. We can further describe the

second-order belief q2i (ti) of type ti (i.e., a belief about the realized state and the

other individuals’ first-order beliefs) as follows:

q2i (ti)(E) = πi(ti)({(θ, t−i) : (θ, (q
1
j (tj))j 6=i) ∈ E}),

for all measurable E ⊆ Θ× (∆Θ)I−1. Continuing in this manner, we can describe the

zth-order belief qzi (ti) of type ti, which specifies ti’s belief regarding the realized state
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and up to (z−1) orders of beliefs of the other individuals. Thus, we can associate an

infinite hierarchy of beliefs qi(t) = (q1i (ti), q
2
i (ti), . . .) to any type ti in any type space

T . The belief hierarchy qi(ti) is coherent in the sense that beliefs at different orders

do not contradict each other. For each z ≥ 1, let Qz
i (T ) denote the range of qzi , that

is, Qz
i (T ) = {qzi (ti) : ti ∈ Ti}.

The collection of all infinite hierarchies of beliefs for which it is common knowledge

that the beliefs are coherent defines a type space T ∗ = (T ∗
i , π

∗
i )i∈I , which is the

universal type space generated by Θ (see Mertens and Zamir (1985), Brandenburger

and Dekel (1993)). Recall that, under the product topology, T ∗
i is compact and

metrizable, and π∗
i : T ∗

i → ∆(Θ× T ∗
−i) is a homeomorphism for all i.

The infinite hierarchy of beliefs qi(ti) associated to type ti in the type space T is an

element of T ∗
i . Thus, qi is a mapping from Ti to T ∗

i . Let Qi(T ) ⊆ T ∗
i denote the range

of qi. Since Θ and Ti are compact metric spaces and πi is continuous, the mapping

qi is continuous. Therefore, Qi(T ) is compact. Moreover, qi is a belief-preserving

morphism in the sense that for any measurable E ⊆ Θ× T ∗
−i

π∗
i (qi(ti))(E) = πi(ti)({(θ, t−i) : (θ, q−i(t−i)) ∈ E}).

Finally, each qzi is also continuous, and hence each Qz
i (T ) is compact.

We will call the type space T simple if distinct types have distinct first-order

beliefs, that is, for each i, if ti and t′i are two distinct types in Ti, then q1i (ti) 6= q1i (t
′
i).

In a simple type space, types of each individual can be described in terms of his first-

order beliefs because Ti is homeomorphic to Q1
i (T ). Indeed, since q

1
i is continuous and

injective, and Ti is compact, q1i itself defines the homeomorphism from Ti to Q1
i (T ).

Standard type spaces used in most applied work are simple. For instance, in a

payoff-type space, (a) each individual knows her payoff type and has beliefs regarding

the distribution of the payoff types of others as defined by some continuous function

bi : Θi → ∆Θ−i, and (b) this environment is common knowledge. Thus, the payoff-

type space is such that there is an injective continuous mapping θ̂i : Ti → Θi for all

i, and for all types ti and measurable subsets E ⊆ Θi ×Θ−i × T−i,

πi(ti)(E) = bi(θ̂i(ti))({θ−i : (θ̂i(ti), θ−i, θ̂
−1
−i (θ−i)) ∈ E}),
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where θ̂−1
−i is the inverse of θ̂−i. A payoff-type space is simple because distinct types

have distinct payoff types. Often, a payoff-type space has the additional property

that the individual beliefs bi are derived from a common prior b ∈ ∆Θ. In this

case, we refer to the resulting type space as a common-prior payoff-type space. In

other instances, the common prior is itself assumed to be a product of independent

distributions gi over the payoff-type sets Θi, which we refer to as a common-prior

payoff-type space with independent types. Sometimes values are assumed, in addition,

to be private: Θ = ×i∈IΘi and only i’s component of the state can impact his payoff.

Another notable example of a simple type space is the complete-information type

space T CI , where for all i, the set of types Ti ⊆ ∪θ∈Θ{tθi } and the belief πi(t
θ
i ) of each

tθi is such that πi(t
θ
i )({θ, t

θ
−i}) = 1.

Our analysis focuses on problems where the planner’s benchmark model is a sim-

ple type space (while robustness will be defined against any larger type space). A

first reason for this is to make the analysis more relatable for people who are used

to standard frameworks such as those discussed in the previous paragraph. A deeper

reason is that, given our goal to accommodate bounded depths of reasoning, it seems

unrealistic to rely on mechanisms asking participants to report high-order beliefs. In-

stead, we will restrict attention to simple mechanisms where the mechanism designer

asks participants for their first-order beliefs (see next subsection). As a corollary,

social choice functions implementable this way can only vary with first-order beliefs.

It seems only more coherent then to assume that these first-order beliefs capture all

the relevant information. That being said, we point out in the last section that our

formal analysis extends well beyond the case of simple mechanisms and simple type

spaces.

Planner’s Model and ‘Nearby’ Type Profiles: The planner’s model of the in-

dividuals’ information is given by a simple type space T̂ = (T̂i, π̂i)i∈I . To formalize

the notion of type profiles that are outside but ‘nearby’ the planner’s model, the first

step is to consider type spaces that include the planner’s model. For any two type

spaces T ′ = (T ′
i , π

′
i)i∈I and T = (Ti, πi)i∈I , we say T ′ ⊇ T if for all i, T ′

i ⊇ Ti, the

set Ti is endowed with the relative topology induced by the topology on T ′
i , and for

all ti ∈ Ti, π
′
i(ti)(E) = πi(ti)(Θ × T−i ∩ E) for any measurable E ⊆ Θ× T ′

−i. While

T̂ is assumed to be simple, we do not impose any restriction on larger type spaces.
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This will make continuous implementation more robust, and hence more demanding.

Notice, however, that our results remain valid when imposing the larger type space

to be simple as well.

The second step is to define what we mean by ‘nearby’. There are two possible

definitions. First, given T ′ ⊇ T , the sequence of type profiles (tn)n≥1 in T ′ converges

to some t ∈ T if (tn)n≥1 converges to t with respect to the topology on T ′. We

denote this by tn → t. Second, as in OT, the sequence of type profiles (tn)n≥1 in T ′

converges p to some t ∈ T if (q(tn))n≥1 converges to q(t) with respect to the (product)

topology on T ∗, that is, for each z ≥ 1 and i, the belief qzi (t
n
i ) converges to qzi (ti) in

the weak∗ topology. We denote this by tn
p
→ t. Since each qzi is continuous, tn → t

implies tn
p
→ t. The converse is true whenever T ′ does not contain redundant types.

We will use convergence p to define ‘nearby’ profiles in the definition of continuous

level-K implementation. This makes it easier to compare our results with those

in OT. Moreover, using the weaker convergence p notion imposes a more stringent

requirement on the designer as she has to guarantee continuity of outcomes for a

larger set of type-profile sequences converging to her model.

Recall that the universal type space T ∗ is metrizable. Let d∗i be any metric

consistent with the topology on T ∗
i . Given any type space T ′, for each i define

di : T
′
i × T ′

i → ℜ such that di(ti, t
′
i) = d∗i (qi(ti), qi(t

′
i)). Then di is a semimetric, and

the topology induced by di on T ′
i is called the semimetric topology induced by di. For

any subset of individuals I ′ ⊆ I, we refer to the corresponding product topology on

×i∈I′T
′
i as the semimetric topology on ×i∈I′T

′
i . It is easy to see that the notion of

convergence p is equivalent to convergence with respect to the semimetric topology

on T ′. In what follows, we will use the superscript “p” whenever we want to make it

clear that we are referring to these semimetric topologies.

Mechanisms: A mechanism is a measurable function µ : M → ∆X , where M =

×i∈IMi and eachMi is the set of messagesmi that player i can report. The mechanism

µ and the type space T together define a Bayesian game, G(µ, T ), where individual

i’s strategy is a measurable function σi : Ti → ∆Mi. A strategy profile σ and type

profile t induce a lottery µ(σ(t)) over X .7

7Formally, for any Borel subset B of X , µ(σ(t))(B) =
∫

M
µ(m)(B)dσ1(t1)× . . .× σI(tI).
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Given a mechanism µ : M → ∆X , type space T , individual i, and strategy

σj : Tj → Mj for j 6= i, the best-response correspondence BR
σ−i

i : Ti → Mi is defined

as

BR
σ−i

i (ti) = arg max
mi∈Mi

∫

Θ×T−i

Ui(µ(mi, σ−i(t−i)), θ)dπi(ti).

A simple mechanism is such that Mi = ∆Θ for all i. Mechanisms so defined are

“direct” in the sense that participants are asked to report their information,8 thereby

restricting attention to the most meaningful questions the social planner might ask.

This assumption is made mostly to simplify the exposition; again, see our last section

for a discussion.

Behavioral anchors – capturing individuals’ gut reaction on how to play a game –

play a key role in level-k models. That SIRBIC is sufficient for level-k implementa-

tion is straightforward with truthful anchors in direct mechanisms, but less so when

considering other anchors such as uniform-random anchors over abstract messages

(see dCSS). We find it then more effective to develop our arguments for continuous

level-k implementation in the case of direct mechanisms and truthful anchors, and

argue in the final section how our reasoning also applies to indirect mechanisms and

other behavioral anchors. Another reason for our expositional choice is that level-

k implementation with truthful anchors in direct mechanisms is equivalent to weak

Bayesian implementation in strict equilibrium. Hence, the discrepancy arising be-

tween the two implementation concepts when adding the continuity requirement gets

only more striking.

In addition to being direct, another feature of simple mechanisms is that partic-

ipants report only beliefs about the state. This is without loss of generality when

considering simple type spaces. As already mentioned earlier, asking higher-order

beliefs seems less realistic when considering agents with bounded depth of reasoning,

but the formal analysis does extend to nonsimple mechanisms and nonsimple type

8A direct mechanism is a mechanism such that Mi = Ti for all i. In a simple type space, Qi(T ) is
homeomorphic to Ti, for all i. Hence, asking the players to report their first-order beliefs is equivalent
to asking them to report their types. Nevertheless, a simple mechanism may accommodate more
messages than truthful reports (Q1

i (T ) may be a strict subset of ∆Θ for some i). In that sense, simple
mechanisms may not be direct mechanisms in the strict sense of that term. Alternatively, one could
define simple mechanisms only over first-order beliefs that are compatible with the type space of
interest. As this makes no difference to the analysis, we prefer a definition that is independent of
any type space.
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spaces (see concluding section).

Level-k Behavior: We fix a simple mechanism µ : (∆Θ)I → ∆X and a type space

T (note that the type space T need not be simple, which allows us to define level-k

behavior in general type spaces). For each k ≥ 1, the level-k individual believes that

all others are of level-(k − 1), and then best responds to their strategies. Behavioral

hierarchies are then derived iteratively, starting with truth-telling as the behavioral

anchor. Formally:

Definition 1. Individual i’s strategy σi is level-1 consistent if it is a best response

against others reporting the truth: for any type ti ∈ Ti, messages in the support of

σi(ti) maximize
∫

Θ×T−i

Ui

(

µ(q1i , (q
1
j (tj))j 6=i), θ

)

dπi(ti)

over q1i ∈ ∆Θ. The set of all such strategies is denoted S1
i (µ, T ). By induction, for

each k ≥ 2, individual i’s strategy σi is level-k consistent if it is a best response

against a level-(k − 1) consistent strategy profile for the other individuals: for any

type ti, messages in the support of σi(ti) maximize
∫

Θ×T−i
Ui(µ(q

1
i , σ−i(t−i)), θ)dπi(ti),

for some σ−i ∈ Sk−1
−i (µ, T ). The set of all such strategies is denoted Sk

i (µ, T ).

The index k is called an individual’s depth of reasoning. Following the exper-

imental literature, which suggests that individuals’ depth of reasoning is bounded,

usually by three or four levels (see the references in the Introduction), we will assume

throughout the paper that each individual’s depth of reasoning is bounded by some

strictly positive integer K.9 Although the experiments provide some evidence regard-

ing the distribution of depths of reasoning in the population (viz., the proportion

of individuals displaying a particular depth of reasoning decreases as the depth of

reasoning increases), we do not have sufficient evidence to justify making any specific

assumption regarding that distribution. We instead make the more robust assump-

tion that the planner considers all combinations of depths of reasoning between 1 and

the upper bound K as possible.

9Our results go through even if the upper bound on depths of reasoning is not the same across
individuals. What is critical for the general necessary condition is that the upper bound for each
individual is at least 2.
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Continuous Level-k Implementation: Fix the planner’s model T̂ . She finds it

desirable to implement a (measurable) social choice function (SCF) f : T̂ → ∆X .

We say that an individual i is irrelevant for the SCF f if f(ti, t−i) = f(t′i, t−i), for all

ti, t
′
i ∈ T̂i and all t−i ∈ T̂−i. Thus i’s type matters under no circumstance when i is

irrelevant. Individuals who are not irrelevant are called relevant. SCFs in this paper

are assumed to treat all individuals as relevant. This is for notational convenience

only, as all results extend to the problems with irrelevant individuals as well, simply

by having the mechanism designer overlook their reports in the mechanism.

The planner wants to implement f : T̂ → ∆X continuously, meaning that at each

t ∈ T̂ , she wants the outcome f(t) and an outcome close to f(t) at type profiles near

t. To achieve this, she constructs a simple mechanism µ, and assumes individuals

play the resulting Bayesian game using some level-k consistent strategy with truthful

anchors. We formalize this as follows.

