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Abstract

Equilibrium paths in economies of overlapping generations depend on the
frequency of trade. In a logarithmic example, determinacy obtains as the fre-
quency of trades tends to infinity or trade occurs in continuous time.

If time extends infinitely into the infinite past as well as into the infinite
future, in continuous time, all non-stationary equilibrium paths of prices are
time-shifts of a single path; in addition, there are two stationary solutions; in
discrete time, there is a one dimensional family of non-stationary solutions, up
to time-shift, but the indeterminacy vanishes as the frequency of trade tends to
infinity.

If, alternatively, time has a finite starting point, in discrete time the degree
of indeterminacy increases with the frequency of trade, and, in continuous time,
it is infinite; however, these are families of exponentially decreasing oscillations
that, although they may exhibit pseudo-chaotic behavior for a while, as time
tends to infinity, all get damped, and asymptotic behavior is that of the economy
that originates in the infinite past.

This is different from the effect of increases in the life span of individuals.

Key words: frequency of trade, continuous time, overlapping generations,
determinacy.
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1 Introduction

Economies of overlapping generations, introduced by Allais (1947) and Sa -
muelson (1958), display equilibrium properties different from the equilibrium
properties of economies over a finite horizon or with a finite number of indi-
viduals 1. In particular, the determinacy of equilibrium that obtains for finite
economies under standard assumptions, fails for economies of overlapping gen-
erations.

The divergence between the equilibrium properties of economies of overlap-
ping generations and economies with finitely many individuals poses a modelling
dilemma.

Debreu (1970) first proved the generic determinacy or local uniqueness of
competitive equilibria for finite economies; Kehoe and Levine (1985), Shannon
(1996) and Shannon and Zame (1999) extended the argument to economies with
a finite number of individuals over an infinite horizon, even if genericity and
local uniqueness are less evident notions when the commodity space is infinite
dimensional.

The focus here is on the indeterminacy of competitive equilibrium paths in
economies of overlapping generations. Ever since Samuelson’s (1958) remark
that “we can try to cut the gordian knot by our special assumption of station-
ariness” and Gale’s (1973) exposition of the problem, it has been recognized
that competitive equilibrium paths may be indeterminate, and that the extent
of indeterminacy depends on the number of commodities and the number of
periods in the life-span of individuals, as well as the presence of aggregate debt.

The degree of indeterminacy is the generically maximal dimension of an open
set of distinct equilibrium allocations. The argument in Geanakoplos (1987)
and Geanakoplos and Brown (1982, 1985) was simple and convincing: in an
economy with 2-period life-span and L commodities per period, the degree of
indeterminacy is 2L − 1 if time extends infinitely into the past as well as into
the future; it is L − 1 if time has a finite starting point; in the latter case, the
degree of indeterminacy increases to L for competitive equilibria with debt. An
argument for determinacy in Burke (1987) and Geanakoplos and Brown (1985)
restricted attention to nearly stationary equilibrium paths.

The computation of the degree of indeterminacy follows by considering a fi-
nite truncation of the economy and counting the effective degrees of freedom, the
excess of endogenous, equilibrating variables, the prices of commodities, over the
number of independent equilibrium conditions, the vanishing excess demand for
commodities. If the exchange of commodities is restricted to dates in the inter-
val −T, . . . , 0, . . . , T, the relevant prices are p−(T+1), p−T , . . . , p0, . . . , pT , p(T+1),
while the excess demands that should vanish along an equilibrium path are
p−T , . . . , p0, . . . , pT ; the price vectors p−(T+1) and p(T+1) matter, since they af-
fect the demand of individuals whose life span terminates at −T or commences
at T, respectively. Since there are L commodities at each date, while relative

1Geanakoplos and Polemarchakis (1991) surveyed the properties of competitive equilibria
in economies of overlapping generations.
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prices suffice to determine the excess demand of individuals, the number of effec-
tive equilibrating variables is L(2T +3)−1; the number of equilibrium equations
is L(2T +1), the number of commodities in the truncated economy — the value
of excess demand of individuals whose life span terminates at −T or commences
at T need not coincide with the value of their endowments at those dates, and,
as a consequence, Walras’ law does not apply. It follows that, generically, the
set of distinct equilibrium consumption paths contains an open set of maximal
dimension L(2T + 3) − 1 − L(2T + 1) = 2L − 1. For economies with a finite
starting date, the argument is analogous.

