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Abstract. The stable set of von Neumann and Morgenstern imposes credibility on coali-
tional deviations. Their credibility notion can be extended to cover farsighted coalitional
deviations, as proposed by Harsanyi (1974), and more recently reformulated by Ray and
Vohra (2015). However, the resulting farsighted stable set suffers from a conceptual
drawback: while coalitional deviations improve on existing outcomes, coalitions might
do even better by moving elsewhere. Or other coalitions might intervene to impose their
favored moves. We show that every farsighted stable set satisfying some reasonable, and
easily verifiable, properties is unaffected by the imposition of this stringent maximality
requirement. These properties are satisfied by many, but not all, known farsighted stable
sets.
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1. INTRODUCTION

The core is a classical solution concept: it identifies payoff profiles that no group, or
coalition, can dominate with an allocation that is feasible for the coalition in question.
But the core does not ask if the new allocation itself is threatened or “blocked” by other
coalitions. In this conceptual sense the solution is too strong, possibly excluding al-
locations that would not be credibly dominated. The problem is that the definition of
credibility is often circular — an allocation is not credible if it is not challenged by a
credible allocation. Concepts such as the bargaining set (Aumann and Maschler 1964),
which only try to build in an additional “round” of domination, are just not up to the
task. But the vNM stable set (von Neumann and Morgenstern, 1944) can indeed be seen
as such a theory: it cuts through that circularity. Say that a payoff profile is dominated
by another profile if some coalition prefers the latter profile and can unilaterally imple-
ment the piece of the new profile that pertains to it. A set of feasible payoff profiles Z is
stable if it satisfies two properties:

Internal Stability. If u ∈ Z, it is not dominated by u′ ∈ Z.
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sity, rajiv vohra@brown.edu. Ray acknowledges funding from the National Science Foundation under
grant SES-1629370. Names are in random order, as proposed in Ray r© Robson (2018). We are grateful
to three anonymous referees and a Co-Editor for many helpful comments.
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External Stability. If u /∈ Z, then there exists u′ ∈ Z which dominates u.

Notice how internal and external stability work in tandem to get around the circular-
ity implicit in the definition of credibility. The set Z is to be viewed as a “standard of
behavior” (Greenberg, 1990). Once accepted, no allocation in the standard can be over-
turned by another allocation also satisfying the standard. Moreover, allocations within
the standard jointly dominate all non-standard allocations. This perspective drives home
the idea that the relevant solution concept is not a payoff profile, but a set of payoff
profiles which work in unison. It is a beautiful definition.

Yet, temporarily setting beauty aside, there are at least three problems with the concept:

1. Harsanyi critique. Suppose that u′ dominates u ∈ Z, and that u′ is in turn dominated
by u′′ ∈ Z, as required by vNM stability. Then it is true that u′ isn’t “credible,” but
so what? What if the coalition that proposes u′ only does so to induce u′′ in the first
place, where it is better off? Harsanyi (1974) went on to propose a “farsighted version”
of vNM stability, one that permits a coalition to anticipate a chain reaction of payoff
profiles, and asking for a payoff improvement at the terminal node of this chain.1

2. Ray-Vohra critique. Ray and Vohra (2015) highlight a seemingly innocuous device
adopted by von Neumann and Morgenstern. Dominance is defined over entire profiles
of payoffs. As described above, profile u′ dominates u when some coalition is better off
under u′ and can implement its piece of u′ unilaterally. But what about the rest of u′,
which involves allocations of payoffs to others who have nothing to do with the coalition
in question? Who allocates these payoffs, and what incentive do they have to comply
with the stipulated amounts? To this, von Neumann and Morgenstern would answer that
it does not matter: payoffs to outsiders are irrelevant, and only a device for tracking all
profiles in a common space. However, once the solution is modified along the lines of
Harsanyi, the critique does matter: the payoffs accruing to others will fundamentally
affect the chain reaction that follows. Their determination cannot be finessed.

3. Maximality problem. Domination requires every coalition participating in the chain
reaction of proposals and counter-proposals be better off (relative to their starting points)
once the process has come to a standstill. But it does not require coalitions to choose
their best moves (Ray and Vohra 2014, Dutta and Vohra 2017), and it rules out possibly
unwelcome interventions by other coalitions. This is of concern not just at any stage but
along the entire farsighted blocking chain. That chain is supported by the anticipation
that later coalitions participating in the chain will also be “better off” doing so. But now
“better off” isn’t good enough: what if they gain even more by doing something else,

1There is now a sizable literature the studies farsighted stability in coalitional games. This includes
Aumann and Myerson (1988), Chwe (1994), Xue (1998), Diamantoudi and Xue (2003), Herings, Mauleon
and Vannetelbosch (2004, 2017), Jordan (2006), Mauleon, Vannetelbosch and Vergote (2011), Kimya
(2015), Ray and Vohra (2015), Bloch and van den Nouweland (2017), Dutta and Vohra (2017) and Dutta
and Vartiainen (2018).
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and that something else isn’t good for the original deviator? Or what if a different coali-
tion intervenes? Faced with such potential complexities, the entire chain of proposals
becomes suspect.

This third problem forms the subject of our paper.

To fix ideas, consider the following example (Example 5.8, Ray and Vohra 2014). There
are two players, 1 and 2, and four states, a, b, c, d. The payoff profiles by state are
u(a) = (1, 1), u(b) = (0, 0), u(c) = (10, 10) and u(d) = (0, 20). Suppose that state a
can only changed by player 1, and that she can only move to b. From b, only player 2 can
move, and she can move either to c or d, both of which are terminal states (no further
move is possible from c or d). We claim that the unique farsighted stable set is {c, d}.
Certainly, both c and d must be in every farsighted stable set. But then, a and b are not
in any farsighted stable set: the state b is trivially eliminated, while a is dominated by a
move by player 1 to b followed by a move by player 2 to c; player 1 gains by replacing
a with c and player 2 gains by replacing b with c. But the elimination of a violates
maximality: at b, player 2’s optimal move is to d rather than to c. If player 1 were to
forecast that, it wouldn’t be in her interest to move, making a a “stable” state.

This example suggests that something like subgame perfection needs to be grafted on
to farsighted stability. But cooperative game theory attempts to model free-form nego-
tiations. There is no protocol that sets the “rules of the game,” assigning a particular
player or coalition to move at each node. Noncooperative game theory imposes such
protocols,2 but the apparent gain in precision is in part illusory, for it is well known that
the answers can be notoriously sensitive to the choice of the extensive form. In contrast,
the theory of blocking is more open-ended: any coalition can move at any stage. Specif-
ically, this implies that the problem of maximality is not just restricted to the coalition
that actually moves, but it also applies to other coalitions that could potentially move.
So, while maximality is certainly related to sequential rationality or subgame perfection,
it goes beyond that. That is, different definitions of maximality are possible depending
on which coalitions are “allowed” to move at any state.

The weakest of these conditions, referred to as (just) maximality by Dutta and Vohra
(2017), requires only that the moving coalition lacks a better alternative to its stipulated
move. A stricter version, strong maximality, rules out deviations by any coalition that
intersects the coalition stipulated to move. But in this paper, we take on board the
strictest variant: one that asks for immunity to all deviations, not just by the coalition
that moves “in equilibrium,” or by all those that intersect it, but by any coalition. To
distinguish this concept from weaker notions of maximality we refer to it as absolute
maximality.

2For noncooperative approaches to coalition formation, see Chatterjee, Dutta, Ray and Sengupta
(1993), Bloch (1996), Okada (1996), Ray and Vohra (1999), and the survey in Ray and Vohra (2014).
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None of this is particularly germane to the example above: all the concepts above coin-
cide, and the unique farsighted stable stable does not satisfy any notion of maximality.
But in a negotiation setting, there aren’t states as in the example with a highly restricted,
tree-like structure describing possible moves. States are combinations of coalition struc-
tures and proposed payoff allocations, and while it is true that not all coalitions are ca-
pable of precipitating one state from another, it is possible to travel from any state to any
other. Our main result shows that in the context of negotiations, the example above is an
outlier: every farsighted stable set satisfying reasonable and easily verifiable properties
is unaffected by the imposition of absolute maximality. These properties are described
as A and B in Section 3.1, and the main result is stated as Theorem 1. The theorem
is useful because the identification of farsighted stable sets, or even stable sets, is not
always an easy task. Having to check if they satisfy maximality adds an additional layer
of complexity. It would be extremely desirable if such a check could be sidestepped,
and Properties A and B allow us to do just that.

There are several cases of special interest in which it is easy to verify that Properties
A and B are satisfied. For instance, any farsighted stable set with a unique payoff pro-
file satisfies both properties. Theorem 2 of Ray and Vohra (2015) shows that such sets
always exist in games that possess certain core payoffs termed separable allocations
(defined in Section 3.2 below). We show that under certain conditions, every competi-
tive equilibrium of an exchange economy is separable and is therefore a single-payoff,
absolutely maximal farsighted stable set.

Simple games are widely employed in applications to political economy. As Shapley
(1962) observed, “a surprising number of the multiperson games found in practice are
simple.” For such games, Property B is automatically satisfied by every farsighted stable
set. Moreover, we show that under mild restrictions, such games possess farsighted
stable sets that also satisfy Property A. Consequently an absolutely maximal farsighted
stable set always exists in such games.

As already observed, in an abstract setting a farsighted stable set may not satisfy even the
weakest form of maximality. Dutta and Vohra (2017, Example 5 and footnote 12) shows
that a farsighted stable set may satisfy maximality but not strong maximality, or it may
satisfy strong maximality but not absolute maximality.3 Coalitional games, however,
have more structure and as our positive results show, history dependence allows us to
establish absolute maximality in a variety of cases. That said, Properties A and B need
not always be satisfied, even in coalitional games. Section 3.4 provides three examples.
In Example 1, Property B is satisfied for a farsighted stable set but not A; in Example
2, Property A is satisfied for the set but not B. In either example, the farsighted stable
set fails to be absolutely maximal, demonstrating that Theorem 1 is tight. At the same

3Although they are concerned with history independent processes, these examples also apply to history
dependent processes.
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time, these properties are sufficient and not necessary for absolute maximality, as shown
in Example 3.