Definition 2. The mechanism µ : (∆Θ)I → ∆X continuously implements up to

level-K the SCF f : T̂ → ∆X if the following two conditions are satisfied for all type

spaces T ⊇ T̂ :

1. Sk
i (µ, T ) 6= ∅, for all i and k such that 1 ≤ k ≤ K.

2. Pick any sequences (tn)n≥1 in T such that tn
p
→ t ∈ T̂ . For any individual i,

pick any ki such that 1 ≤ ki ≤ K and any strategy σi ∈ Ski
i (µ, T ). Then the

outcome sequence µ ◦ σ(tn) converges to f(t).10

For a point of contrast, the planner could care only about achieving the SCF on

T̂ if she is confident in her benchmark model T̂ . This corresponds to the notion

of implementation studied in dCSS (in the special case of truthful anchors given a

simple mechanism):

Definition 3. The mechanism µ : (∆Θ)I → ∆X implements up to level-K f : T̂ →

∆X if the two conditions below are satisfied for the type space T̂ :

1. Sk
i (µ, T̂ ) 6= ∅, for all i and k such that 1 ≤ k ≤ K.

10We do not require implementability for ki = 0 because we view individuals as minimally rational
in the sense of playing a best response to some belief. In that sense, there are no level-0 individuals,
and behavioral anchors only capture individuals’ beliefs regarding others’ gut feelings towards the
mechanism. In any case, results remain valid under truthful anchors when including ki = 0 in the
definition.
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2. For any individual i, pick any ki such that 1 ≤ ki ≤ K and any strategy

σi ∈ Ski
i (µ, T̂ ). Then the outcome µ ◦ σ(t) = f(t) for all t ∈ T̂ .

We shall refer to this notion as the merely exact implementation of f . Clearly,

Definition 2 of continuous implementation implies Definition 3 of merely exact im-

plementation (simply using constant sequences). Finally, we will assume throughout

the paper that K ≥ 2.

4 Characterization of Continuous Level-k Imple-

mentation

We begin the section by recalling the definition of SCFs satisfying SIRBIC. Pick any

player i and a pair of types ti, t
′
i ∈ T̂i. Say that f is insensitive when changing i’s type

from ti to t′i, denoted by ti ∼
f
i t′i, if f(ti, t−i) = f(t′i, t−i) for all t−i ∈ T̂−i. Otherwise,

we say that f is responsive to ti versus t
′
i.

Definition 4. The SCF f is strictly-if-responsive Bayesian incentive compatible (SIR-

BIC) if
∫

Θ×T̂−i

Ui(f(t), θ)dπ̂i(ti) ≥

∫

Θ×T̂−i

Ui(f(t
′
i, t−i), θ)dπ̂i(ti), (1)

for all ti, t
′
i ∈ T̂i and i ∈ I, and the inequality holds strictly when f is responsive to

ti versus t
′
i.

The above inequality means that each type of each individual wants to report his

true type when everyone else reports their types truthfully in the direct mechanism

associated with the SCF f . Additionally, the incentive to report truthfully must

be strict whenever f is responsive to ti versus t
′
i. This additional requirement makes

SIRBIC stronger than standard Bayesian incentive compatibility. Yet, as the incentive

constraint must hold with equality whenever ti ∼
f
i t′i, SIRBIC is slightly weaker than

strict Bayesian incentive compatibility. Recall the SCF f is strictly Bayesian incentive

compatible if the inequality (1) is strict for all t′i 6= ti and i ∈ I.

The main results in dCSS imply that f is implementable up to level-K using

a simple mechanism if and only if f satisfies SIRBIC. Note that the restriction to
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simple mechanisms is not required there. But, under truthful anchors, sufficiency

was proved by using the SCF as the direct mechanism. With a simple type space,

we can easily adjust the construction to obtain a simple mechanism implementing

f : for each q1i ∈ ∆Θ, let q̂1i = q1i if q1i ∈ Q1
i (T̂ ) and q̂1i = q1∗i for some q1∗i ∈ Q1

i (T̂ )

if q1i 6∈ Q1
i (T̂ ); then define µ(q11, . . . , q

1
I ) = f

(

(τi(q̂
1
i ))i∈I

)

where τi(q̂
1
i ) is the unique

type in T̂i associated to the first-order belief q̂1i . With truth-telling at level-0, SIRBIC

provides the incentives to individuals at level-1 and higher to report either their true

first-order belief q1i (ti) or a q1i that is mapped back into the first-order belief of a type

t′i ∼
f ti, outcome-equivalent to their true type.

Our main finding in the current paper is that the characterization result in dCSS

extends to continuous level-k implementation, with the only addition that f must be

continuous:

Theorem 1. The SCF f : T̂ → ∆X is continuously implementable up to level-K if

and only if f is continuous and satisfies SIRBIC.11

Proof. (Necessity) As noted at the end of the previous section, continuous implemen-

tation up to level-K implies merely exact implementation up to level-K. By Theorem

1 in dCSS, f satisfies SIRBIC.12 To argue that f is continuous, consider any sequence

(tn)n≥1 in T̂ converging to some t ∈ T̂ . Then tn
p
→ t. We show that f(tn) converges

to f(t) using the mechanism µ that continuously implements f . For each individual

i, pick a level-1 consistent strategy σ1
i ∈ S1

i (µ, T̂ ). Then the fact that µ continuously

implements up to level-K the SCF f implies that µ ◦ σ1(tn) = f(tn) for all n and the

sequence of outcomes µ ◦ σ1(tn) converges to f(t). Thus, f(tn) converges to f(t).

(Sufficiency) This proof is quite technical. Here we provide only an outline of its

main steps, relegating some important auxiliary lemmatta to the Appendix, for ease

of exposition.

Since T̂ is simple, q1i : T̂i → Q1
i (T̂ ) is a homeomorphism. Let τi be the inverse of q

1
i .

For any q1 ∈ ×i∈IQ
1
i (T̂ ), let τ(q

1) = (τ1(q
1
1), . . . , τI(q

1
I )). Define µ̂ : ×i∈IQ

1
i (T̂ ) → ∆X

11A very early and incomplete precursor of this result first appeared in our unpublished working
paper, de Clippel et al. (2014).

12dCSS proves this necessary condition while assuming that the planner’s model is given by a
common-prior payoff-type space. Although we are allowing for more general type spaces here,
essentially the same arguments apply as well.
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as

µ̂(q1) = f(τ(q1)), ∀q1 ∈ ×i∈IQ
1
i (T̂ ).

If Q1
i (T̂ ) = ∆Θ for each i, this defines a simple mechanism that continuously im-

plements f up to level-K. Indeed, just like for merely exact implementation discussed

above, SIRBIC implies that types in the planner’s model, whatever their depths of

reasoning, report either their true first-order belief q1i (ti) or a q1i that is mapped back

into the first-order belief of a type t′i ∼
f ti, outcome-equivalent to their true type.

Then the second condition in Definition 2 obtains from the facts that f is continuous

and the correspondence Σk
i (Definition 5), which contains the level-k correspondence,

is upper hemicontinuous p, as discussed below .

But things get more complicated when Q1
i (T̂ ) is a strict subset of ∆Θ for some

i (as, e.g., when T̂ describes any payoff-type space, or a complete-information envi-

ronment). Now the function µ̂ must be extended into a simple mechanism µ defined

over the larger set (∆Θ)I . While the continuity of f guarantees that µ̂ is continu-

ous, and hence that one can find a continuous extension µ, the fact that the level-k

correspondence

ti →
⋃

σi∈Sk
i (µ,T )

support[σi(ti)] (2)

need not be upper hemicontinuous (see Section 2) means that not all continuous

extensions of µ̂ will continuously implement f up to level-K.13 The difficulty is to

establish the second condition in Definition 2 when elements of Q1(T̂ ) are approached

by sequences of beliefs outside this set, which of course no longer follows from the

continuity of f , but instead requires using a thoughtful extension µ.

Example 1 highlights the main reason why the level-k correspondence could fail to

be upper hemicontinuous: an individual may believe under the enlarged type space

that others’ behavior correlates with the state, but not in the planner’s model. For

this reason, we construct for each individual i and depth of reasoning k ≥ 1 the

correspondence Σk
i that associates to each of his types, individual i’s best-response

messages against all conjectures in ∆(Θ × T−i × (∆Θ)I−1) ‘consistent’ with the be-

havior of level-(k − 1) opponents (with truth-telling at level-0). Thus, unlike Sk
i ,

13A lack of upper hemicontinuity also implies a lack of upper hemicontinuity p given that tni → ti

implies tni
p
→ ti.
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the definition of Σk
i allows individuals to perceive θ, t−i, and other’s messages as

correlated. Formally:

Definition 5. Given the mechanism µ : (∆Θ)I → ∆X , and letting αj denote j’s

truth-telling strategy, define Σ1
i (ti|µ, T ) = BR

α−i

i (ti), for all ti ∈ Ti, and for each

k ≥ 2, inductively define Σk
i (ti|µ, T ) as the union of the sets

arg max
mi∈∆Θ

∫

Θ×T−i×(∆Θ)I−1

Ui(µ(mi, m−i), θ)dγ

over all conjectures γ ∈ ∆(Θ × T−i × (∆Θ)I−1) such that (a) the distribution πi(ti)

coincides with the marginal distribution of γ on Θ × T−i, and (b) the marginal dis-

tribution of γ on T−i × (∆Θ)I−1 supports a subset of ×j 6=iGr(Σk−1
j (·|µ, T )), where

Gr(Σk−1
j (·|µ, T )) is the graph of Σk

j (·|µ, T ).

Then, in a nutshell, the general proof of sufficiency proceeds by identifying an

adequate continuous extension µ of µ̂, establishing the upper hemicontinuity p of

Σk
i (·|µ, T ), which contains the (not necessarily upper hemicontinuous) correspon-

dence defined in (2), and combining these different pieces in order to establish the

second condition in Definition 2.

Specifically, we define the extension µ by applying Lemma 1 from the Appendix.

This lemma is a variant of Dugundji (1951) and shows how to extend a continuous

mechanism defined on a closed subset of a compact metric message space to the whole

message space in such a manner that the resulting extended mechanism is continuous.

Applied to the current context, Lemma 1 shows that we can continuously extend µ̂

after “translating” each message in ∆Θ \Q1
i (T̂ ) into a finite probability distribution

over messages in Q1
i (T̂ ), while keeping messages in Q1

i (T̂ ) unchanged.
14

14At first blush, an obvious choice would be to use a single-valued selection of the projection
operator for this translation. Unfortunately, one cannot guarantee the continuity of the resulting
extended mechanism without additional conditions on Q1

i (T̂ ). Continuity does obtain, however, if
one uses our more elaborate construction. Although one could take a host of alternative approaches
to obtain the continuous extension (e.g., apply Dugundji’s result as is, if we overlook the product
structure, or apply his result component by component), it is more appropriate to provide a new
construction. Indeed, with respect to Dugundji (1951), our version differs from the former two
approaches in that the probability of picking a message profile q1 is the product of probabilities
with each factor depending only on i’s reported belief. This kind of product/separability property
is needed, e.g., in Lemma 6 of the proof.
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The next step is to establish that level-k behavior in µ is in some sense “contin-

uous” in types. Although an arbitrary level-k consistent strategy is not necessarily

continuous and the level-k correspondence defined in (2) is not necessarily upper hemi-

continuous (as discussed above), the latter is a selection of Σk
i (·|µ, T ), which is upper

hemicontinuous (Lemmata 3 and 4). To conclude these more technical steps of the

proof, Lemma 5 establishes that Σk
i (·|µ, T ) depends only on types’ belief hierarchies

of types, which implies that the correspondence is in fact upper hemicontinuous p.

The final important step in the proof is to show that for all type spaces T ⊇ T̂ ,

individuals i, depths of reasoning k ≥ 1, and types ti who belong to the planner’s

model, the constructed mechanism µ is such that messages in Σk
i (ti|µ, T ) translate

into messages in {q1i (t
′
i) : t′i ∼

f
i ti} (Lemma 6). By itself, the SIRBIC property of

f only guarantees that when individuals play the underlying mechanism µ̂ on the

planner’s model and the behavioral anchors are truthful, then Σk
i (ti|µ̂, T̂ ) = {q1i (t

′
i) :

t′i ∼
f
i ti} for all k ≥ 1 and ti ∈ T̂i. The specific way we extend µ̂ to µ then allows us

to preserve the incentives of the types in the planner’s model to ensure that they only

want to report those messages in ∆Θ that translate as equivalent to truth-telling.

This property, paired with the upper hemicontinuity p of Σk
i (·|µ, T ), then implies that

the extended mechanism µ continuously implements f up to level-K.

5 Equilibrium versus Level-k in Continuous Imple-

mentation

One key task in our effort is to evaluate how different the conditions for continuous

level-k implementation are from those that yield continuous implementation in strict

Bayesian equilibrium (as defined in OT), the latter well-known to be very restrictive.

In the current section, we disentangle the properties implied by either type of imple-

mentation. This exercise is useful to find that neither continuity per se nor SIRBIC

(which has to be satisfied for types in the planner’s model) are responsible for the

very restrictive results in OT. Rather, it is the insistence on the use of Bayesian

equilibrium, its corresponding incentive constraints in the larger model, that is the

culprit.
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Given a (not necessarily simple) mechanism µ, the strategy profile σ is a strict

Bayes Nash equilibrium (strict BNE) in the game G(µ, T̂ ) if BR
σ−i

i (ti) = {σi(ti)}, for

all i ∈ I and ti ∈ T̂i. The mechanism µ strictly equilibrium-implements f : T̂ → ∆X

if G(µ, T̂ ) admits a strict BNE σ such that f(t̂) = µ ◦ σ(t̂), for all t̂ ∈ T̂ .

Observe that f is strictly equilibrium-implementable if and only if it satisfies

SIRBIC. Sufficiency is obvious (simply apply f as the outcome function, after keeping

only one representative of each ∼f
i -equivalence class). As for necessity, consider any

ti and t′i in T̂i such that ti 6∼
f
i t′i. Then it must be that σi(ti) 6= σi(t

′
i), and since σ is

a strict BNE in G(µ, T̂ ), it must be that

∫

Θ×T̂−i

Ui(µ(σ(t)), θ)dπ̂i(ti) >

∫

Θ×T̂−i

Ui(µ(σi(t
′
i), σ−i(t−i)), θ)dπ̂i(ti),

and hence that

∫

Θ×T̂−i

Ui(f(t), θ)dπ̂i(ti) >

∫

Θ×T̂−i

Ui(f(t
′
i, t−i), θ)dπ̂i(ti).