Under certainty, an economy which is individually finite: every individual
is endowed with and consumes a finite number of commodities, reduces to an
economy with life-span of two periods; Balasko and Shell (1981) and Geanako-
plos and Polemarchakis (1991) developed the construction. In particular, an
economy with one commodity at each date and life-span of n dates reduces to
an economy with L = n − 1 commodities at each date and life-span of two
dates: it suffices to observe that, then, no individual consumes at more than
two, consecutive dates. It follows that the degree of indeterminacy is 2n− 3 if
time extends infinitely into the past as well as into the future and n− 1 if time
has a finite starting date and there is aggregate debt.

Indeterminacy for a truncation of the economy is a first step but not a
conclusive argument for indeterminacy over an infinite horizon. Two issues
remain to be checked: (1) that the positivity constraints on consumption and
prices do not interfere with the extension of equilibrium paths to infinite time;
(2) that, for economies that extend into the infinite past as well as the infinite
future, distinct solutions are not simply translations over time.

Concerning the impact of positivity constraints, Geanakoplos and Polemar-
chakis (1986) showed that indeterminacy of degree 1 is indeed generic in the
very special case of one commodity at each date and life-span of two dates; the
argument is geometric, and it exploits the non-linearity of equilibrium paths,
but does not generalize. For economies with multiple commodities, Kehoe and
Levine (1984,b) and Santos and Bonna (1989) constructed robust examples of
high degrees of indeterminacy; they exploited the stability of steady state equi-
libria, which circumvents the non-linearity of the equilibrium path, and they
restricted their attention to economies with a finite starting date. Alterna-
tively, Kehoe, Levine, Mas-Colell and Zame (1989) developed the argument for
indeterminacy in an abstract framework that allows for negative prices; the
interpretation of the model is not clear.

Intertemporally separable economies, in which the utilities functions of in-
dividuals are additively separable over the two dates in their life-span, are con-
ducive to uniqueness of the equilibrium. If time has a finite starting point,
there is no debt, and generations with life span of two periods aggregate into
a representative individual, Geanakoplos and Polemarchakis (1984) and Kehoe
and Levine (1984,a) showed that equilibrium is generically unique; neverthe-
less, the restriction to a representative individual disables the equivalence be-
tween economies with multiple commodities and economies with long life span.
More pertinently, Kehoe, Levine,Mas-Colell and Woodford (1991) considered
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economies that display gross-substitute condition at each date, and showed the
uniqueness of equilibrium without debt; indetetrminacy arises with debt, but
all equilibrium paths display the turnpike property of convergence to a steady
state — the case of an economy with logarithmic preferences in Balasko and
Shell (1981) is an instance of gross-substitutability and uniqueness.

Aiyagari (1988, 1989) and Reichlin (1992) studied the effects on equilibrium
paths of increases in the life span of individuals; appropriate but not general
specifications could yield convergence to the characteristics of equilibrium paths
with infinitely lived individuals.

Though a conclusive demonstration is lacking, the sense of the results in the
literature is that the degree of indeterminacy increases with the number of com-
modities at each date or, equivalently, the length of the life-span of individuals.
This is particularly bothersome for policy analysis, where empirically relevant
models involve life-span equal to the number of years in the economic life of an
individual.

It is this intuition that is put to the test here by considering economies with
increasing frequency of trade and, at the limit, economies over continuous time.

Overlapping generations over continuous time were considered by Burke
(1995), but under the simplifying assumption that, at each instant, only a finite
number of individuals is active; the focus was on the existence of equilibrium
paths. Here, a continuum of individuals is active at each instant; but the econ-
omy is stationary and equilibrium paths, steady state paths, in particular, exist
a fortiori.

High frequency of trade differs from a large number of dates in the life span:
the frequency of trade can vary while the life span remains fixed.