In Section 3.5.1 we show that our positive conclusions can be further sharpened if we
require only maximality, rather than absolute maximality.4 In this case, as Theorem 2
shows, Property B can be dispensed with completely. Moreover, in simple games, even
Property A need not be checked for any farsighted stable set.

2. MAXIMAL FARSIGHTED STABILITY

2.1. Coalitional Games. A coalitional game, or a characteristic function game, is de-
scribed by a finite set N of players and a mapping V that assigns to each coalition S
(a nonempty subset of N ) a closed set of feasible payoff vectors V (S) ⊆ RS . Nor-
malize the game so that singletons obtain zero, and assume that all coalitions can get
nonnegative but bounded payoffs. So V (S) is some nonempty compact subset of RS

+.
A transferable utility (TU) game is one in which each coalition S has a worth ν(S) and
V (S) = {u ∈ RS |

∑
i∈S ui ≤ ν(S)}.

2.2. States and Effectivity. A state is a coalition structure π and a payoff profile u
feasible for that structure. A typical state x is therefore a pair (π, u) (or {π(x), u(x)}
when we need to be explicit), where uS ∈ V (S) for each S ∈ π. Let X be the set of
all states. An effectivity correspondence E(x, y) specifies for each pair of states x and y
the collection of coalitions that have the power to change x to y. Ray and Vohra (2015)
argue that effectivity correspondences must satisfy natural restrictions for the resulting
solution concepts to make sense. Specifically, we assume throughout:

(E.1) If S ∈ E(x, y), T ∈ π(x) and T ∩ S = ∅, then T ∈ π(y) and u(x)T = u(y)T .

(E.2) For every state x, coalition S, partition µ of S and payoff v ∈ R|S| with vW ∈
V (W ) for each W ∈ µ, there is y ∈ X such that S ∈ E(x, y), µ ⊆ π(y) and uT (y) = v.

Condition E.1 grants coalitional sovereignty to the untouched coalitions: the forma-
tion of S cannot directly influence the membership or payoffs of coalitions in the orig-
inal structure that are entirely unrelated to S. Condition E.2 grants some degree of
sovereignty to the moving coalition. It says that if S wants to move from a going state, it
can do so by reorganizing itself (breaking up into smaller pieces if it so wishes, cap-
tured by the sub-structure µ), provided that the resulting payoff to it, v, is feasible
(vW ∈ V (W ) for every W ∈ µ). What happens “elsewhere,” however, is not under
its control (see, for instance, the sovereignty restriction E.1), which is why E.2 only
asserts the existence of some state y satisfying the sovereignty conditions.

4The farsighted stable set described in Example 1 is maximal but not absolutely maximal.
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2.3. Farsighted Stability. A chain is a finite collection of states {y0, y1, . . . , ym} and
coalitions {S1, . . . , Sm}, such that for every k ≥ 1, we have yk−1 6= yk, and Sk is
effective in moving the state from yk−1 to yk: Sk ∈ E(yk−1, yk). A state y farsightedly
dominates x if there is a chain with y0 = x and ym = y such that for all k = 1, . . .m,
u(y)Sk � u(yk−1)Sk . The associated chain will be called a blocking chain.

A set of states F ⊆ X is a farsighted stable set if it satisfies two conditions:

(i) Internal Farsighted Stability. No state in F is farsightedly dominated by another state
in F ;

(ii) External Farsighted Stability. A state not in F is farsightedly dominated by some
state in F .

Observe that farsightedness does not impose any optimization on coalitional moves,
except for requiring that coalitions must be eventually better off participating in the chain
rather than not participating at all. Below, we impose stringent maximality requirements.

2.4. Absolutely Maximal Farsighted Stable Sets. To incorporate the notion of max-
imality in a farsighted stable set, we will “embed” that set into an ambient history-
dependent negotiation process. To this end, define a history h to be a finite sequence
of states (where any change of state must be feasible), along with the coalitions that
generate any state transitions. If there is no move, the empty coalition is recorded. An
initial history is just a single state.5 Let x(h) be the last state in history h. A negotiation
process is a map σ from histories to the new outcome. For each h, σ(h) = {y(h), S(h)},
where y(h) is the state that follows x(h) and S(h) ∈ E(x(h), y(h)) is the coalition im-
plementing the change. (If x(h) = y(h), then set S(h) may be empty; i.e., “nothing
happens.”) In this way, given any history h, σ induces a continuation chain.

A state x is absorbing under the process σ if at any history h with x(h) = x, y(h) =
x(h) = x. That is, once at x the continuation chain displays x forever. Say that σ
is an absorbing process if its continuation chain must terminate in an absorbing state
starting from any history.6 For every absorbing process σ and history h, let xσ(h) denote
the absorbing state reached from h. Say that an absorbing process σ is coalitionally
acceptable if for each history h, if S(h) is nonempty, then uS(xσ(h)) ≥ uS(x(h)).
Finally, call an absorbing process σ absolutely maximal if at no history h does there
exist a coalition T and a state y with T ∈ E(x(h), y), such that uT (xσ(h, y, T )) �
uT (xσ(h)). We discuss these concepts in more detail in Section 2.5.

5For instance, players might all begin the negotiation process as standalone singletons, or it may be
that some going arrangement or state is already in place.

6That is, there exists k such that y(t)(h) = x for all t ≥ k, where y(t) is defined recursively in the
obvious way.
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A farsighted stable set F is absolutely maximal if it can be embedded in some absorbing,
coalitionally acceptable, and absolutely maximal process σ; that is,

(i) F is the set of all absorbing states of σ.

(ii) At any initial history h = {x} with x /∈ F , or h = (x, (S, y)) with x ∈ F , S ∈
E(x, y) and y /∈ F , the continuation chain from h is a blocking chain terminating in F .

2.5. Discussion. Condition (i) asks that the set F be the ultimate repository of all end-
states of σ starting from any history. That is, we seek not just absorption, but absorption
back into F . Condition (ii) seeks consistency with the “blocking chain” approach that
was originally used to describe F . That is, starting from some state not in F , or following
some replacement of a state in F by another outside it, the process prescribes a blocking
chain leading back into F , just as envisaged in the traditional definition of stability.

But, of course, σ does more: it prescribes a continuation chain for all histories, not just
the ones described in condition (ii) above. It is necessary to do this, because we need
a setting where the counterfactual consequences of alternative actions can be discussed.
That requires us to consider deviations from ongoing chains, deviations from deviations,
and so on; σ handles all these.

The requirement that σ be absolutely maximal is part of the embedding requirement for
F . Note how that concept applies to every coalition, not just the coalition stipulated to
move at the state in question: no coalition can stand to gain following any history. It
is therefore stronger than the maximality condition of Dutta and Vohra (2017) which is
imposed only on the coalition about to move, or their strong maximality condition, im-
posed only on coalitions that share a nonempty intersection with the coalition stipulated
to move.7 Absolute maximality is arguably the strongest form of maximality that one
could insist on. These distinctions have bite, as illustrated by Examples 1 and 4 below.

Our definition also asks that σ be absorbing: that a negotiation process must ultimately
terminate.8: nothing dictates that a process must be absorbing: it could, for instance,
cycle forever. We impose the condition as a desideratum of any negotiation process that
“supports” the farsighted stable set.

In similar vein, coalitional acceptability is not a necessary concomitant of rationality,
though sometimes it could be.9 It is a joint condition on any starting point and the final

7Absolute maximality is also stronger than the maximality conditions in Konishi and Ray (2003) and
Ray and Vohra (2014). In a somewhat different context, this notion is also used by Xue (1998).

8It implies a bit more: it asks for an absorbing state to be absorbing after every history leading to it.
This property does not follow from rationality per se

9Without coalitional acceptability, it is possible to have negotiation processes that return to some single
state x from any history, however unpalatable it might be for some or perhaps all players. (No one-shot
deviation can be improving.) That is absurd, because some coalition could be better off by refusing to go.
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outcome. We view this property — that any coalition that moves at any stage must be
made at least weakly better off in the final outcome — as a desirable characteristic of the
negotiation process. A blocking chain satisfies coalitional acceptability, so for histories
such as those described in Condition (ii), the latter imposes no additional restriction.
Indeed, we could strengthen coalitional acceptability even more: we could ask that after
every history ending in a state not in F , a blocking chain must be used, thereby imposing
farsighted dominance not just “on path,” but following every conceivable history. This
extension is discussed in the Online Appendix.

3. THE MAXIMALITY OF FARSIGHTED STABLE SETS IN COALITIONAL GAMES

Our main theorem states that any farsighted stable set that satisfies two properties is
absolutely maximal. In general, the direct construction of an absorbing, coalitionally
acceptable and absolutely maximal process that embeds any given farsighted stable set
— and thereby evaluating absolute maximality — is not an easy task. Our result is useful
precisely because that task is replaced by the verification of two simple properties.

3.1. Two Properties. Consider the following two conditions:

A. Suppose there are two states a and b in F such that uj(b) > uj(a) for some j. Then
there exists a state z ∈ F such that uj(z) ≤ uj(a), and ui(z) ≥ ui(b) for all i 6= j.

B. If a, b in F , there is no coalition T with uT (b) ∈ V (T ), T ∈ π(b) and uT (b)� uT (a).

Property A states that if player j gets a strictly higher payoff at b ∈ F than at a ∈ F ,
then it is possible to find another state in F at which j’s payoff is capped at uj(a) without
reducing the payoffs of the other players relative to those obtained under b.

Property B states that given a state in F , there is no other state in F with a higher,
feasible payoff for some coalition in that state. This property bears a close resemblance
to internal stability. In fact, in the classical literature starting with von Neumann and
Morgenstern (1944) and including Harsanyi (1974), it is internal stability.10

Nevertheless, it is possible to lock two coalitions into a coordination failure so that coalitional acceptability
applies to neither of them. Some of these outcomes can be eliminated by perturbing our model so that it
applies to negotiations with discounted payoffs in real time, as in Konishi and Ray (2003) and Ray and
Vohra (2014). But we find it easiest to impose coalitional acceptability directly on the process.