Thus, strict BNE implementation and implementation up to level-K are both

equivalent to SIRBIC. This perhaps surprising coincidence is explored in greater depth

in dCSS. The present paper raises a new puzzle: continuous implementation obtains

almost for free under level-k behavior (Theorem 1 above), but can be very restrictive

under strict BNE (see OT). This section attempts to shed light on this surprising

difference.

Next, we provide the definition of strict BNE for extended types spaces, towards

formulating continuous implementation, as follows:

Given a (not necessarily simple) mechanism µ and type space T ⊇ T̂ , the strategy

profile σ is a Bayes Nash equilibrium (BNE) in the game G(µ, T ) if for all i ∈ I and

ti ∈ Ti, any message mi in the support of σi(ti) belongs to BR
σ−i

i (ti). Let σ|T̂ denote

the restriction of σ to the domain T̂ . The BNE σ in G(µ, T ) continuously strictly

implements f : T̂ → ∆X if (i) σ|T̂ is a strict BNE in G(µ, T̂ ) and (ii) for any t ∈ T̂

and any sequence (tn)n≥1 in T such that tn
p
→ t, we have µ ◦ σ(tn) → f(t). Following

OT, the SCF f : T̂ → ∆X is continuously strictly equilibrium-implementable if there

exists a mechanism µ such that for all type spaces T ⊇ T̂ , there exists an equilibrium

σ in G(µ, T ) that strictly continuously equilibrium-implements f . We now essentially

19



apply the revelation principle to obtain a necessary condition for continuous strict

equilibrium-implementation, and highlight a key difference with continuous level-k

implementation:

Theorem 2. If f : T̂ → ∆X is continuously strictly equilibrium-implementable, then

for any type space T ⊇ T̂ , there exists an SCF g : T → ∆X such that

(i) g is a continuous p extension of f :

If tn
p
→ t ∈ T̂ for some sequence (tn)n≥1 in T, then g(tn) → f(t).

(ii) g satisfies SIRBIC with respect to types in T̂ :

∫

Θ×T̂−i

Ui(g(t), θ)dπ̂i(ti) ≥

∫

Θ×T̂−i

Ui(g(t
′
i, t−i), θ)dπ̂i(ti), (3)

for all ti ∈ T̂i, t′i ∈ Ti, and i ∈ I, with the inequality holding strictly when

ti 6∼
g
i t

′
i.

(iii) g is Bayesian incentive compatible:

∫

Θ×T−i

Ui(g(t), θ)dπi(ti) ≥

∫

Θ×T−i

Ui(g(t
′
i, t−i), θ)dπi(ti), (4)

for all ti, t
′
i ∈ Ti and i ∈ I.

In contrast, f is continuously implementable up to level-K if and only if for any type

space T ⊇ T̂ , there exists g : T → ∆X such that (i) and (ii) hold.

Before proving the theorem, let us briefly describe what the properties mean.

Property (i) is self-explanatory: g(tn) is as close as desired to f(t) if n is large enough.

It implies in particular that f and g coincide on T̂ (simply consider a constant se-

quence in T̂ to check this). Inequality (4) says that individual i of type ti ∈ Ti

prefers to report his type truthfully in the direct mechanism associated with the SCF

g whenever he believes that the other individuals also report their respective types

truthfully. Inequality (3) requires that as well, this time for types ti ∈ T̂i, but asks

this preference to be strict whenever g is responsive to ti versus any t′i ∈ Ti. Notice
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that this is more demanding than SIRBIC of g restricted to T̂ (which equals f under

(i)), as t′i need not belong to T̂i. Finally, notice the order of quantifiers: g can vary

with T .

Proof. (Continuous Strict Equilibrium-Implementation) Let µ be any mechanism.

Consider a type space T ⊇ T̂ , and let σ be an equilibrium in G(µ, T ) that strictly

continuously implements f . Then g : T → ∆X , defined by g(t) = µ ◦ σ(t) for all

t ∈ T , is a continuous p extension of f : for any t ∈ T̂ and any sequence (tn)n≥1 in

T such that tn
p
→ t, we have g(tn) = µ ◦ σ(tn) → f(t). By the standard revelation

principle, g is Bayesian incentive compatible. Finally, the same argument, presented

at the beginning of this section to establish that SIRBIC is a necessary condition

for strict equilibrium-implementation, implies that g satisfies SIRBIC with respect to

types in T̂ .

(Continuous Implementation Up To level-K) Starting with sufficiency, using g asso-

ciated to T = T̂ , we get from (i) that f = g is continuous and from (ii) that f

satisfies SIRBIC. By Theorem 1, f is continuously implementable up to level-K. As

for necessity, suppose f is continuously implementable up to level-K. By Theorem 1,

it is continuous and satisfies SIRBIC. Hence, it can be continuously implemented up

to level-K using the continuous extension µ of µ̂ presented in the proof of Theorem 1.

Define g(t) = µ
(

q1(t)
)

for all t ∈ T ⊇ T̂ . Then g is a continuous p extension of f : for

any t ∈ T̂ and any sequence (tn)n≥1 in T such that tn
p
→ t, we have q1(tn) → q1(t),

and hence, by the continuity of µ, we have g(tn) = µ
(

q1(tn)
)

→ µ
(

q1(t)
)

. But

µ
(

q1(t)
)

= µ̂
(

q1(t)
)

= f(t), by the construction of µ. Also, g satisfies SIRBIC with

respect to types in T̂ because the construction of µ is such that each ti ∈ T̂i wants to

report only those messages in ∆Θ that translate as equivalent to q1i (ti) when everyone

else is reporting their first-order beliefs truthfully (Lemma 6).

Conditions in Theorem 2 are phrased in terms of SCFs, with no direct refer-

ence to strict Bayes equilibria or level-k behavior in mechanisms. This facilitates

comparisons between the two notions of continuous implementation. While we do

not know whether (i)-(iii) in Theorem 2 characterizes strict continuous equilibrium-

implementation, we can show that (iii) is indeed a key distinction when comparing

the equilibrium and level-k approaches to continuous implementation. We start by
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discussing an example, and then prove that (i)-(iii) imply strict interim rationalizable

monotonicity when considering a discrete type space for the planner, as defined in

OT. This condition, which boils down to a strenghthening of Maskin monotonicity for

complete-information environments, is very restrictive. We remark that we find no

such connection to monotonicity conditions in the continuous level-k analysis, from

which it is apparent that item (iii) in Theorem 2 is the culprit for the very restrictive

results in OT. We turn to the example next.

Example 2. Consider a simple bilateral trade problem where the good to be traded

can be of low (θL) or high (θH) quality. The buyer’s reservation price is $50 (resp.

$60) if the good is of low (resp. high) quality, while the seller’s reservation price is

fixed at $0 irrespective of the good’s quality. An alternative specifies p ∈ {0, 1}, where

p = 1 means that the good is traded whereas p = 0 means that it is not traded, and

a payment z ∈ [−z∗, z∗] from the buyer to the seller, where z∗ is sufficiently large.

The designer’s model T̂ is one of complete information, which is a simple type

space. That is, T̂i = {tLi , t
H
i } for all i = b, s, where b denotes the buyer and s the

seller, and the beliefs are

π̂i(t
L
i )(θL, t

L
−i) = 1 and π̂i(t

H
i )(θH , t

H
−i) = 1, ∀i.

Consider the following SCF f on T̂ :

tLs tHs

tLb Trade at price $25 No trade and payment

tHb No trade and payment Trade at price $30

This SCF is strictly Bayesian incentive compatible, and hence strictly equilibrium-

implementable using the associated direct mechanism, satisfies SIRBIC, and is triv-

ially continuous. Thus, it is continuously implementable up to level-K. But it fails to

be continuously strictly equilibrium-implementable because it is impossible to extend

the SCF to all larger type spaces, while simultaneously satisfying (i)-(iii) in Theorem

2, as discussed below.

A Simple Extension Satisfying (i) and (ii), but not (iii)
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Of course, we know that an extension of f satisfying (i) and (ii) exists, by The-

orem 1, and one could follow its sufficiency proof to find one. It will follow from

our next point that this extension violates (iii). But it may be insightful to see a

simpler, direct extension when it comes to this particular example. For each type

t (in any extension T of T̂ ), define g(t) as a lottery where the good is traded for

$25 with probability q1b (tb)(θL)q
1
s (ts)(θL), the good is traded for $30 with probability

(1−q1b (tb)(θL))(1−q1s(ts)(θL)), and there is no trade and payment with the remaining

probability. Notice that g is a continuous p extension of f , because tn
p
→ t implies that

q1i (t
n
i )(θL) converges to q1i (ti)(θL) for all i. It is also SIRBIC with respect to types

in T̂ . For example, if the seller reports his type truthfully in the associated direct

mechanism, then type tLb of the buyer expects to trade at price $25 by reporting tLb or

any other tb such that q1b (tb)(θL) = 1. Note that tb ∼
g
b t

L
b if and only if q1b (tb)(θL) = 1.

If type tLb reports tb such that q1b (tb)(θL) < 1, then he expects either to trade at price

$25 with probability q1b (tb)(θL) or not trade with probability (1 − q1b (tb)(θL)), which

is strictly worse than the outcome under truth-telling.

The above extension, however, is not Bayesian incentive compatible on all larger

type spaces (item (iii) in Theorem 2). To see this, consider, for example, the type

space T such that Ts = {tLs , t
H
s , ts} and Tb = T̂b, where the beliefs of t

L
i and tHi are the

same as before, while the belief of ts is such that πs(ts)(θL, t
L
b ) = πs(ts)(θL, t

H
b ) = 0.5.

If the buyer reports truthfully in the direct mechanism associated with g, then a

truthful type ts expects trade at $25 or no trade with equal probability, which is

worse than misreporting his type as tHs (in which case there is an equal chance of

trade at $30, or no trade).

No Extension Satisfying (i)-(iii)

But of course, g is but one example of extension. Could there be ways of extending

f to all larger type spaces, while simultaneously satisfying the three conditions in

Theorem 2? We now prove this is impossible, thereby illustrating how insisting on

(iii) can make a big difference. Consider the type space T such that Ti = T̂i

⋃

n≥2{t
n
i }

for all i, where the beliefs of tLi and tHi are the same as before, while other types’

beliefs are: πi(t
2
i )(θL, t

L
j ) = πi(t

2
i )(θH , t

L
j ) = 0.5, and for all n > 2, πi(t

n
i )(θL, t

n−1
j ) = 1

n

and πi(t
n
i )(θH , t

n−1
j ) = 1 − 1

n
. Notice that T is a simple type space. We impose
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the following metric on this type space: di(ti, t
′
i) = |q1i (ti)(θH) − q1i (t

′
i)(θH)| for all

ti, t
′
i ∈ Ti. Under the topology induced by this metric, tni → tHi and πi is continuous.

Suppose there exists an extension g that satisfies (ii) and (iii), i.e., it is SIRBIC

with respect to types in T̂ and Bayesian incentive compatible. The SCF g specifies

the probability of trade p(tb, ts) and the expected payment from the buyer to the

seller z(tb, ts) for all (tb, ts) ∈ T . We use induction to show that tni ∼g
i t

L
i for all i and

n ≥ 2.

First consider n = 2. Types t2s and tLs of the seller believe that the buyer’s type

is tLb . Hence, (iii), i.e., Bayesian incentive compatibility implies that type tLs weakly

prefers g(tLb , t
L
s ) to g(tLb , t

2
s), while type t2s weakly prefers g(tLb , t

2
s) to g(tLb , t

L
s ). But

all types of the seller have the same preferences over alternatives. Hence, type tLs

must be indifferent between g(tLb , t
L
s ) and g(tLb , t

2
s), and (ii), i.e., SIRBIC with respect

to types in T̂ implies that t2s ∼g
s tLs . As for the buyer, types t2b and tLb believe that

the seller’s type is tLs . Hence, (iii) implies that type tLb weakly prefers g(tLb , t
L
s ) to

g(t2b , t
L
s ) while type t2b weakly prefers g(t2b , t

L
s ) to g(tLb , t

L
s ). The former implies that

(1 − p(t2b , t
L
s ))50 ≥ 25 − z(t2b , t

L
s ), while the latter implies that 25 − z(t2b , t

L
s ) ≥ (1 −

p(t2b , t
L
s ))55 ≥ (1− p(t2b , t

L
s ))50. Hence, we must have z(t2b , t

L
s ) = 25 and p(t2b , t

L
s ) = 1,

which makes tLb indifferent between g(tLb , t
L
s ) and g(t2b, t

L
s ). Then (ii) implies that

t2b ∼
g
b t

L
b .

Next, suppose the statement is true for n − 1, where n ≥ 3. We now argue

that the statement must also hold for n. For the seller, type tns of the seller be-

lieves that the buyer’s type is tn−1
b . Hence, (iii) implies that type tns weakly prefers

g(tn−1
b , tns ) to g(tn−1

b , tn−1
s ). Since tn−1

i ∼g
i tLi for all i, we have g(tn−1

b , tns ) = g(tLb , t
n
s )

and g(tn−1
b , tn−1

s ) = g(tLb , t
L
s ). As all types of the seller have the same preferences over

alternatives, type tLs must weakly prefer g(tLb , t
n
s ) to g(tLb , t

L
s ). But (iii) requires that

type tLs weakly prefer g(tLb , t
L
s ) to g(tLb , t

n
s ). Hence, type tLs must in fact be indifferent

between g(tLb , t
L
s ) and g(tLb , t

n
s ). Then (ii) implies that tns ∼g

s t
L
s . As for the buyer, type

tnb believes that the seller’s type is tn−1
s . Hence, (iii) implies that type tnb weakly prefers

g(tnb , t
n−1
s ) to g(tn−1

b , tn−1
s ). Since tn−1

i ∼g
i tLi for all i, we have g(tnb , t

n−1
s ) = g(tnb , t

L
s )

and g(tn−1
b , tn−1

s ) = g(tLb , t
L
s ). So tnb weakly prefers g(tnb , t

L
s ) to g(tLb , t

L
s ), which implies

that 25 − z(tnb , t
L
s ) ≥ (1 − p(tnb , t

L
s ))

(

60− 10
n

)

≥ (1 − p(tnb , t
L
s ))50. Hence, type tLb

must weakly prefer g(tnb , t
L
s ) to g(tLb , t

L
s ). But (iii) requires that type t

L
b weakly prefers
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g(tLb , t
L
s ) to g(tnb , t

L
s ). Hence, type tLb must in fact be indifferent between g(tLb , t

L
s ) and

g(tnb , t
L
s ). Then (ii) implies that tnb ∼g

b t
L
s .

