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I. Introduction

Recent work on dynamic general equilibrium models with infinitely-lived agents and unin-

surable idiosyncratic risk has provided important insights into the macroeconomic effects of

market incompleteness (Ljungqvist and Sargent, 2000). One drawback of this incomplete-

markets approach to macroeconomics is that recursive equilibria are in general difficult to

compute even for simple economic environments.1 A second shortcoming is the lack of a gen-

eral existence proof.2 This paper presents a tractable macroeconomic model with incomplete

markets that avoids some of the shortcomings of the previous literature. More specifically,

this paper shows that for the incomplete-markets model developed here, there are always

recursive equilibria that are simple in the sense that endogenous equilibrium prices (asset re-

turns) only depend on exogenous shocks. This simplicity of equilibrium means that issues of

existence and comparative dynamics can be studied at a level of generality comparable to the

complete-markets literature, and that many quantitative applications are computationally

straightforward.

The model is an incomplete-markets version of the class of convex growth models analyzed

by, among others, Alvarez and Stokey (1998), Caballe and Santos (1993), Jones and Manuelli

(1990), and Rebelo (1991).3 More specifically, households have identical CRRA-preferences,

production displays constant returns to scale with respect to reproducible input factors, and

all markets are competitive. For the sake of concreteness, this paper considers the case of two

1For applied work relying on computational methods, see, for example, Aiyagari (1994), denHaan (1997),
Heaton and Lucas (1996), Huggett (1993), and Krusell and Smith (1998).

2Duffie, Geanakoplos, Mas-Colell, and McLennan (1994) show the existence of stationary recursive
(Markov) equilibria for exchange economies, but they rule out short-sales (borrowing) by assumption and use
a state space that includes endogenous variables in addition to the wealth distribution. Becker and Zilcha
(1997) and Reffett, Mirman, and Morand (2002) prove the existence of recursive equilibria for neoclassical
production economies with no assets except physical capital (no bonds).

3Lucas (1988) considers a human capital model with externalities.
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input factors, namely physical and human capital. There are aggregate productivity shocks

that affect aggregate returns to physical and human capital investment (stock returns and

wages), and there are idiosyncratic human capital shocks (depreciations shocks) that only

affect individual human capital returns. Conditional on the history of aggregate shocks, these

idiosyncratic human capital shocks are independently distributed over time and identically

distributed across households. Finally, the financial market structure is incomplete in the

sense that there are no assets with payoffs that depend on idiosyncratic shocks. However,

households have the opportunity to trade stocks (accumulate physical capital) and any asset

in zero net supply with payoffs that depend on the aggregate shock variable (bonds). In

particular, all households can borrow and lend at the common risk-free rate. Moreover,

households’ ability to trade existing assets is only limited by their ability to repay their debt

in the future. In short, the only market imperfection is the lack of explicit insurance markets

for idiosyncratic human capital risk.4

This paper shows that there exist simple recursive equilibria in which endogenous asset

returns (prices) only depend on the exogenous aggregate state. In particular, neither the en-

dogenous wealth distribution nor idiosyncratic shocks affect equilibrium returns. Moreover,

the allocations associated with simple recursive equilibria are identical to the equilibrium

allocations of an economy in which households live in autarky and face both aggregate and

idiosyncratic risk. That is, the equilibrium allocations can be found by solving a one-agent

decision problem. Thus, the incomplete-markets model analyzed in this paper is as tractable

as its complete-markets counterpart. However, whereas idiosyncratic risk does not affect the

equilibrium allocation when markets are complete, it does affect the equilibrium allocation

in the incomplete-markets model. Consequently, the two models may lead to very different

4More formally, this paper proves the existence of sequential equilibria with a recursive structure in which
borrowing (debt) constraints never bind (Hernandez and Santos, 1996, Levine and Zame 1996, and Magill
and Quinzii, 1994).
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policy conclusions. For example, whereas social insurance of idiosyncratic risk has no effect

on growth and welfare in the complete-markets economy, it has a substantial effect in the

incomplete-markets economy (Krebs, 2001). Moreover, the welfare cost of business cycles are

likely to be much larger when markets for idiosyncratic risk are incomplete (Krebs, 2002a).

Two properties of the model are essential in deriving the characterization and existence

result. First, in equilibrium the ratio of physical to human capital (capital-to-labor ratio) is

identical across households regardless of their current wealth or current idiosyncratic shock

realization, which implies the existence of a reduced-form production function that is linear.

Second, households choose not to trade the assets in zero-net-supply. This no-trade result

extends the work by Constantinides and Duffie (1996) to production economies. In accor-

dance with Constantinides and Duffie (1996), the current paper emphasizes the importance

of permanent income shocks in the sense that income follows (approximately) a logarithmic

random walk. Thus, neither borrowing and lending nor self-insurance is an optimal response

to idiosyncratic income shocks. However, in contrast to Constantinides and Duffie (1996),

this paper derives the random walk property of income as an endogenous outcome.5

In addition to the work by Constantinides and Duffie (1996), there are further examples of

tractable models with incomplete-markets and infinitely-lived agents in the literature. Magill

and Quinzii (2000) consider a model with quadratic preferences (certainty-equivalence) and

Angeletos and Calvet (2001) and Davis and Willen (2001) assume exponential utility and

normally distributed shocks. In contrast, the current paper assumes homothetic preferences,

which is the standard assumption in the growth and business cycle literature. In this sense,

the model presented here seems better suited for macroeconomic analysis. Finally, there is

the work by Scheinkman and Weiss (1986) and Woodford (1986) who consider models with

two infinitely-lived agents that are isomorphic to two-period OLG-models because individual