10In that literature, a coalition can move to any state as long the payoff restricted to the coalition
is feasible for it; there is no restriction on the payoffs to outsiders. There, Property B is equivalent to
internal (myopic) stability and is automatically satisfied by every stable set, farsighted or not. It is only
because of our insistence on the coalitional sovereignty conditions (E.1) and (E.2) that Property B could
go beyond internal stability, and therefore must be separately stated. In our setting, if there are a, b ∈ F
and T such that uT (b) ∈ V (T ) and uT (b) � uT (a), then by (E.2), T can move to some state, say b′,
where uT (b′) = uT (b). But b′ may not be in F , and while b is in F , it is also possible that T /∈ E(a, b),
because the coalition structure and/or the payoffs of players outside T might differ across b and b′.
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3.2. Main Theorem and Discussion. Our main result is

THEOREM 1. If a farsighted stable set satisfies Properties A and B, then it is absolutely
maximal.

Section 3.3 proves the theorem. Here, we examine Properties A and B in some appli-
cations. Later, in Section 3.4, we examine how tightly these properties are connected
to the outcome of interest (the maximality of the stable set). It is to be noted, first and
foremost, that Properties A and B are not assumptions, but rather characteristics of an
endogenous outcome — the farsighted stable set — to be checked.

REMARK 1. Both Properties A and B are satisfied by every farsighted stable set with a
unique payoff profile.

This observation is immediate: with just one payoff profile in the stable set, the starting
conditions in Properties A and B never occur, and so the properties are trivially valid.
Dutta and Vohra (2017, Theorem 1) directly verify that, in fact, every single-payoff
farsighted stable set satisfies maximality via a history-independent process.

The usefulness of Remark 1 depends on the existence of single payoff farsighted stable
sets. Ray and Vohra (2015) characterize single-payoff farsighted stable sets based on the
notion of a separable payoff allocation. Let u be an efficient payoff allocation; i.e., there
is a state x with u(x) = u and no state x′ with u(x′) > u(x). Allocation u is separable
if whenever uSi

∈ V (Si) for some pairwise disjoint collection of coalitions {Si} that
do not fully cover N , then uT ∈ V (T ) for some T ⊆ N − ∪iSi. For a feasible payoff
profile u, let [u] be the collection of all states x such that u(x) = u. Ray and Vohra
(2015) show that [u] is a single payoff farsighted stable set if and only if u is separable.

The significance of Remark 1 therefore rests on identifying games that possess sepa-
rable payoff allocations. As shown in Ray and Vohra (2015), the interior of the core
is contained in the set of separable allocations, which are themselves contained in the
coalition structure core. Every game in which the interior of the core is nonempty there-
fore possesses a single payoff farsighted stable set. However, these inclusions can be
strict, so the non-emptiness of the core is not generally sufficient for the existence of
separable allocations.11 Known special cases in which a core allocation is separable are
hedonic games with strict preferences and the top coalition property (Diamantoudi and
Xue 2003), and matching games with strict preferences (Mauleon, Vannetelbosch and
Vergote 2011). We now turn to an important case — exchange economies— in which
all core allocations may not be separable but there is a distinguished one that is.

Among the most fruitful economic applications of coalitional games have been those
relating to exchange economies. It is therefore of some significance that we can provide

11This is the case, for instance, in Example 4.
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reasonable, sufficient conditions for a competitive equilibrium to yield a separable pay-
off allocation. Assumptions that ensure the existence of a competitive equilibrium are,
of course well known; see, for example, Mas-Colell, Whinston and Green (1995).

An exchange economy with a finite set of consumers N is denoted (N, {Xi, ui, ωi}i∈N),
where Xi ⊆ IRl is i’s consumption set, ui : Xi → IR is i’s utility function and ωi ∈ Xi is
i’s initial endowment. A competitive equilibrium consists of ({ξi}, p), where ξi denotes
i’s commodity bundle, and p ∈ IRl

+ is the vector of market prices, such that

(i) for all i, p · ξi ≤ p · ωi and ui(ξ′i) > ui(ξi) implies that p · ξ′i > p · ωi, and

(ii)
∑

i∈N ξi =
∑

i∈N ωi.

Assume that preferences are (a) locally non-satiated: for every ξi ∈ Xi there exists ξ′i ∈
Xi arbitrarily close to ξi such that u(ξ′i) > ui(ξi); and (b) strictly convex: ui(ξ′i) ≥ ui(ξi)
and ξ′i 6= ξi implies that ui(tξ′i + (1− t)ξi) > ui(ξi) for all t ∈ (0, 1).

There is a natural way of constructing a coalitional game from a private ownership ex-
change economy. For every coalition S, let

V (S) = {uS ∈ IRS | ∃{ξi}i∈S ∈
∏
i∈S

Xi,
∑
i∈S

ξi =
∑
i∈S

ωi and ui(ξi) ≥ ui for all i ∈ S}.

REMARK 2. With locally non-satiated and strictly convex preferences, the payoff profile
u corresponding to any competitive equilibrium of an exchange economy is separable.
By Ray and Vohra (2015, Theorem 2), [u] is a single-payoff farsighted stable set, and
Remark 1 applies.12

To prove this Remark, consider a competitive equilibrium ({ξi}, p). We will show that
u ≡ {ui(ξi)} is separable. Suppose there is a coalition S such that uS ∈ V (S). This
means that there exists a feasible allocation ξ′ for the economy with agent set S such
that

∑
i∈S ξ

′
i =

∑
i∈S ωi and ui(ξ′i) ≥ ui for all i ∈ S. Since preferences are locally

non-satiated, condition (i) of a competitive equilibrium implies that p · ξ′i ≥ p · ωi for all
i ∈ S. In fact, it must be the case that

(1) p · ξ′i = p · ωi for all i ∈ S,
otherwise we contradict the feasibility condition

∑
i∈S ξ

′
i =

∑
i∈S ωi. Next, we claim

that ξ′i = ξi for all i ∈ S. If not, there is some i ∈ S with ξ′i 6= ξi. By the strict convexity

12Greenberg, Luo, Oladi and Shitovitz (2002) study what they call “the sophisticated stable set” of an
exchange economy. This is based on a version of the Harsanyi stable set in which every step of a blocking
chain is also required to be a myopic objection. The core is consequently a subset of the sophisticated
stable set. In general, therefore, the competitive equilibrium is not a single-payoff sophisticated stable
set. A second difference between the farsighted stable set and the sophisticated stable set is that the latter,
as in Harsanyi (1974), allows a deviating coalition to choose any feasible payoff for the complementary
coalition, a notion that is critiqued and dropped in Ray and Vohra’s (2015) development of the farsighted
stable set. Last but not least, our focus here is on maximality.
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of ui, there is a strict convex combination of ξ′i and ξi which is strictly preferred to ξi. By
(1) it is also affordable. But this contradicts condition (i) of a competitive equilibrium. It
follows that

∑
i∈S ξi =

∑
i∈S ξ

′
i =

∑
i∈S ωi. Because

∑
i∈N ξi =

∑
i∈N ωi, this implies

that
∑

j∈N−S ξj =
∑

j∈N−S ωj , and uN−S ∈ V (N − S); i.e., u is separable.

Although Remark 2 applies even to economies in which the interior of the core is empty,
it does depend crucially on preferences being strictly convex. In fact, the characteristic
function game in Example 4 below can be derived from a three–consumer exchange
economy with prefect complements (and preferences that are convex but not strictly
convex). In that economy, the competitive allocation — the only one in the core — is
not separable.

We now move on to a consideration of farsighted stable sets with nonsingleton payoffs.
We begin with a straightforward observation:

REMARK 3. If every state in a farsighted stable set has the grand coalition as the asso-
ciated coalition structure, then Property B is satisfied.

That is because Property B is then equivalent to myopic internal stability, which is im-
plied by farsighted internal stability.

The general structure of farsightedness is yet to be fully understood, but we know quite
a bit for particular classes of games. Specifically, Ray and Vohra (2015) provide a full
analysis of simple games, which are TU games in which each coalition S is either “win-
ning” (ν(S) = 1) or “losing” (ν(S) = 0), and if a coalition is winning, then its com-
plement is losing. Despite the simple-sounding nomenclature, simple games describe a
rich class of situations: parliaments, bargaining institutions, and committees have been
studied with this device.13 In such games a state, x, can be described by its winning
coalition W (x) (if any) and the payoff allocation u(x) among members of W (x); it is
understood that ui(x) = 0 for all i /∈ W (x). The state with no winning coalition is
referred to as the zero state.

In all such situations Property B is redundant:

REMARK 4. Every farsighted stable set in a simple game satisfies Property B.

This remark is a consequence of farsighted internal stability. To see it, suppose there
is a farsighted stable set F for which Property B fails. Then there are states a and b in
F and a coalition T such that uT (b) � uT (a) and

∑
i∈T ui(b) ≤ ν(T ). This implies

that T is a winning coalition, but then the complement of T is losing. So at state a, T

13See Shapley 1962 for an introduction to simple games. Such games have been extensively analyzed
in the context of the vNM stable set (see, e.g., Lucas 1992), are used in theories of bargaining (Baron and
Ferejohn 1989) and have played a significant role in the analysis of political institutions; see, e.g., Winter
1996 and Austen-Smith and Banks 1999.
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can precipitate the zero state (by breaking up into singletons), counting on the winning
coalition for state b to move to b, making T better off. Therefore b farsightedly dominates
a, which contradicts the farsighted internal stability of F . So Property B must hold.

To understand whether Property A holds for simple games, it is useful to distinguish
between two subclasses. Define a veto player as an individual with a losing complement
(she can single-handedly precipitate the zero state). If the set of all veto players is win-
ning, say that the game is oligarchic. Oligarchic games have singleton farsighted stable
sets (Ray and Vohra 2015, Theorem 3), which trivially satisfy Property A. Otherwise,
the game is non-oligarchic, and now there are no singleton farsighted stable sets.