Continuous time also serves to examine whether distinct equilibrium paths
are simply translations in time; discrete time makes translations harder to iden-
tify, even define.

The argument is explicitly computational; which is the reason for restricting
attention to logarithmic economies. But the results reverse the standard intu-
ition concerning indeterminacy in economies with long life-span; and there is
good evidence that they extend to an open set of utility functions.

With continuous time, equilibrium paths of prices are smooth; this, even
for endowments and discount factors of individuals that do need not depend
continuously on time.

With discrete time, as the frequency of trade increases, equilibrium price
paths converge to the continuous time solutions.

If time extends infinitely into the infinite past as well as into the infinite
future, in continuous time, all equilibrium paths of prices are smooth and are
time shifts of one another, except for the two exceptional cases of stationary
solutions; in discrete time there is a one dimensional family of solutions, up to
time shift; however the indeterminacy should be considered an artifact due to
the discretization, since vanishes as the frequency of trade tends to infinity 2.

If, alternatively, time has a finite starting point, in discrete time the degree
2Chris Edmond emphasized this.
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of indeterminacy increases with the frequency of trade and is that predicted by
Geanakoplos (1987), while, in continuous time, it is infinite; however these are
families of exponentially decreasing oscillations that, as time tends to infinity,
all get damped, and asymptotic behavior is that of the economy that originates
in the infinite past, which confirms the turnpike property in Kehoe, Levine,
Mas-Colell and Woodford (1991).

Certainty is an important assumption: in examples, with stochastic shocks,
equilibrium paths are irregular, even brownian-like.

2 The economy

Alternative specifications consider time discrete or continuous; it is instructive
to consider both and contrast the results.

The economy is stationary: the distribution of the fundamentals does not
vary with calendar time.

One commodity is available at each date; there is no storage or production.

2.1 Discrete time

Discrete time extends into the infinite future as well as the infinite past:

. . . ,−(t/n), . . . ,−(1/n), 0, (1/n), . . . , (t/n), . . . ;

alternatively, it has a finite starting point:

0, (1/n), . . . , (t/n), . . . .

The indexation of time by t/n, where t is an integer, allows for comparisons
of equilibrium paths for different values of n, the reciprocal of the length of a
date of time.

At each date, an individual τ = t + 1 is born, and his life span extends until
date t + n. At date s = τ − 1, . . . τ + n− 2, the consumption of the individual is
xτ,s, and his endowment is es−τ+2, a non -negative amount; across the life-span
of the individual,

τ+n−2∑
s=τ−1

es−τ+2 = 1,

and the intertemporal utility function is

u =
τ+n−2∑
s=τ−1

ks−τ+2 ln(xτ,s),

where ks−τ+2 is the discount factor, a non-negative coefficient, with

τ+n−2∑
s=τ−1

ks−τ+2 = 1.
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It is convenient to define

es = ks = 0, s 6= 1, . . . , n.

The price of the commodity at date t is pt. The wealth of individual τ is

wτ =
τ+n−2∑
s=τ−1

pses−τ+2;

since the individual maximizes his intertemporal utility subject to the intertem-
poral budget constraint

τ+n−2∑
s=τ−1

psxτ,s−τ+2 ≤ wτ ,

his consumption demand is

xτ,s =
ks−τ+2

ps
wτ .

Individuals active at date t are τ = t+2−n, . . . , t+1; since, at equilibrium,
aggregate demand must coincide with the aggregate endowment,

xt =
t+1∑

τ=t+2−n

eτ,t = 1,

it is necessary and sufficient that

t+1∑
τ=t+2−n

kt−τ+2

pt
wτ = 1;

substituting for wτ yields the equilibrium equation for prices

pt =
t+1∑

τ=t+2−n

τ+n−2∑
s=τ−1

kt−τ+2pses−τ+2;

changing the order of summation,

pt =
t+n−1∑

s=t−n+1

ps

min{t+1,s+1}∑
τ=t+2−n

kt−τ+2es−τ+2,

and, by a sequence of changes of variables, of s + t for s and of r for t + τ − 2,

pt =
n−1∑

s=1−n

ps+t

r=min{−1,s−1}∑
r=−n

kres+r;
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equilibrium paths of prices satisfy

pt =
n−1∑

s=1−n

cspt+s,

where the coefficients

cs =
r=min{−1,s−1}∑

r=−n

kres+r ≥ 0

satisfy
n−1∑

s=1−n

cs = 1.