5The random walk property implies that equilibrium consumption is always unbounded, which is why
the non-existence argument of Krebs (2002b) does not apply.
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endowments fluctuate deterministically. In contrast to this work, the current model allows

for a wide range of distributions of idiosyncratic shocks, a feature that is essential when

calibrating the model based on household-level consumption and income data (Krebs 2001,

2002a).6

II. Model

II.A. Economy

Time is indexed by t = 0, 1, . . . and individual households by i = 1, . . . , I. A complete de-

scription of the exogenous state of the economy in period t is a vector (s1t, . . . , sIt, St), where

we interpret sit as a household-specific (idiosyncratic) shock and St as an economy-wide (ag-

gregate) shock. We assume that sit is an element of a time- and household-independent set

s, and that St is an element of a time-invariant set S. To avoid mathematical technicalities,

the formal proofs also assume that the two sets s and S are finite. We denote the vector of

idiosyncratic shocks by st = (s1t, . . . , sIt). A (partial) history of idiosyncratic, respectively

aggregate, shocks is denoted by st = (s0, . . . , st), respectively St = (S0, . . . , St). Clearly, the

ordered set of all histories defines an event tree with date-events (nodes) (st, St).

The process of exogenous shocks, {st, St}, is a Markov process with stationary tran-

sition probabilities denoted by π(st+1, St+1|st, St) or π(s′, S ′|s, S). We make two assump-

tions on these transition probabilities. First, idiosyncratic shocks have no predictive power:

π(st+1, St+1|st, St) = π(st+1, St+1|St). Second, households are ex-ante identical in the sense

that π(. . . , si,t+1, . . . , si′,t+1, . . . , St+1|St) = π(. . . , si′,t+1, . . . , si,t+1, . . . , St+1|St). For simplic-

ity, we also assume π(s′, S ′|s, S) > 0 for all (s, S) ∈ s × S. The transition probabilities in

6There is also a literature that rules out trading in any financial asset by assumption (for example,
Obstfeld, 1994, and Benabou, 2002). In contrast, in this paper households have the opportunity to trade
assets with aggregate payoffs, even though in equilibrium households optimally choose not to take advantage
of this opportunity.
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conjunction with the initial distribution define in the canonical way the node-probabilities

π(st, St) and the conditional node-probabilities π(st+n, St+n|st, St). Notice that our assump-

tions imply that conditional on the history of aggregate shocks, idiosyncratic shocks are

independently distributed over time and identically distributed across agents. That is, con-

ditional on St+1, the distribution of si,t+1 is independent of st
i (or st for that matter) and

the same for all i. Note also that our formulation allows for the possibility that sit and sjt

are correlated.

Assumption 1. The exogenous shock process, {st, St}, is a Markov chain with transition

probabilities satisfying π(. . . , si,t+1, . . . , si′,t+1, . . . , St+1|St) = π(. . . , si′,t+1, . . . , si,t+1, . . . , St+1|St)

and π(st+1, St+1|st, St) = π(st+1, St+1|St).

Economic variables at time t are often defined by functions xt : (s)t+1 × (S)t+1 →
IRn , xt = xt(s

t, St). Any function xt defines a random variable in the canonical way. For this

random variable, we denote the unconditional expectation by E[xt] =
∑

st,St π(st, St)xt(s
t, St)

and the conditional expectation by E[xt+n|st, St] =
∑

st,St π(st+n, St+n|st, St)xt+n(st+n, St+n).

There is one firm that produces an “all-purpose” good which can be used for con-

sumption, investment in physical capital, and investment in human capital. If the firm

employs Kt units of physical capital and Ht units of human capital in period t, then it

produces Yt = AtF (Kt, Ht) units of the good in period t. Here F is a standard neoclas-

sical production function. More specifically, we assume that F displays constant-returns-

to-scale, is twice continuously differentiable, strictly increasing, strictly concave, and sat-

isfies F (0, H) = F (K, 0) = 0 as well as limK→0 Fk(K,H) = limH→0 Fh(K,H) = +∞
and limK→∞ Fk(K,H) = limH→∞ Fh(K,H) = 0 . Total factor productivity is a function

A : S → IR++ that assigns to each aggregate state St a (strictly positive) productivity level

At = A(St).

5



Assumption 2. Output is produced according to Yt = AtF (Kt, Ht), where F is a stan-

dard neoclassical production function (in particular, it displays constant-returns-to-scale)

and At = A(St).

The firm rents input factors (physical and human capital) in competitive markets. We

denote the rental rate of physical capital by r̃kt and the rental rate of human capital (the

wage rate per efficiency unit of labor) by r̃ht. In each period, the firm hires capital and labor

up to the point where current profit is maximized. Thus, the firm solves the following static

maximization problem:

maxKt,Ht {AtF (Kt, Ht) − r̃ktKt − r̃htHt } . (1)

Let kit and hit stand for the stock of physical and human capital owned by household i at

the beginning of period t, and denote the corresponding investment levels by xkit and xhit.

If we denote household i′s consumption by cit, then the sequential budget constraint reads:

cit + xkit + xhit = r̃ktkit + r̃hthit (2)

ki,t+1 = (1 − δkt)kit + xkit , kit ≥ 0

hi,t+1 = (1 − δht + ηit)hit + xhit , hit ≥ 0

ki0 + hi0 given .

In (2) δkt and δht denote the average depreciation rate of human and physical capital,

respectively. These average depreciation rates are defined by functions δk : S → IR+ and

δh : S → IR+ assigning to each aggregate shock St εS a deprecation rate δkt = δk(St), respec-

tively δht = δh(St). The term ηit denotes a household-specific shock to the stock of human

capital and is defined by a function η : s×S → IR assigning to each (s, S) ε s×S a realization
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ηit = η(sit, St). Notice that we allow for the possibility that ηit > 0.7 Since r̃htηit is labor

income of household i, the random variable ηit determines the nature of idiosyncratic labor

income risk.