The fact that tni ∼g
i tLi for all i and n implies that g(tnb , t

n
s ) = g(tLb , t

L
s ) for all n.

Thus, tn
p
→ tH (because by construction tn → tH) but g(tn) does not converge to

g(tH). In other words, g is not continuous p at tH , and hence fails (i).

We see in the example above how the combination of (i)-(iii) in Theorem 2 is in-

deed demanding, and more so than having just (i) and (ii). But could it be that this

is a somewhat unique example, and that adding (iii) does not make much difference

in general? The next result shows that condition (iii) does play a key role in making

continuous strict equilibrium-implementation much more demanding than its level-k

counterpart. A key result in OT (see their Theorem 3) is that strict interim ratio-

nalizable monotonicity (strict IRM) is necessary for continuous strict equilibrium-

implementation. Using the same assumptions as in OT, in our last result, we show

next that strict IRM is also a necessary condition for satisfying (i) to (iii) in Theorem

2. To introduce the result, we present the necessary definitions:

Matching the setting in OT, assume that the state space Θ and the allowed type

spaces T are countable.

A deception is a collection of correspondences β = (βi)i∈I , where βi : T̂i → T̂i.

We let T̂ β
i denote the range of βi, i.e., T̂

β
i = ∪ti∈T̂i

βi(ti). A deception is acceptable if

f(t̃) = f(t) for all t ∈ T̂ and t̃ ∈ β(t); otherwise, the deception is unacceptable.

Definition 6. The SCF f : T̂ → ∆X satisfies interim rationalizable monotonicity

(IRM) if for every unacceptable deception there exist i ∈ I, ti ∈ T̂i, and t̃i ∈ βi(ti)

such that for every γ ∈ ∆(Θ × T̂−i × T̂ β
−i) such that the marginal distribution of γ

on Θ× T̂−i coincides with π̂i(ti) and γ(θ, t−i, t̃−i) > 0 =⇒ t̃−i ∈ β−i(t−i), there exists

ℓ : T̂−i → ∆X such that

∑

Θ×T̂
β
−i

Ui(ℓ(t−i), θ) margΘ×T̂
β
−i
γ(θ, t−i) >

∑

Θ×T̂
β
−i

Ui(f(t̃i, t−i), θ) margΘ×T̂
β
−i
γ(θ, t−i),

and
∑

Θ×T̂−i

Ui(f(t
′
i, t−i), θ)π̂i(t

′
i)(θ, t−i) ≥

∑

Θ×T̂−i

Ui(ℓ(t−i), θ)π̂i(t
′
i)(θ, t−i),
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for all t′i ∈ T̂i.

If the last inequality is strict whenever t′i = t̃i, then the SCF f satisfies strict

interim rationalizable monotonicity (strict IRM).

After this definition, we are ready to state our last result, whose proof can also

be found in the Appendix:

Theorem 3. Suppose the SCF f : T̂ → ∆X can be extended to every type space

T ⊇ T̂ such that the corresponding extension g is a continuous p extension of f ,

satisfies SIRBIC with respect to types in T̂ , and is Bayesian incentive compatible.

Then f satisfies strict interim rationalizable monotonicity.

6 Discussion: Generalizations and Applications

By imposing a bound on the agents’ depth of reasoning, which we assume starts with

truthful behavioral anchors, we have presented results to show the permissiveness of

mechanism design. In spite of requiring full implementation, only continuity and a

simple strenghthening of incentive compatibility (SIRBIC) are in many settings the

limitations to locally robust implementation with bounded depth of reasoning.

The result is far from obvious. In particular, one needs to overcome an important

difficulty, i.e., that the iterated best-response correspondence associated with level-k

reasoning may fail to be upper hemicontinuous, as detailed in Section 2. An impor-

tant subtlety created by this fact for level-k mechanism design –in comparison with

approaches that insist on common belief of rationality– is the following. Di Tillio

(2011) shows that if a (finite) mechanism fully implements an SCF in rationalizable

strategies, then the same mechanism continuously and fully implements the SCF in

rationalizable strategies. The argument follows easily from the upper hemicontinuity

of the rationalizability correspondence in that case (Dekel et al., 2007). Significantly,

the failure of upper hemicontinuity of the level-k correspondence implies that the

same result is not necessarily true for level-k implementation, that is, if a mechanism

level-k implements an SCF, then the same mechanism need not continuously level-k

implement the SCF. We present such an example in the first section of the Online

Appendix.
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The comparison of our main result with the restrictive results on continuous im-

plementation in Bayesian equilibrium is clear: the additional requirement of asking

that all the Bayesian incentive constraints be met in the expanded type spaces –and

not the continuity requirement per se– is responsible for those restrictive results. This

final section closes with a brief discussion of generalizations and applications.

Nonsimple Type Spaces: Our results generalize to nonsimple type spaces. Conti-

nuity and SIRBIC still characterize continuous implementation up to level-K when-

ever we can distinguish all types in the planner’s model by their zth-order beliefs, for

some z ≥ 1. The argument for the necessity of continuity and SIRBIC remains the

same. For sufficiency, we start by noting that the SCF defines a continuous direct

mechanism µ̂ on ×i∈IQ
z
i (T̂ ) because each T̂i is homeomorphic to Qz

i (T̂ ). We can then

continuously extend µ̂ to the space of all zth-order beliefs ×i∈IQ
z
i (T

∗) – recall that T ∗

is the universal type space – by again applying Lemma 1. This continuous extension µ

continuously implements up to level-K given truthful behavioral anchors (i.e., level-0

reports his zth-order belief truthfully), following the same arguments as in the proof

of Theorem 1.

In general type spaces, continuous implementation up to level-K entails, in addi-

tion to SIRBIC, a stronger necessary condition, viz., f must be continuous p.15 If types

can be distinguished by their zth-order beliefs, then continuity p and continuity of the

SCF are equivalent conditions. In general, however, continuity p implies continuity.

The two conditions, continuity p and SIRBIC, are also sufficient for continuous imple-

mentation up to level-K in general type spaces. We begin by defining a mechanism

µ̂ on ×i∈IQi(T̂ ) such that µ̂(q) = f(t), where t is any type profile such that q(t) = q.

The mechanism µ̂ is well-defined because if q(t) = q(t′), then f(t) = f(t′) since f is

continuous p. Moreover, µ̂ is continuous.16 Then we can continuously extend µ̂ to the

space of all belief hierarchies ×i∈IT
∗
i using Lemma 1. Now this continuous extension µ

continuously implements up to level-K given truthful behavioral anchors (i.e., level-0

reports his entire belief hierarchy truthfully), following the same arguments as in the

15The proof of Theorem 1 already contains the argument. There, we show that whenever f

is continuously implementable up to level-K, then for any sequence tn
p
→ t, we must have f(tn)

converge to f(t).
16Pick any sequence qn → q. Let tn and t in T̂ be such that q(tn) = qn and q(t) = q. Then tn

p
→ t.

As f is continuous p, we have µ̂(qn) = f(tn) → f(t) = µ̂(q).
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proof of Theorem 1.

With SIRBIC and continuity p characterizing continuous implementation up to

level-K in all type spaces, Theorem 2 remains the same. Thus, regardless of the plan-

ner’s model, the key difference between continuous strict equilibrium-implementation

and continuous implementation up to level-K is that the former imposes an additional

condition, i.e., the existence of extensions that satisfy Bayesian incentive compatibil-

ity.

Other Behavioral Anchors: dCSS show that SIRBIC is the key restriction on

merely exact implementation up to level-K irrespective of the level-0 behavioral an-

chors. For atomless anchors (e.g., uniform-random play), they show that SIRBIC and

continuity are sufficient for merely exact implementation up to level-K in environ-

ments with independent private values (IPV), i.e., when values are private and the

type space is a common-prior payoff-type space with independent types (recall that

such type spaces are simple). To prove that result, they construct an indirect mecha-

nism in which players report both their types and real number from an interval. The

key feature of that construction is that it separates the beliefs of level-1 from those

of level-2 and above, inducing each level to report their types truthfully. A similar

construction on the planner’s model T̂ , followed by an extension of the mechanism

to allow for reports in (∆Θ)I \ ×i∈IQ
1
i (T̂ ), can be used to prove that continuity and

SIRBIC are sufficient for continuous implementation up to level-K given atomless

anchors in most IPV settings (see Theorem 4 in the second section of the Online Ap-

pendix). Thus, in these cases too, SIRBIC and continuity remain the key conditions

characterizing continuous implementation up to level-K.

Outside IPV environments, dCSS show that additional restrictions are necessary

for merely exact implementation up to level-K when the level-0 anchors are type

independent (e.g., uniform-random play). Specifically, a type separability condition

that requires distinct types (i.e., those over which the SCF is responsive) have different

preferences over constant lotteries becomes necessary (Theorem 5). In the third

section of the Online Appendix we show in Theorem 6 that continuity, SIRBIC, and

type separability are also sufficient for continuous implementation up to level-K given

atomless (type-independent or otherwise) anchors in most non-IPV environments.
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Applications: In the final section of the Online Appendix, we feature several well-

known applications to showcase the permissiveness of continuous level-k implementa-

tion. First, in a large class of public decision problems, generalizing the private-values

environments in d’Aspremont and Gerard-Varet (1979), we show that the SCF that

extends their ex-post efficient rule satisfies continuity and strict incentive compatibil-

ity, making it implementable using the mechanisms we construct in Theorems 1 and

4 –the latter, for the particular case of private-values. Furthermore, allowing large

fines, the SCF also satisfies the type separability condition, making it implementable

using the mechanism in Theorem 6 as well. Second, in the bilateral trading setup

with independent private values of Myerson and Satterthwaite (1983), although the

second-best rule they propose is discontinuous and only weakly Bayesian incentive

compatible, we are able to show, under monotone hazard rates, that a slight pertur-

bation thereof is continuous and satisfies strict incentive compatibility, making this

approximation continuously implementable up to level k, appealing to our mecha-

nisms in Theorems 1 and 4. Finally, in the multidimensional type model of Jehiel et

al. (2012), where locally robust implementation in their sense is impossible, we offer

some permissive results for continuous level-k implementation, appealing to Theo-

rem 6, even though this good news has to be more limited, as the behavioral anchors

must depend nontrivially on the players’ types. In particular, with type-independent

anchors, there is a failure of the type separability condition, identified as necessary

in Theorem 5.

A Appendix

Continuous Extension of a Continuous Mechanism:

Lemma 1. Suppose µ̂ : ×i∈IM̂i → ∆X is continuous and the message space M̂i is

a closed subset of some compact metric space Mi for all i. Then for each i ∈ I,

there exists a correspondence ωi : Mi → M̂i with nonempty finite values and for

each message mi ∈ Mi, there exists a probability distribution ξmi
with full support on

ωi(mi) such that µ : ×i∈IMi → ∆X extends µ̂ continuously, where µ is the mechanism

that associates to any message profile m ∈ ×i∈IMi the lottery that selects µ̂(m̂) with

probability ×i∈Iξmi
(m̂i), for all m̂ ∈ ×i∈Iωi(mi).
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Proof. For each i ∈ I, define Zi = Mi \ M̂i. Let d : Mi ×Mi → R+ be the metric on

Mi. Pick any zi ∈ Zi and let d(zi, M̂i) = inf{d(zi, m̂i) : m̂i ∈ M̂i}. Since Zi is open

(as M̂i is closed by assumption), d(zi, M̂i) > 0. Let B(zi,
d(zi,M̂i)

4
) be an open ball

around zi of radius
d(zi,M̂i)

4
. Note that B(zi,

d(zi,M̂i)
4

) ⊂ Zi. Now,
{

B(zi,
d(zi,M̂i)

4
)
}

zi∈Zi

is an open cover of Zi. Since Zi is a metric space, it is paracompact. Therefore,

the open cover
{

B(zi,
d(zi,M̂i)

4
)
}

zi∈Zi

has a continuous locally finite partition of unity

subordinate to it (see Theorem 2.90 in Aliprantis and Border (2006)). That is, there

exists a family of functions {hzi}zi∈Zi
from Zi to [0, 1] such that17

1. Each hzi is continuous.

2. Each hzi(mi) = 0 if mi ∈ Zi \B(zi,
d(zi,M̂i)

4
).

3. At each mi ∈ Zi, only finitely-many functions in the family {hzi}zi∈Zi
are

nonzero and
∑

zi∈Zi
hzi(mi) = 1.

4. Each mi ∈ Zi has a neighborhood on which all but finitely-many functions in

the family vanish.

For each zi ∈ Zi, let ρi(zi) ∈ M̂i be such that d(zi, ρi(zi)) <
5
4
d(zi, M̂i).

For each i ∈ I, define the correspondence ωi : Mi → M̂i as follows:

ωi(mi) =

{

{mi}, if mi ∈ M̂i

{ρi(zi) : zi ∈ Zi and hzi(mi) > 0}, if mi ∈ Zi.

Note that ωi is finite-valued because of the third property of the collection {hzi}zi∈Zi
.

For each mi ∈ Mi, define the probability distribution ξmi
over M̂i as follows:

ξmi
(m̂i) =











1, if mi ∈ M̂i and m̂i = mi
∑

zi∈Zi:ρi(zi)=m̂i
hzi(mi), if mi ∈ Zi and m̂i ∈ ωi(mi)

0, otherwise.