To avoid degeneracies, none of the cs vanishes; for this it is enough to require
that all endowments and all discount factors are strictly positive. The equation
is a linear difference equation, whose positive solutions characterize equilibrium
paths.

Proposition 1. If time extends into the infinite past, up to normalization,
equilibrium prices satisfy

pt = a + bqt
0,

where 0 ≤ q0, and a and b are non-negative real numbers, not both equal to 0;
if time has a finite starting point, equilibrium prices satisfy

pt = a + bqt
0 +

m∑

k=1

qt
k(ak cos(ωkt) + bk sin(ωkt)) +

s∑

i=1

diq
t
i(−1)t,

where 0 ≤ q0, ak, bk and di are real numbers chosen such that price remain
positive, 2m + s = n − 2, and qk(cos(ωk) + i sin(ωk)) and qi are the n − 2
complex or negative zeroes of the function

∑n−1
s=1−n csq

s(cos(ωs)+ i sin(ωs))−1,
with 0 < qk, qi ≤ min{1, q0}.

By homogeneity, distinct equilibrium paths are associated with distinct paths
of the real rate of interest or, equivalently, of the rate of inflation,

πt =
pt+1

pt
− 1.

The dimension of the set of equilibrium paths is equal to n − 1, when time
has a finite starting point; however, positivity constraints reduce the dimension
to 1, as opposed to 2n− 3 when time extends to the infinite past. Furthermore,
in a sense that can be made exact in continuous time, the single dimension of
indeterminacy amounts to translations in time.
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2.2 Continuous time

Time extends continuously into the infinite future as well as the infinite past:

−∞ < t < +∞;

alternatively, it has a finite starting point:

0 ≤ t < +∞.

At each date, an individual, τ = t is born, and his life span extends to
τ + 1. At date τ ≤ s ≤ τ + 1, the consumption of the individual is xτ (s), and
his endowment is e(s − τ), where e is an integrable 3, positive function on the
interval [0, 1]; over the life-span of the individual,

∫ τ+1

τ

e(s− τ)ds = 1,

and the intertemporal utility function of the individual is

u =
∫ τ+1

τ

k(s− τ) ln xτ (s)ds,

where k(s− τ), is the discount factor is and k is an integrable, positive function
on the interval [0, 1], which is absolutely continuous except for finitely many
jumps and such that ∫ τ+1

τ

k(s− τ)ds = 1.

It is convenient to define

e(s) = k(s) = 0, s 6∈ [0, 1].

The price of the commodity at date t is p(t), where p is a locally integrable,
positive function, such that p(t) ≤ KeN |t|, for some large, real numbers K and
N ; indeed, it will follow that, at equilibrium, the price function is smooth 4.

The wealth of individual τ is

wτ =
∫ τ+1

τ

e(s− τ)p(s)ds;

since he maximizes his intertemporal utility subject to the intertemporal budget
constraint ∫ τ+1

τ

xτ (s− τ)p(s)ds ≤ wτ ,

his demand is

xτ (s) =
k(s− t)

p(s)
wτ .

3L1.
4C∞.
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At date t, individuals t− 1 ≤ τ ≤ t are active; aggregate demand is

x(t) =
∫ t

t−1

xτ (t)dτ ;

since, at equilibrium, aggregate demand must coincide with the aggregate en-
dowment,

x(t) =
∫ t

t−1

e(t− τ)dτ = 1,

it is necessary and sufficient that
∫ t

t−1

k(t− τ)
p(t)

wτdτ = 1

or

p(t) =
∫ t

t−1

k(t− τ)(
∫ τ+1

τ

e(s− τ)p(s)ds)dτ.