Assumption 3. The depreciation shocks are defined by δkt = δk(St), δht = δh(St), and

ηit = η(sit, St).

Some remarks on the formulation of the budget constraint (2) are in order.

Remark 1. The model does not distinguish between general and specific human capital.

Similarly, the idiosyncratic shocks to human capital, ηit, could be either shocks to general

or shocks to specific human capital. A negative human capital shock, ηit < 0, can occur

when a displaced worker loses firm- or sector-specific human capital. Jovanovic (1979) and

Ljungvist and Sargent (1998) analyze search models with specific human capital and idiosyn-

cratic shocks to human capital, but they assume risk-neutral workers and do not model the

accumulation of human capital. A decline in health (disability) provides a second example

for a negative human capital shock. In this case, both general and specific human capital

might be lost. Internal promotions and upward movement in the labor market provide two

examples of positive human capital shocks (ηit > 0).

Remark 2. The budget constraint (2) assumes that the wage is paid in each period. Thus,

if we interpret the η−shock as the skill loss of a displaced worker, we abstract from the

foregone wage during the period of unemployment and focus on the (permanent) difference

between the wage before job displacement and the wage after job displacement. Empirically,

the permanent component of this wage differential is quite large (Jacobson, LaLonde, and

7Of course, we restrict the depreciation functions so that the depreciation rate of physical and human
capital never exceeds 100 percent.

7



Sullivan 1993, Neal 1995, and Topel 1991).

Remark 3. Investment in human capital is often modeled as time investment. This is

equivalent to formulation (2) if we assume that Y1t = AtF (K1t, HtLt) is the quantity of

goods produced (consumption plus physical capital) and Y2t = AtF (K2t, Ht(1 − Lt)) is the

quantity of human capital produced, where Lt denotes the time spent producing the good.

Clearly, this equivalence result is driven by the joint assumption that the two production

functions are identical and exhibit constant-returns-to-scale.

Remark 4. So far, there is no labor-leisure choice. This extension is briefly discussed in

Section V.

Remark 5. Equation (2) does not impose a non-negativity constraint on human capital

investment (xhit ≥ 0). In equilibrium, this non-negativity constraint will not be violated if

positive human capital shocks are not too large. This can immediately be inferred from the

Corollary.

Remark 6. To simplify the analysis, we do not explicitly mention financial markets. However,

the equilibrium allocation of the above economy in which households accumulate physical

capital is also the equilibrium allocation of a stock market economy in which the firm is

a stock company that makes the intertemporal investment decision.8 If we normalize the

number of outstanding shares to one, the stock price is Qt = Kt+1, household i′s equity share

8In general, this type of market arrangement might lead to conceptual problems when markets are incom-
plete because shareholders (households) do not agree on the optimal investment policy (Magill and Quinzii,
1996). This, however, is not the case for the economy analyzed in this paper since here we have agreement
among shareholders in the sense that the equilibrium investment policy maximizes the expected present
discounted value of one-period profits using any household’s intertemporal marginal rate of substitution to
discount future profits.
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is θi,t+1Qt = ki,t+1, and the return to equity investment is r̃kt − δkt. Moreover, the equilib-

rium allocation is unchanged if households are given the opportunity to trade j = 1, . . . , J

securities in zero net supply with payoffs Djt = Dj(St). In particular, the introduction of a

risk-free asset in zero net supply (borrowing and lending at the risk-free rate) will not change

the equilibrium allocation.

The budget constraint can be rewritten in a way that shows how the households’s op-

timization problem is basically a standard intertemporal portfolio choice problem. To this

end, define the following variables: wit
.
= kit + hit (total wealth) and k̃it

.
= kit/hit (the

capital-to-labor ratio). With this new notation, the fraction of total wealth invested in

physical capital is k̃it/(1 + k̃it) and the fraction of total wealth invested in human capital is

1/(1 + k̃it). Introduce further the following (average) rate of returns on the two investment

opportunities: rkt
.
= r̃kt − δkt and rht

.
= r̃ht − δht. Using this notation, the budget constraint

reads:

wi,t+1 =

[
1 +

k̃it

1 + k̃it

rkt +
1

1 + k̃it

(rht + ηit)

]
wit − cit (3)

wit ≥ 0 , k̃it ≥ 0 ,

wi0 given .

Households have identical preferences over consumption plans {cit}. These preferences

allow for a time-additive expected utility representation:

U({cit}) = E

[ ∞∑
t=0

βtu(cit)

]
. (4)

Moreover, we assume that the one-period utility function, u, is given by u(c) = c1−γ

1−γ
, γ �= 1,

or u(c) = log c, that is, preferences exhibit constant degree of relative risk aversion γ.

Assumption 4. Preference allow for a time-additive expected utility representation (4)
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with one-period utility function that displays constant relative risk aversion.

II.B. Equilibrium

In general, a sequential equilibrium is a process of prices (returns) and actions defined by

a sequence of functions mapping histories (date-events),(st, St), into current prices and ac-

tions. In this paper, however, we are only interested in sequential equilibria with a recursive

(Markov) structure. Indeed, in this paper we focus attention on recursive equilibria that are

simple in a sense to be defined next.

Introduce the aggregate capital-to-labor ratio K̃t
.
= Kt/Ht and the production function

f = f(K̃) with f(K̃)
.
= F (K̃, 1). Using the definitions rkt

.
= r̃kt − δkt and rht

.
= r̃ht − δht,

the first-order conditions associated with the firm’s static maximization problem define two

functions rk : IR+ × S → IR+ and rh : IR+ × S → IR+ as follows

rk(K̃t, St) = A(St)f
′(K̃t) − δk(St) (5)

rh(K̃t, St) = A(St)
[
f(K̃t) − K̃tf

′(K̃t)
]
− δh(St) .