17See Dugundji (1951) and Arens (1952) for a construction of such a family of functions. For
example, taking R as a paracompact space, and ∪z∈Z{(z − 1, z+ 1)} as its open cover, and hz(x) =
min{x− (z − 1), z+1− x} on [z− 1, z+1], and 0 otherwise. Then, for each r ∈ R, let hr = hInt(r).
For each r, at most two of these functions, hInt(r) and either hInt(r)−1 or hInt(r)+1, do not vanish
and their images add up to unity. Thus, each real number is covered by a finite number of open
sets, each with a different weight, and the sum of these weights is always 1.
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Thus, the support of ξmi
coincides with ωi(mi).

Now, define µ : ×i∈IMi → ∆X as follows:

µ(m) =
∑

m̂∈×i∈Iωi(mi)

×i∈Iξmi
(m̂i)× µ̂(m̂).

Since µ(m) = µ̂(m), ∀m ∈ ×i∈IM̂i, the mechanism µ is an extension of µ̂ to ×i∈IMi.

We now argue that µ is continuous. Let (mn)n≥1 be a sequence in ×i∈IMi that

converges to m. Pick any Borel subset A of X such that µ(m)(∂A) = 0. We argue

that limn→∞ µ(mn)(A) = µ(m)(A). This is equivalent to proving that the sequence

of probability measures (µ(mn))n≥1 converges to µ(m) in the weak∗ topology.

Let’s partition I into I1, I2 and I3 such that

I1 = {i ∈ I : mi is in Zi}

I2 = {i ∈ I : mi is in the interior of M̂i}

I3 = {i ∈ I : mi is on the boundary of M̂i}.

Case 1. i ∈ I1: Since mi ∈ Zi, there is a neighborhood Ni of mi, with Ni ⊆ Zi,

on which all but finitely-many functions in the family {hzi}zi∈Zi
vanish. Let Z∗

i be

the finite set of indices of the functions in this neighborhood that do not vanish.

There exists n∗
i such that mn

i ∈ Ni for all n ≥ n∗
i . Therefore, if n ≥ n∗

i , then

hzi(m
n
i ) > 0 =⇒ zi ∈ Z∗

i , and so ωi(m
n
i ) ⊆ {ρi(zi) : zi ∈ Z∗

i }.

Case 2. i ∈ I2: Since mi is in the interior of M̂i, there exists n∗
i such that mn

i ∈ M̂i

for all n ≥ n∗
i .

Case 3. i ∈ I3: In this case, mi is on the boundary of M̂i. For each mn
i , pick any

m̂n
i ∈ ωi(m

n
i ). We claim that the sequence (m̂n

i )n≥1 converges to mi in the weak∗

topology. The following two arguments are sufficient to establish this claim:

First, if there is any infinite subsequence (mnl

i )nl≥1 such that mnl

i ∈ M̂i, ∀nl ≥ 1, then

m̂nl

i = mnl

i , ∀nl ≥ 1, and so the subsequence (m̂nl

i )nl≥1 converges to mi.

Second, if there is any infinite subsequence (mnl

i )nl≥1 such that mnl

i ∈ Zi, ∀nl ≥ 1,

then let znl

i be such that ρi(z
nl

i ) = m̂nl

i and hz
nl
i
(mnl

i ) > 0. Pick any ǫ > 0 and

consider the open ball B(mi,
ǫ
3
). Since mnl

i converges to mi, there exists ni such that
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mnl

i ∈ B(mi,
ǫ
3
) for all nl ≥ ni. Hence, m

nl

i ∈ Zi ∩B(mi,
ǫ
3
) for all nl ≥ ni. We argue

that d(mi, m̂
nl

i ) < ǫ for all nl ≥ ni. Note that

d(mi, m̂
nl

i ) ≤ d(mi, m
nl

i ) + d(mnl

i , m̂nl

i )

≤ d(mi, m
nl

i ) + d(mnl

i , znl

i ) + d(znl

i , m̂nl

i )

< d(mi, m
nl

i ) + d(mnl

i , znl

i ) +
5

4
d(znl

i , M̂i).

Since hz
nl
i
(mnl

i ) > 0, we have d(mnl

i , znl

i ) <
d(z

nl
i

,M̂i)

4
. Hence, d(mi, m̂

nl

i ) < d(mi, m
nl

i )+
6
4
d(znl

i , M̂i).

Next,

d(znl

i , M̂i) ≤ d(znl

i , mi) ≤ d(znl

i , mnl

i ) + d(mnl

i , mi) <
d(znl

i , M̂i)

4
+ d(mnl

i , mi).

Therefore, 3
4
d(znl

i , M̂i)) < d(mnl

i , mi). As a result,

d(mi, m̂
nl

i ) < d(mi, m
nl

i ) +
6

4
d(znl

i , M̂i) < 3d(mi, m
nl

i ) < ǫ.

Hence, the subsequence (m̂nl

i )nl≥1 converges to mi.

Now, by definition of µ(mn), for any Borel A ⊆ X such that µ(m)(∂A) = 0, we

have

µ(mn)(A) =
∑

m̂∈×i∈Iωi(mn
i )

×i∈Iξmn
i
(m̂i)× µ̂(m̂)(A).

Consider any n ≥ n∗ = max{n∗
i : i ∈ I1 ∪ I2}. Then mn

i ∈ M̂i, ∀i ∈ I2. Hence,

µ(mn)(A) =
∑

(m̂i)i∈I1∪I3
∈×i∈I1∪I3

ωi(mn
i )

×i∈I1∪I3ξmn
i
(m̂i)× µ̂((m̂i)i∈I1∪I3, (m

n
i )i∈I2)(A).

(5)

Pick any (m̂i)i∈I3 ∈ ×i∈I3ωi(m
n
i ), and define

Y n((m̂i)i∈I3) =
∑

(m̂i)i∈I1
∈×i∈I1

ωi(mn
i )

×i∈I1ξmn
i
(m̂i)× µ̂((m̂i)i∈I1 , (m̂i)i∈I3, (m

n
i )i∈I2)(A).
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Then it follows from (5) that

µ(mn)(A) =
∑

(m̂i)i∈I3
∈×i∈I3

ωi(mn
i )

×i∈I3ξmn
i
(m̂i)Y

n((m̂i)i∈I3).

Since ×i∈I3ωi(m
n
i ) is a finite set, we can find (m̂1n

i )i∈I3 ∈ ×i∈I3ωi(m
n
i ) such that

Y n((m̂1n
i )i∈I3) ≥ Y n((m̂i)i∈I3), ∀(m̂i)i∈I3 ∈ ×i∈I3ωi(m

n
i ). Similarly, we can find (m̂2n

i )i∈I3 ∈

×i∈I3ωi(m
n
i ) such that Y n((m̂2n

i )i∈I3) ≤ Y n((m̂i)i∈I3), ∀(m̂i)i∈I3 ∈ ×i∈I3ωi(m
n
i ). Hence,

Y n((m̂1n
i )i∈I3) ≥ µ(mn)(A) ≥ Y n((m̂2n

i )i∈I3). We argue that limn→∞ Y n((m̂1n
i )i∈I3) =

limn→∞ Y n((m̂2n
i )i∈I3) = µ(m)(A), which implies that limn→∞ µ(mn)(A) → µ(m)(A).

As n ≥ n∗, we have mn
i ∈ Ni ⊆ Zi, ∀i ∈ I1. Then, as argued in Case 1 above,

ωi(m
n
i ) ⊆ {ρi(zi) : zi ∈ Z∗

i }, ∀i ∈ I1. Hence,

Y n((m̂1n
i )i∈I3) =

∑

(m̂i)i∈I1
∈×i∈I1

{ρi(zi):zi∈Z∗
i }

×i∈I1ξmn
i
(m̂i)×µ̂((m̂i)i∈I1, (m̂

1n
i )i∈I3 , (m

n
i )i∈I2)(A).

Take any i ∈ I1 and m̂i ∈ {ρi(zi) : zi ∈ Z∗
i }. Since mn

i ∈ Ni, we have ξmn
i
(m̂i) =

∑

zi∈Z∗
i
:ρi(zi)=m̂i

hzi(m
n
i ). As each hzi is continuous,

lim
n→∞

ξmn
i
(m̂i) =

∑

zi∈Z∗
i :ρi(zi)=m̂i

hzi(mi) = ξmi
(m̂i).

It follows from the arguments made in Case 3 above that for all i ∈ I3, m̂
1n
i converges

to mi. Hence, as µ̂ is continuous, we obtain

lim
n→∞

Y n((m̂1n
i )i∈I3) =

∑

(m̂i)i∈I1
∈×i∈I1

{ρi(zi):zi∈Z∗
i
}

×i∈I1ξmi
(m̂i)× µ̂((m̂i)i∈I1 , (mi)i∈I2∪I3)(A)

= µ(m)(A).

A similar argument shows that limn→∞ Y n((m̂2n
i )i∈I3) = µ(m)(A). Therefore, µ is

continuous.

Technical Lemmata: We now present a set of four technical lemmata that prove

some general properties of level-k behavior. These results do not restrict to truthful

behavioral anchors. Indeed, we let αµ,T
i be the level-0 behavioral anchors of individual

i, which captures what other individuals think would be the gut reaction of individual
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i when she is confronted to play the mechanism µ on the type space T . Profiles of

such anchors will be denoted αµ,T = (αµ,T
i )i∈I .

Given a type space T , mechanism µ, and behavioral anchors αµ,T , we let Sk
i (α

µ,T )

denote the set of level-k consistent strategies of individual i, starting with level-1 con-

sistent strategies that support only those messages that are best responses to others

playing αµ,T
−i . Like before, we define the correspondence Σk

i (·|α
µ,T ) that associates

to each type of individual i, his best response messages against all conjectures in

∆(Θ×T−i×M−i) ‘consistent’ with the behavior of level-(k−1) opponents (with αµ,T
−i

at level-0). We are now ready to present the four lemmata.

Lemma 2. Suppose the mechanism µ is continuous. Then for any type space T ,

individual i, and σ−i : T−i → ∆M−i, the best-response correspondence BR
σ−i

i : Ti →

Mi is nonempty and compact valued, and admits a measurable selector. Additionally,

if σ−i is continuous, then BR
σ−i

i is also upper hemicontinuous.

Proof. Fix the type space T , individual i, and σ−i : T−i → ∆M−i in the mechanism

µ. For any mi ∈ Mi and ti ∈ Ti, define

Wi(mi, ti) =

∫

Θ×T−i

Ui(µ(mi, σ−i(t−i)), θ)dπi(ti)

=

∫

Θ×T−i

∫

M−i

Ui(µ(mi, m−i), θ)dσ−i(t−i)dπi(ti).

We argue that Wi is a Carathéodory function such that for each ti, Wi(·, ti) : Mi → R

is continuous whereas for each mi, Wi(mi, ·) : Ti → R is measurable.

Let (mn
i )n≥1 be a sequence such that mn

i → mi. Recall that Ui is continuous and

bounded and µ is continuous. Therefore, Ui(µ(·), ·), as a function of message profiles

in M and state in Θ, is continuous and bounded over a compact metric space. Hence,

it is uniformly continuous. Therefore, for every ǫ > 0, there exists n′ such that if

n ≥ n′, then |Ui(µ(m
n
i , m−i), θ)− Ui(µ(mi, m−i), θ)| < ǫ, for all (m−i, θ) ∈ M−i × Θ.

Therefore, for all n ≥ n′, we have

|Wi(m
n
i , ti)−Wi(mi, ti)|

≤

∫

Θ×T−i

∫

M−i

|Ui(µ(m
n
i , m−i), θ)− Ui(µ(mi, m−i), θ)|dσ−i(t−i)dπi(ti) < ǫ.

34



So Wi(·, ti) is continuous in mi.

To argue that Wi(mi, ·) is measurable, consider the mapping hi : Θ × T−i → R

where

hi(θ, t−i) =

∫

M−i

Ui(µ(mi, m−i), θ)dσ−i(t−i).

Using similar arguments as for the case of Wi(·, ti), we can argue that hi(·, t−i) is

continuous in θ. For a fixed θ, the function hi(θ, ·) is a composition of the mapping

η̃ →
∫

M−i
Ui(µ(mi, m−i), θ)dη̃, where η̃ ∈ ∆M−i, and σ−i : T−i → ∆M−i. As Ui is

continuous and bounded, and µ is continuous, it follows from the definition of weak

convergence that the mapping η̃ →
∫

M−i
Ui(µ(mi, m−i), θ)dη̃ is continuous. Since σ−i

is a measurable, hi(θ, ·) is measurable in t−i. (Notice that if σ−i were continuous,

then hi(θ, ·) would be continuous in t−i. We use this fact below.) Hence, hi is a

Carathéodory function, which implies that hi is jointly measurable (see Lemma 4.51

in Aliprantis and Border (2006)). Then the mapping γ̃ →
∫

Θ×T−i
hi(θ, t−i)dγ̃, where

γ̃ ∈ ∆(Θ × T−i) is (Borel) measurable (see Theorem 15.13 in Aliprantis and Border

(2006)). Now, Wi(mi, ·) is a composition of the mapping γ̃ →
∫

Θ×T−i
hi(θ, t−i)dγ̃

and πi : Ti → ∆(Θ × T−i). Since πi is measurable, we conclude that Wi(mi, ·) is

measurable in ti.

Now that we have established that Wi is a Carathéodory function, and since

BR
σ−i

i (ti) = argmaxmi∈Mi
Wi(mi, ti) for all ti, we can use the Measurable Maximum

Theorem (see Theorem 18.19 in Aliprantis and Border (2006)) to claim that BR
σ−i

i

is nonempty and compact valued, and admits a measurable selector.

To prove the additional statement in the lemma, suppose σ−i is continuous. We

then argue that Wi is a continuous function.

The first step is to argue that hi is continuous. Let (θn)n≥1 and (tn−i)n≥1 be two

sequences such that θn → θ and tn−i → t−i. As mentioned above, if σ−i is continuous,

then hi(θ, ·) is continuous in t−i. Hence, hi(θ, t
n
−i) converges to hi(θ, t−i). That is,

for every ǫ > 0, there exists n1 such that if n ≥ n1, then |hi(θ, t
n
−i)− hi(θ, t−i)| <

ǫ
2
.