The function g, defined by

g(t− s) =
∫ +∞

−∞
k(t− τ)e(s− τ)dτ,

is continuous function, with generalized derivative, g′, which is integrable; more-
over g(t− s) = 0 if |t− s| > 1. The equilibrium equation is

p(t) =
∫ t+1

t−1

g(t− s)p(s)ds,

which writes in compact form as the convolution equation

p = g ∗ p.

If p is locally integrable and satisfies the equilibrium equation, then it must
be a smooth function; and the argument extends to non-logarithmic preferences.

The solutions of the equilibrium equation can be found by using a combina-
tion of Laplace and Fourier transforms and their form depends on the zeroes of
the function

F (λ) = (
∫ +∞

−∞
eλtg(t)dt)− 1.

As a real function, it is a convex function of λ, and, in the generic case, it has
two distinct real zeroes: 0 and another, λ0 — they coincide in non-generic cases.

Proposition 2. If time extends into the infinite past, equilibrium prices satisfy

p(t) = a + beλ0t,
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where a and b are non-negative real numbers, not both equal to 0; if time has a
finite starting point, equilibrium prices satisfy

p(t) = a + beλ0t +
∑

λk≤min{0,λ0}
eλkt(ak cosµkt + bk sin µkt),

where the ak and bk are real numbers chosen such that the sum converge and
the price remain positive, and λk + iµk are the complex zeroes of the function

F (λ + iµ) =
∫ +∞

−∞
e(λ+iµ)tg(t)dt− 1.

Since what matters are relative prices, one studies the inflation rate

π(t) =
1

p(t)
dp(t)
dt

=
λ0e

λ0t

a
b + eλ0t

.

To fix ideas, λ0 > 0.
If time extends to the infinite past, there are three types of solutions: the

non-stationary ones, for both a and b different from zero, that start from a value
close to a constant, for t near −∞, and increase exponentially with rate q as t
goes to +∞; and two stationary ones, when one of a or b is equal to zero, that
give the two steady states.

Along non-stationary solutions, the rate of inflation converge to 0, the steady
state of constant prices, as t → −∞, and to λ0, the autarkic stationary state,
as t → +∞.

Proposition 3. If time extends to the infinite past, the non-stationary solutions
are all equivalent up to time shift.

If one is interested in solutions for positive time only, it follows from the
form of the equations that one has convergence of πa,b(t) to the largest of 0 and
λ0, with exponentially decreasing fluctuations.

2.3 From discrete to continuous time

In order to compare discrete time with n dates and continuous time, one assumes
that the coefficients ej and kj are approximations of the corresponding functions
in continuous time in the sense that

ej =
∫ j/n

(j−1)/n

e(t)dt, and kj =
∫ j/n

(j−1)/n

k(t)dt,

and writes the solution of the discretized equation as

pn(t) = 1 + bq[nt]
n ,

where [nt] is the integer part of a real number; this is a piece-wise constant
function corresponding to prices of the n-date model. In the same way one
defines the rate of inflation πa,b,n(t).
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Proposition 4. As n →∞, πa,b,n(t) converges uniformly to πa,b(t).

This proposition also justifies the growth condition on prices assumed for
continuous time.

3 Proofs

The proofs use similar ideas in continuous and discrete time; the latter is tech-
nically simpler. In both cases, one first looks for real valued solutions and then
imposes the positivity constraint. To solve the equation in continuous time,
the essential tool is the Laplace transform, which transforms convolutions to
products, easier to analyze. For solutions that are bounded, or bounded by a
polynomial, the standard tools of Fourier analysis yield that, generically, the
only solutions are the constants. For solutions that are exponential, the argu-
ment requires a refinement, as follows: first one splits the solution, p(t) into two
parts, p−(t) and p+(t), that have support in a half line and satisfy the convo-
lution equation up to an error term, f(t), with compact support. To these, one
applies the Laplace transform and uses estimates to prove that p(t) is a sum of
exponentials, exact solutions of the convolution equation, and a bounded error
term, r(t), that has to be a solution as well. To the bounded term, the standard
argument in Fourier analysis applies to show that it is necessarily constant.