Below we show that there is an equilibrium in which the capital-to-labor ratio is determined

by a function K̃ : S → IR+ assigning to each aggregate state St−1 a capital-to-labor ratio K̃t =

K̃(St−1). Thus, we have rkt = rk(K̃(St−1), St) and rht = rh(K̃(St−1), St), and endogenous

returns (prices) in period t therefore depend on (St−1, St) only. The budget constraint (3) in

conjunction with preferences (4) then imply that in this equilibrium any individually optimal

plan is generated by a policy function g : IR+ × s × S2 → IR3
+ that assigns to each state

(wit, sit, St−1, St) an action (cit, k̃it, wi,t+1). Notice that we do not index the policy function,

g, by i, that is, we confine attention to symmetric recursive equilibria.

Definition A simple recursive equilibrium is a list of functions K̃ : S → IR+, rk :

IR+ × S → IR+, rh : IR+ × S → IR+, and g : IR+ × s × S2 → IR3
+ satisfying the following
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conditions.

i) Firms maximize: the functions rk and rh are defined by (5).

ii) Households maximize: the policy function g generates a plan {cit, wit, k̃it} that maximizes

expected lifetime utility (4) subject to the budget constraint (3).

iii) Markets clear : ∑
i

k̃it

1+k̃it
wit∑

i
1

1+k̃it
wit

= K̃t

Remark 7. The above market clearing condition simply states that the physical to human

capital ratio chosen by households is equal to the ratio chosen by the firm:
∑

i kit/
∑

i hit =

Kt/Ht. Equilibrium values of physical and human capital are determined by kit = k̃itwit/(1+

k̃it) and hit = wit/(1 + k̃it), and these markets automatically clear because of the constant-

returns-to-scale assumption. Similarly, summing over the individual budget constraints im-

plies goods market clearing Yt = Ct + Xkt + Xht.

Remark 8. In general, one would expect the portfolio choice of individual households

to depend on their wealth and idiosyncratic shock realization, that is, one would expect

k̃it = k̃(wit, sit, St−1, St). In this case, inspection of the market clearing condition immedi-

ately shows that no simple recursive equilibrium exists. However, if it happens to be the

case that k̃it = k̃(St−1), then the market clearing condition is satisfied if K̃(St−1) = k̃(St−1).

III. Existence and Characterization of Equilibrium

Consider an economy in which households live in autarky. That is, consider the decision

problem of a household i who has direct access to the production technology F , but no access
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to financial markets. In this case, household i chooses a plan {cit, kit, hit, xkit, xhit} solving

max
∞∑

t=0

E
[
βtu(cit)

]
(6)

s.t. : cit + xkit + xhit = AtF (kit, hit)

ki,t+1 = (1 − δkt)kit + xkit , kit ≥ 0

hi,t+1 = (1 − δht + ηit)hit + xiht , hit ≥ 0

ki0 + hi0 given ,

with u(cit) =
c1−γ
it

1−γ
, γ �= 1, or u(cit) = log cit. The stochastic productivity and de-

preciation parameters in (6) are again defined by functions At = A(St), δkt = δk(St),

δht = δh(St), and ηit = η(sit, St). The transition probabilities π(si,t+1, St+1|sit, St) =

π(si,t+1, St+1|St) of the Markov process {sit, St} are given by the formula π(si,t+1, St+1|St) =∑
−i π(s1,t+1, . . . , sI,t+1, St+1|St). Because of our previous assumption that the transition

probabilities are symmetric with respect to households, these marginal transition probabili-

ties are the same for all households.

Let wit and k̃it be defined as before. Because of the constant-returns-to-scale assumption,

the maximization problem (6) can be rewritten as

maxE

[ ∞∑
t=0

βtu(cit)

]
(7)

s.t. : wi,t+1 =
[
1 + r(k̃it, sit, St)

]
wit − cit

wit ≥ 0 , k̃it ≥ 0 ,

wi0 given ,

where we introduced the total return on investment (in physical and human capital)

r(k̃it, sit, St) =
k̃it

1 + k̃it

rk(k̃it, St) +
1

1 + k̃it

(
rh(k̃it, St) + η(sit, St)

)
. (8)

In (8) the investment return functions rk and rh are defined as in (5).
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It follows from the structure of the decision problem (7) that any plan solving (7) is

generated by a policy function h : IR+ × s × S → IR3
+ assigning to each state (wit, sit, St)

an action (cit, k̃it, wi,t+1). Define the consumption-to-wealth ratio , c̃it = cit

[1+r(k̃it,sit,St)]wit
. We

have the following result:

Proposition 1. Suppose a solution to the one-agent decision problem (7) exists and has

the property that k̃it = k̃(St−1), k̃ : S → IR+, and c̃it = c̃(St), c̃ : S → [ε, 1 − ε], for some

ε > 0. Then a simple recursive equilibrium exists. In this equilibrium the firm chooses

K̃(St−1) = k̃(St−1) and households choose k̃it = k̃(St−1) and c̃(St). Moreover, if households

have the opportunity to trade short-lived assets j = 1, . . . , J in zero net supply with payoffs

Djt = Dj(St), then this allocation remains an equilibrium allocation and no trading of the

j = 1, . . . , J short-lived assets is an equilibrium outcome.

Proof: See appendix.

Remark 9. The property that the ratio k̃ is independent of sit and wit, and therefore the

same for all households, is essential for the result that joint production (market economy

of previous section) and autarky production (economy of current section) lead to the same

allocation: if all households in the market economy choose the same k̃, then the production

function is basically linear, and the scale of production is irrelevant.