Using the fact that Ui(µ(·), ·) is uniformly continuous, we know that for every ǫ > 0,

there exists n2 such that if n ≥ n2, then |Ui(µ(mi, m−i), θ
n)−Ui(µ(mi, m−i), θ)| <

ǫ
2
,
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for all (mi, m−i) ∈ M . Therefore, for all n ≥ n2, we have

|hi(θ
n, tn−i)− hi(θ, t

n
−i)|

≤

∫

M−i

|Ui(µ(mi, m−i), θ
n)− Ui(µ(mi, m−i), θ)|dσ−i(t

n
−i) <

ǫ

2
.

Hence, for all n ≥ max{n1, n2}, we have

|hi(θ
n, tn−i)− hi(θ, t−i)| ≤ |hi(θ

n, tn−i)− hi(θ, t
n
−i)|+ |hi(θ, t

n
−i)− hi(θ, t−i)| < ǫ.

Therefore, hi is continuous.

The final step is to show that Wi itself is continuous. Let (m
n
i )n≥1 and (tni )n≥1 be

two sequences such that mn
i → mi and tni → ti. Since hi is continuous and bounded

(as Ui is bounded), it follows from the definition of weak convergence that Wi(mi, t
n
i )

converges to Wi(mi, ti). That is, for every ǫ > 0, there exists n1 such that if n ≥ n1,

then |Wi(mi, t
n
i )−Wi(mi, ti)| <

ǫ
2
. Again, using the fact that Ui(µ(·), ·) is uniformly

continuous, we know that for every ǫ > 0, there exists n2 such that if n ≥ n2, then

|Ui(µ(m
n
i , m−i), θ) − Ui(µ(mi, m−i), θ)| <

ǫ
2
, for all (m−i, θ) ∈ M−i × Θ. Therefore,

for all n ≥ n2, we have

|Wi(m
n
i , t

n
i )−Wi(mi, t

n
i )|

≤

∫

Θ×T−i

∫

M−i

|Ui(µ(m
n
i , m−i), θ)− Ui(µ(mi, m−i), θ)|dσ−i(t−i)dπi(t

n
i ) <

ǫ

2
.

Hence, for all n ≥ max{n1, n2}, we have

|Wi(m
n
i , t

n
i )−Wi(mi, ti)| ≤ |Wi(m

n
i , t

n
i )−Wi(mi, t

n
i )|+ |Wi(mi, t

n
i )−Wi(mi, ti)| < ǫ.

Therefore, Wi is continuous. It follows from the Berge’s Maximum Theorem that

BR
σ−i

i is upper hemicontinuous.

Lemma 3. Suppose the mechanism µ is continuous. Consider any type space T and

behavioral anchors αµ,T such that αµ,T
i is continuous for all i. Then the correspon-

dence Σk
i (·|α

µ,T ) is upper hemicontinuous for all i and k ≥ 1.

Proof. We argue by induction that Gr(Σk
i (·|α

µ,T )), i.e., the graph of Σk
i (·|α

µ,T ), is
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closed for all i and k ≥ 1. Since Mi is compact, this implies that Σk
i (·|α

µ,T ) is upper

hemicontinuous for all i and k ≥ 1.

As αµ,T
−i is continuous, Σ1

i (·|α
µ,T ) is upper hemicontinuous and compact valued

(Lemma 2). Hence, Gr(Σ1
i (·|α

µ,T )) is closed for all i.

Next, consider k > 1, and suppose Gr(Σk−1
i (·|αµ,T )) is closed for all i. Pick

any individual i and consider sequences (tni )n≥1 and (mn
i )n≥1 such that tni → ti,

mn
i → mi, and mn

i ∈ Σk
i (t

n
i |α

µ,T ) for all n ≥ 1. Since mn
i ∈ Σk

i (t
n
i |α

µ,T ), there exists

γn ∈ ∆(Θ× T−i ×M−i), such that (a) the marginal of γn on Θ× T−i equals πi(t
n
i ),

(b) the marginal of γn on T−i ×M−i supports a subset of ×j 6=iGr(Σk−1
j (·|αµ,T )), and

mn
i ∈ arg max

m′
i∈Mi

∫

Θ×T−i×M−i

Ui(µ(m
′
i, m−i), θ)dγ

n.

Since Θ× T−i ×M−i is a compact metric space, so is ∆(Θ× T−i ×M−i). Hence, the

sequence (γn)n≥1 has a convergent subsequence (γnl)nl≥1 that converges to say γ in

the weak∗ topology.

Since margΘ×T−i
γnl = πi(t

nl

i ) → πi(ti) and margΘ×T−i
γnl → margΘ×T−i

γ, we have

that margΘ×T−i
γ = πi(ti).

By the induction hypothesis, Gr(Σk−1
j (·|αµ,T )) is closed for all j 6= i. Hence,

Θ ×j 6=i Gr(Σk−1
j (·|αµ,T )) is closed. The fact that γnl converges to γ in the weak∗

topology implies that

γ
(

Θ×j 6=i Gr(Σk−1
j (·|αµ,T ))

)

≥ lim sup
nl

γnl
(

Θ×j 6=i Gr(Σk−1
j (·|αµ,T ))

)

= 1.

Therefore, the marginal of γ on T−i×M−i supports a subset of ×j 6=iGr(Σk−1
j (·|αµ,T )).

For each m̂i ∈ Mi and γ̂ ∈ ∆(Θ× T−i ×M−i), define

Vi(m̂i, γ̂) =

∫

Θ×T−i×M−i

Ui(µ(m̂i, m−i), θ)dγ̂.

We argue that Vi is continuous. Let (m̂
n
i )n≥1 and (γ̂n)n≥1 be two sequences such that

m̂n
i → m̂i and γ̂n → γ̂. Since Ui is continuous and bounded and µ is continuous, it

follows from the definition of weak convergence that Vi(m̂i, γ̂
n) converges to Vi(m̂i, γ̂).

That is, for every ǫ > 0, there exists n1 such that if n ≥ n1, then |Vi(m̂i, γ̂
n) −
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Vi(m̂i, γ̂)| <
ǫ
2
.

Since Ui(µ(·), ·), as a function of message profiles in M and state in Θ, is a con-

tinuous function over a compact metric space, it is uniformly continuous. Therefore,

for every ǫ > 0, there exists n2 such that if n ≥ n2, then |Ui(µ(m̂
n
i , m−i), θ) −

Ui(µ(m̂i, m−i), θ)| <
ǫ
2
, for all (m−i, θ) ∈ M−i ×Θ. Therefore, for all n ≥ n2, we have

|Vi(m̂
n
i , γ̂

n)− Vi(m̂i, γ̂
n)|

≤

∫

Θ×T−i×M−i

|Ui(µ(m̂
n
i , m−i), θ)− Ui(µ(m̂i, m−i), θ)|dγ̂

n <
ǫ

2
.

Hence, for all n ≥ max{n1, n2}, we have

|Vi(m̂
n
i , γ̂

n)− Vi(m̂i, γ̂)| ≤ |Vi(m̂
n
i , γ̂

n)− Vi(m̂i, γ̂
n)|+ |Vi(m̂i, γ̂

n)− Vi(m̂i, γ̂)| < ǫ.

Therefore, Vi is continuous. It follows from the Berge’s Maximum Theorem that the

correspondence γ̂ → argmaxm̂i∈Mi
Vi(m̂i, γ̂) is upper hemicontinuous and compact

valued.

The subsequences (mnl

i )nl≥1 and (γnl)nl≥1 are such thatmnl

i ∈ argmaxm̂i∈Mi
Vi(m̂i, γ

nl).

So we must havemi ∈ argmaxm̂i∈Mi
Vi(m̂i, γ). We thus conclude thatmi ∈ Σk

i (ti|α
µ,T ),

and so Gr(Σk
i (·|α

µ,T )) is closed.

Lemma 4. Suppose the mechanism µ continuous. Consider any type space T and

behavioral anchors αµ,T such that αµ,T
i is continuous for all i. Then for any depth of

reasoning k ≥ 1, individual i, strategy σi ∈ Sk
i (α

µ,T ), and type ti ∈ Ti, if mi is in the

support of σi(ti), then mi ∈ Σk
i (ti|α

µ,T ).

Proof. We prove this by induction on k. Consider σi ∈ S1
i (α

µ,T ). Then each mi in

the support of σi(ti) is an element of BR
α
µ,T
−i

i (ti) = Σ1
i (ti|α

µ,T ).

Next, consider k > 1 and suppose the statement is true for all σi ∈ Sk−1
i (αµ,T )

and all i. Pick any σi ∈ Sk
i (α

µ,T ). Then there exists σ−i ∈ Sk−1
−i (αµ,T ) such that

every mi in the support of σi(ti) is an element of BR
σ−i

i (ti). We can find a unique

γ ∈ ∆(Θ× T−i ×M−i) such that for all measurable E ⊆ Θ× T−i and F ⊆ M−i,

γ(E × F ) =

∫

Θ×T−i

χ(E)σ−i(t−i)(F )dπi(ti),
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where χ(E) is the indicator function on E. Then the marginal distribution of γ on

Θ× T−i is equal to πi(ti).

Let (t−i, m−i) be in the support of the marginal of γ on T−i × M−i. By the

definition of the support, the marginal distribution of γ on T−i × M−i assigns a

positive probability to every open neighborhood of (t−i, m−i). Hence, we can find

a sequence (tn−i, m
n
−i)n≥1 converging to (t−i, m−i) such that mn

j is in the support of

σj(t
n
j ) for all j 6= i and n ≥ 1. By the induction hypothesis, mn

−i ∈ ×j 6=iΣ
k−1
j (tnj |α

µ,T )

for all n. Thus, (tn−i, m
n
−i) ∈ ×j 6=iGr(Σk−1

j (·|αµ,T )) for all n. As argued in Lemma 3,

Gr(Σk−1
j (·|αµ,T )) is closed for all j 6= i. Hence, (t−i, m−i) ∈ ×j 6=iGr(Σk−1

j (·|αµ,T )).

Thus, the marginal of γ on T−i ×M−i supports a subset of ×j 6=iGr(Σk−1
j (·|αµ,T )).

Finally, since

∫

Θ×T−i

∫

M−i

Ui(µ(m
′
i, m−i), θ)dσ−i(t−i)dπi(ti) =

∫

Θ×T−i×M−i

Ui(µ(m
′
i, m−i), θ)dγ,

for all m′
i, if mi ∈ BR

σ−i

i (ti), then mi is a best response against the conjecture γ.

Hence, if mi is in the support of σi(ti), then mi ∈ Σk
i (ti|α

µ,T ).

Lemma 5. Suppose the mechanism µ is continuous. Consider any type space T and

behavioral anchors αµ,T such that αµ,T
i is continuous p for all i. If qi(ti) = qi(t

′
i), then

Σk
i (ti|α

µ,T ) = Σk
i (t

′
i|α

µ,T ) for all k ≥ 1.

Proof. We argue by induction on k. First consider Σ1
i (·|α

µ,T ). Define σ̂−i : Q−i(T ) →

∆M−i as σ̂−i(q−i) = αµ,T
−i (t−i) for any t−i such that q−i(t−i) = q−i. Notice that σ̂−i is

a well-defined function since if q−i(t−i) = q−i(t
′
−i), then αµ,T

−i (t−i) = αµ,T
−i (t

′
−i) because

αµ,T
−i is continuous p. Thus defined, σ̂−i is in fact continuous (and hence, measurable).

To see this, pick any sequence (qn−i)n≥1 that converges to q−i. Let tn−i and t−i be

such that q−i(t
n
−i) = qn−i and q−i(t−i) = q−i. Thus, q−i(t

n
−i) converges to q−i(t−i) or

equivalently, tn−i

p
→ t−i. Since αµ,T

−i is continuous p, σ̂−i(q
n
−i) = αµ,T

−i (t
n
−i) converges to

σ̂−i(q−i) = αµ,T
−i (t−i).

Recall that q−i is a belief-preserving morphism from T−i to T ∗
−i. Therefore, for

any mi and ti, we have

∫

Θ×T−i

∫

M−i

Ui(µ(mi, m−i), θ)dα
µ,T
−i (t−i)dπi(ti)
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=

∫

Θ×Q−i(T )

∫

M−i

Ui(µ(mi, m−i), θ)dσ̂−i(q−i)dπ
∗
i (qi(ti)).

Thus, if ti and t′i are such that qi(ti) = qi(t
′
i), then BR

α
µ,T
−i

i (ti) = BR
α
µ,T
−i

i (t′i). So

Σ1
i (ti|α

µ,T ) = Σ1
i (t

′
i|α

µ,T ).

Next, consider k > 1 and suppose the statement is true for k − 1. Pick mi ∈

Σk
i (ti|α

µ,T ). Then

mi ∈ arg max
m′

i∈Mi

∫

Θ×T−i×M−i

Ui(µ(m
′
i, m−i), θ)dγ

for some conjecture γ ∈ ∆(Θ× T−i ×M−i) such that (a) the distribution πi(ti) coin-

cides with the marginal distribution of γ on Θ×T−i, and (b) the marginal distribution

of γ on T−i ×M−i supports a subset of ×j 6=iGr(Σk−1
j (·|αµ,T )).

Consider the continuous mapping h : Θ × T−i × M−i → Θ × Q−i(T ) such that

h(θ, t−i, m−i) = (θ, q−i(t−i)). As Θ, T−i and M−i are compact metric spaces, there

exists a version of regular conditional probabilities γ(θ,q−i) such that for all m′
i ∈ Mi,

∫

Θ×T−i×M−i

Ui(µ(m
′
i, m−i), θ)dγ

=

∫

Θ×Q−i(T )

∫

{(θ,t−i):q−i(t−i)=q−i}×M−i

Ui(µ(m
′
i, m−i), θ)dγ(θ,q−i)dπ

∗
i (qi(ti))

=

∫

Θ×Q−i(T )

∫

M−i

Ui(µ(m
′
i, m−i), θ)dmargM−i

γ(θ,q−i)dπ
∗
i (qi(ti)),

where margM−i
γ(θ,q−i) is the marginal distribution of γ(θ,q−i) on M−i.