Proof of Proposition 1 Complex solutions of the equilibrium equation
depend on the roots of 5

P (z) =
n−1∑

s=1−n

csq
s(cos(ωs) + i sin(ωs)) = 1,

where z = q(cos(ω) + i sin(ω)) is a complex number. For simplicity, all are
simple zeroes — the case of multiple zeroes can be easily worked.

Lemma 1. As a function on the positive real line, that is for ω = 0, the function
P (q) is convex, it tends to infinity as q tends to infinity or zero, and it is such
that

1. P (1) = 1, and there is another root, P (q0) = 1, where, q0 6= 1 in the
generic case, while the two roots coincide in the non-generic case;

2. if min{1, q0} < q < max{1, q0}, then P (q) < 1;

3. other than 1 and q0, there are no other real or complex roots of P (z) = 1
with min{1, q0} ≤ ‖z‖ ≤ max{1, q0}; in particular, there are no solutions
with ‖z‖ = 1;

4. there are 2(n− 2) other roots, all complex or negative, of which n− 2 with
‖z‖ < min{1, q0} and n− 2 with ‖z‖ > max{1, q0}.

5Goldberg (1958).
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Proof (1) The function P (q) is convex on the positive real line, since it is the
sum of convex functions, integer powers of q, with positive coefficients. Since∑n−1

s=1−n cs = 1, P (1) = 1. If the first derivative P ′(1) < 0(> 0), there is another
root, P (q0) = 1, with q > 1(< 1); in the non-generic case of P ′ = 0, there is a
double root at 1.

(2) follows immediately, since P is convex.
(3) Since P (z) < 1, for z real, with 1 < z < q0, and all the coefficients in P (z)

are non-negative, if min{1, q0} < ‖z‖ < max{1, q0}, then ‖P (z)‖ < P (‖z‖) < 1,
while, if ‖z‖ = 1 or ‖z‖ = q0, and z is not real and positive, still ‖P (z)‖ < 1,
with strict inequality, since, in the sum that defines P (z), not all terms can be
positive.

(4) The family of polynomials P (z) as the coefficients cs vary is parametrized
by the open simplex ∆2n−2 = {c > 0 :

∑n−1
s=1−n cs = 1}, and, thus it is con-

nected. Given any two polynomials in it, P0(z) and P1(z), the path joining
them is [Pτ (z) : 0 ≤ τ ≤ 1]. From (3), no root of Pτ (z), other than 1 or q0 can
cross the annulus min{1, q0} ≤ ‖z‖ ≤ max{1, q0}; it follows that the number of
solutions, with multiplicity, inside the disc ‖z‖ ≤ min{1, q0} is constant along
the path, as is the number outside it. If P0(z) = P1(z−1), both polynomials are
in the family, and every solution of P0(z) = 1 with ‖z‖ < 1 yields a solution of
P1(z−1) = 1 with ‖z‖ > 1. Since the two polynomials can be joined by a path
along which the number of solutions inside or outside the disc is constant, it
follows that they are both equal to n− 2. 2

The formula for the equilibrium price, pt, implies that, as t tends to infinity,
the argument of pt is determined by the argument of the term akzt

k, where zk is
the root with largest absolute value. It follows that this root must be real and
equal to the largest of 1 and q; and that all other zk with ak 6= 0 must lie inside
the unit circle.

This gives the formula for the equilibrium paths when time has a finite
starting point: t ≥ 0. If positivity of prices is required for t ≤ 0, and, in
particular as t → −∞, this eliminates also the zk with ‖zk‖ < 1, and the only
solutions are pt = a + bqt

0. 2

Proof of Proposition 2 In continuous time the equilibrium equation is

p(t) =
∫ t+1

t−1

g(t− s)p(s)ds

or, in compact form,
p = g ∗ p,

where g is a nonnegative, absolutely continuous function with support on the
closed interval [−1, +1], such that

∫ +1

−1
g(t)dt = 1.

One seeks the solution in the space of locally integrable functions that satisfy
the growth condition p(t) < KeN |t| almost everywhere, for some K and N.