And yet, Property A is satisfied by a class of sets that played a central role in von
Neumann and Morgenstern’s analysis of stability: discriminatory sets, to use their ter-
minology. These are sets of the form

D(K, c) = {x ∈ X | ui(x) = ci for i ∈ K}
for some fixed player set K ⊆ N and associated payoff vector c ∈ IRK . Those in K, the
“discriminated players,” each get a fixed amount, while the remaining surplus is divided
arbitrarily among the remainder, the “bargaining players.”

REMARK 5. Every discriminatory farsighted stable set satisfies Property A. As shown in
Ray and Vohra (2015, Theorem 5), such sets exist in every non-oligarchic simple game
that has a minimal veto coalition with no indispensable members.14

To see why this is true, let a, b ∈ D(K, c), with uj(b) > uj(a) for some j. Clearly, j /∈
K, which means that there is z ∈ D(K, c) with uk(z) = ck for all k ∈ K, ui(z) ≥ ui(b)
for all i 6= j, and uj(z) = 0. Therefore D(K, c) satisfies Property A.

For simple games, another set — with a discrete collection of payoffs — is a potential
candidate for a stable set (von Neumann and Morgenstern 1944). For any vector m ∈
IRN with m� 0 and

∑
i∈Smi = 1 for every minimal winning coalition S, define

Z(m) = {x ∈ X | S(x) is minimal winning and ui(x) = mi for i ∈ S}
to be a main simple set. von Neumann and Morgenstern (1944) showed that if a game is
strong — every coalition is either winning, or its complement is — then the set of utility
profiles corresponding to a main simple set is a vNM stable set. Ray and Vohra (2015)
showed that a main simple set (of a strong, simple game) is a farsighted stable set.

In general, a main simple set may not satisfy Property A, as we will see in Example
1. But an important subclass of simple games yields a different answer. Say that a
simple game is symmetric if there is some k, where (n+ 1)/2 ≤ k ≤ n, such that every
coalition with k players is a minimal winning coalition. (Supermajority games have this
property.) Every symmetric simple game has a main simple set Z(m), with mi = 1/k

14That is, any coalition member can be replaced by any outsider, and the coalition would remain veto.
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for all i. Observe that a symmetric game may not be strong. Yet its main simple set is
indeed a farsighted stable set, though it may fail to be a vNM stable set.15

Moreover, if the game is non-oligarchic (k < n), Z(m) satisfies Property A. To see this,
suppose a and b are in Z(m), with ui(b) > ui(a). This implies that there is a minimal
winning coalition S such that i ∈ S, ui(b) = 1/k, and uj(a) = 0 for all j /∈ S. Since
k < n, there exists j /∈ S. Let S ′ = S− i+ j. Given the symmetry of the game, this is a
minimal winning coalition and the corresponding state in Z(m), say z, has the property
that ui(z) = 0 and uj(z) ≥ uj(b) for all j 6= i, which yields Property A. To summarize:

REMARK 6. Any non-oligarchic, symmetric simple game possesses a main simple set
which is farsighted stable and satisfies Property A.

Collecting Remarks 1–6, we have:

COROLLARY 1. A farsighted stable set F is absolutely maximal in any of the following
circumstances:

(i) F is a single-payoff farsighted stable set; e.g., a competitive equilibrium of an ex-
change economy with strictly convex preferences,

(ii) F satisfies Property A and for every x ∈ F , π(x) = N ,

(iii) F satisfies Property A and the game is simple,

(iv) F is a discriminatory set of a simple game,

(v) F is a main simple set of a symmetric, simple game.

(Sufficient conditions for the existence of farsighted stable sets of the form stated in (i),
(iv) and (v) have been noted above.)

3.3. Proof of Theorem 1. We first show that whenever there is a blocking chain from x
to y, there exists what might be called a canonical blocking chain from x to y, in which

15Consider the non-strong, symmetric simple game with n = 5 and k = 4. Then Z(m) is not vNM
stable: the state x with u(x) = (1/3, 1/3, 1/3, 0, 0) has no objection from Z(m). However, there is
a farsighted objection through the zero state initiated by players 4 and 5 (a veto coalition), leading to
Z(m). Indeed, farsighted stability holds for all such games. To see why Z(m) satisfies farsighted external
stability, consider x /∈ Z(m). Clearly, S = {i ∈ N | ui(x) ≥ 1/k} must then be a losing coalition. If
the complement of S, N − S = {i ∈ N | ui(x) < 1/k}, is winning, any minimal winning coalition in
N − S can (myopically) block x with a state in Zm. Otherwise, because S is losing, N − S is a veto
coalition and can farsightedly block x by first precipitating the zero state and then moving (via a suitable
minimal winning coalition) to obtain 1/k for all its members. The main simple set also satisfies farsighted
internal stability (under a mild monotonicity restriction on the effectivity correspondence); see Ray and
Vohra (2015) or Dutta and Vohra (2017). Thus Z(m) is a farsighted stable set. These arguments can be
extended to show that a main simple set of any (not necessarily symmetric) simple game is a farsighted
stable set, although absolute maximality cannot be assured, as shown by Example 1.



14

each individual moves at most twice, possibly once at an intermediate step, and then
again at the very last step, when “consolidation” occurs to generate the final state y.

LEMMA 1. Suppose that y farsightedly dominates x via the chain {ỹ0, ỹ1, . . . , ỹm̃−1, ỹm̃},
{S̃1, . . . , S̃m̃}, where ỹ0 = x and ỹm̃ = y. Then there exists another blocking chain
{y0, y1, . . . , ym−1, ym}, {S1, . . . , Sm}, such that

(i) y0 = x and ym = y; and

(ii) Si and Sj are disjoint for all i and j between 1 and m− 1.

Proof. Set y0 = x and S1 = S̃1 and recursively, let Sk = S̃k − ∪t<kS̃t for all k =
2, . . . , m̃− 1. When coalition Sk moves, it does so by breaking into singletons. So, for
any k = 1, . . . , m̃− 1, the corresponding coalition structure, πk, is such that all players
in ∪t<kS̃t are in singletons, and (by Condition E.1) all other players belong to the same
coalition as in ỹk. At the last step, let Sm̃ = ∪m̃k=1S̃

k. That is, we collect all the coalitions
have already moved, along with all other individuals (if any) in S̃m̃. Since Sm̃ is the set
of all players who were involved in moving from x to y, it is clearly effective in moving
to y. Have it do so, creating the final coalition structure, πm̃ = π(y).

Denote by uk the associated payoffs in the newly constructed chain and by ũk = u(ỹk)
the payoffs generated by the original blocking coalition. Of course, u0 = ũ0 = u(x),
and um̃ = ũm̃ = u(y). Given the coalition structures πk, k = 1, . . . , m̃ in the new chain,
it follows from Conditions E.1 and E.2 that

(2) for k = 1, . . . m̃− 1, uki = 0 if i ∈ ∪t≤kS̃t, and uki = ũki otherwise.

Let the associated states be yk = (uk, πk) for all k = 1, . . . , m̃ − 1, and ym̃ = y. It is
possible that for some stages k < m, Sk as defined is empty and the succeeding state
yk+1 is identical to yk.16 In that case, remove the step at all such k. We are left with a
chain of m steps, where m ≤ m̃, and this is the chain to which the lemma refers. By
construction, (i) and (ii) are satisfied.

We only need to check that the new chain is a blocking chain. That is, for every k ≥ 1
and every i ∈ Sk, ui(y) > uk−1i . But this is true because ui(y) > ũk−1i since the original
chain is a blocking chain, and by (1), ũk−1i ≥ uk−1i .

Consider any farsighted stable set F . For each x 6∈ F , fix any blocking chain, c(x), and
define Ψ(x) ∈ F to be its terminal state. If x ∈ F , define Ψ(x) = x. The next lemma
uses Properties A and B and the existence of a canonical blocking chain to construct a
particular chain that will be later used to deter deviations from some on-path process.

16This will happen when a new coalition belongs to the union of previous coalitions in the chain.
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LEMMA 2. Let a farsighted stable set F satisfy Properties A and B. Consider states x
and y with x 6∈ F , Ψ(x) = a and Ψ(y) = b. For any T ∈ E(x, y), there is z ∈ F and a
coalitionally acceptable chain from y to z with uj(z) ≤ uj(a) for some j ∈ T .

Proof. Fix states x, y, a, b and a coalition T as in the statement of the lemma. Because
any nonempty blocking chain is acceptable, there is nothing to prove if uj(b) ≤ uj(a) for
some j ∈ T ; simply take z = b and use the original chain from y to b. On the other hand,
if uT (b)� uT (a), then by Property B, no subset of T belongs to the coalition structure
at b. Therefore y 6= b, so that y /∈ F . By Lemma 1, there is a canonical blocking
chain from y to b. Fix one such canonical blocking chain, c = {y, y1, . . . , ym−1, ym},
{S1, . . . , Sm}, where (ym, Sm) = b. Since no subset of T belongs to the partition at b,
every player in T is involved in some coalitional move in this blocking chain.

We now consider two cases:

Case 1. Some subset W of T moves only in the final step from ym−1 to b, and so is part
of the coalition Sm. Pick any j ∈ W . Modify the original blocking chain by adding
an extra step at ym−1 in which W − j breaks up into singletons and moves from ym−1

to y′. Note that π(y′) has all the same coalitions as π(ym−1), except that W appears as
singletons, and ui(y′) = ui(y

m−1) if i 6∈ W , while ui(y′) = 0 if i ∈ W . With y′ as an
added step between ym−1 and ym we have a new chain c′ = {y, y1, . . . , ym−1, y′, ym},
{S1, . . . , Sm−1,W − j, Sm}, with (ym, Sm) = b.17 Clearly, this new chain is also a
blocking chain. The critical feature of this new blocking chain is that at state y′ player j
has yet to move and uj(y′) = 0.