Pick any t′i such that qi(t
′
i) = qi(ti). We can find a unique γ′ ∈ ∆(Θ× T−i ×M−i)

such that for all measurable E ⊆ Θ× T−i and F ⊆ M−i,

γ′(E × F ) =

∫

Θ×T−i

χ(E)margM−i
γ(θ,q−i(t−i))(F )dπi(t

′
i),

Then the marginal distribution of γ′ on Θ× T−i is equal to πi(t
′
i).

Let (t−i, m−i) be in the support of the marginal of γ′ on T−i×M−i. For each n ≥ 1,

let B 1

n
(q−i(t−i)) be the open ball of radius 1

n
around q−i(t−i). The inverse image

q−1
−i (B 1

n
(q−i(t−i))) is an open subset of T−i containing t−i. Let B̂ 1

n
(m−i) be the open
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ball of radius 1
n
around m−i. By the definition of support, the marginal distribution

of γ′ on T−i × M−i assigns a positive probability to q−1
−i (B 1

n
(q−i(t−i))) × B̂ 1

n
(m−i).

Hence, γ′(Θ× q−1
−i (B 1

n
(q−i(t−i)))× B̂ 1

n
(m−i)) > 0. But

γ′(Θ× q−1
−i (B 1

n
(q−i(t−i)))× B̂ 1

n
(m−i))

=

∫

Θ×T−i

χ(Θ× q−1
−i (B 1

n
(q−i(t−i))))margM−i

γ(θ,q−i(t′−i))
(B̂ 1

n
(m−i))dπi(t

′
i)

=

∫

Θ×Q−i(T )

χ(Θ× B 1

n
(q−i(t−i)))margM−i

γ(θ,q−i)(B̂ 1

n
(m−i))dπ

∗
i (qi(t

′
i))

=

∫

Θ×Q−i(T )

χ(Θ× B 1

n
(q−i(t−i)))margM−i

γ(θ,q−i)(B̂ 1

n
(m−i))dπ

∗
i (qi(ti))

=

∫

Θ×Q−i(T )

γ(θ,q−i)(Θ× q−1
−i (B 1

n
(q−i(t−i)))× B̂ 1

n
(m−i))dπ

∗
i (qi(ti))

= γ(Θ× q−1
−i (B 1

n
(q−i(t−i)))× B̂ 1

n
(m−i)).

So there must exist tn−i ∈ q−1
−i (B 1

n
(q−i(t−i))) and mn

−i ∈ B̂ 1

n
(m−i) such that (tn−i, m

n
−i)

is in the support of the marginal distribution of γ on T−i ×M−i, which in turn is a

subset of ×j 6=iGr(Σk−1
j (·|αµ,T )). Thus, (tn−i, m

n
−i) ∈ ×j 6=iGr(Σk−1

j (·|αµ,T )) for all n.

By construction, mn
−i → m−i. As T−i is compact, there exists a subsequence, without

loss of generality the sequence (tn−i)n≥1 itself, that converges to some t̃−i. Since α
µ,T
i is

continuous p, it is continuous for all i. Therefore, we can apply Lemma 3 to obtain that

Gr(Σk−1
j (·|αµ,T )) is closed for all j 6= i. Hence, (t̃−i, m−i) ∈ ×j 6=iGr(Σk−1

j (·|αµ,T )).

So m−i ∈ ×j 6=iΣ
k−1
j (t̃j |αµ,T ).

By construction, tn−i

p
→ t−i. Hence, q−i(t̃−i) = q−i(t−i). By the induction hypoth-

esis, ×j 6=iΣ
k−1
j (t̃j|αµ,T ) = ×j 6=iΣ

k−1
j (tj |αµ,T ). Hence, m−i ∈ ×j 6=iΣ

k−1
j (tj|αµ,T ), i.e.,

(t−i, m−i) ∈ ×j 6=iGr(Σk−1
j (·|αµ,T )). Thus, the marginal of γ′ on T−i ×M−i supports

a subset of ×j 6=iGr(Σk−1
j (·|αµ,T )).

By construction, for all m′
i,

∫

Θ×T−i×M−i

Ui(µ(m
′
i, m−i), θ)dγ

′

=

∫

Θ×T−i

∫

M−i

Ui(µ(m
′
i, m−i), θ)dmargM−i

γ(θ,q−i(t−i))dπi(t
′
i),

=

∫

Θ×Q−i(T )

∫

M−i

Ui(µ(m
′
i, m−i), θ)dmargM−i

γ(θ,q−i)dπ
∗
i (qi(t

′
i)),
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=

∫

Θ×T−i×M−i

Ui(µ(m
′
i, m−i), θ)dγ.

Therefore,

mi ∈ arg max
m′

i∈Mi

∫

Θ×T−i×M−i

Ui(µ(m
′
i, m−i), θ)dγ

′.

Hence, mi ∈ Σk
i (t

′
i|α

µ,T ). We thus conclude that Σk
i (ti|α

µ,T ) = Σk
i (t

′
i|α

µ,T ).

Proof of Theorem 1:

Proof. We prove the sufficiency part of the theorem using a series of steps.

Step 1 : Recall the construction of µ̂:

µ̂(q1) = f(τ(q1)), ∀q1 ∈ ×i∈IQ
1
i (T̂ ).

Using Lemma 1, we continuously extend µ̂ to (∆Θ)I to obtain the simple mechanism

µ, which basically amounts to applying µ̂ after translating messages mi ∈ ∆Θ into

messages q1i ∈ Q1
i (T̂ ) using the translation q1i ∈ ωi(mi) with probability ξmi

(q1i ).

For the rest of the proof, let us fix a type space T ′ ⊇ T̂ and recall that we are

assuming that the behavioral anchors αµ,T ′

in the simple mechanism µ are truth-

ful. An important property of truthful anchors that we use below is that they are

continuous p. We will also apply the technical lemmata presented in Appendix A

(Lemmata 2, 3, 4, and 5).

Step 2 : As µ is continuous, we can apply Lemma 2 which proves that for each i and

σ−i, we can find a measurable (pure) strategy σi such that σi(ti) is type ti’s best

response to σ−i. Hence, using induction on k, we can easily argue that Sk
i (α

µ,T ′

) 6= ∅

for all i and 1 ≤ k ≤ K.

Step 3 : As both µ and the behavioral anchors αµ,T ′

are continuous, we can apply

Lemmata 3 and 4. Thus, firstly, for all individuals i and depths of reasoning k ≥ 1,

the correspondence Σk
i (·|α

µ,T ′

) is upper hemicontinuous. Secondly, for all individuals

i, depths of reasoning k ≥ 1, strategies σi ∈ Sk
i (α

µ,T ′

), and types ti ∈ T ′
i , every mi in

the support of σi(ti) is an element of Σk
i (ti|α

µ,T ′

).

Step 4 : As the mechanism µ is continuous and the behavioral anchors αµ,T ′

are

continuous p, we can apply Lemma 5. Thus, the correspondence Σk
i (·|α

µ,T ′

) depends
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only on the belief hierarchies of types. This result, together with upper hemicontinuity

of Σk
i (·|α

µ,T ), implies that Σk
i (·|α

µ,T ) is in fact upper hemicontinuous p. We prove this

by arguing that Gr(Σk
i (·|α

µ,T )) is closed when the underlying topology on T ′
i is the

semimetric topology. Consider any (tni )n≥1 ∈ T ′
i and (mn

i )n≥1 ∈ Mi such that tni
p
→ ti,

mn
i → mi and mn

i ∈ Σk
i (t

n
i |α

µ,T ) for all n ≥ 1. As T ′
i is compact, there exists a

subsequence, without loss of generality the sequence (tni )n≥1 itself, that converges to

some t′i. Then upper hemicontinuity of Σk
i (·|α

µ,T ) implies that mi ∈ Σk
i (t

′
i|α

µ,T ). But

tni → t′i implies that tni
p
→ t′i. Thus, we must have qi(ti) = qi(t

′
i). Lemma 5 then

implies that mi ∈ Σk
i (ti|α

µ,T ).

Step 5 : We need one more lemma before making the final argument. The following

lemma says that for all individuals i, depths of reasoning k ≥ 1, and types ti who

belong to the planner’s model, the messages in Σk
i (ti|α

µ,T ′

) translate into messages

in {q1i (t
′
i) : t

′
i ∼

f
i ti}.

Lemma 6. For all T ′ ⊇ T̂ , i ∈ I, ti ∈ T̂i, and k ≥ 1, if mi ∈ Σk
i (ti|α

µ,T ′

), then

ωi(mi) ⊆ {q1i (t
′
i) : t

′
i ∼

f
i ti}.

Proof. We first make the following observation: As f is SIRBIC, and µ̂(q1(t)) =

f(τ(q1(t))) = f(t) for all t ∈ T̂ , we have

∫

Θ×T̂−i

Ui(µ̂(q
1(t)), θ)dπ̂i(ti) =

∫

Θ×T̂−i

Ui(f(t), θ)dπ̂i(ti)

≥

∫

Θ×T̂−i

Ui(f(t
′
i, t−i), θ)dπ̂i(ti)

=

∫

Θ×T̂−i

Ui(µ̂(q
1
i (t

′
i), q

1
−i(t−i)), θ)dπ̂i(ti),

for all ti, t
′
i ∈ T̂i and i ∈ I, and the inequality holds strictly when f is responsive to

ti versus t
′
i.

We now proceed by induction on k. Pick any individual i and type ti ∈ T̂i. Since

αµ,T ′

is truthful, if mi ∈ Σ1
i (ti|α

µ,T ′

) = BR
α
µ,T ′

−i

i (ti), then we must have

mi ∈ arg max
m′

i∈∆Θ

∑

q1i∈ωi(m′
i)

ξm′
i
(q1i )

∫

Θ×T̂−i

Ui(µ̂(q
1
i , q

1
−i(t−i)), θ)dπ̂i(ti). (6)
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It follows from the observation above that if q1i ∈ ωi(mi), then q1i = q1i (t
′
i) for some

t′i ∼
f
i ti. Thus, ωi(mi) ⊆ {q1i (t

′
i) : t

′
i ∼

f
i ti}.

Suppose now that k > 1, and that the property holds for all k′ < k. Consider

any ti ∈ T̂i and mi ∈ Σk
i (ti|α

µ,T ′

). Then mi is a best response to some conjecture

γ ∈ ∆(Θ×T ′
−i×M−i) such that the marginal of γ on Θ×T ′

−i is equal to π′
i(ti) (which

is equal to π̂i(ti) on its support) and the marginal distribution of γ on T ′
−i × M−i

supports a subset of ×j 6=iGr(Σk−1
j (·|αµ,T ′

)). By the induction hypothesis, individual

i’s conjecture has j of any type tj ∈ T̂j report mj such that ωj(mj) ⊆ {q1j (t
′
j) : t

′
j ∼

f
j

tj}. But for any q1i ∈ Q1
i (T̂ ) and t−i ∈ T̂−i, the following is true for all t′−i such that

t′j ∼
f
j tj for all j:

µ̂(q1i , q
1
−i(t

′
−i)) = f(τi(q

1
i ), t

′
−i) = f(τi(q

1
i ), t−i) = µ̂(q1i , q

1
−i(t−i)).

It is thus without loss of generality to assume that individual i’s conjecture has j of any

type tj ∈ T̂j reportmj such thatmj translates into q
1
j (tj). So the messagemi must also

satisfy (6). Hence, for the same reason as above, we have ωi(mi) ⊆ {q1i (t
′
i) : t

′
i ∼

f
i ti},

as desired.

Step 6 : To finish the proof, let (tn)n≥1 be a sequence of type profiles in T ′ such that

tn
p
→ t ∈ T̂ . Pick any strategy profile σ such that for each i, σi ∈ Ski

i (αµ,T ′

) with

1 ≤ ki ≤ K.

Consider individual i. As Mi = ∆Θ is compact, ∆Mi is compact. Compactness of

∆Mi implies that every subsequence of σi(t
n
i ) has a subsequence σi(t

nl

i ) that converges

to some ηi ∈ ∆Mi. Pick any message mi in the support of ηi. Since σi(t
nl

i ) converges

to ηi, and the support correspondence is lower hemicontinuous (see Theorem 17.14

in Aliprantis and Border (2006)), we can find a subsequence of σi(t
nl

i ), without loss

of generality the sequence σi(t
nl

i ) itself, and corresponding sequence of messages mnl

i

such that mnl

i is in the support of σi(t
nl

i ) for each nl and mnl

i converges to mi. Now,

mnl

i ∈ Σki
i (t

nl

i |αµ,T ′

), as argued in Step 3. Since tnl

i

p
→ ti, m

nl

i → mi, and Σki
i (·|α

µ,T ′

) is

upper hemicontinuous p, we have that mi ∈ Σki
i (ti|α

µ,T ′

). It then follows from Lemma

6 that ωi(mi) ⊆ {q1i (t
′
i) : t

′
i ∼

f
i ti}.

Since we have a finite number of individuals, the previous argument implies

that every subsequence of σ(tn) has a subsequence σ(tnl) that converges to some
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(η1, . . . , ηI) ∈ ×i∈I∆Mi such that if the message profile m is such that mi is in

the support of ηi for each i, then ωi(mi) ⊆ {q1i (t
′
i) : t′i ∼f

i ti} for each i. We

argue that µ(σ(tnl)) converges f(t). To see this, pick any Borel subset B of X

such that f(t)(∂B) = 0, where ∂B denotes the boundary of B. Then the mapping

m → µ(m)(B) is continuous (due to the continuity of µ) and bounded. Since σ(tnl)

converges to (η1, . . . , ηI), it follows from the definition of weak converge of proba-

bility measures that µ(σ(tnl))(B) =
∫

M
µ(m)(B)dσ1(t

nl

1 )× . . .× σI(t
nl

I ) converges to
∫

M
µ(m)(B)dη1 × . . .× ηI . But any m in the support of η1 × . . .× ηI translates into

profiles in ×i∈I{q1i (t
′
i) : t′i ∼

f
i ti}. Since t′ ∼f t implies that µ̂(q11(t

′
1), . . . , q

1
I (t

′
I)) =

f(t′) = f(t), we have that µ(m) = f(t) for all m in the support of η1 × . . . × ηI .