Lemma 2. The function p(t) is smooth.

11



Proof The derivative, g′, in the sense of distributions, of g is an integrable
function. If p′ is the distributional derivative of p, then p′ = g′ ∗p, and since the
convolution of two integrable functions is an integrable function, p′ is integrable
and p is absolutely continuous; in this manner, all derivatives of p are continuous.
2

Next one characterizes complex solutions of the equilibrium equation.

Lemma 3. If p solves the equilibrium equation and g is generic in the sense to
be specified below, then p is of the form

p(t) =
∑

−N≤λk≤N

cke(λk+iµk)t.

Proof If φ(t) is a smooth function such that φ(t) ≥ 0, φ(t) = 0, for t < 0, and
φ(t) = 1, for t > 1, and if p+(t) = φ(t)p(t), and p−(t) = (1 − φ(t))p(t), then it
follows from the equilibrium equation that p+ satisfies the equation

p+(t)− p+(t) ∗ g(t) = f+(t),

where f+(t) is a smooth function with support in [−1, 2].
If

p+(z) =
∫ +∞

−∞
e−ztp+(t)dt

is the Laplace transform 6 of p(t), where z = λ + iµ is a complex number, then
p+(z) exists and is an analytical function on the semi-plane λ ≥ N ; similarly,
one defines f+(z) and g(z), which are defined and analytic on the whole plane,
because f and g have compact support and so the integral converges for every
z.

Lemma 4. For all l and K, there exist Cl,K , such that

|f+(λ + iµ)| < Cl,K

|µ|l , |µ| → ∞

is an estimate of the decay of f, while

|g(λ + iµ)| ≤ oK(µ)
|µ| , |µ| → ∞.

is an estimate the decay of g.

Here, Cl,K is a constant that does not depend on λ, as long as λ ∈ [−K, K];
oK(µ) is a function with the same properties that tends to zero as |µ| tends to
infinity.

6Smith (1966).
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Proof This is standard, given that f+(t) is smooth and g is absolutely contin-
uous 7.

In the case of g, integration by parts yields

|g(λ + iµ)| = |
∫ +∞

−∞
e−(λ+iµ)tg(t)dt| = 1

|λ + iµ|

∣∣∣∣
∫ +∞

−∞
e−(λ+iµ)tg′(t)dt

∣∣∣∣ ;

the fact that g′ is an integrable function, with support [−1, +1] yields the bound

1
|λ+iµ|

∣∣∣
∫ +∞
−∞ e−(λ+iµ)tg′(t)dt

∣∣∣ ≤ eλ

|λ+iµ|

∣∣∣
∫ +∞
−∞ e−(λ+iµ)tg′(t)dt

∣∣∣

≤ ek

|µ|

∣∣∣
∫ +∞
−∞ e−(λ+iµ)tg′(t)dt

∣∣∣ ;

the integral is the Fourier transform of g′(t) and the Lebesgue theorem 8 yields
that the Fourier transform of an integrable function is continuous and tends to
0 at infinity.

A similar argument, iterating the integration by parts l times yields the
result for f. 2

Corollary 1. For any K > 0, the function 1 − g(λ + iµ) has finitely many
zeroes in the strip |λ| ≤ K, for any K; it has at most two real zeroes, λ = 0 and
λ = λ0, possibly coinciding in the non-generic case; there are no other complex
zeroes in the closed annulus {λ + iµ : min{0, λ0} ≤ λ ≤ max{0, λ0}}.
Proof The assertion about finitely many zeroes follows immediately from the
decay of g. For the rest, one notes that g(λ) is convex on the real line, since, by
differentiation with respect to λ twice under the integral sign,

d2

dλ2
g(λ) =

∫ +∞

−∞
t2e−λtg(t)dt > 0,

and tends to ∞ as |λ| → ∞. Moreover, one has g(0) = 1, and, thus, the result
about the real zeroes of g follows. That there are no complex zeroes in the
closed strip follows from the strict inequality

|g(λ + iµ)| = |
∫ +∞

−∞
e−(λ+iµ)tg(t)dt| <

∫ +∞

−∞
|e−λtdt| = g(λ),

which holds when µ 6= 0, since e−λtg(t) is always positive, while the convexity
of g(λ) implies that

g(λ) ≤ 1, 0 ≤ λ ≤ λ0.