Remark 10. There is a simple intuition for the result that households choose the same

ratio k̃ in the equilibrium of the market economy. Because of the joint assumption of ho-

mothetic preferences and no exogenous source of income (labor income is generated through

human capital accumulation), the relative share of wealth invested in any asset (physical

and human capital) is independent of the wealth level. Further, these portfolio shares do

not depend on st because idiosyncratic shocks have no predictive power. In short, portfolio
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shares, and therefore the ratio k̃, are the same for all households. A similar intuition shows

that the (relative) excess demand for any security j whose payoffs do not depend on st+1 is

the same for all households (independent of wit and sit), and the only way to clear markets

is to have zero excess demand for each household. An alternative intuition for the no-trade

result is provided by (12), which shows that idiosyncratic income shocks are permanent in

the sense that individual income (approximately)follows a logarithmic random walk.

Remark 11. Any recursive equilibrium defines a joint Markov process over endogenous and

exogenous variables with stationary transition function. Given that individual equilibrium

consumption and income follow a logarithmic random walk with state-dependent drift (see

equation 11), there is no stationary distribution of equilibrium consumption and income.

Thus, there is no stationary Markov equilibrium in the sense of Duffie et al. (1994). How-

ever, the ratio variables k̃ (ratio of physical to human capital) and c̃ (ratio of consumption to

wealth) follow a stationary Markov process if the exogenous shock process {St} is stationary.

This follows immediately from the fact that the equilibrium values of the ratio variables are

functions of S only.

Proposition 1 assumes that a solution to the one-agent decision problem (7) exists. If

γ < 1 and capital returns are too high or if γ > 1 and capital returns are too low (too

negative), then a solution to (7) will not exist. However, if the condition

supS,k̃ βE
[(

1 + r(k̃, s′i, S
′)
)1−γ |S

]
< 1 (9)

is satisfied, then a solution exists (proposition 2 below). Notice that for γ = 1 (log-utility),

(9) reduces to β < 1. Condition (9) extends the condition appearing in Jones and Manuelli

(1990) to the case of uncertainty. Jones, Manuelli, and Stacchetti (1999) consider an econ-

omy with uncertainty similar to the one analyzed here. They, however, confine attention to

the linear Markov case with Cobb-Douglas production function and no depreciation shocks,

but allow for random variables with uncountable support. For linear Markov processes with
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Cobb-Douglas production function and no depreciation shocks, condition (9) is the finite-

state-space analog of the existence condition in Jones, Manuelli, and Stacchetti (1999).

Proposition 2. Suppose condition (9) is satisfied. Then there exists a solution to the

maximization problem (7) with k̃it = k̃(St−1) and c̃it = c̃(St), where k̃ : S → IR+ and

c̃ : S → [ε, 1 − ε]. The functions (Euclidian vectors) k̃ and c̃ are the unique solution to the

following equation system:

∀S : c̃(S) =
1

1 +
(
βE

[(
1 + r(k̃(S), s′i, S ′)

)1−γ
c̃−γ(S ′)|S

])1/γ
(10)

E


rh(k̃(S), S ′) + η(s′i, S

′) − rk(k̃(S), S ′)(
1 + r(k̃(S), s′i, S ′)

)γ
c̃(S ′)γ

|S

 = 0 .

In particular, if γ = 1 (log-utility), we have c̃ = 1 − β.

Proof : See appendix.

Remark 12. The equation system (10) determining the ratio variables k̃ and c̃ are the

modified version of the Euler equations (A1) that are associated with the maximization

problem (7). The first equation in (A1) says that the utility cost of investing (saving) one

more unit of the good must be equal to the expected discounted utility gain of doing so,

and the second equation in (A2) states the equality of expected (marginal utility weighted)

returns on the two investment opportunities. The equation system (10) results from (A1)

using the definition cit = c̃it(1 + rit)wit and the budget constraint wi,t+1 = (1 + rit)wit − cit.

Combining proposition 1 and 2, we have:

Corollary Suppose condition (9) is satisfied. Then there exists a simple recursive equi-
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librium with equilibrium allocation

k̃it = k̃(St−1) ; c̃it = c̃(St) ; cit = c̃(St)
[
1 + r(k̃(St−1), sit, St)

]
wit

kit =
k̃(St−1)

1 + k̃(St−1)
wit ; hit = 1

1+k̃(St−1)
wit ; wi,t+1 = [1 − c̃(St)]

[
1 + r(k̃(St−1), sit, St)

]
wit

and aggregate asset returns

rkt = rk(k̃(St−1), St) ; rht = rh(k̃(St−1), St) ,

where k̃ and c̃ are the solution to the equation system (10) and r, rk, and rh are the functions

defined in (5) and (8). Moreover, the above allocation and asset returns are also the equilib-

rium allocation and asset returns for an economy in which households have the opportunity

to trade short-lived securities j = 1, · · · , J in zero net supply with payoffs Djt = Dj(St). In

this recursive equilibrium, there is no trade of securities, and security prices are

Qj(St) = E [M(St, St+1)Dj(St+1)|St] ,

where the pricing kernel, M , is given by

M(St, St+1) = βE



(

(1 + r(k̃(St), si,t+1, St+1)c̃(St+1)(1 − c̃(St))

c̃(St)

)−γ

|St, St+1


 .

Remark 12. Although the ratio variables k̃t and c̃t are the same for all households, the

variables kit, hit, and cit of course differ across households. That is, idiosyncratic risk matters.

Note also that the equilibrium values of the ratios k̃t and c̃t are in general different from the

values that obtain when markets are complete.