Thus,
∫

M
µ(m)(B)dη1 × . . . × ηI = f(t)(B), and hence µ(σ(tnl))(B) converges to

f(t)(B). Therefore, µ(σ(tnl)) converges to f(t) by the definition of weak convergence

of probability measures.

It follows from the argument in the previous paragraph that every subsequence of

µ◦σ(tn) has a subsequence that converges to f(t), which is sufficient to conclude that

the sequence µ ◦ σ(tn) itself converges to f(t).

Proof of Theorem 3:

Proof. Consider an unacceptable deception β. Then f(β(t̂)) 6= {f(t̂)} for some t̂ ∈ T̂ .

It follows from Lemma 7 (which is stated and proved at the end of the current

proof) that there exist i ∈ I, ti ∈ T̂i, and t̃i ∈ βi(ti) such that for every conjecture

γ ∈ ∆(Θ× T̂−i × T̂ β
−i) for which the marginal distribution of γ on Θ× T̂−i coincides

with π̂i(ti) and γ(θ, t−i, t̃−i) > 0 =⇒ t̃−i ∈ β−i(t−i), there exists T ⊇ T̂ and t̄i ∈ Ti

such that

∑

Θ×T̂
β
−i

Ui(f
T (t̄i, t−i), θ) margΘ×T̂

β
−i
γ(θ, t−i) >

∑

Θ×T̂
β
−i

Ui(f
T (t̃i, t−i), θ) margΘ×T̂

β
−i
γ(θ, t−i).

Thus it must be that fT (t̄i, t−i) 6= fT (t̃i, t−i) for at least one t−i ∈ T̂ β
−i. Therefore,

t̃i 6∼
fT

i t̄i.

Define ℓ : T̂−i → ∆X as ℓ(t−i) = fT (t̄i, t−i) for all t−i ∈ T̂−i. Since t̃i ∈ T̂i, we

have fT (t̃i, t−i) = f(t̃i, t−i) for all t−i ∈ T̂ β
−i. Therefore, the above inequality can be
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rewritten as

∑

Θ×T̂
β
−i

Ui(ℓ(t−i), θ) margΘ×T̂
β
−i
γ(θ, t−i) >

∑

Θ×T̂
β
−i

Ui(f(t̃i, t−i), θ) margΘ×T̂
β
−i
γ(θ, t−i).

As fT is Bayesian incentive compatible, for all i ∈ I and t′i ∈ T̂i,

∑

Θ×T̂−i

Ui(f(t
′
i, t−i), θ)π̂i(t

′
i)(θ, t−i) =

∑

Θ×T̂−i

Ui(f
T (t′i, t−i), θ)π̂i(t

′
i)(θ, t−i)

≥
∑

Θ×T̂−i

Ui(f
T (t̄i, t−i), θ)π̂i(t

′
i)(θ, t−i)

=
∑

Θ×T̂−i

Ui(ℓ(t−i), θ)π̂i(t
′
i)(θ, t−i).

Finally, since fT is SIRBIC with respect to types in T̂ and t̃i 6∼fT

i t̄i, the above

inequality must be strict when t′i = t̃i.

We finish the appendix with the next lemma and its proof:

Lemma 7. Suppose f : T̂ → ∆X can be extended to every type space T ⊇ T̂ such that

the extension fT is Bayesian incentive compatible, SIRBIC with respect to types in

T̂ , and continuous p at all points in T̂ . If there exists a deception β such that for each

i ∈ I, ti ∈ T̂i, and t̃i ∈ βi(ti), there exists a conjecture γ t̃i
ti
∈ ∆(Θ × T̂−i × T̂ β

−i) such

that the marginal distribution of γ t̃i
ti
on Θ× T̂−i coincides with π̂i(ti), γ

t̃i
ti
(θ, t−i, t̃−i) >

0 =⇒ t̃−i ∈ β−i(t−i) and

t̃i ∈ argmax
t′
i
∈Ti

∑

Θ×T̂
β
−i

Ui(f
T (t′i, t−i), θ) margΘ×T̂

β
−i
γ t̃i
ti
(θ, t−i),

for all T ⊇ T̂ , then f(β(t̂)) = {f(t̂)} for all t̂ ∈ T̂ .

Proof. Consider any ti ∈ T̂i and t̃i ∈ βi(ti). Since t̃i ∈ T̂i, and f is SIRBIC, the set

of best replies of type t̃i to the belief that all other individuals report their types

truthfully in the direct mechanism f is equal to {t′i ∈ T̂i : t′i ∼f
i t̃i}. Let γ t̃i

∗ ∈

∆(Θ× T̂−i × T̂−i) denote the conjecture corresponding to this belief of type t̃i. Thus,

γ t̃i
∗ (θ, t−i, t−i) = π̂i(t̃i)(θ, t−i) and γ t̃i

∗ (θ, t−i, t
′
−i) = 0 for all t′−i 6= t−i.
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For each z ≥ 1, i ∈ I, ti ∈ T̂i and t̃i ∈ βi(ti), we construct t̄i[z, ti, t̃i] and let T be

the type space such that

Ti =
⋃

z≥1

⋃

ti∈T̂i

⋃

t̃i∈βi(ti)

{t̄i[z, ti, t̃i]}
⋃

T̂i, ∀i ∈ I.

For each i, pick any |T̂i| points in ℜ2 such that the Euclidean distance between

any two points is exactly 1. Since T̂i is homeomorphic to this set of points, we can

identify each point in this set by the corresponding ti ∈ T̂i. For each ti ∈ T̂i, draw

a circle of radius 1
4
in ℜ2 with the center at ti. For each t̃i ∈ βi(ti), pick a distinct

point on the circumference of this circle, and denote this point by t̄i[1, ti, t̃i] (note

that there are a finite number of such points). For each z > 1, let t̄i[z, ti, t̃i] be the

point on the line-segment joining ti and t̄i[1, ti, t̃i] which is at a distance 1
3+z

from ti.

By construction, Ti is countable, and when endowed with the Euclidean metric, it is

a compact metric space.

For each ti ∈ T̂i, we let the belief πi(ti) = π̂i(ti). Then define the beliefs of type

t̄i[1, ti, t̃i] such that πi(t̄i[1, ti, t̃i]) = πi(t̃i). For each z > 1, the beliefs of type t̄i[z, ti, t̃i]

are such that

πi(t̄i[z, ti, t̃i])(θ, t̄−i[z − 1, t−i, t̃−i]) =

(

1−
1

z

)

γ t̃i
ti
(θ, t−i, t̃−i) +

1

z
γ t̃i
∗ (θ, t−i, t̃−i),

for all t−i ∈ T̂−i and t̃−i ∈ β−i(t−i), and

πi(t̄i[z, ti, t̃i])(θ, t−i) =
1

z
γ t̃i
∗ (θ, t−i, t−i),

for all t−i ∈ T̂−i such that t−i 6∈ β−i(t−i).

We argue that πi is continuous. As all points in Ti except those in T̂i are isolated,

we only need to show that πi is continuous at all ti ∈ T̂i. It is sufficient to argue that

πi(t̄i[z, ti, t̃i]) converges to πi(ti) as z → ∞ for all t̃i ∈ βi(ti). To see this, consider

any bounded continuous function h : Θ× T−i → ℜ. Then for any z > 1,

∑

Θ×T−i

h(θ, t−i)πi(t̄i[z, ti, t̃i])(θ, t−i)
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=
∑

(θ,t−i,t̃−i):t̃−i∈β−i(t−i)

h(θ, t̄−i[z − 1, t−i, t̃−i])

((

1−
1

z

)

γ t̃i
ti
(θ, t−i, t̃−i) +

1

z
γ t̃i
∗ (θ, t−i, t̃−i)

)

+
∑

(θ,t−i):t−i 6∈β−i(t−i)

h(θ, t−i)
1

z
γmi
∗ (θ, t−i, t−i).

As h is continuous and limz→∞ t̄−i[z − 1, t−i, t̃−i] = t−i, we have

lim
z→∞

∑

Θ×T−i

h(θ, t−i)πi(t̄i[z, ti, t̃i])(θ, t−i) =
∑

(θ,t−i,t̃−i):t̃−i∈β−i(t−i)

h(θ, t−i)γ
t̃i
ti
(θ, t−i, t̃−i)

=
∑

(θ,t−i)

h(θ, t−i)πi(ti)(θ, t−i)

Thus, πi(t̄i[z, ti, t̃i]) converges to πi(ti) as z → ∞.

By construction, T ⊇ T̂ . By assumption, f can be extended to T such that the

extension fT is Bayesian incentive compatible, SIRBIC with respect to types in T̂ ,

and continuous p at all points in T̂ . We argue that for all z ≥ 1, ti ∈ T̂i and t̃i ∈ βi(ti),

fT (t̄i[z, ti, t̃i]), t−i) = fT (t̃i, t−i), ∀t−i ∈ T−i.

We proceed by induction. Consider t̄i[1, ti, t̃i]. Since fT is Bayesian incentive com-

patible, t̄i[1, ti, t̃i] is a best response of type t̄i[1, ti, t̃i] when all others report their

types truthfully in the direct mechanism fT . By construction, πi(t̄i[1, ti, t̃i]) = πi(t̃i).

Thus, the set of best responses of type t̄i[1, ti, t̃i] are equal to the set of best responses

of type t̃i when all others report their types truthfully in the direct mechanism fT .

This means that t̄i[1, ti, t̃i] too is a best response of type t̃i when all others report

their types truthfully in the direct mechanism fT . Since fT is SIRBIC with respect

to types in T̂ , we obtain that

fT (t̄i[1, ti, t̃i]), t−i) = fT (t̃i, t−i), ∀t−i ∈ T−i.

Now pick z ≥ 1, and suppose the statement is true for z − 1. Consider t̄i[z, ti, t̃i].

If t̄i[z, ti, t̃i] reports t
′
i ∈ Ti when all others report their type truthfully in the direct
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mechanism fT , then he expects a payoff of

∑

Θ×T−i

Ui(f
T (t′i, t−i), θ)πi(t̄i[z, ti, t̃i])(θ, t−i)

=
∑

(θ,t−i,t̃−i):t̃−i∈β−i(t−i)

Ui(f
T (t′i, t̄−i[z − 1, t−i, t̃−i]), θ)

((

1−
1

z

)

γ t̃i
ti
(θ, t−i, t̃−i) +

1

z
γ t̃i
∗ (θ, t−i, t̃−i)

)

+
∑

(θ,t−i):t−i 6∈β−i(t−i)

Ui(f
T (t′i, t−i), θ)

1

z
γ t̃i
∗ (θ, t−i, t−i). (7)

By the induction hypothesis, fT (t′i, t̄−i[z− 1, t−i, t̃−i]) = fT (t′i, t̃−i). Hence, the right-

hand side of (7) becomes

∑

(θ,t−i,t̃−i):t̃−i∈β−i(t−i)

Ui(f
T (t′i, t̃−i), θ)

((

1−
1

z

)

γ t̃i
ti
(θ, t−i, t̃−i) +

1

z
γ t̃i
∗ (θ, t−i, t̃−i)

)

+
∑

(θ,t−i):t−i 6∈β−i(t−i)

Ui(f
T (t′i, t−i), θ)

1

z
γ t̃i
∗ (θ, t−i, t−i)

=

(

1−
1

z

)

∑

Θ×T̂
β
−i

Ui(f
T (t′i, t̃−i), θ) margΘ×T̂

β
−i
γ t̃i
ti
(θ, t̃−i) +

1

z

∑

Θ×T̂−i

Ui(f
T (t′i, t−i), θ)πi(t̃i)(θ, t−i)

By assumption,

t̃i ∈ argmax
t′i∈Ti

∑

Θ×T̂
β
−i

Ui(f
T (t′i, t̃−i), θ) margΘ×T̂

β
−i
γ t̃i
ti
(θ, t̃−i).

Since fT is Bayesian incentive compatible,

t̃i ∈ argmax
t′i∈Ti

∑

Θ×T̂−i

Ui(f
T (t′i, t−i), θ)πi(t̃i)(θ, t−i).

Then it must be that

t̄i[z, ti, t̃i] ∈ argmax
t′i∈Ti

∑

Θ×T̂−i

Ui(f
T (t′i, t−i), θ)πi(t̃i)(θ, t−i). (8)
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If that were not true, then

∑

Θ×T−i

Ui(f
T (t̃i, t−i), θ)πi(t̄i[z, ti, t̃i])(θ, t−i) >

∑

Θ×T−i

Ui(f
T (t̄i[z, ti, t̃i], t−i), θ)πi(t̄i[z, ti, t̃i])(θ, t−i),

which would contradict the fact that fT is Bayesian incentive compatible.

The expression (8) means that t̄i[z, ti, t̃i] too is a best response of type t̃i when all

others report their types truthfully in the direct mechanism fT . Since fT is SIRBIC

with respect to types in T̂ , we obtain that

fT (t̄i[z, ti, t̃i]), t−i) = fT (t̃i, t−i), ∀t−i ∈ T−i.

To complete the proof, consider any t ∈ T̂ and t̃ ∈ β(t). We have argued that

fT (t̄[z, t, t̃]) = fT (t̃), ∀z ≥ 1.

Since t̄[z, t, t̃] → t, we have t̄[z, t, t̃]
p
→ t. As fT is continuous p at all points in T̂ , we

have fT (t̃) = fT (t). But fT (t̃) = f(t̃) and fT (t) = f(t) since fT is an extension of

f . Hence f(t̃) = f(t).
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