Property A assures us of the existence of z ∈ F such that uj(z) ≤ uj(a) and ui(z) ≥
ui(b) for all i 6= j. Modify the blocking chain c′ by replacing the terminal state with z
to construct the chain c̄ = {y, y1, . . . , ym−1, y′, z}, {S1, . . . , Sm−1,W − j,N}. Since
ui(z) ≥ ui(b) for all j 6= i, this chain clearly satisfies the acceptability conditions for all
players inN−j. Since player j only moves at the last step, from y′ to z, and uj(y′) = 0,
the acceptability condition also holds for player j. Thus, c̄ is a coalitionally acceptable
chain from y to z such uj(z) ≤ uj(a).18

Case 2. T ⊆ ∪t<mSt; i.e., every member of T has made some move by the time the
state ym−1 is reached. Let k < m be the maximal index such that some member of T
belongs to Sk, and let j be any such member of T . Since all players in T − Sk have

17If W = {j} this step is redundant: y′ = ym−1. However, it is still the case that at y′ player j has yet
to move and uj(y′) = 0.

18Any player other player j who was an active mover in the original chain c (i.e. any player in Sm− j)
will also gain strictly in the chain c̄. There are precisely two reasons why c̄ may not be a blocking
chain: (i) some players in N − Sm, who were not involved in making a move in c, may be assigned to
a different coalition in π(z) and may not gain (strictly) in following the path to z, (ii) it’s possible that
uj(y

′) = uj(z) = 0 so j does not experience a strict improvement.
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already moved, a move by Sk must mean that Sk is not a singleton, i.e., Sk−j 6= ∅. Now
interpret the move to yk as one made by Sk − j. Because Sk breaks into singletons in
the canonical chain, this interpretation is valid.19 Keep the rest of the process unchanged
until ym−1. With this interpretation we have a blocking chain in which there is a player
j ∈ T who at state ym−1 has yet to make a move. In other words, there is a subset of T
that moves only in the final step from ym−1 to ym. But then we are back in Case 1.

Recall that for a given farsighted stable set we have chosen for every x /∈ F some
blocking chain c(x) with terminal state Ψ(x). We will now embed this in an absorbing
process σ satisfying absolute maximality and coalitional acceptability. Recall that for
any history h, x(h) denotes the current state. Let `(h) denote the state immediately
preceding x(h), in case there is one. In what follows, we will recursively assign, not
just σ, but an entire chain c(h) following each history h, taking care to “follow through”
with appropriate continuations for nested collections of histories.

For any history h with current state x(h) ∈ F , let σ prescribe no change, i.e., if x(h) ∈
F , σ(h) = (x(h), ∅). Now consider histories in which the current state is not in F .

Begin with a single-state history, or a one-step history, h = {x} (where x /∈ F ). Set
c(h) = c(x), the already-fixed blocking chain that leads from x to terminal state Ψ(x).
The associated σ is given by σ(h) = (y(h), S(h)), which picks up the initial step in
c(x). (When the definition is complete, we will also see that xσ(h) = Ψ(x).)

Next, consider any history h such that x(h) /∈ F , but `(h) ∈ F . In this case, let σ
specify exactly the same move as in the previous paragraph starting from x = x(h), so
that c(h) = c(x(h)), with the associated σ(h) defined accordingly.

It remains to define the process for histories of the form hwhere x(h) /∈ F and `(h) /∈ F .
Recursively, suppose that we have attached a chain c(h) to every history h with K steps
or less, where K ≥ 1. Now consider a history h with K + 1 steps. Let hK denote the
first K steps. There are now three possibilities:

(i) If x(h) = y(hK), where y(hK) is specified by c(hK), then simply use the continua-
tion chain of c(hK) at h, and define σ(h) accordingly.

(ii) If x(h) = `(h) 6= y(hK), restart c(hK): set c(h) = c(hK) and σ(h) = σ(hK).

(iii) If x(h) 6= y(hK) and x(h) 6= `(h), let T be the associated coalition in the last step
of the history h, to be interpreted as the coalition that “deviated” from x(hK) to x(h),
instead of the prescribed move to y(hK). Let a equal the “intended” terminal state from
hK (under c(hK)), and let y equal x(h). By Lemma 2, there is a state z ∈ F and an
acceptable chain c′ from y to z such that uj(z) ≤ uj(a) for some j ∈ T . Fix any such

19Formally, replace Sk by Sk − j.
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chain c′ and assign it to the history h, defining σ accordingly at h. This last step ensures
that for no h can a coalition profitably deviate from the path prescribed by c(h).

Proceeding recursively in this way, we define c(h) for every h, along with the accompa-
nying σ(h). Clearly, σ embeds F and is coalitionally acceptable.20. For a history h with
x(h) ∈ F , absolute maximality follows from the farsighted internal stability of F . If
x(h) /∈ F , absolute maximality follows from the last step of the previous paragraph.

3.4. The Importance of Properties A and B. As discussed, there is a sizable class
of games with farsighted stable sets satisfying Properties A and B. In this section, we
ask: (i) Are these properties nontrivial restrictions, or are they always satisfied by any
farsighted stable set? (ii) Even if they are not, might Theorem 1 still be valid without
them? (iii) Are these properties necessary for a farsighted stable set to be absolutely
maximal? The answer to each of these questions is no.

EXAMPLE 1 (Tightness of Property A). We exhibit a farsighted stable set that fails Prop-
erty A, satisfies Property B, and is not absolutely maximal.

Consider a four-player simple game in which a coalition is winning if and only if it
weakly contains one of these minimal winning coalitions: {1, 2, 3}, {1, 4}, {2, 4} and
{3, 4}.21 This game is strong; we set up a main simple set for it. To this end, let
m = (1/3, 1/3, 1/3, 2/3). For every minimal winning S, define the profile uS by
uSi = mi for i ∈ S and uSi = 0 for i /∈ S. Let F be the farsighted stable set correspond-
ing to the collection of all such utility profiles — (1/3, 1/3, 1/3, 0), (1/3, 0, 0, 2/3),
(0, 1/3, 0, 2/3) and (0, 0, 1/3, 2/3) — along with the respective winning coalitions.

By Remark 4, F satisfies Property B. But it does not satisfy Property A. To see this,
consider the states a, b ∈ F where u(a) = (1/3, 0, 0, 2/3) and u(b) = (1/3, 1/3, 1/3, 0).
There is no z ∈ F with u3(z) = 0, u1(z) ≥ 1/3, u2(z) ≥ 1/3. So Property A fails,
and we cannot appeal to Theorem 1 to show that F is absolutely maximal. Indeed, as
we shall now show, F is generally not absolutely maximal,22 which also indicates that
Property A cannot be freely removed from the statement of Theorem 1.

To make this point, we impose a “monotonicity condition” on the effectivity corre-
spondence E.23 Assume that if a winning coalition loses some members but remains
winning, the resulting nonnegative surplus (captured from the departing members) is
shared equally among the players that remain. Now suppose by way of contradic-
tion that there is an absorbing σ that embeds F and satisfies coalitional acceptability

20In fact, barring case (iii), every h with x(h) /∈ F is assigned to a blocking chain terminating in F .
21This game can also be represented as a weighted majority game where the players’ weights are

(1, 1, 2, 3) and a coalition is winning if and only if its aggregate weight is more than 3.5.
22We do know from Dutta and Vohra (2017) that F is strongly maximal.
23See Ray and Vohra (2015) for a more general version that applies to all games.
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and absolute maximality. Consider state x with u(x) = (0, 0, 0.36, 0.64) and win-
ning coalition W (x) = N . Because x /∈ F , there is x′ ∈ F that farsightedly dom-
inates it; i.e., σ leads from history h = {x} to x′. Ray and Vohra (2015, Lemma 1)
show that there are just two possibilities: either (i) x′ myopically dominates x, or (ii)
W+ = {i ∈ N | ui(x′) > ui(x)} and W (x) −W+ are both losing coalitions.24 But
W (x) equals N and our game is strong, so the second option must be eliminated here.
It follows that (i) is true: x′ myopically dominates x. But the only two states in F that
do so are x′ = ((1/3, 0, 0, 2/3), {1, 4}) or x′ = ((0, 1/3, 0, 2/3), {2, 4}). In either case,
u3(x

′) = 0. We use this last fact to argue that player 3 can profitably deviate from the
stipulated move at x (to x′), thus violating absolute maximality.

Suppose player 3 leaves the grand coalition at x resulting in state y. Note that the residual
coalition, {1, 2, 4} is winning. Given that the residual players share equally in the surplus
released by 3’s departure, u(y) = (0.12, 0.12, 0, 0.76). Since y /∈ F , σ must prescribe
a continuation that is coalitionally acceptable. Using the same kind of argument as in
the previous paragraph, it can be shown that xσ(y) = ((1/3, 1/3, 1/3, 0), {1, 2, 3}).25

Player 3 can therefore gain by interfering in this way with any process that attempts to
proceed from x to x′. In other words, F does not satisfy absolute maximality.

Interestingly, there is a non-elitist veto coalition in Example 1, namely {1, 2, 3}.26 By
Ray and Vohra (2015, Theorem 5), there exists a discriminatory farsighted stable set, for
example D({4}, 0.1), in which player 4 receives 0.1 and players 1, 2 and 3 receive any
arbitrary division of 0.9. By Remark 5 in Section 3.2, this set is absolutely maximal.
Example 1 therefore illustrates how absolute maximality can refine the set of farsighted
stable sets for a given game.

EXAMPLE 2 (Tightness of Property B). We exhibit a farsighted stable set that satisfies
Property A, fails Property B, and is not absolutely maximal.

Consider a six-player game in which each coalition S has only one efficient payoff ν(S).
(Such a game is referred to as a hedonic game). A few words of explanation will help.
Players 1 and 5 are symmetric, so are players 2 and 4. These are the four players whose
positive payoffs vary across different states. Player 3 gets a constant payoff whenever her
payoff is positive. Player 6 always gets a zero payoff. Players 3 and 6 create synergies
with other players. Player 3 generally benefits from those synergies herself; player 6 is
completely indifferent throughout.