From now on, one assumes that these zeroes are simple; this is true in the
generic case, and it simplifies some of the arguments — the extension to the
general case is left to the reader.

7Rudin (1977).
8Rudin(1977).
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A standard property of the Laplace transform says that, if p+ satisfies the
auxiliary convolution equation, then

p+(z)− g(z) ∗ p+(z) = f+(z),

so that

p+(z) =
f+(z)

1− g(z)
;

this means that p+(z) extends as a meromorphic function to the whole complex
plane, whose poles are contained in the zeroes of 1 − g(z); moreover the decay
estimates and corollary 1 imply that p̄+(λ + iµ)) has only finitely many poles
in the strip |λ| ≤ K, for any K, and that |p+(λ + iµ)| ≤ (C/|µ|k), as |µ| tends
to infinity. By the assumption on growth, p+(λ + iµ) has no poles in the plane
λ ≥ N.

According to the Laplace inversion formula 9, one can recover p+(t) as the
integral

p+(t) =
∫ +∞

−∞
e(λ+iµ)tp+(λ + iµ)dµ,

for any λ ≥ N.
If one denotes the last integral I(λ, t), the decay estimates together with

Cauchy formula imply that I(λ, t) = I(λ′, t) if there are no poles of p+(t) in the
strip between λ and λ′, λ′ ≤ λ. On the other side, if {z1; . . . ; zk} is the finite set
of poles of p+(t) in this strip, one has

I(λ, t) = I(λ′, t) +
∑

k

ckeiµkezkt,

where ckeiµk are the residues of p+(z) at zk. Moreover, up to a constant,
|I(λ′, t)| ≤ eλ′t for t → +∞, by the decay estimates.

It follows that

p+(t) = (
∑

0≤λk≤N

cke(λk+iµk)t) + r+(t),

where r+(t) is a bounded function for t going to plus infinity by the discussion
above and is bounded for t going to minus infinity because p+(t) is zero in this
case and the sum is bounded.

One proves an analogous inequality for p−(t) and putting the two together
one gets

p(t) =
∑

−N≤λk≤N

cke(λk+iµk)t + r(t),

where r(t) is a bounded function on the real line.
Now both p(t) and the expression in the sum are solutions of the convolution

equation, and it follows that the bounded function r(t) is as well; an easy

9Smith (1966).
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argument, using the Fourier transform, shows that the only bounded solutions of
the convolution equation, in the generic situation of simple zeros of 1−g(λ+iµ),
are the constants. 2

Proof of proposition 3 If s is such that eλ0s = a/b,

πa,b(t + s) =
λ0(b/a)eλ0(t+s)

1 + b
aeλ0(t+s)

=
λ0e

−λ0seλ0(t+s)

1 + e−λ0seλ0(t+s)
=

eλ0t

1 + eλ0t
= π1,1(t).

2

Proof of Proposition 4 One considers only the generic case q 6= 1.

Given n, the price is pn(t) = a + bq
[nt]
n .

If ej , kj and cj are related to e(t), k(t) and g(t), as before, then qn
n → q, as

n →∞, where q is the solution in continuous time:
In fact by the proof of proposition 1, qn is the real root of the equation

Pn(z) =
n−1∑

r=1−n

crz
r = 1,

different from 1, while λ0 is the root of

F (λ) =
∫ 1

−1

e−λtg(t)dt = 1,

with the same properties. Setting z = e−λ/n, one sees that Pn(e−λ/n) is the
Riemann sum of the integral that defines f(λ). It follows easily that the sequence
of functions (Pn(eλ/n) : n = 2, . . .) of λ converges uniformly with its derivatives
on compact subsets to F (λ); this, in turn, implies that, if Pn(eλn/n) = 1, then
λn → λ0. Since qn = eλn/n and q = eλ0 , it follows that qn

n → q. 2
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