We can gain additional insight into the structure of equilibrium by considering the im-

plications for individual income and consumption. The corollary implies that

yhi,t+1

yhit

= ϕy(St−1, St, St+1)
[
1 + r(k̃(St−1), sit, St)

]
(11)

ci,t+1

cit

= ϕc(St, St+1)
[
1 + r(k̃(St), si,t+1, St+1)

]
,
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where yhit = r̃hthit is labor income of household i in period t. Thus, conditional on the history

of aggregate shocks, the growth rates of labor income and consumption are unpredictable

(recall that si,t+1 is unpredictable). Taking logs and using the approximation log(1+ r) ≈ r,

we find

logyi,t+1 ≈ ϕ̃y(St−1, St, St+1) + logyit + η̃it , (12)

where ϕ̃yt = logϕyt + k̃t

1+k̃t
rkt + 1

1+k̃t
rht and η̃it = ηit

1+k̃t
. In other words, conditional on

the history of aggregate shocks, individual labor income therefore follows approximately a

logarithmic random walk. In this sense, income shocks are permanent, which provides yet

another intuition for the no-trade result and relates the current production economy to the

exchange economy studied by Constantinides and Duffie (1996).

The model has interesting implications for aggregate consumption if aggregate shocks are

unpredictable: π(S ′|S) = π(S). In this case, per capita consumption growth is

Ct+1

Ct

= E
[
ci,t+1

cit

|St+1
]

(13)

= β
(
1 + E[r(k̃, si,t+1, St+1)|St+1]

)
.

Thus, per capita consumption growth rates are i.i.d., that is, it follows (approximately)

a logarithmic random walk and the risk-free rate is constant. Annual data on real short-

term interest rates and consumption show only small deviations from these two properties

(Campbell and Cochrane, 1999).

IV. Extension: Labor-Leisure Choice

Suppose now that output is produced according to Yt = AtF (Kt, HtLt), where At and

F have the same properties as before and Lt is total number of hours households spent

17



working.9 Preferences are no given by

U({cit}) = E

[ ∞∑
t=0

βtu(cit)v(1 − lit)

]
, (14)

where u is again a CRRA-utility function and v is twice continuously differentiable, strictly

increasing, and strictly concave function satisfying the appropriate boundary conditions to

ensure the interiority of the optimal labor choice. Mutatis Mutandis, the a simple recursive

equilibrium is defined as in section II.

Define again total welath as wit = kit + hit and the ratio variables k̃it = kit/hit and

c̃it = cit/[(1 + rit)wit]. A straightforward extension of the arguments made in the proof of

propositions 1 and 2 shows that there is a simple recursive equilibrium in which households

choose k̃it = K̃(St−1), c̃it = c̃(St), and lit = l(St−1, St) if the following equation system has a

solution:

∀S : c̃(S) =
1

1 +
(
βE

[(
1 + r(k̃(S), l(S, S ′), s′i, S ′)

)1−γ
c̃−γ(S ′)|S

])1/γ
(15)

E


rh(k̃(S), l(S, S ′), S ′) + η(s′i, S

′) − rk(k̃(S), l(S, S ′), S ′)(
1 + r(k̃(S), l(S, S ′), s′i, S ′)

)γ
c̃(S ′)γ

|S

 = 0

l(S, S ′) =
(1 − γ)

[
rh(k̃(S), l(S, S ′), S ′) + δh(S

′)
]
v(1 − l(S, S ′))

c̃(S ′)
(
1 + k̃(S)

)
v(1 − l(S, S ′))

where rk and rh are the modified return functions (5).

V. Conclusion

This paper developed a tractable macroeconomic model with incomplete markets and

showed that there are simple recursive equilibria. Because of space limitations, this paper did

9A more realistic assumption might be that
∑

i hitlit enters as an argument into the production function.
However, since in equilibrium lit = lt (see below), this assumption leads to the same result.
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not discuss any applications of the framework to macroeconomic policy analysis. However,

the model has already been used to study the growth and welfare effects of social insurance

(Krebs 2001) and the welfare cost of business cycles (Krebs, 2002a).

The current paper does not address the question why certain insurance markets for idio-

syncratic human capital risk are missing. One possible explanation for this lack of insurance

might be the asymmetry of information with respect to idiosyncratic human capital shocks.

An interesting question for future research is to investigate under what conditions the equi-

librium allocation of the incomplete-markets economy is also the constrained efficient alloca-

tion of an economy with asymmetric/private information. The work by Atkeson and Lucas

(1992) suggest that this equivalence does not necessarily hold. However, Cole and Kocher-

lakota (2001) have shown that the incomplete-market equilibria lead to constrained efficient

allocations if information about both individual income and wealth are private. Extending

the analysis of Cole and Kocherlakota (2001) to the current model is an interesting topic for

future research.

19



Appendix 1: Proof of Proposition 1

The proof of proposition 1 splits into two parts. First, it is shown that the solution to

the one-agent decision problem (7) is also the equilibrium allocation of a one-agent market

economy with supporting prices given by (5) (second welfare theorem for the one-agent

economy). The proof offered here uses Euler equations and transversality condition, but a

dynamic programming approach along the lines of Prescott and Mehra (1980) would also

work.10 Second, it is argued that equilibrium choices and prices for the one-agent market

economy are also the equilibrium choices and prices for the I-agent economy.

Suppose that a solution {wit, k̃it, cit} to the one-agent decision problem (7) exists. Then

it must satisfy the Euler equations associated with (7), which read

(cit)
−γ = βE

[
(1 + ri,t+1) (ci,t+1)

−γ |st, St
]

(A1)

E
[
(ci,t+1)

−γ (rh,t+1 + ηi,t+1 − rk,t+1) |st, St
]

= 0 .

We next show that the existence of a solution to (7) in conjunction with the condition that

k̃it and c̃it are bounded away from zero imply that the transversality condition

βtE
[
(cit)

−γ (1 + rit)wit

]
→ 0 . (A2)

holds (the transversality condition is necessary).