24In case (ii), W+ can precipitate the zero state by leaving W (x), followed by a move by W (x′) to x′.
25For example, if xσ(y) = ((1/3, 0, 0, 2/3), {1, 4}) coalitional rationality implies that in the first step

player 1 must leave W (y), resulting in the state y′ = ((0, 0.18, 0, 0.82), {2, 4}). But from y′ it is not
possible, by coalitional rationality, to end up at ((1/3, 0, 0, 2/3), {1, 4}).

26As a minimal winning coalition of a strong game it is of course a minimal veto coalition. It is
non-elitist because it remains a veto coalition if we replace any of its members with player 4.
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Formally, the coalitional game is described as follows:

ν({1, 2}) = ν({4, 5}) = (3, 3), ν({1, 3}) = ν({3, 5}) = (2, 2),

ν({2, 3, 4}) = (4, 2, 4), ν({1, 3, 5}) = (1, 2, 1)

ν({1, 3, 4, 5, 6}) = (3, 2, 4, 3, 0), ν({1, 2, 3, 5, 6}) = (3, 4, 2, 3, 0)

ν({2, 3, 4, 5, 6}) = (4, 2, 4, 3, 0), ν({1, 2, 3, 4, 6}) = (3, 4, 2, 4, 0),

ν(S) = 0 for all other S.

There are as many states as there are coalition structures. However, many of them have
the same payoff profile and differ only in the way in which some zero-payoff players
are partitioned. To describe the collection of states that have the same payoff we need
some more notation. For every coalition S, let πS denote a subpartition of S and let
Π0(S) = {πS | ν(T ) = 0 for all T ∈ πS} be the collection of subpartitions that result in
every player in S getting 0.27

Consider the set of states F = X1 ∪X2 ∪X3 ∪ {x4, x5, x6, x7} shown in Table 1.

Payoffs to Players
States Structures 1 2 3 4 5 6

X1 {1, 2}, {3, 5},Π0({4, 6}) 3 3 2 0 2 0
X2 {1, 3}, {4, 5},Π0({2, 6}) 2 0 2 3 3 0
X3 {2, 3, 4},Π0({1, 5, 6} 0 4 2 4 0 0
x4 {1}, {2, 3, 4, 5, 6}) 0 4 2 4 3 0
x5 {1, 3, 4, 5, 6}, {2} 3 0 2 4 3 0
x6 {1, 2, 3, 5, 6}, {4} 3 4 2 0 3 0
x7 {1, 2, 3, 4, 6}, {5} 3 4 2 4 0 0

TABLE 1. Farsighted Stable Set for Example 2.

We first show that F is a farsighted stable set. Figure 1 shows all the payoff equivalent
states, with arrows indicating the states in F that farsightedly dominate a state not in F .

To see that F satisfies external farsighted stability: A state with payoff (3, 3, 0, 3, 3, 0) is
dominated by one inX3 through coalition {2, 3, 4}. The state with payoff (3, 3, 0, 0, 0, 0)
is directly dominated by one in X1 through {3, 5} and by one in X3 through {2, 3, 4}.
A state in X8, with payoff profile (1, 0, 2, 0, 1, 0), is farsightedly dominated by a state in
X1 through the formation of coalition {1, 2}, and also by a state in X2 through coalition
{4, 5}. It is easy to see from Figure 1 that other states not in F are also farsightedly
dominated by some state(s) in F .

27For instance, Π0({1, 2, 3}) = {({1}, {2}, {3}), ({1, 2, 3}), ({1}, {2, 3})}.



20

X3

{2,3,4}, ∏0({1,5,6})
(0,4,2,4,0,0)

{1,2}, {4,5}, ∏0({3,6})
(3,3,0,3,3,0)

x4
{1}, {2,3,4,5,6}
(0,4,2,4,3,0)

F
X1

{1,2}, {3,5}, ∏0({4,6})
(3,3,2,0,2,0)

{1,2}, ∏0({3,4,5,6})
(3,3,0,0,0,0)

{4,5}, ∏0({1,2,3,6})
(0,0,0,3,3,0)

{3,5}, ∏0({1,2,4,6})
(0,0,2,0,2,0)

{1,3}, ∏0({2,4,5,6})
(2,0,2,0,0,0)

∏0({1,2,3,4,5,6})
(0,0,0,0,0,0)

x5
{2}, {1,3,4,5,6}
(3,0,2,4,3,0)

x6
{4}, {1,2,3,5,6}
(3,4,2,0,3,0)

x7
{5}, {1,2,3,4,6}
(3,4,2,4,0.0)

X2

{1,3}, {4,5}, ∏0({2,6})
(2,0,2,3,3,0)

X8

{1,3,5}, ∏0({2,4,6})
(1,0,2,0,1,0)

FIGURE 1. External Farsighted Stability of F in Example 2

To see that F satisfies internal farsighted stability: First observe that states x4, x5, x6

and x7 cannot dominate any other state (these states are in F only because they cannot
be dominated by a state in X1∪X2∪X3). This is so because such a state can emerge in
only one of two ways: either a singleton precipitates it by leaving the grand coalition or
it involves the active participation of player 6. Either case is inconsistent with farsighted
dominance because both the singleton as well as player 6 receive 0. Secondly, none of
these states can be farsightedly dominated by any other state. All players except for the
excluded singleton are receiving the maximum possible payoff. Only the singleton has
an incentive to change the state, but on her own she is powerless to do so. Thus, in
checking internal stability we only need to compare states in X1, X2 and X3.

FromX1 the only players who could gain by ending up at a state inX2 are players 4 and
5. They can’t move there directly. They could form a coalition of their own, resulting in
payoffs (3, 3, 0, 3, 3, 0), but that can only be dominated by a state in X3, not one in X2,
resulting in a payoff of 0 to player 5, which is of course not a farsighted improvement
for {4, 5}. Player 5 could exit coalition {3, 5} resulting in payoffs (3, 3, 0, 0, 0, 0) but
from there the only possible moves are into X1 or X3, again making it impossible for
player 5 to gain.

A state in X1 cannot be farsightedly dominated by one in X3 because any such move
must begin by player 2 leaving coalition {1, 2} which results in payoffs (0, 0, 2, 0, 2, 0)
from which the only further move that is possible is to X1 or to X2, not X3, because
players 3 or 5 the only ones who could initiate a move toX3 have no interest in doing so.
A similar argument shows that no state in X2 can be farsightedly dominated by another
state in F . Finally, note that at a state in X3, all the non-zero payoff players are getting
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the highest possible amount and they together belong to one coalition, so no profitable
deviation is possible.

This completes the proof that F satisfies farsighted internal stability.

Next, we show that F satisfies Property A and fails Property B. To see the former, notice
that x4 is a state at which Player 1 receives 0, her worst payoff. At that state each of the
other players is getting their maximum possible payoff. We can make a parallel argument
for Players 2, 4, and 5 (using states x5, x6 and x7, respectively).28 Players 3 and 6 have
payoffs that are invariant in F . So Property A is fully verified.

However, F does not satisfy Property B. Coalition {4, 5} prefers a state in X2 to a state
in X1 — the payoffs are (3, 3) in the former, compared to (2,2) in the latter — and it can
achieve the payoff (3, 3) on its own.

Finally, we can show that F is not absolutely maximal; that is, it cannot be embedded
in an absorbing, coalitionally acceptable, absolutely maximal process. This argument
relies crucially on the fact that from a state in X8 the only possible farsighted blocking
chain runs to states in X1 or X2, not to a state in X3. This is so because the only players
who would prefer to have a state in X8 replaced by one in X3 are 2 and 4, but without
the active participation of player 3 they are unable to carry out such a move.

Now consider any process that satisfies embedding of blocking chains and absorption
into F . Take the history consisting of a single state in X8. Since the only blocking
chains from such a state are into X1 or X2, the continuation must be a single step into
X1 (through coalition {1, 2}) or into X2 (through coalition {4, 5}). In the former case,
coalition {4, 5} has a profitable deviation into X2 and in the latter coalition {1, 2} has a
profitable deviation into X1. Thus, F is not absolutely maximal, which also shows that
Property B cannot be dispensed with in our main theorem.

These examples also demonstrate that full history dependence (and zero discounting,
as implicitly assumed) does not mean that anything goes. It is not the case that any
farsighted stable set can be embedded in a coalitionally rational and absolutely maximal
process. In short, a folk theorem is not to be had in the current context, particularly
when we view the solution concept as pertaining to a set of states, which — in the spirit
of von Neumann and Morgenstern stability — is the right thing to do. See Section 3.5.2
for a different remark on the folk theorem.

While Examples 1 and 2 show that neither Property A nor Property B can be dropped
from the statement of our main Theorem, these properties are not necessary for a far-
sighted stable set to be absolutely stable. This is shown through the following example.

28The only role for player 6 and of states x4, x5, x6 and x7 is to ensure that Property A is satisfied.
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EXAMPLE 3. An absolutely farsighted stable set that does not satisfy Property A or
Property B. Consider a five-player simplification of Example 2:

ν({1, 2}) = ν({4, 5}) = (3, 3), ν({1, 3}) = ν({3, 5}) = (2, 2),

ν({2, 3, 4}) = (4, 2, 4), ν(S) = 0 for all other S.

It can be shown that F = {x1, x2} ∪X3, described in Table 2, is a farsighted stable set.

Payoffs to Players
States Structures 1 2 3 4 5

x1 {1, 2}, {3, 5}, {4} 3 3 2 0 2
x2 {1, 3}, {4, 5}, {2} 2 0 2 3 3
X3 {2, 3, 4},Π0({1, 5} 0 4 2 4 0

TABLE 2. Farsighted Stable Set for Example 3.

Property B fails in this example for the same reason as in Example 2. Property A fails
because player 1 prefers x1 to any state in X3 but there is no state x ∈ F such that
u1(x) = 0 and u5(x) ≥ 2.

The farsighted stability of F follows from arguments we already provided in the discus-
sion of Example 2. In Figure 2 the arrows from states outside F represent a process that
embeds F . We leave it to the reader to check that it satisfies absolute maxlimality.

{1,2}, ∏0({3,4,5})
(3,3,0,0,0)

{1,2}, {4,5}, {3}
(3,3,0,3,3)

{4,5}, ∏0({1,2,3})
(0,0,0,3,3)

X3

{2,3,4}, ∏0({1,5})
(0,4,2,4,0)

x2
{1,3}, {4,5}, {2}

(2,0,2,3,3)

x1
{1,2}, {3,5}, {4}

(3,3,2,0,2)

{3,5}, ∏0({1,2,4})
(0,0,2,0,2)

{1,3}, ∏0({2,4,5})
(2,0,2,0,0)

∏0({1,2,3,4,5})
(0,0,0,0,0)

F

FIGURE 2. Absolute Farsighted Stability of F in Example 3
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3.5. Other Approaches to Maximal Farsightedness. We seek conditions under which
a farsighted stable set might satisfy maximality. The underlying idea is to begin with a
solution concept that is the natural farsighted extension to a classical notion — vNM
stability — and attempt to embed that concept within an ambient negotiation process
satisfying the desideratum of absolute maximality. In this section, we discuss two al-
ternatives. (A third alternative, which explores the use of blocking chains following all
histories, is explored in the Online Appendix.)

3.5.1. Weakening Absolute Maximality. A farsighted stable set is maximal if it can be
embedded in an absorbing, coalitionally acceptable process σ satisfying conditions (i)
and (ii) in the main text, and:

[Maximality] At no history h does there exist a state y with S(h) ∈ E(x(h), y), such
that uS(h)(xσ(h, y, S(h)))� uS(h)(x

σ(h)).

The difference from absolute maximality is that maximality requires only the moving
coalition at any history to not have a better move. Under absolute maximality no coali-
tion can have a better move. Our weaker notion can be thought of as one that respects
protocols: interventions by other coalitions are ignored. If we entertain this weakening,
Property B can be dropped from Theorem 1. Moreover, in simple games even Property
A can be dropped:

THEOREM 2. If a farsighted stable set satisfies Property A then it is maximal.

The proof relies on a version of Lemma 2 that does not invoke Property B, and is pro-
vided in the Online Appendix.

In simple games even Property A can be dropped from Lemma 5. Fix states x, y, a, b
and a coalition T as in the statement of Lemma 5 and suppose that uT (b) � uT (a). In
a simple game T must be a losing coalition; if it is a winning coalition, it could have
gone from a to b on its own, contradicting internal stability. But a losing coalition that
was supposed to move from x to y′ cannot move anywhere other than y′ (because of
coalitional sovereignty), so in fact it has no available “deviation”, and the conclusion
of Lemma 5 follows. As in the proof of Proposition 1 (see Online Appendix), we can
embed a farsighted stable set in a process satisfying maximality.

REMARK 7. Every farsighted stable set of a simple game can be embedded in a process
satisfying maximality.

The Online Appendix proves a stronger version of this as part of Proposition 2.

3.5.2. The Absorbing States of a Negotiation Process. Alternatively, one might directly
seek to understand the absorbing states of a negotiation process, without asking that any
existing solution concept be embedded in it. Such an approach is followed in Konishi
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and Ray (2003) and Dutta and Vohra (2017), along with the additional restriction that the
negotiation process σ is Markovian or history independent: for any two histories h and
h′, x(h) = x(h′) implies that σ(h) = σ(h′).29 A comparison of these two approaches is
instructive.30 We turn to an example that makes the following points:

1. While unclear from its original definition (Harsanyi 1974, Ray and Vohra 2015), a
farsighted stable set is fundamentally a history-dependent object. There is little hope
of being able to embed a farsighted stable set in a Markovian process, and this is so
even if we ignore the maximality requirement. On the other hand, as our main results
demonstrate, permitting history dependence can make it possible to embed a farsighted
stable set in a process that is absolutely maximal.

2. Absolute maximality can be a more stringent requirement than maximality or strong
maximality even if the focus is on absorbing states that are not necessarily a farsighted
stable set.31

EXAMPLE 4. A three-player veto game: N = {1, 2, 3}, ν(N) = ν{1, 2} = ν{1, 3} = 1
and ν(S) = 0 for all other S.

Ray and Vohra (2015) show that every farsighted stable set of this game is a discrimina-
tory set of the form Za = D({1}, a) in which player 1 receives a fixed payoff a ∈ (0, 1)
and the remaining surplus is divided in any arbitrary way between players 2 and 3. (In
fact, for every a ∈ (0, 1), Za is a farsighted stable set.) It follows from Theorem 1 and
Proposition 2 (ii) that any such set can be embedded in an absolutely maximal process.

But this result depends crucially on allowing the process to be history dependent. As
Dutta and Vohra (2017) point out, a set of this form cannot be supported by a Markov-
ian process that is consistent with farsighted external stability. The farsighted external
stability of Za implies that from any state x with u(x) � 0 and u1(x) > a there is a
blocking chain ending in Za. It can be shown that any such chain involves players 2 and
3 leaving the grand coalition at state x, resulting in the zero state. This is then followed
by a move by N to a state in Za; see Ray and Vohra (2015) for details. It turns out that
the last step of any such blocking chain must depend on the history.

To see this, suppose σ is a Markovian process that defines, for every state not in Za, a
blocking chain that ends in Za. Consider the zero state, x0, and suppose σ prescribes a
path from x0 that ends at y ∈ Za. Since the process is Markovian, this is the continuation
paths for all histories where the current state is x0. Consider x such that u(x) � 0 and
u1(x) > a. As already observed, any blocking chain from x leading intoZa must involve

29History-dependent versions of these solutions are studied in Hyndman and Ray (2007), Ray and
Vohra (2014) and Dutta and Vartiainen (2018).

30We are thankful to an anonymous referee for urging us to do this.
31With respect to farsighted stable sets this point has already made; through Example 1 for simple

games and through the examples in Dutta and Vohra (2017) for abstract games.
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coalition {2, 3} moving to x0, followed by a move by N to y (with u(y′) � 0). Since
u(y′) � 0, we can find x such that u1(x) > a, u2(x) > u2(y) and u3(x) > 0. The
process must specify a blocking chain from x to a state in Za. But any such blocking
chain must be one in which {2, 3} first moves to x0 followed by a move to y. Since
u2(x) > u2(y) player 2 cannot gain. In other words, the path prescribed by σ from x is
not a blocking chain, a contradiction.

This example also illustrates the difference between our approach and one that directly
examines the absorbing states of a process, without seeking to embed a particular so-
lution. Consider the Dutta and Vohra (2017) notion of a strong rational expectations
farsighted stable set (SREFS) which is defined to be the set of absorbing states, Z, of a
Markovian process σ that satisfies strong maximality, as well as both internal and exter-
nal stability when blocking chains are restricted to be consistent with σ. In particular, if
a coalition moves from a state in Z, it cannot eventually gain provided the continuation
following this move is given by σ. There may, however, exist a farsighted blocking chain
that is not consistent with σ, and for this reason Z may not be a farsighted stable set.32

Indeed this is a feature of the present example. Dutta and Vohra (2017) show that there
is a SREFS consisting of states with payoffs ({a+ b, b, 0), (a+ b, 0, b), (a, b, b)}), where
a ∈ (0, 1) and b = (1− a)/2. Of course, this is not a discriminatory set in which player
1 gets a fixed payoff, so it cannot be a farsighted stable set.33

While this SREFS satisfies strong maximality, it does not satisfy absolute maximality.
To see this, consider the state x with π(x) = N and u(x) = (a+ b− 1/3ε, b− 2/3ε, ε).
Coalition {1, 2} can block this is one step to get payoffs (a + b, b). No coalition that
includes either player 1 or 2 can construct a better deviation, as is required for strong
maximality. However, absolute maximality may not hold because of a deviation by
player 3. Suppose that a departure by player 3 results in the other two sharing the extra
surplus equally. Now, if player 3 leaves the grand coalition, the new state leaves player 2
with a payoff strictly less than b. This only lead to the zero state followed by N moving
to the stationary state with payoffs (a, b, b). Thus, player 3, has a profitable deviation at
state x, and the process is not absolutely maximal.

We make a final comment on folk-theorem-like arguments. In Section 3.4, we remarked
that there are tight restrictions on the structure of absolutely maximal farsighted stable
sets, so it isn’t the case that anything goes. That argument carries over to the set of
states that comprise any farsighted stable set: “anything doesn’t go” because the internal
stability of a (farsighted) stable set precludes it from being too inclusionary. However,
what would happen under the alternative approach of this section, where we do not
insist in embedding any farsighted stable set? Might that span the entire set of feasible

32The same is true of the solutions constructed by Dutta and Vartiainen (2018), allowing for history
dependence, and using a weaker notion of absorption that we have defined above. Indeed, their solutions
may not even satisfy myopic internal stability.

33There is a farsighted objection from ((a, b, b), N), led by player 1, to ((a+ b, b, 0), {1, 2}).
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payoffs? In general, in our model, the answer is still no. That follows from absolute
maximality and our notion of an absorbing state which requires once such a state is
reached, regardless of the history, it does not change. Together, these two properties
imply that a non-core state and a state that (myopically) dominates it can’t both be
absorbing states.34 Thus, in general, the absorbing states cannot span the entire set of
feasible payoffs.