Since {wit, k̃it, cit} is a solution to a maximization problem, expected lifetime utility as-

sociated with {cit} exists and is finite. Thus, for γ �= 1 the series
∑∞

t=0 at
.
= limT→∞

∑T
t=0 at

with at = βtE[(cit)
1−γ /(1− γ)] must converge, which implies that we must have aT → 0. In

10The results in Prescott and Mehra (1980) are not directly applicable because decision variables are
unbounded and the utility function is unbounded from below if γ ≥ 1. Coleman (1991), Greenwood and
Huffman (1995), and Morand and Reffett (2002) are examples of papers using the Euler equation approach to
non-optimal stochastic growth models. In contrast to Coleman (1991) and Greenwood and Huffman (1995),
the work by Morand and Reffett (2002) allows for an unbounded state space. However, Morand and Reffett
(2002) still assume a bounded utility function, which rules out the CRRA-case with γ ≥ 1.
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other words,

βtE

[
(ciT )1−γ

1 − γ

]
→ 0 . (A3)

Using wit = cit

(1+rit)c̃it
and ε ≤ c̃it ≤ 1−ε and rmin ≤ rit ≤ rmax for some ε > 0, rmin > −1, and

rmax < ∞, we find that the transversality condition (A2) holds iff (A3) holds. The existence

of rmin and rmax follows from the maintained assumptions on the production process. For

γ = 1 (log-utility), an analogous argument shows that (A2) holds.

We can think of {wit, k̃it, cit} as the solution to a social planner problem in a one-agent

economy. There is a market problem corresponding to this social planner problem, which

is to maximize (4) subject to the budget constraint (3) with (given) market returns rkt =

rk(k̃it, St) and rht = rh(k̃it, St). Equations (A1) and (A2) are also the Euler equations and

transversality condition associated with this market problem (straightforward calculation).

Since Euler equations and transversality condition together are sufficient conditions for utility

maximization11 and because {wit, k̃it, cit} is budget-feasible, this plan is also the solution to

the market problem. Thus, we have shown that if the one-agent decision problem has

a solution, then this solution is also the competitive equilibrium of the one-agent market

economy.

Consider now the I-agent market economy. From the above argument we conclude that

the policy {wit, k̃it, cit} is also individually optimal in the I-agent market economy when

returns are given by rkt = rk(k̃it, St) and rht = rh(k̃it, St) . Thus, it suffices to show that

market clearing holds. But with a common capital-to-labor ratio, k̃it = k̃(St−1), market

clearing automatically holds (for any possible wealth distribution).12

11See, for example, Stokey and Lucas (1989). With our finite-state-space assumption, their proof of
sufficiency extends to the uncertainty case in a straightforward way.

12Put differently, with a common k̃, the technology is basically linear, and joint production in one firm is
equivalent to production in I individual firms (one firm per household).
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So far, we have not mentioned recursivity. Suppose that the plan {wit, k̃it, cit} is generated

by a policy function h : IR+ × s × S → IR3
+ that assigns to each state (wit, sit, St) an action

(cit, k̃it, wi,t+1) and has the additional property k̃it = k̃(St−1). Then the corresponding market

equilibrium is clearly a simple recursive equilibrium.

Finally, suppose that households have the opportunity to trade j = 1, . . . , J securities in

zero net supply with payoffs Djt = Dj(St). The new budget constraint becomes:

wi,t+1 =

[
1 +

k̃it

1 + k̃it

rkt +
1

1 + k̃it

(rht + ηit)

]
wit − cit + Dt · θit − Qt · θi,t+1

wit ≥ 0 , k̃it ≥ 0 , (A4)

wi0 given ,

where θit = (θit1, . . . , θitJ) is the vector of security holdings and Qt = (Qt1, . . . , QtJ) is the

vector of security prices. To render the individual optimization problem well-defined (to

rule out Ponzi-schemes), let us impose the constraints θijt ≥ −B for some B > 0. Fix the

equilibrium plan {wit, k̃it, cit} of the market economy without the j = 1, . . . , J securities,

and define a security price function Qt = Q(St) by

Qj(St) = E [M(si,t+1, St, St+1)Dj(St+1)|St] (A5)

M(si,t+1, St, St+1) = β

(
(1 + r(k̃(St), si,t+1, St+1)c̃(St+1)(1 − c̃(St))

c̃(St)

)−γ

.

The pricing kernel M is simply the intertemporal marginal rate of substitution, β (ci,t+1/cit)
−γ .

Clearly, the assumption that k̃i,t+1 = k̃(St) and c̃it = c̃(St) is essential for ensuring that the

pricing kernel in period t+1, Mt+1 = M(k̃(St), si,t+1, St+1), does not depend on sit, which in

turn ensures that the expression on the right-hand-side of (A5) is the same for all households

i = 1, . . . , I. Moreover, the unpredictability of si,t+1 implies that the right-hand-side of (A5)

is unchanged if we include sit or st = (s1t, . . . , sIt) in the information set when calculating
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the conditional expectation. Thus, if household i is given the opportunity to trade the se-

curities at prices (A5), then his Euler equations regarding security trade will be satisfied at

θit = 0 (no trade). Since an extended version of the transversality condition still holds, the

choice of {wit, k̃it, cit} together with θit = 0 is individually optimal. Since by construction all

markets clear, we have found a (recursive) equilibrium for the extended economy in which

households have the opportunity to trade the securities j = 1, . . . , J .