A loosening of these restrictions could lead to outcomes in which the entire set of payoffs
is supportable. Dutta and Vartiainen (2018) consider a weaker notion of absorption or
stationarity. A stable outcome in their sense may be stationary for some histories but not
for others. The set of such states need not satisfy internal stability even if the process is
maximal, and the set of “stable” outcomes can be large. Indeed, they find that in a strictly
superadditive game, the set of all strictly positive, feasible payoffs is a “farsighted stable
set” in their sense.
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ONLINE APPENDIX [NOT FOR PUBLICATION]

APPENDIX A.1. STRENGTHENING COALITIONAL ACCEPTABILITY

As we argued in Section 3, we restrict off-path histories to satisfy coalitional acceptabil-
ity, which is a weaker requirement than the strict improvements required by a blocking
chain. What if we were to strengthen coalitional acceptability to the requirement that
the process define a blocking chain from every history ending at a state outside the far-
sighted stable set? Treating off-path and on-path histories in the same way does have
the benefit of simplifying the definition of absolute maximality.
A farsighted stable set F is said to be strictly embedded in an absorbing process σ if
(i) F is the set of all absorbing states of σ.
(ii)′ At any initial history h with x(h) /∈ F , the continuation chain from h is a blocking
chain terminating in F .
Condition (ii)′ subsumes our earlier condition (ii) of embedding. It also ensures that
σ automatically satisfies coalitional acceptability. We now explore the possibility of
extending our result to show that a farsighted stable set can be strictly embedded in a
process satisfying absolute maximality.
To strengthen Theorem 1 in this direction, it should be clear from its proof that it suffices
to strengthen Lemma 2 so that the coalitionally acceptable chain constructed to deter
deviations is in fact a blocking chain. At a minimum, this will require that when we
dissuade an off-path deviation by by finding a coalitionally acceptable chain from y to
z ∈ F , all players involved in this chain must receive a strictly positive payoff at z.
Indeed, this must be a feature of any state in the farsighted stable that dominates some
other state. In a general coalitional game, a state x is said to be regular if ui(x) > 0 for
every i such that i ∈ S ∈ π(x) and uS(x) > 0. In a simple game this reduces to the
condition that ui(x) > 0 for all i ∈ W (x), as in Ray and Vohra (2015). That suggests
that Property A must be modified to refer to regular states.
Property A′. Suppose there are two regular states a and b in F such that uj(b) > uj(a)
for some j. Then there exists a regular state z ∈ F such that uj(z) ≤ uj(a), and
ui(z) ≥ ui(b) for all i 6= j.
Clearly, every discriminatory farsighted stable set satisfies Property A′.
Modulo the replacement of Property A with A′, our next result shows that Corollary 2
can be strengthened to require strict embedding.

PROPOSITION 1. If a farsighted stable set satisfies Property A′, then it can be strictly
embedded in a process satisfying absolute maximality in any of the following circum-
stances:
(i) F is a single-payoff farsighted stable set (in which case even Property A′ is redun-
dant),
(ii) If the game is a simple game, or
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(iii) For every y /∈ F there is a blocking chain from y to x ∈ F with π(x) = N .35

Proof. (i) By Theorem 1 in Dutta and Vohra (2017) a single-payoff farsighted stable
set can be strictly embedded in a history-independent (stationary) process satisfying
maximality. Clearly no coalition can find a profitable deviation when the final payoff is
unique, so in this case absolute maximality is also satisfied.
(ii) Suppose F is a farsighted stable set of a simple game. For every state x 6∈ F , fix any
blocking chain, c(x), with Ψ(x) ∈ F as the terminal state. We can now modify Lemma
2 as follows:

LEMMA 3. Consider a farsighted stable set F of a simple game satisfying Property A′.
Suppose T moves from state x /∈ F to state y, Ψ(x) = a and Ψ(y) = b. Then there is a
state z ∈ F and a blocking chain from y to z such that uj(z) ≤ uj(a) for some j ∈ T .

Proof. Fix states x, y, a, b and a coalition T as in the statement of the lemma. Note that
as the terminal states of a blocking chain both a and b are regular states. If uj(b) ≤ uj(a)
for some j ∈ T there is nothing to prove, so assume that uT (b) � uT (a). This means
that T is not a veto coalition. Otherwise, we could find a farsighted chain from a to b
(with T first moving to the zero state followed by W (b) moving to b), contradicting the
farsighted internal stability of F . Since T is not a veto coalition, and therefore not a
winning coalition, uT (y) = 0, which clearly means that y 6= b and y /∈ F . Pick any
j ∈ T . By Property A′, there exists a regular state z ∈ F such that uj(z) ≤ uj(a) and
ui(z) ≥ ui(b) for all i 6= j. To complete the proof we will now construct a farsighted
chain from y to z.
Since T is losing, uT (y) = 0 and T ∩W (y) = ∅. Given that there is a blocking chain
from y to b, by Lemma 1 of Ray and Vohra (2015) there are two possibilities: (i) W (b)
moves directly from y to b or (ii) some S ⊂ W (y) first moves from y to the zero state,
followed by a move by W (b) to b. In case (i) consider a move by W (z) to the zero state
(by breaking up into singletons) followed by a move by W (z) to z. In case (ii) consider
S moving to the zero state followed by W (z) moving to z. All players except possibly j
who gained by having y replaced with b, will also gain if y is replaced with z. If player
j /∈ W (z) we have clearly found a blocking chain from y to z. If j ∈ W (z), since z is
regular, uj(z) > 0 while uj(y) = 0, so player j also gains in moving from y to z, and
again we shown that there is a blocking chain from y to z.

The rest of the proof of Theorem 1 remains unchanged.
(iii) Consider a farsighted stable set F of a coalitional game such that for every y /∈ F
there is a blocking chain from y to x ∈ F with π(x) = N . Suppose F satisfies Property
A′. Again, it will suffice to prove an appropriately modified version of Lemma 2 that
provides a blocking chain rather than an acceptable chain.

35This is weaker than the corresponding assumption stated in Corollary 1, namely that π(x) = N for
every x ∈ F .
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For every state x 6∈ F , fix any blocking chain with Ψ(x) ∈ F as the terminal state such
that π(Ψ(x)) = N .

LEMMA 4. Consider a farsighted stable set F satisfying Property A′ and condition (iii).
Suppose T moves from state x /∈ F to state y, Ψ(x) = a and Ψ(y) = b, with π(b) = N .
Then there is a state z ∈ F and a blocking chain from y to z such that uj(z) ≤ uj(a)
for some j ∈ T .

Proof. Fix states x, y, a, b and a coalition T and assume that uT (b)� uT (a). Of course,
by farsighted internal stability, T 6= N , so y 6= b and y /∈ F . Fix one canonical blocking
chain from y to b, say, {y, y1, . . . , ym−1, ym}, {S1, . . . , Sm}, where ym = b. Proceeding
exactly as in the proof of Lemma 2, we can find a player j ∈ T and a new blocking
chain {y, y1, . . . , ym−1, y′, ym}, {S1, . . . , Sm−1,W − j, Sm}, such that at state y′ player
j has yet to move and uj(y′) = 0. Because π(b) = N , Sm = N : all players must be
involved in the final move of the blocking chain from y to b and u(b)� 0.
Pick z as given by Property A′. We will now construct a blocking chain from y to z.
(This is not surprising given Footnote 18). Consider the two cases corresponding to
whether uj(z) > 0:
(i) If uj(z) > 0 consider the chain {y, y1, . . . , ym−1, y′, z}, {S1, . . . , Sm−1,W − j,N}.
In the original blocking chain all players were active movers, so all players in N − j are
also strictly better off at z compared to the first step at which they made a move in the
original blocking chain. The move to z is also strictly profitable for j. This means that
we have a found a blocking chain from y to z.
(ii) If uj(z) = 0 consider the chain {y, y1, . . . , ym−1, y′, z}, {S1, . . . , Sm−1,W − j,N −
j}. The last step is feasible for N− j because z is a regular state with ui(z) ≥ ui(b) > 0
for all j 6= i and uj(z) = 0. It is also clearly a blocking chain.

This completes the proof of Proposition 1.

APPENDIX A.2. PROOF OF THEOREM 2 AND REMARK 7

Proof. The argument relies on a version of Lemma 2 that does not invoke Property B.
Consider any farsighted stable set F . If x ∈ F , define Ψ(x) = x. For each state x 6∈ F ,
fix any blocking chain, c(x), that reaches F in a minimal number of steps. In particular,
if there is a coalition T such that T ∈ E(x, a) with a ∈ F and uT (a) � uT (x), then
c(x) must reach F in one step. Let Ψ(x) ∈ F be the terminal state for this minimal
chain.

LEMMA 5. Let F be a farsighted stable set satisfying Property A. Suppose that in a
minimal blocking chain c, coalition T initiates the first move from x /∈ F to y′. Suppose
T moves instead from x to y 6= y′. Let Ψ(x) = a and Ψ(y) = b. Then there is a state
z ∈ F and an acceptable chain from y to z such that uj(z) ≤ uj(a) for some j ∈ T .
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Proof. Fix states x, y, a, b and a coalition T as in the statement of the lemma and suppose
that uT (b) � uT (a). If y ∈ F , because c is a blocking chain initiated by T that leads
to F in a minimal number of steps, a must also be the result of a one-step move by
coalition T , i.e., y′ = a. Notice that all players not in T are in the same coalition in a as
in b and their payoffs are also the same in a and b. The only difference between states
a and b is that T may be organized in a different partition and uT (b) � uT (a). Clearly,
T ∈ E(a, b), but this contradicts internal stability of F . Thus, y 6∈ F (and so b 6= y).
The rest of the proof is the same as that of Lemma 2.

Lemma 5 can be used along with the rest of the proof of Theorem 1 to complete the
proof of Theorem 2.

In simple games even Property A can be dropped from Lemma 5. Fix states x, y, a, b
and a coalition T as in the statement of Lemma 5 and suppose that uT (b) � uT (a). In
a simple game T must be a losing coalition; if it is a winning coalition, it could have
gone from a to b on its own, contradicting internal stability. But a losing coalition that
was supposed to move from x to y′ cannot move anywhere other than y′ (because of
coalitional sovereignty), so in fact it has no available “deviation”, and the conclusion of
Lemma 5 follows. As in the proof of Proposition 1, we can strictly embed a farsighted
stable set in a process satisfying maximality. It is for absolute maximality that we rely
on Property A′. We therefore have a proof of Remark 7 as well as the following extended
proposition:

PROPOSITION 2.
(i) Every farsighted stable set of a simple game can be strictly embedded in a process
satisfying maximality.
(ii) Moreover, if it satisfies Property A′, then it can be strictly embedded in a process
satisfying absolute maximality.

Dutta and Vartiainen (2018) show that in a variant of the class of simple games the
conclusion in (i) holds for strong maximality.