Appendix 2: Proof of Proposition 2

The proof runs as follows. First, we show that there is a solution to the Euler equations

which has the stated properties. Second, we show that any solution to the Euler equations

also satisfies a transversality condition. Since in our case Euler equations and transversality

condition are sufficient conditions for an optimum, we have proved that a solution to the

maximization problem (7) with the stated properties exists. Uniqueness of the solution

immediately follows from the strict concavity of the objective function in conjunction with

the convexity of the choice set.13

We will prove the proposition for γ �= 1. For γ = 1 (log-utility) the proof follows similar

lines. Using cit = c̃it(1+rit)wit and wi,t+1 = (1+rit)wit−cit, we find that the Euler equations

(A1) are satisfied if the equation system (10) in proposition 2 has a solution 0 < c̃(S) ≤ 1

and k̃(S) ≥ 0. Denote the number of elements of S by |S|. Since the state space, S, is

finite, the functions c̃ and k̃ can be identified with finite-dimensional vectors c̃ ∈ IR
|S|
+ and

13There is an alternative way of proving proposition 2. First, extend the argument in Becker and Boyd
(1997) and Jones and Manuelli (1990) to show that a solution to (7) exists, that is, show that the objective
function is semi-continuous and the choice set is compact in the product topology. Since the solution to
(7) is unique (strict concavity of the utility function in conjunction with convexity of the choice set) and
Euler equations are necessary, it then suffices to show that a unique solution to the Euler equations exists
(contraction mapping theorem). Jones, Manuelli, and Staccetti (1999) provide a proof along those lines for
economies with Cobb-Douglas production function, linear Markov shocks, and no depreciation shocks.
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k̃ ∈ IR
|S|
+ . Let x = (c̃, k̃) ∈ IR

2|S|
+ . Finding a solution to the equation system (10) amounts to

finding a fixed point, x = Tx, for the operator T : X → X, X ⊂ IR
2|S|
+ , defined as follows.

If x′ = Tx with x′ = (c̃′, k̃′), then c̃′ is given by the right-hand-side of the first set of Euler

equations in (10) and k̃′ is determined as the solution of the second set of Euler equations.

Notice that for any c̃ >> 0, the solution, k̃′, to the second set of Euler equations exists and

is unique. This immediately follows from the properties of rh, rk, r that are an implication

of the assumption of a standard neoclasscial production function. To prove the existence

of a solution to (10), we apply Brower’s fixed point theorem. Thus, we need to show the

existence of a non-empty, convex, and compact set X for which T is continuous.

We choose X ≡ ([ε, 1])|S| × ([0, B])|S| for some 0 < ε < 1 and B < ∞ (below we show

that we can bound c̃ away from one). Clearly, this set is non-empty, convex, and compact.

Moreover, it is straightforward to show the continuity of T on X. Thus, it is left to show

that the two numbers B and ε exist. Notice the importance of bounding c̃ away from zero,

since T is not even defined if c̃(S) = 0 for some S ∈ S.

We begin with the existence of a strictly positive number ε. We want to show that if

c̃ ∈ ([ε, 1])|S|, then c̃ = T c̃ ∈ ([ε, 1])|S|. Since T c̃(S) ≤ 1 obviously holds, we only need to

show that ∀S : T c̃(S) ≥ ε if ε ≤ c̃ ≤ 1. Suppose therefore that c̃(S) ≥ ε for all S. In this

case the inequality T c̃(S) ≥ ε holds for all S if

∀S :
1

1 + ε−1

(
βE

[(
1 + r(k̃(S), s′i, S ′)

)1−γ |S
])1/γ

≥ ε . (A6)

Condition (9) ensures that the term in the brackets is strictly less than one, which implies

that for each S we can find a small enough ε(S) > 0 so that (A6) holds. Since there are only

finitely many states S, we can choose ε
.
= minS ε(S). Notice that in general B = B(ε), but

that the number ε can be found independently of k̃ and therefore B.

Finally, we show that the transversality condition (A2) holds. Using ciT = c̃iT (1+riT )wiT
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and the fact that ε ≤ c̃iT ≤ 1 − ε and rmin ≤ riT ≤ rmax for some ε > 0, rmin > −1, and

rmax < ∞, we find that (A2) holds iff the following holds

βT E
[
w1−γ

iT

]
→ 0 . (A7)

Repeated substitution of wi,t+1 = (1 − c̃it)(1 + rit)wit, t = 0, 1, . . . , T − 1, shows that (A7)

holds if

βE
[
(1 − c̃i,t+1)

1−γ(1 + ri,t+1)
1−γ|St

]
< 0 . (A8)

In (A8) we condition the expectation on St only because of the Markov assumption and the

properties of ci,t+1 and ri,t+1. Clearly, if (1 − c̃it)
1−γ < 1, then condition (9) ensures that

(A8) holds. Since 0 < (1 − c̃it) < 1, for γ < 1 the inequality (1 − c̃it)
1−γ < 1 is satisfied. It

is left to show that (A8) also holds for the case γ > 1.

Let c̃max = maxS c̃(S). The Euler equations (10) imply

∀S : c̃(S) ≤ 1

1 + c̃−1
max (βE [(1 + ri,t+1)1−γ|S])1/γ

.

Taking the maximum and rearranging terms yields

c̃max ≤ 1 −
(
βE

[
(1 + ri,t+1)

1−γ|S
])1/γ

. (A9)

Inequality (A9) establishes an upper bound on c̃ that is strictly smaller than one. Using this

inequality, condition (9) in the main text, and γ > 1, we find

βE
[
(1 − c̃i,t+1)

1−γ(1 + ri,t+1)
1−γ|St

]
≤ (1 − c̃max)

1−γβE
[
(1 + ri,t+1)

1−γ|St

]

≤
(
βE

[
(1 + ri,t+1)

1−γ|St

]) 1−γ
γ βE

[
(1 + ri,t+1)

1−γ|St

]
< 1 .

This completes the proof of proposition 2.
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